Sample records for structural organization consisting

  1. Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda).

    PubMed

    Fabritius, Helge; Walther, Paul; Ziegler, Andreas

    2005-05-01

    Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.

  2. Dissipative structures, machines, and organisms: A perspective

    NASA Astrophysics Data System (ADS)

    Kondepudi, Dilip; Kay, Bruce; Dixon, James

    2017-10-01

    Self-organization in nonequilibrium systems resulting in the formation of dissipative structures has been studied in a variety of systems, most prominently in chemical systems. We present a study of a voltage-driven dissipative structure consisting of conducting beads immersed in a viscous medium of oil. In this simple system, we observed remarkably complex organism-like behavior. The dissipative structure consists of a tree structure that spontaneously forms and moves like a worm and exhibits many features characteristic of living organisms. The complex motion of the beads driven by the applied field, the dipole-dipole interaction between the beads, and the hydrodynamic flow of the viscous medium result in a time evolution of the tree structure towards states of lower resistance or higher dissipation and thus higher rates of entropy production. The resulting end-directed evolution manifests as the tree moving to locations seeking higher current, the current that sustains its structure and dynamics. The study of end-directed evolution in the dissipative structure gives us a means to distinguish the fundamental difference between machines and organisms and opens a path for the formulation of physics of organisms.

  3. Synthesis and morphogenesis of organic polymer materials with hierarchical structures in biominerals.

    PubMed

    Oaki, Yuya; Kijima, Misako; Imai, Hiroaki

    2011-06-08

    Synthesis and morphogenesis of polypyrrole (PPy) with hierarchical structures from nanoscopic to macroscopic scales have been achieved by using hierarchically organized architectures of biominerals. We adopted biominerals, such as a sea urchin spine and nacreous layer, having hierarchical architectures based on mesocrystals as model materials used for synthesis of an organic polymer. A sea urchin spine led to the formation of PPy macroscopic sponge structures consisting of nanosheets less than 100 nm in thickness with the mosaic interior of the nanoparticles. The morphologies of the resultant PPy hierarchical architectures can be tuned by the structural modification of the original biomineral with chemical and thermal treatments. In another case, a nacreous layer provided PPy porous nanosheets consisting of the nanoparticles. Conductive pathways were formed in these PPy hierarchical architectures. The nanoscale interspaces in the mesocrystal structures of biominerals are used for introduction and polymerization of the monomers, leading to the formation of hierarchically organized polymer architectures. These results show that functional organic materials with complex and nanoscale morphologies can be synthesized by using hierarchically organized architectures as observed in biominerals.

  4. Preparation and Characterization of Organic-Inorganic Hybrid Macrocyclic Compounds: Cyclic Ladder-like Polyphenylsilsesquioxanes.

    PubMed

    Zhang, Wenchao; Wang, Xiaoxia; Wu, Yiwei; Qi, Zhi; Yang, Rongjie

    2018-04-02

    Organic-inorganic hybrid macrocyclic compounds, cyclic polyphenylsilsesquioxanes (cyc-PSQs), have been synthesized through hydrolysis and condensation reactions of phenyltrichlorosilane. Structural characterization has revealed that cyc-PSQs consist of a closed-ring double-chain siloxane inorganic backbone bearing organic phenyl groups. The cyc-PSQ molecules have been simulated and structurally optimized using the Forcite tool as implemented in Materials Studio. Structurally optimized cyc-PSQs are highly symmetrical and regular with high stereoregularity, consistent with the dimensions of their experimentally derived structures. Thermogravimetric analysis showed that these macrocyclic compounds have excellent thermal stability. In addition to these perfectly structured compounds, macrocyclic compounds with the same ring ladder structure but bearing an additional Si-OH group, cyc-PSQs-OH, have also been synthesized. A possible mechanism for the formation of the closed-ring molecular structures of cyc-PSQs and cyc-PSQs-OH is proposed.

  5. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    PubMed

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  6. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    PubMed

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  7. Hearing and the cochlea

    MedlinePlus

    ... like structure that contains the receptor organ for hearing. The cochlea contains the spiral organ of Corti, which is the receptor organ for hearing. It consists of tiny hair cells that translate ...

  8. Thienoacene-based organic semiconductors.

    PubMed

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The concept of self-organization in cellular architecture

    PubMed Central

    Misteli, Tom

    2001-01-01

    In vivo microscopy has recently revealed the dynamic nature of many cellular organelles. The dynamic properties of several cellular structures are consistent with a role for self-organization in their formation, maintenance, and function; therefore, self-organization might be a general principle in cellular organization. PMID:11604416

  10. Quasiparticles and Fermi liquid behaviour in an organic metal

    PubMed Central

    Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.

    2012-01-01

    Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143

  11. Measuring the learning capacity of organisations: development and factor analysis of the Questionnaire for Learning Organizations.

    PubMed

    Oudejans, S C C; Schippers, G M; Schramade, M H; Koeter, M W J; van den Brink, W

    2011-04-01

    To investigate internal consistency and factor structure of a questionnaire measuring learning capacity based on Senge's theory of the five disciplines of a learning organisation: Personal Mastery, Mental Models, Shared Vision, Team Learning, and Systems Thinking. Cross-sectional study. Substance-abuse treatment centres (SATCs) in The Netherlands. A total of 293 SATC employees from outpatient and inpatient treatment departments, financial and human resources departments. Psychometric properties of the Questionnaire for Learning Organizations (QLO), including factor structure, internal consistency, and interscale correlations. A five-factor model representing the five disciplines of Senge showed good fit. The scales for Personal Mastery, Shared Vision and Team Learning had good internal consistency, but the scales for Systems Thinking and Mental Models had low internal consistency. The proposed five-factor structure was confirmed in the QLO, which makes it a promising instrument to assess learning capacity in teams. The Systems Thinking and the Mental Models scales have to be revised. Future research should be aimed at testing criterion and discriminatory validity.

  12. Survey of Experience Using Reinforced Concrete in Floating Marine Structures.

    DTIC Science & Technology

    1983-01-01

    organizations involved in materials research and testing . The second largest group consists of those involved in design, consulting, and construction...This distribution is consistent with the open literature where the majority of articles are concerned with materials research, testing , and design. Only...example, organizations involved in materials research, design, testing , and certification were visited in the Netherlands, France, Norway, Scotland, and

  13. Toward link predictability of complex networks

    PubMed Central

    Lü, Linyuan; Pan, Liming; Zhou, Tao; Zhang, Yi-Cheng; Stanley, H. Eugene

    2015-01-01

    The organization of real networks usually embodies both regularities and irregularities, and, in principle, the former can be modeled. The extent to which the formation of a network can be explained coincides with our ability to predict missing links. To understand network organization, we should be able to estimate link predictability. We assume that the regularity of a network is reflected in the consistency of structural features before and after a random removal of a small set of links. Based on the perturbation of the adjacency matrix, we propose a universal structural consistency index that is free of prior knowledge of network organization. Extensive experiments on disparate real-world networks demonstrate that (i) structural consistency is a good estimation of link predictability and (ii) a derivative algorithm outperforms state-of-the-art link prediction methods in both accuracy and robustness. This analysis has further applications in evaluating link prediction algorithms and monitoring sudden changes in evolving network mechanisms. It will provide unique fundamental insights into the above-mentioned academic research fields, and will foster the development of advanced information filtering technologies of interest to information technology practitioners. PMID:25659742

  14. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.

    PubMed Central

    Hud, N V

    1995-01-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805

  15. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  16. Information Security Management (ISM)

    NASA Astrophysics Data System (ADS)

    Šalgovičová, Jarmila; Prajová, Vanessa

    2012-12-01

    Currently, all organizations have to tackle the issue of information security. The paper deals with various aspects of Information Security Management (ISM), including procedures, processes, organizational structures, policies and control processes. Introduction of Information Security Management should be a strategic decision. The concept and implementation of Information Security Management in an organization are determined by the corporate needs and objectives, security requirements, the processes deployed as well as the size and structure of the organization. The implementation of ISM should be carried out to the extent consistent with the needs of the organization.

  17. Developing a method of fabricating microchannels using plant root structure

    NASA Astrophysics Data System (ADS)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  18. Self-organization of maze-like structures via guided wrinkling.

    PubMed

    Bae, Hyung Jong; Bae, Sangwook; Yoon, Jinsik; Park, Cheolheon; Kim, Kibeom; Kwon, Sunghoon; Park, Wook

    2017-06-01

    Sophisticated three-dimensional (3D) structures found in nature are self-organized by bottom-up natural processes. To artificially construct these complex systems, various bottom-up fabrication methods, designed to transform 2D structures into 3D structures, have been developed as alternatives to conventional top-down lithography processes. We present a different self-organization approach, where we construct microstructures with periodic and ordered, but with random architecture, like mazes. For this purpose, we transformed planar surfaces using wrinkling to directly use randomly generated ridges as maze walls. Highly regular maze structures, consisting of several tessellations with customized designs, were fabricated by precisely controlling wrinkling with the ridge-guiding structure, analogous to the creases in origami. The method presented here could have widespread applications in various material systems with multiple length scales.

  19. Cross-Validation of the Implementation Leadership Scale (ILS) in Child Welfare Service Organizations.

    PubMed

    Finn, Natalie K; Torres, Elisa M; Ehrhart, Mark G; Roesch, Scott C; Aarons, Gregory A

    2016-08-01

    The Implementation Leadership Scale (ILS) is a brief, pragmatic, and efficient measure that can be used for research or organizational development to assess leader behaviors and actions that actively support effective implementation of evidence-based practices (EBPs). The ILS was originally validated with mental health clinicians. This study validates the ILS factor structure with providers in community-based organizations (CBOs) providing child welfare services. Participants were 214 service providers working in 12 CBOs that provide child welfare services. All participants completed the ILS, reporting on their immediate supervisor. Confirmatory factor analyses were conducted to examine the factor structure of the ILS. Internal consistency reliability and measurement invariance were also examined. Confirmatory factor analyses showed acceptable fit to the hypothesized first- and second-order factor structure. Internal consistency reliability was strong and there was partial measurement invariance for the first-order factor structure when comparing child welfare and mental health samples. The results support the use of the ILS to assess leadership for implementation of EBPs in child welfare organizations. © The Author(s) 2016.

  20. Updating CMAQ secondary organic aerosol properties relevant for aerosol water interactions

    EPA Science Inventory

    Properties of secondary organic aerosol (SOA) compounds in CMAQ are updated with state-of-the-science estimates from structure activity relationships to provide consistency among volatility, molecular weight, degree of oxygenation, and solubility/hygroscopicity. These updated pro...

  1. Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    DTIC Science & Technology

    2009-03-01

    Normal hierarchy vs entangled hierarchy 2.5.7 Quantifying Entangledness . While self organization means that the swarm develops a consistent structure of...flexibility due to centralization of control and com- munication. Thus, self organized, entangled hierarchy multi-agent swarms are evolved in this study to...technique. The resulting design exhibits a self organized multi-agent swarm (SOMAS) with entangled hierarchical control and communication through the

  2. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less

  3. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  4. Information and Innovation in Research Organizations.

    ERIC Educational Resources Information Center

    Baker, Norman R.; Freeland, James R.

    Empirical work in industrial research organizations has provided data to describe researcher behavior during innovation. Based on these data, the role of information during idea creation and submission is described. A model of a management information system, consistent with and supportive of researcher behavior, is structured to include technical…

  5. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  6. World Virtual Observatory Organization

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail; Pinigin, Gennadij

    On the base of experience of our Unoversity and Observatory we investigate the seven blocks model of virtual organization for consolidation of resources. This model consists of the next blocks: 1.Population-scientists students robots and agents. 2.Aspiration of population groups. 3.Territory. 4.Production. 5.Ecology and safety. 6.Finance. 7. External relations - input and output flows of population information resources.The world virtual observatory is the virtual world which consists of three groups of variables - appearances essences and structured uncertainty which defines the number and distribution of arbitrary coefficients in equivalent equations. The consolodation of recources permit to create the large telescopes with distributed structure on our planet and cosmos. Virtual instruments can have the best characteristics by means of collective effects which have investigated in our paper.

  7. A Contigency Model for Predicting Institutionalization of Innovation Across Divergent Organizations.

    ERIC Educational Resources Information Center

    Howes, Nancy J.

    This study was undertaken to compare the variables related to the successful institutionalization of changes across divergent organizations, and to design, through cross-validation, an interorganization model of change. Descriptive survey questionnaires and structured interviews were the instruments used. The respondent sample consisted of 1,500…

  8. Self-Concept Structure and the Quality of Self-Knowledge.

    PubMed

    Showers, Carolin J; Ditzfeld, Christopher P; Zeigler-Hill, Virgil

    2015-10-01

    This article explores the hidden vulnerability of individuals with compartmentalized self-concept structures by linking research on self-organization to related models of self-functioning. Across three studies, college students completed self-descriptive card sorts as a measure of self-concept structure and either the Contingencies of Self-Worth Scale, Likert ratings of perceived authenticity of self-aspects, or a response latency measure of self-esteem accessibility. In all, there were 382 participants (247 females; 77% White, 6% Hispanic, 5% Black, 5% Asian, 4% Native American, and 3% other). Consistent with their unstable self-evaluations, compartmentalized individuals report greater contingencies of self-worth and describe their experience of multiple self-aspects as less authentic than do individuals with integrative self-organization. Compartmentalized individuals also make global self-evaluations more slowly than do integrative individuals. Together with previous findings on self-clarity, these results suggest that compartmentalized individuals may experience difficulties in how they know the self, whereas individuals with integrative self-organization may display greater continuity and evaluative consistency across self-aspects, with easier access to evaluative self-knowledge. © 2014 Wiley Periodicals, Inc.

  9. Self-Concept Structure and the Quality of Self-Knowledge

    PubMed Central

    Showers, Carolin J.; Ditzfeld, Christopher P.; Zeigler-Hill, Virgil

    2014-01-01

    Objective Explores the hidden vulnerability of individuals with compartmentalized self-concept structures by linking research on self-organization to related models of self functioning. Method Across three studies, college students completed self-descriptive card sorts as a measure of self-concept structure and either the Contingencies of Self-Worth Scale; Likert ratings of perceived authenticity of self-aspects; or a response latency measure of self-esteem accessibility. In all, there were 382 participants (247 females; 77% White, 6% Hispanic, 5% Black, 5% Asian, 4% Native American, and 3% Other). Results Consistent with their unstable self-evaluations, compartmentalized individuals report greater contingencies of self-worth and describe their experience of multiple self-aspects as less authentic than do individuals with integrative self-organization. Compartmentalized individuals also make global self-evaluations more slowly than do integrative individuals. Conclusions Together with previous findings on self-clarity, these results suggest that compartmentalized individuals may experience difficulties in how they know the self, whereas individuals with integrative self-organization may display greater continuity and evaluative consistency across self-aspects, with easier access to evaluative self-knowledge. PMID:25180616

  10. Self-assembly of a double-helical complex of sodium.

    PubMed

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  11. Ceramic Honeycomb Structures and Method Thereof

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E.; Riccitiello, Salvatore R.

    1989-01-01

    The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.

  12. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure.

    PubMed

    Metzler, Rebecca A; Jones, Joshua A; D'Addario, Anthony J; Galvez, Enrique J

    2017-02-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata . Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.

  13. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.; Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.

    2017-02-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.

  14. Structures of SAS-6 suggest its organization in centrioles.

    PubMed

    van Breugel, Mark; Hirono, Masafumi; Andreeva, Antonina; Yanagisawa, Haru-aki; Yamaguchi, Shoko; Nakazawa, Yuki; Morgner, Nina; Petrovich, Miriana; Ebong, Ima-Obong; Robinson, Carol V; Johnson, Christopher M; Veprintsev, Dmitry; Zuber, Benoît

    2011-03-04

    Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.

  15. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Treesearch

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  16. Software Methodology Catalog. Second Edition. Revision

    DTIC Science & Technology

    1989-03-01

    structured design involve characterization of the data flow through graphical representation, identification of the various transform elements, assembling...and graphical diagrams to facilitate communication within the team. The diagrams are consistent with the design language and can be automatically...organization, box structure graphics provide a visual means of client communication. These box structures are used during analysis and design to review

  17. Cross-cultural consistency and diversity in intrinsic functional organization of Broca's Region.

    PubMed

    Zhang, Yu; Fan, Lingzhong; Caspers, Svenja; Heim, Stefan; Song, Ming; Liu, Cirong; Mo, Yin; Eickhoff, Simon B; Amunts, Katrin; Jiang, Tianzi

    2017-04-15

    As a core language area, Broca's region was consistently activated in a variety of language studies even across different language systems. Moreover, a high degree of structural and functional heterogeneity in Broca's region has been reported in many studies. This raised the issue of how the intrinsic organization of Broca's region effects by different language experiences in light of its subdivisions. To address this question, we used multi-center resting-state fMRI data to explore the cross-cultural consistency and diversity of Broca's region in terms of its subdivisions, connectivity patterns and modularity organization in Chinese and German speakers. A consistent topological organization of the 13 subdivisions within the extended Broca's region was revealed on the basis of a new in-vivo parcellation map, which corresponded well to the previously reported receptorarchitectonic map. Based on this parcellation map, consistent functional connectivity patterns and modularity organization of these subdivisions were found. Some cultural difference in the functional connectivity patterns was also found, for instance stronger connectivity in Chinese subjects between area 6v2 and the motor hand area, as well as higher correlations between area 45p and middle frontal gyrus. Our study suggests that a generally invariant organization of Broca's region, together with certain regulations of different language experiences on functional connectivity, might exists to support language processing in human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea).

    PubMed

    Korneva, Janetta V; Kornienko, Svetlana A; Jones, Malcolm K

    2016-06-01

    Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development.

  19. Investigation of charge injection and transport behavior in multilayer structure consisted of ferromagnetic metal and organic polymer under external fields

    NASA Astrophysics Data System (ADS)

    Zhao, Hua; Meng, Wei-Feng

    2017-10-01

    In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.

  20. Nonlinear optical effects in organic microstructures

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.

    2017-05-01

    Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.

  1. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    PubMed

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  2. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  3. Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure

    PubMed Central

    Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.

    2017-01-01

    The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth. PMID:28386442

  4. Domain analysis for the reuse of software development experiences

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Briand, L. C.; Thomas, W. M.

    1994-01-01

    We need to be able to learn from past experiences so we can improve our software processes and products. The Experience Factory is an organizational structure designed to support and encourage the effective reuse of software experiences. This structure consists of two organizations which separates project development concerns from organizational concerns of experience packaging and learning. The experience factory provides the processes and support for analyzing, packaging, and improving the organization's stored experience. The project organization is structured to reuse this stored experience in its development efforts. However, a number of questions arise: What past experiences are relevant? Can they all be used (reused) on our current project? How do we take advantage of what has been learned in other parts of the organization? How do we take advantage of experience in the world-at-large? Can someone else's best practices be used in our organization with confidence? This paper describes approaches to help answer these questions. We propose both quantitative and qualitative approaches for effectively reusing software development experiences.

  5. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  6. An ecosystem approach to assess soil quality in organically and conventionally managed farms in Iceland and Austria

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Lehtinen, T.; Lair, G. J.; Bloem, J.; Hemerik, L.; Ragnarsdóttir, K. V.; Gísladóttir, G.; Newton, J. S.; de Ruiter, P. C.

    2014-06-01

    Intensive agricultural production can be an important driver for the loss of long-term soil quality. For this reason, the European Critical Zone Observatory (CZO) network adopted four pairs of agricultural CZO sites that differ in their management: conventional or organic. The CZO sites include two pairs of grassland farms in Iceland and two pairs of arable farms in Austria. Conventional fields differed from the organic fields in the use of artificial fertilizers and pesticides. Soils of these eight farms were analysed in terms of their physical, chemical, and biological properties, including soil aggregate size distribution, soil organic matter contents, abundance of soil microbes and soil fauna, and taxonomic diversity of soil microarthropods. In Icelandic grasslands, organically farmed soils had larger mean weight diameters than the conventional farms, while there were no differences in the Austrian farms. Organic farming did neither systematically influence organic matter contents or composition, nor soil carbon and nitrogen contents. Also soil food web structures, in terms of presence of trophic groups of soil organisms, were highly similar among all farms, indicating a low sensitivity of trophic structure to land use or climate. However, soil organism biomass, especially of bacteria and nematodes, was consistently higher in organic farms than in conventional farms. Within the microarthropods, also taxonomic diversity was systematically higher in the organic farms compared to the conventional farms. This difference was found across countries, farm-, crop- and soil-types. The results do not show systematic differences in physical and chemical properties between organic and conventional farms, but confirm that organic farming can enhance soil organism biomass, and that microarthropod diversity is a sensitive and consistent indicator for land management.

  7. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  8. Uberon, an integrative multi-species anatomy ontology

    PubMed Central

    2012-01-01

    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552

  9. An ecosystem approach to assess soil quality in organically and conventionally managed farms in Iceland and Austria

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Lehtinen, T.; Lair, G. J.; Bloem, J.; Hemerik, L.; Ragnarsdóttir, K. V.; Gísladóttir, G.; Newton, J. S.; de Ruiter, P. C.

    2015-01-01

    Intensive agricultural production can be an important driver for the loss of long-term soil quality. For this reason, the European Critical Zone Observatory (CZO) network adopted four pairs of agricultural CZO sites that differ in their management: conventional or organic. The CZO sites include two pairs of grassland farms in Iceland and two pairs of arable farms in Austria. Conventional fields differed from the organic fields in the use of artificial fertilisers and pesticides. Soils of these eight farms were analysed in terms of their physical, chemical, and biological properties, including soil aggregate size distribution, soil organic matter contents, abundance of soil microbes and soil fauna, and taxonomic diversity of soil microarthropods. In Icelandic grasslands, organically farmed soils had larger mean weight diameters of soil aggregates than the conventional farms, while there were no differences on the Austrian farms. Organic farming did not systematically influence organic matter contents or composition, nor soil carbon and nitrogen contents. Also, soil food web structures, in terms of presence of trophic groups of soil organisms, were highly similar among all farms, indicating a low sensitivity of trophic structure to land use or climate. However, soil organism biomass, especially of bacteria and nematodes, was consistently higher on organic farms than on conventional farms. Within the microarthropods, taxonomic diversity was systematically higher in the organic farms compared to the conventional farms. This difference was found across countries and farm, crop, and soil types. The results do not show systematic differences in physical and chemical properties between organic and conventional farms, but confirm that organic farming can enhance soil biomass and that microarthropod diversity is a sensitive and consistent indicator for land management.

  10. Interrelated chemical-microstructural-nanomechanical variations in the structural units of the cuttlebone of Sepia officinalis

    NASA Astrophysics Data System (ADS)

    North, L.; Labonte, D.; Oyen, M. L.; Coleman, M. P.; Caliskan, H. B.; Johnston, R. E.

    2017-11-01

    "Cuttlebone," the internalized shell found in all members of the cephalopod family Sepiidae, is a sophisticated buoyancy device combining high porosity with considerable strength. Using a complementary suite of characterization tools, we identified significant structural, chemical, and mechanical variations across the different structural units of the cuttlebone: the dorsal shield consists of two stiff and hard layers with prismatic mineral organization which encapsulate a more ductile and compliant layer with a lamellar structure, enriched with organic matter. A similar organization is found in the chambers, which are separated by septa, and supported by meandering plates ("pillars"). Like the dorsal shield, septa contain two layers with lamellar and prismatic organization, respectively, which differ significantly in their mechanical properties: layers with prismatic organization are a factor of three stiffer and up to a factor of ten harder than those with lamellar organization. The combination of stiff and hard, and compliant and ductile components may serve to reduce the risk of catastrophic failure, and reflect the role of organic matter for the growth process of the cuttlebone. Mechanically "weaker" units may function as sacrificial structures, ensuring a stepwise failure of the individual chambers in cases of overloading, allowing the animals to retain near-neutral buoyancy even with partially damaged cuttlebones. Our findings have implications for our understanding of the structure-property-function relationship of cuttlebone, and may help to identify novel bioinspired design strategies for light-weight yet high-strength foams.

  11. [The photoluminescence characteristics of organic multilayer quantum wells].

    PubMed

    Zhao, De-Wei; Song, Shu-Fang; Zhao, Su-Ling; Xu, Zheng; Wang, Yong-Sheng; Xu, Xu-Rong

    2007-04-01

    By the use of multi-source high-vaccum organic beam deposition system, the authors prepared organic multilayer quantum well structures, which consist of alternate organic small molecule materials PBD and Alq3. Based on 4-period organic quantum wells, different samples with different thickness barriers and wells were prepared. The authors measured the lowest unoccupied molecular orbit (LUMO) and the highest occupied molecular orbit (HOMO) by electrochemistry cyclic voltammetry and optical absorption. From the energy diagrams, it seems like type-I quantum well structures of the inorganic semiconductor, in which PBD is used as a barrier layer and Alq3 as a well layer and emitter. From small angle X-ray diffraction measurements, the results indicate that these structures have high interface quality and uniformity. The photoluminescence characteristics of organic multilayer quantum wells were investigated. The PL peak has a blue-shift with the decrease of the well layer thickness. Meanwhile as the barrier thickness decreases the PL peaks of PBD disappear gradually. And the energy may be effectively transferred from PBD to Alq3, inducing an enhancement of the luminescence of Alq3.

  12. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    PubMed

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.

  13. Inorganic bromine in organic molecular crystals: Database survey and four case studies

    NASA Astrophysics Data System (ADS)

    Nemec, Vinko; Lisac, Katarina; Stilinović, Vladimir; Cinčić, Dominik

    2017-01-01

    We present a Cambridge Structural Database and experimental study of multicomponent molecular crystals containing bromine. The CSD study covers supramolecular behaviour of bromide and tribromide anions as well as halogen bonded dibromine molecules in crystal structures of organic salts and cocrystals, and a study of the geometries and complexities in polybromide anion systems. In addition, we present four case studies of organic structures with bromide, tribromide and polybromide anions as well as the neutral dibromine molecule. These include the first observed crystal with diprotonated phenazine, a double salt of phenazinium bromide and tribromide, a cocrystal of 4-methoxypyridine with the neutral dibromine molecule as a halogen bond donor, as well as bis(4-methoxypyridine)bromonium polybromide. Structural features of the four case studies are in the most part consistent with the statistically prevalent behaviour indicated by the CSD study for given bromine species, although they do exhibit some unorthodox structural features and in that indicate possible supramolecular causes for aberrations from the statistically most abundant (and presumably most favourable) geometries.

  14. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    PubMed

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  15. Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques.

    PubMed

    Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-08-01

    The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Adding dynamic rules to self-organizing fuzzy systems

    NASA Technical Reports Server (NTRS)

    Buhusi, Catalin V.

    1992-01-01

    This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.

  17. High thermal stability and antiferromagnetic properties of a 3D Mn(II)-organic framework with metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang

    2009-04-01

    A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.

  18. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yong-Woon; Mascagni, Michael, E-mail: Mascagni@fsu.edu

    2014-09-28

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ringmore » constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.« less

  19. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    PubMed

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-08-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  20. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses

    PubMed Central

    Ocker, Gabriel Koch; Litwin-Kumar, Ashok; Doiron, Brent

    2015-01-01

    The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure. PMID:26291697

  1. Structured-gate organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  2. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    PubMed

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  3. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.

    2017-03-01

    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  4. Up the Beanstalk: An Evolutionary Organizational Structure for Libraries.

    ERIC Educational Resources Information Center

    Hoadley, Irene B.; Corbin, John

    1990-01-01

    Presents a functional organizational model for research libraries consisting of six major divisions and subunits: acquisition (buying, borrowing, leasing); organization (records creation, records maintenance); collections (collections management, selection, preservation, special collections and archives); interpretation (reference, instructional…

  5. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  6. Sea urchin skeleton: Structure, composition, and application as a template for biomimetic materials

    NASA Astrophysics Data System (ADS)

    Shapkin, Nikolay P.; Khalchenko, Irina G.; Panasenko, Alexander E.; Drozdov, Anatoly L.

    2017-07-01

    SEM and optical microscopy, chemical and EDX analysis, XRD, and FT-IR spectroscopy of three sea urchins skeletons (tests) show that the test is a spongy stereom, consisting of calcite with high content of magnesium. The tests are composed of mineral-organic composite of calcite-magnesite crystals, coated with organic film, containing silicon in form of polyphenylsiloxane. In the test of sea urchin pore spaces are linked into united system of regular structure with structure motive period about 20 um. This developed three-dimensional structure was used as a template for polymer material based on polyferrofenilsiloxane [OSiC6H5OH]x[OSiC6H5O]y[OFeO]z, which is chemically similar to the native film, coating sea urchins skeleton.

  7. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering.

    PubMed

    Ji, Shuiwang

    2013-07-11

    The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.

  8. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution

    PubMed Central

    Strauß, Johannes; Stritih, Nataša; Lakes-Harlan, Reinhard

    2014-01-01

    Comparative studies of the organization of nervous systems and sensory organs can reveal their evolution and specific adaptations. In the forelegs of some Ensifera (including crickets and tettigoniids), tympanal hearing organs are located in close proximity to the mechanosensitive subgenual organ (SGO). In the present study, the SGO complex in the non-hearing cave cricket Troglophilus neglectus (Rhaphidophoridae) is investigated for the neuronal innervation pattern and for organs homologous to the hearing organs in related taxa. We analyse the innervation pattern of the sensory organs (SGO and intermediate organ (IO)) and its variability between individuals. In T. neglectus, the IO consists of two major groups of closely associated sensilla with different positions. While the distal-most sensilla superficially resemble tettigoniid auditory sensilla in location and orientation, the sensory innervation does not show these two groups to be distinct organs. Though variability in the number of sensory nerve branches occurs, usually either organ is supplied by a single nerve branch. Hence, no sensory elements clearly homologous to the auditory organ are evident. In contrast to other non-hearing Ensifera, the cave cricket sensory structures are relatively simple, consistent with a plesiomorphic organization resembling sensory innervation in grasshoppers and stick insects. PMID:26064547

  9. A fractal model for nuclear organization: current evidence and biological implications

    PubMed Central

    Bancaud, Aurélien; Lavelle, Christophe; Huet, Sébastien; Ellenberg, Jan

    2012-01-01

    Chromatin is a multiscale structure on which transcription, replication, recombination and repair of the genome occur. To fully understand any of these processes at the molecular level under physiological conditions, a clear picture of the polymorphic and dynamic organization of chromatin in the eukaryotic nucleus is required. Recent studies indicate that a fractal model of chromatin architecture is consistent with both the reaction-diffusion properties of chromatin interacting proteins and with structural data on chromatin interminglement. In this study, we provide a critical overview of the experimental evidence that support a fractal organization of chromatin. On this basis, we discuss the functional implications of a fractal chromatin model for biological processes and propose future experiments to probe chromatin organization further that should allow to strongly support or invalidate the fractal hypothesis. PMID:22790985

  10. MONITORING DECLINING METAPOPULATIONS: INSIGHTS FROM A MODEL SIMULATION

    EPA Science Inventory

    Pond-breeding amphibians, host-specialist butterflies, and a variety of other organisms have been shown to exhibit population structures and dynamics consistent with metapopulation theory. In recent years large-scale biodiversity monitoring efforts have been initiated in many reg...

  11. Development of a survey instrument to measure connectivity to evaluate national public health preparedness and response performance.

    PubMed

    Dorn, Barry C; Savoia, Elena; Testa, Marcia A; Stoto, Michael A; Marcus, Leonard J

    2007-01-01

    Survey instruments for evaluating public health preparedness have focused on measuring the structure and capacity of local, state, and federal agencies, rather than linkages among structure, process, and outcomes. To focus evaluation on the latter, we evaluated the linkages among individuals, organizations, and systems using the construct of "connectivity" and developed a measurement instrument. Results from focus groups of emergency preparedness first responders generated 62 items used in the development sample of 187 respondents. Item reduction and factors analyses were conducted to confirm the scale's components. The 62 items were reduced to 28. Five scales explained 70% of the total variance (number of items, percent variance explained, Cronbach's alpha) including connectivity with the system (8, 45%, 0.94), coworkers (7, 7%, 0.91), organization (7, 12%, 0.93), and perceptions (6, 6%, 0.90). Discriminant validity was found to be consistent with the factor structure. We developed a Connectivity Measurement Tool for the public health workforce consisting of a 34-item questionnaire found to be a reliable measure of connectivity with preliminary evidence of construct validity.

  12. Is the regulation of the electronic properties of organic molecules by polynuclear superhalogens more effective than that by mononuclear superhalogens? A high-level ab initio case study.

    PubMed

    Li, Miao-Miao; Li, Jin-Feng; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing

    2015-08-21

    The regulation of the electronic properties of organic molecules induced by polynuclear superhalogens is theoretically explored here for sixteen composite structures. It is clearly indicated by the higher vertical electron detachment energy (VDE) that polynuclear superhalogens are more effective in regulating the electronic properties than mononuclear structures. However, this enhanced regulation is not only determined by superhalogens themselves but also related to the distribution of the extra electron of the final composites. The composites, in which the extra electron is mainly aggregated into the superhalogen moiety, will possess higher VDE values, as reported in the case of C1', 7.12 eV at the CCSD(T) level. This is probably due to the fact that, compared with organic molecules, superhalogens possess stronger attraction towards the extra electron and thus should lead to lower energies of the extra electrons and to higher VDE values eventually. Compared with CCSD(T), the Outer Valence Green's Function (OVGF) method fails completely for composite structures containing Cl atoms, while MP2 results are generally consistent in terms of the relative order of VDEs. Actually if the extra electron distribution of the systems could be approximated by the HOMO, the results at the OVGF level will be consistent with the CCSD(T) results. Conversely, the difference in VDEs between OVGF and CCSD(T) is significantly large. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to various fragmentation channels were also investigated for all the composite structures.

  13. Nacre in Abalone Shell: Organic and Inorganic Components and their effects to the Formation and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lopez, Maria Isabel

    Abalone nacre is a natural composite that exhibits exceptional mechanical properties due to its organization that extends to various levels of hierarchy. Most of the toughness has been attributed by nacre's third level of hierarchy which entitles a brick and mortar structure consisting of the CaCO3 tiles and organic interlayers. However, there are other important components that are vital to the structure and strength of red abalone nacre. The process of formation of red abalone (Haliotis rufescens) nacre following periods of growth interruption, taking into consideration important environmental factors (access to food and temperature) and to employ high-magnification characterization techniques (scanning electron microscopy and transmission electron microscopy) to better understand how the soft tissue (e.g. epithelium and organic membrane) influences the mechanism of growth. The structure-property relationship of red abalone (Haliotis rufescens) nacre, focusing in the individual constituents (isolated mineral and isolated organic component) and comparing that to the integrated structure. Mechanical tests such as, tensile tests, microscratch, and nanoindentation is performed on the isolated organic constituent and the isolated mineral of red abalone shell. Specimens are characterized by SEM to verify the toughening and deformation mechanisms. Results obtained from the isolated mineral validate the importance of the organic constituent as the mechanical properties decline greatly as the organic component is removed. This approach forms a general picture of the mechanical response of the organic interlayers and growth bands and their effect on the toughness of the abalone nacre. These results are significant to understand the important characteristics of abalone nacre, such as the structure and mechanical properties, and an attempt to aid in improving the latest attempts to produce novel nacre-inspired materials.

  14. Vendian cyanobacterial communities as a preservation factor of fossil eucaryotic algal remains

    NASA Astrophysics Data System (ADS)

    Leonov, M. V.

    2003-01-01

    A new fossil complex of organic micro-organisms from Upper Vendian deposits of Mezen syneclise is described. This complex consists of cyanobacterial mat fragments represented by taxa Leiotrichoides tipicus Hermannn, 1974 and Palaeolyngbya aff. catenata Hermann, 1974. On the surface of this communities were found remains of cord-like thalli Eoholynia mosquensis Gnilovskaya, 1975. They may be referred to the eucaryotic algae with parenchimatous type of tallus structure. The phytoleims of megascopic probably eucaryotic algae were also found jointly with organic biofilms. Their type of preservation was determinated by this burial with the organic biofilms produced by cyanobacterial communities.

  15. Thin film composition with biological substance and method of making

    DOEpatents

    Campbell, Allison A.; Song, Lin

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  16. Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.

  17. Producing genome structure populations with the dynamic and automated PGS software.

    PubMed

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  18. Outsourcing Special Education Services

    ERIC Educational Resources Information Center

    McKenzie, Anne S.; Bishop, Anna M.

    2009-01-01

    The Lower Pioneer Valley Educational Collaborative, organized in 1974, consists of seven school districts legally bound in a governance structure. Although the member districts are located in Hampden County, Massachusetts, the collaborative provides educational programs and services to school districts and municipalities throughout western…

  19. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    NASA Astrophysics Data System (ADS)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  20. Color tunable monolithic InGaN/GaN LED having a multi-junction structure.

    PubMed

    Kong, Duk-Jo; Kang, Chang-Mo; Lee, Jun-Yeob; Kim, James; Lee, Dong-Seon

    2016-03-21

    In this study, we have fabricated a blue-green color-tunable monolithic InGaN/GaN LED having a multi-junction structure with three terminals. The device has an n-p-n structure consisting of a green and a blue active region, i.e., an n-GaN / blue-MQW / p-GaN / green-MQW / n-GaN / Al2O3 structure with three terminals for independently controlling the two active regions. To realize this LED structure, a typical LED consisting of layers of n-GaN, blue MQW, and p-GaN is regrown on a conventional green LED by using a metal organic chemical vapor deposition (MOCVD) method. We explain detailed mechanisms of three operation modes which are the green, blue, and cyan mode. Moreover, we discuss optical properties of the device.

  1. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

    PubMed

    Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki

    2013-12-01

    Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River

    PubMed Central

    Wang, Wenhui; Wang, Hui; Feng, Youzhi; Wang, Lei; Xiao, Xingji; Xi, Yunguan; Luo, Xue; Sun, Ruibo; Ye, Xianfeng; Huang, Yan; Zhang, Zhengguang; Cui, Zhongli

    2016-01-01

    Soil microorganisms play a crucial role in the biogeochemical cycling of nutrient elements and maintaining soil health. We aimed to investigate the response of bacteria communities to organic farming over different crops (rice, tea and vegetable) along the middle and lower reaches of the Yangtze River of China. Compared with conventional farming, organic farming significantly increased soil nutrients, soil enzyme activities, and bacterial richness and diversity. A Venn diagram and principal component analysis revealed that the soils with 3 different crops under organic farming have more number and percent of shared OTUs (operational taxonomic units), and shared a highly similar microbial community structure. Under organic farming, several predominant guilds and major bacterial lineages (Rhizobiales, Thiotrichaceae, Micromonosporaceae, Desulfurellaceae and Myxococcales) contributing to nutrient (C, N, S and P) cycling were enriched, whereas the relative abundances of acid and alkali resistant microorganisms (Acidobacteriaceae and Sporolactobacillaceae) were increased under conventional farming practices. Our results indicated that, for all three crops, organic farming have a more stable microflora and the uniformity of the bacterial community structure. Organic agriculture significantly increased the abundance of some nutrition-related bacteria, while reducing some of the abundance of acid and alkali resistant bacteria. PMID:27725750

  3. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  4. Using Self-Organizing Neural Network Map Combined with Ward's Clustering Algorithm for Visualization of Students' Cognitive Structural Models about Aliveness Concept

    PubMed Central

    Ugulu, Ilker; Aydin, Halil

    2016-01-01

    We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept. PMID:26819579

  5. Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets.

    PubMed

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  6. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offersmore » a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.« less

  7. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    PubMed

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  8. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus.

    PubMed

    Derenzini, Massimo; Pasquinelli, Gianandrea; O'Donohue, Marie-Françoise; Ploton, Dominique; Thiry, Marc

    2006-02-01

    Data on the in situ structural-functional organization of ribosomal genes in the mammalian cell nucleolus are reviewed here. Major findings on chromatin structure in situ come from investigations carried out using the Feulgen-like osmium ammine reaction as a highly specific electron-opaque DNA tracer. Intranucleolar chromatin shows three different levels of organization: compact clumps, fibers ranging from 11 to 30 nm, and loose agglomerates of extended DNA filaments. Both clumps and fibers of chromatin exhibit a nucleosomal organization that is lacking in the loose agglomerates of extended DNA filaments. In fact, these filaments constantly show a thickness of 2-3 nm, the same as a DNA double-helix molecule. The loose agglomerates of DNA filaments are located in the fibrillar centers, the interphase counterpart of metaphase NORs, therefore being constituted by ribosomal DNA. The extended, non-nucleosomal configuration of this rDNA has been shown to be independent of transcriptional activity and characterizes ribosome genes that are either transcribed or transcriptionally silent. Data reviewed are consistent with a model of control for ribosome gene activity that is not mediated by changes in chromatin structure. The presence of rDNA in mammalian cells always structurally ready for transcription might facilitate a more rapid adjustment of the ribosome production in response to the metabolic needs of the cell.

  9. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.

    PubMed

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-06-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.

  11. Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean ▿ †

    PubMed Central

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-01-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719

  12. [Micro vs. macro: structural-functional organization of avian micro- and macrochromosomes].

    PubMed

    Rodionov, A V

    1996-05-01

    Karyotypes of lower vertebrates mainly consist of microchromosomes. In higher vertebrates, microchromosomes are present in each class of the most primitive orders. Birds have more microchromosomes in their karyotype than other vertebrates. Accumulation of microchromosomes in the avian karyotype probably occurred after separation of birds from reptilians in Triassic, but prior to radiation of ancestors of the modern orders (late Cretaceous-early Jurassic). In this review, the structural, molecular, and functional organization of avian macro- and microchromosomes and their participation in genetic processes are discussed. The average size of an avian microchromosome is about 12.4 Mb, which is ten times less than the size of an average macrochromosome. In contrast to macrochromosomes, medium and small avian chromosomes lack the highest level of chromosomal organization: their chromonemes do not have spiral coiling. Microchromosomal euchromatin largely consists of GC-rich R regions. More than half of the mapped avian genes are located on microchromosomes. Crossing-over frequency in microchromosomes is approximately threefold higher than in macrochromosomes. This may be caused by high GC content and recombination hot spots, which are present on each microchromosome. High recombination frequency in microchromosomes increases the probability of their correct meiotic segregation.

  13. Experimental evolution of multicellularity using microbial pseudo-organisms.

    PubMed

    Queller, David C; Strassmann, Joan E

    2013-02-23

    In a major evolutionary transition to a new level of organization, internal conflicts must be controlled before the transition can truly be successful. One such transition is that from single cells to multicellularity. Conflicts among cells in multicellular organisms can be greatly reduced if they consist of genetically identical clones. However, mutations to cheaters that experience one round of within-individual selection could still be a problem, particularly for certain life cycles. We propose an experimental evolution method to investigate this issue, using micro-organisms to construct multicellular pseudo-organisms, which can be evolved under different artificial life cycles. These experiments can be used to test the importance of various life cycle features in maintaining cooperation. They include structured reproduction, in which small propagule size reduces within-individual genetic variation. They also include structured growth, which increases local relatedness within individual bodies. Our method provides a novel way to test how different life cycles favour cooperation, even for life cycles that do not exist.

  14. Major structural components in freshwater dissolved organic matter.

    PubMed

    Lam, Buuan; Baer, Andrew; Alaee, Mehran; Lefebvre, Brent; Moser, Arvin; Williams, Antony; Simpson, André J

    2007-12-15

    Dissolved organic matter (DOM) contains a complex array of chemical components that are intimately linked to many environmental processes, including the global carbon cycle, and the fate and transport of chemical pollutants. Despite its importance, fundamental aspects, such as the structural components in DOM remain elusive, due in part to the molecular complexity of the material. Here, we utilize multidimensional nuclear magnetic resonance spectroscopy to demonstrate the major structural components in Lake Ontario DOM. These include carboxyl-rich alicyclic molecules (CRAM), heteropolysaccharides, and aromatic compounds, which are consistent with components recently identified in marine dissolved organic matter. In addition, long-range proton-carbon correlations are obtained for DOM, which support the existence of material derived from linear terpenoids (MDLT). It is tentatively suggested that the bulk of freshwater dissolved organic matter is aliphatic in nature, with CRAM derived from cyclic terpenoids, and MDLT derived from linear terpenoids. This is in agreement with previous reports which indicate terpenoids as major precursors of DOM. At this time it is not clear in Lake Ontario whether these precursors are of terrestrial or aquatic origin or whether transformations proceed via biological and/ or photochemical processes.

  15. Multinozzle Multichannel Temperature Deposition System for Construction of a Blood Vessel.

    PubMed

    Liu, Huanbao; Zhou, Huixing; Lan, Haiming; Liu, Fu; Wang, Xuhan

    2018-02-01

    3D bioprinting is an emerging technology that drives us to construct the complicated tissues and organs consisting of various materials and cells, which has been in widespread use in tissue engineering and organ regeneration. However, the protection and accurate distribution of cells are the most urgent problems to achieve tissue and organ reconstruction. In this article, a multinozzle multichannel temperature deposition and manufacturing (MTDM) system is proposed to fabricate a blood vessel with heterogeneous materials and gradient hierarchical porous structures, which enables not only the reconstruction of a blood vessel with an accurate 3D model structure but also the capacity to distribute bioactive materials such as growth factors, nutrient substance, and so on. In addition, a coaxial focusing nozzle is proposed and designed to extrude the biomaterial and encapsulation material, which can protect the cell from damage. In the MTDM system, the tubular structure of a blood vessel was successfully fabricated with the different biomaterials, which proved that the MTDM system has a potential application prospect in tissue engineering and organ regeneration.

  16. Using managerial role motivation theory to predict career success.

    PubMed

    Holland, M G; Black, C H; Miner, J B

    1987-01-01

    Managerial role motivation theory has proved to be useful for understanding executive performance in a wide range of highly structured organizational environments. Consistent results of studies indicate that the theory may be useful for understanding managerial behavior and predicting performance in health care organizations.

  17. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    PubMed Central

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  18. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  19. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    PubMed Central

    Siuzdak, Katarzyna; Atanasov, Peter A; Bittencourt, Carla; Dikovska, Anna; Nedyalkov, Nikolay N; Śliwiński, Gerard

    2014-01-01

    Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability. PMID:25551038

  20. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  1. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra.

    PubMed

    Mitzi, D B; Brock, P

    2001-04-23

    Two organic-inorganic bismuth iodides of the form (H3N-R-NH3)BiI5 are reported, each containing long and relatively flexible organic groups, R. The norganic framework in each case consists of distorted BiI6 octahedra sharing cis vertexes to form zigzag chains. Crystals of (H3NC18H24S2NH3)BiI5 were grown from a slowly cooled ethylene glycol/2-butanol solution containing bismuth(III) iodide and AETH.2HI, where AETH = 1,6-bis[5'-(2' '-aminoethyl)-2'-thienyl]hexane. The new compound, (H2AETH)BiI5, adopts an orthorhombic (Aba2) cell with the lattice parameters a = 20.427(3) A, b = 35.078(5) A, c = 8.559(1) A, and Z = 8. The structure consists of corrugated layers of BiI5(2-) chains, with Bi-I bond lengths ranging from 2.942(3) to 3.233(3) A, separated by layers of the organic (H2AETH)(2+) cations. Crystals of the analogous (H3NC12H24NH3)BiI5 compound were also prepared from a concentrated aqueous hydriodic acid solution containing bismuth(III) iodide and the 1,12-dodecanediamine (DDDA) salt, DDDA.2HI. (H2DDDA)BiI5 crystallizes in an orthorhombic (Ibam) cell with a = 17.226(2) A, b = 34.277(4) A, c = 8.654(1) A, and Z = 8. The Bi-I bonds range in length from 2.929(1) to 3.271(1) A. While the inorganic chain structure is nearly identical for the two title compounds, as well as for the previously reported (H3NC6H12NH3)BiI5 [i.e., (H2DAH)BiI5] structure, the packing of the chains is strongly influenced by the choice of organic cation. Optical absorption spectra for thermally ablated thin films of the three organic-inorganic hybrids containing BiI5(2-) chains are reported as a function of temperature (25-290 K). The dominant long-wavelength feature in each case is attributed to an exciton band, which is apparent at room temperature and, despite the similar inorganic chain structure, varies in position from 491 to 541 nm (at 25 K).

  2. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  3. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA–protein interactions

    PubMed Central

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.

    2012-01-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA–protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes. PMID:22332141

  4. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions.

    PubMed

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2012-04-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.

  5. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  6. Lidar observations of the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Spinhirne, J. D.; Palm, S. P.

    1985-01-01

    The application of an airborne downward-looking lidar to the study of organized cellular convection in the planetary boundary layer (PBL) over the ocean is described. The lidar consisted of a frequency doubled Nd-YAG 530 mm-wavelength laser whose axis was aligned colinearly with the optical axis of an all-reflecting 40 mm-diameter Newtonian telescope. The airborne lidar provided a unique observation of both microscale and mesoscale variations of the PBL top. The lidar data, presented as constant backscatter isopleth soundings, provide a visual indication of the presence of vertically organized convection cells. Comparisons of the lidar-derived PBL structure with both a conceptual model of the PBL and laboratory simulations of Deardorf et al. (1980) of a developing convective PBL showed that the observations are consistent with a model of mixing in the PBL, which involves a field of organized updrafts separated by downdrafts.

  7. REPDOSE: A database on repeated dose toxicity studies of commercial chemicals--A multifunctional tool.

    PubMed

    Bitsch, A; Jacobi, S; Melber, C; Wahnschaffe, U; Simetska, N; Mangelsdorf, I

    2006-12-01

    A database for repeated dose toxicity data has been developed. Studies were selected by data quality. Review documents or risk assessments were used to get a pre-screened selection of available valid data. The structure of the chemicals should be rather simple for well defined chemical categories. The database consists of three core data sets for each chemical: (1) structural features and physico-chemical data, (2) data on study design, (3) study results. To allow consistent queries, a high degree of standardization categories and glossaries were developed for relevant parameters. At present, the database consists of 364 chemicals investigated in 1018 studies which resulted in a total of 6002 specific effects. Standard queries have been developed, which allow analyzing the influence of structural features or PC data on LOELs, target organs and effects. Furthermore, it can be used as an expert system. First queries have shown that the database is a very valuable tool.

  8. The Basic Paradigm of a Future Socio-Cultural System.

    ERIC Educational Resources Information Center

    Hine, Virginia H.

    1978-01-01

    The paradigm of a future global society may already exist in a nonbureaucratic organization structure called a Segmented Polycephalous Network (SPN). A SPN consists of autonomous segments with horizontal linkages, multiple leaders, and a common ideology. Grass roots movements and multinational corporations are examples. (SJL)

  9. The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Fang; Venugopal, Vandavasi; Murray, Beverly

    {alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha}more » carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.« less

  10. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  11. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    PubMed

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  12. Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels.

    PubMed

    Zhu, Xiaolu; Gojgini, Shiva; Chen, Ting-Hsuan; Fei, Peng; Dong, Siyan; Ho, Chih-Ming; Segura, Tatiana

    2017-01-01

    Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. In this study, we integrated the Turing reaction-diffusion mechanism with the self-organization process of cells and produced multicellular 3D structures with the desired configurations in a rational manner. By optimizing the components of the hydrogel and applying exogenous morphogens, a variety of multicellular 3D architectures composed of multipotent vascular mesenchymal cells (VMCs) were formed inside hyaluronic acid (HA) hydrogels. These 3D architectures could mimic the features of trabecular bones and multicellular nodules. Based on the Turing reaction-diffusion instability of morphogens and cells, a theoretical model was proposed to predict the variations observed in 3D multicellular structures in response to exogenous factors. It enabled the feasibility to obtain diverse types of 3D multicellular structures by addition of Noggin and/or BMP2. The morphological consistency between the simulation prediction and experimental results probably revealed a Turing-type mechanism underlying the 3D self-organization of VMCs in HA hydrogels. Our study has provided new ways to create a variety of self-organized 3D multicellular architectures for regenerating biomaterial and tissues in a Turing mechanism-based approach.

  13. Complex Forms of Soil Organic Phosphorus-A Major Component of Soil Phosphorus.

    PubMed

    McLaren, Timothy I; Smernik, Ronald J; McLaughlin, Mike J; McBeath, Therese M; Kirby, Jason K; Simpson, Richard J; Guppy, Christopher N; Doolette, Ashlea L; Richardson, Alan E

    2015-11-17

    Phosphorus (P) is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. The supply of P to living organisms is strongly dependent on the dynamics of soil organic P. However, fluxes of P through soil organic matter remain unclear because only a minority (typically <30%) of soil organic P has been identified as recognizable biomolecules of low molecular weight (e.g., inositol hexakisphosphates). Here, we use (31)P nuclear magnetic resonance spectroscopy to determine the speciation of organic P in soil extracts fractionated into two molecular weight ranges. Speciation of organic P in the high molecular weight fraction (>10 kDa) was markedly different to that of the low molecular weight fraction (<10 kDa). The former was dominated by a broad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular structures, whereas the latter contained all of the sharp peaks that were present in unfractionated extracts, along with some broad signal. Overall, phosphomonoesters in supra-/macro-molecular structures were found to account for the majority (61% to 73%) of soil organic P across the five diverse soils. These soil phosphomonoesters will need to be integrated within current models of the inorganic-organic P cycle of soil-plant terrestrial ecosystems.

  14. Religious networking organizations and social justice: an ethnographic case study.

    PubMed

    Todd, Nathan R

    2012-09-01

    The current study provides an innovative examination of how and why religious networking organizations work for social justice in their local community. Similar to a coalition or community coordinating council, religious networking organizations are formal organizations comprised of individuals from multiple religious congregations who consistently meet to organize around a common goal. Based on over a year and a half of ethnographic participation in two separate religious networking organizations focused on community betterment and social justice, this study reports on the purpose and structure of these organizations, how each used networking to create social capital, and how religion was integrated into the organizations' social justice work. Findings contribute to the growing literature on social capital, empowering community settings, and the unique role of religious settings in promoting social justice. Implications for future research and practice also are discussed.

  15. Knowledge Management in Role Based Agents

    NASA Astrophysics Data System (ADS)

    Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz

    In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.

  16. The stomatopod dactyl club: a formidable damage-tolerant biological hammer.

    PubMed

    Weaver, James C; Milliron, Garrett W; Miserez, Ali; Evans-Lutterodt, Kenneth; Herrera, Steven; Gallana, Isaias; Mershon, William J; Swanson, Brook; Zavattieri, Pablo; DiMasi, Elaine; Kisailus, David

    2012-06-08

    Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high-energy loading events.

  17. Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein).

    PubMed

    Picoli, E A.T.; Otoni, W C.; Figueira, M L.; Carolino, S M.B.; Almeida, R S.; Silva, E A.M.; Carvalho, C R.; Fontes, E P.B.

    2001-04-01

    The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.

  18. The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver J. C.; DiMasi E.; Milliron, G.W.

    2012-06-08

    Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines ofmore » defense against catastrophic failure during repetitive high-energy loading events.« less

  19. Molecular structure of the lecithin ripple phase

    NASA Astrophysics Data System (ADS)

    de Vries, Alex H.; Yefimov, Serge; Mark, Alan E.; Marrink, Siewert J.

    2005-04-01

    Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in one domain of the ripple is found to be that of a splayed gel; in the other domain the lipids are gel-like and fully interdigitated. In the concave part of the kink region between the domains the lipids are disordered. The results are consistent with the experimental information available and provide an atomic-level model that may be tested by further experiments. molecular dynamics simulation | structural model

  20. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    NASA Astrophysics Data System (ADS)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  1. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  2. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    NASA Astrophysics Data System (ADS)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  3. Using Data Analysis Problems in a Large General Microbiology Course.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1997-01-01

    Argues that data analysis problems can be used successfully in large introductory microbiology courses, even when exams consist entirely of multiple-choice questions and out-of-class contact with the instructor is limited. Discusses course organization, problem structure, student performance and response, advantages of using data analysis…

  4. A Complete Art Instructor Demonstration: Composition and Value.

    ERIC Educational Resources Information Center

    Demery, Marie

    A complete art instructor demonstration consists of the following components: (1) goals and/or objectives; (2) examples; (3) vocabulary; (4) media; (5) steps; (6) evaluation criteria; and (7) references. A lesson plan is provided which encompasses those components and becomes the guiding structure for instructional and student organization,…

  5. APPLICATION OF PERTURBATION SIMULATIONS IN POPULATION RISK ASSESSMENT FOR DIFFERENT LIFE HISTORY STRATEGIES AND ELASTICITY PATTERNS

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in organism-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using seven theor...

  6. Sustaining a Mature Teacher Inquiry Network

    ERIC Educational Resources Information Center

    Satter, Sarah Bea

    2014-01-01

    This research consisted of a case study of an active network for teacher inquiry. Specifically, I investigated how an organization dedicated to teacher inquiry had provided the structure, leadership, and resources to sustain, maintain, and expand the network. The group studied was the Mid-Ohio Writing Project, a teacher inquiry network affiliated…

  7. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    USDA-ARS?s Scientific Manuscript database

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium...

  8. 1 CFR 21.11 - Standard organization of the Code of Federal Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consists of the following structural units: (a) Titles, which are numbered consecutively in Arabic... are lettered consecutively in capitals throughout the chapter; (e) Parts, which are numbered in Arabic... Arabic throughout each part. A section number includes the number of the part followed by a period and...

  9. 1 CFR 21.11 - Standard organization of the Code of Federal Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consists of the following structural units: (a) Titles, which are numbered consecutively in Arabic... are lettered consecutively in capitals throughout the chapter; (e) Parts, which are numbered in Arabic... Arabic throughout each part. A section number includes the number of the part followed by a period and...

  10. 1 CFR 21.11 - Standard organization of the Code of Federal Regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... consists of the following structural units: (a) Titles, which are numbered consecutively in Arabic... are lettered consecutively in capitals throughout the chapter; (e) Parts, which are numbered in Arabic... Arabic throughout each part. A section number includes the number of the part followed by a period and...

  11. 1 CFR 21.11 - Standard organization of the Code of Federal Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consists of the following structural units: (a) Titles, which are numbered consecutively in Arabic... are lettered consecutively in capitals throughout the chapter; (e) Parts, which are numbered in Arabic... Arabic throughout each part. A section number includes the number of the part followed by a period and...

  12. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex.

    PubMed

    Strauß, Johannes; Lakes-Harlan, Reinhard

    2013-11-01

    The subgenual organ is a scolopidial sense organ located in the tibia of many insects. In this study the neuroanatomy of the subgenual organ complex of stick insects is clarified for two species, Carausius morosus and Siyploidea sipylus. Neuronal tracing shows a subgenual organ complex that consists of a subgenual organ and a distal organ. There are no differences in neuroanatomy between the three thoracic leg pairs, and the sensory structures are highly similar in both species. A comparison of the neuroanatomy with other orthopteroid insects highlights two features unique in Phasmatodea. The subgenual organ contains a set of densely arranged sensory neurons in the anterior-ventral part of the organ, and a distal organ with 16-17 scolopidial sensilla in C. morosus and 20-22 scolopidial sensilla in S. sipylus. The somata of sensory neurons in the distal organ are organized in a linear array extending distally into the tibia, with only a few exceptions of closely associated neurons. The stick insect sense organs show a case of an elaborate scolopidial sense organ that evolved in addition to the subgenual organ. The neuroanatomy of stick insects is compared to that studied in other orthopteroid taxa (cockroaches, locusts, crickets, tettigoniids). The comparison of sensory structures indicates that elaborate scolopidial organs have evolved repeatedly among orthopteroids. The distal organ in stick insects has the highest number of sensory neurons known for distal organs so far. Copyright © 2013 Wiley Periodicals, Inc.

  13. Atomic Force Microscopy Analysis of the Role of Major DNA-Binding Proteins in Organization of the Nucleoid in Escherichia coli

    PubMed Central

    Ohniwa, Ryosuke L.; Muchaku, Hiroki; Saito, Shinji; Wada, Chieko; Morikawa, Kazuya

    2013-01-01

    Bacterial genomic DNA is packed within the nucleoid of the cell along with various proteins and RNAs. We previously showed that the nucleoid in log phase cells consist of fibrous structures with diameters ranging from 30 to 80 nm, and that these structures, upon RNase A treatment, are converted into homogeneous thinner fibers with diameter of 10 nm. In this study, we investigated the role of major DNA-binding proteins in nucleoid organization by analyzing the nucleoid of mutant Escherichia coli strains lacking HU, IHF, H–NS, StpA, Fis, or Hfq using atomic force microscopy. Deletion of particular DNA-binding protein genes altered the nucleoid structure in different ways, but did not release the naked DNA even after the treatment with RNase A. This suggests that major DNA-binding proteins are involved in the formation of higher order structure once 10-nm fiber structure is built up from naked DNA. PMID:23951337

  14. Experimental splenosis in the liver and lung spread through the vasculature.

    PubMed

    Seguchi, S; Yue, F; Asanuma, K; Sasaki, K

    2015-05-01

    To demonstrate that intra-organ splenosis can engraft and develop after being distributed through the vasculature, tiny fragments of splenic tissues were injected into the inferior vena cava or the portal vein to induce intrapulmonary and intrahepatic splenosis in rats. After 1 month, splenic autograft structures in the lung and liver were assessed for structure by histology, for immunologic compartments by immunohistochemistry, for phagocytic function by carbon uptake and for vascular formation by Microfil (a silicon rubber compound) injection. Intrapulmonary and intrahepatic splenoses were indeed able to spread through the vasculature. The intrapulmonary splenic autografts were trapped and spread out in the interstitium, without forming a capsule. White pulp was markedly developed, showing lymphocyte aggregations that consisted in B cells surrounding the dilated vessel. Splenic sinuses were not definitively observed. Although macrophages were detected by immunohistochemistry, they showed no indication of having phagocytized carbon particles from the vessels, implying a closed circulation. In contrast, intrahepatic splenic autografts formed well-developed capsules, trabeculae and red pulp with splenic sinuses. Macrophages detected by immunohistochemistry were observed capturing carbon particles, which clearly revealed an open system circulation, as seen in normal rat spleen. The development of white pulp was poor and lymphocytes consisting in B cells aggregated in the peripheral margins. These results demonstrate that intra-organ splenosis can spread through the vasculature and that the morphologic and immunologic structures formed in these regenerated autografts are influenced by the organ vasculature and extracellular matrix wherein the tissue fragments settled.

  15. Electronic localization in an extreme 1-D conductor: the organic salt (TTDM-TTF) [Au(mnt)

    NASA Astrophysics Data System (ADS)

    Lopes, E. B.; Alves, H.; Ribera, E.; Mas-Torrent, M.; Auban-Senzier, P.; Canadell, E.; Henriques, R. T.; Almeida, M.; Molins, E.; Veciana, J.; Rovira, C.; Jérome, D.

    2002-09-01

    This article reports the investigation of a new low-dimensional organic salt, (TTDM-TTF)2 [ Au(mnt)2] , by single crystal X-ray diffraction, static magnetic susceptibility, EPR, thermopower, electrical resistivity measurements under pressure up to 25 kbar and band structure calculations. The crystal structure consists in a dimerized head to tail stacking of TTDM-TTF molecules separated by layers of orthogonal Au(mnt)2 anions. The absence of overlap between neighboring chains coming from this particular crystal structure leads to an extreme one-dimensionality (1-D) for which the carriers of the half-filled conduction band become strongly localized in a Mott-Hubbard insulating state. This material is the first 1-D conductor in which the Mott-Hubbard insulating character cannot be suppressed under pressure.

  16. Scanning electron microscopy of the vestibular end organs. [morphological indexes of inner ear anatomy and microstructure

    NASA Technical Reports Server (NTRS)

    Lindeman, H. H.; Ades, H. W.; West, R. W.

    1973-01-01

    The vestibular end organs, after chemical fixation, were freeze dried, coated with gold and palladium, and studied in the scanning microscope. Scanning microscopy gives a good three dimensional view of the sensory areas and allows study of both gross anatomy and microstructures. Cross anatomical features of the structure of the ampullae are demonstrated. The form of the statoconia in different species of animals is shown. New aspects of the structure of the sensory hairs are revealed. The hair bundles in the central areas of the cristae and in the striola of the maculae differ structurally from the hair bundles at the periphery of the sensory regions. Furthermore, some hair bundles consisting of very short stereocilia were observed. The relationship between the cupula and the statoconial membrane to the epithelial surface is discussed.

  17. Developing evidence-based physical therapy clinical practice guidelines.

    PubMed

    Kaplan, Sandra L; Coulter, Colleen; Fetters, Linda

    2013-01-01

    Recommended strategies for developing evidence-based clinical practice guidelines (CPGs) are provided. The intent is that future CPGs developed with the support of the Section on Pediatrics of the American Physical Therapy Association would consistently follow similar developmental processes to yield consistent quality and presentation. Steps in the process of developing CPGs are outlined and resources are provided to assist CPG developers in carrying out their task. These recommended processes may also be useful to CPG developers representing organizations with similar structures, objectives, and resources.

  18. Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface.

    PubMed

    El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan

    2012-01-21

    Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.

  19. Problems of innovative development of an entrepreneurship in the industry in the conditions of upgrade of Economy

    NASA Astrophysics Data System (ADS)

    Golubetskaya, Natalya; Kosheleva, Tatyana; Kunin, Vladimir

    2017-10-01

    Innovative development of economy is a necessary condition for increase of competitiveness of Russia. Organization change should pass consistently taking into account a strategic target of development of the Russian economy as a whole. The analysis of work of the large innovatively focused corporations has shown that an important direction of formation of system of innovative activity in Russia is development of interaction, integration of large and small enterprise structures, entrepreneurs in the sphere of transportation, transportation or energy companies and educational institutions in this sphere. Stopping development threatens the organization with the stagnation, therefore each organization the plans for development directed on formation of competitive advantages of the transportation or energy company - strategy are developed. The work offers guidelines for managing the modernization of the educational process. Formulates the stages of organizational changes in the educational business organizations. Recommendations for formation in the educational enterprise structures matrix management innovation are given.

  20. Comment on Peck et al: Vulnerability of pteropod (Limacina helicina) to ocean acidification: shell dissolution occurs despite an intact organic layer

    NASA Astrophysics Data System (ADS)

    Bednaršek, N.; Johnson, J.; Feely, R. A.

    2016-05-01

    Pteropods have been recognized as one of the most sensitive marine organisms to ocean acidification (OA). Their susceptibility is mostly related to rapid shell dissolution, which is correlated with exposure to waters undersaturated with respect to aragonite (Ωar≤ 1) (e.g., Lischka et al., 2011; Bednaršek et al., 2012a,b, 2014a,b; Busch et al., 2014). Increased dissolution weakens the shell, increases vulnerability to predation and infection, and imposes an energetic cost. The rapidity of shell dissolution is attributed to the combination of metastable aragonitic crystal structure of shells that are among the thinnest known for calcifying organisms, and an extremely thin outer organic layer (i.e. periostracum <1 μm thick), suggesting insufficient protection against shell dissolution at Ωar≤1 (Bednaršek et al., 2014b). The periostracum generally consists of polysaccharide and proteinaceous components (Gaffey and Bronnimann, 1993) but varies significantly in its structure and composition amongst taxa.

  1. The effect of professional partnership on the development of a mutual-help organization.

    PubMed

    Salem, Deborah A; Reischl, Thomas M; Randall, Katie W

    2008-09-01

    The effects of partnership between Schizophrenics Anonymous (SA, a mutual-help organization) and the Mental Health Association in Michigan (MHAM, a professionally staffed advocacy organization) on SA's growth and development were explored. Following the initiation of a formal partnership, SA groups were more available throughout the state, more likely to be associated with formal mental health settings, and less likely to have leaders who had been participants in other SA groups. Groups with consumer leaders had significantly greater longevity than groups with professional leaders. Changes in the organizational structure and process of SA were also identified. SA leaders reported that SA moved from a collective to a more bureaucratic structure. As a result, there was greater consistency, administrative capacity, and response capacity. This enhanced capacity came with costs reported by SA leaders. The leadership role of SA members became less defined. SA members expressed concerns about the more hierarchical structure of SA's organization, decreased consumer control, increased professional involvement in SA, and an excessive focus on group development as opposed to group maintenance. Mental Health Association in Michigan staff reported that MHAM was also impacted by the partnership, both with regard to internal functioning and external perception. Implications for effective partnerships between mutual-help and professional organizations are discussed.

  2. Ultrafast Primary Reactions in the Photosystems of Oxygen-Evolving Organisms

    NASA Astrophysics Data System (ADS)

    Holzwarth, A. R.

    In oxygen-evolving photosynthetic organisms (plants, green algae, cyanobacteria), the primary steps of photosynthesis occur in two membrane-bound protein supercomplexes, Photosystem I (PS I) and Photosystem II (PS II), located in the thylakoid membrane (c.f. Fig. 7.1) along with two other important protein complexes, the cytochrome b6/f complex and the ATP-synthase [1]. Each of the photosystems consists of a reaction center (RC) where the photoinduced early electron transfer processes occur, of a so-called core antenna consisting of chlorophyll (Chl) protein complexes responsible for light absorption and ultrafast energy transfer to the RC pigments, and additional peripheral antenna complexes of various kinds that increase the absorption cross-section. The peripheral complexes are Chl a/b-protein complexes in higher plants and green algae (LHC I or LHC II for PS I or PS II, respectively) and so-called phycobilisomes in cyanobacteria and red algae [2-4]. The structures and light-harvesting functions of these antenna systems have been extensively reviewed [2, 5-9]. Recently, X-ray structures of both PS I and PS II antenna/RC complexes have been determined, some to atomic resolution. Although many details of the pigment content and organization of the RCs and antenna systems of PS I and PS II have been known before, the high resolution structures of the integral complexes allow us for the first time to try to understand structure/function relationships in detail. This article covers our present understanding of the ultrafast energy transfer and early electron transfer processes occurring in the photosystems of oxygen-evolving organisms. The main emphasis will be on the electron transfer processes. However, in both photosystems the kinetics of the energy transfer processes in the core antennae is intimately interwoven with the kinetics of the electron transfer steps. Since both types of processes occur on a similar time scale, their kinetics cannot be considered separately in any experiment and consequently they have to be discussed together.

  3. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior

    PubMed Central

    Baslow, Morris H.

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525

  4. More than meets the eye: subretinal aspirate from an acutely blind dog.

    PubMed

    Rizzi, Theresa E; Cowell, Rick L; Meinkoth, James H; Gilmour, Margi A

    2006-03-01

    A 14-year-old, spayed female Cocker Spaniel was presented to the Boren Veterinary Medical Teaching Hospital at Oklahoma State University with acute loss of vision in the right eye and a history of intermittent bloody diarrhea of unknown duration. Small, white, plaque-like lesions in the retina and subretina were visualized by direct ophthalmic examination, and aspirated with ultrasound-guidance. A direct smear of the subretinal fluid was highly cellular and contained large numbers of pleomorphic organisms consistent with Prototheca sp. The structures were round, oval, or elongated, 4-6 microm width and 8-16 microm in length and surrounded by a thin, clear cell wall. Small, central, pink to purple nuclei were observed in some organisms, but in most, the nuclei were obscured by a deeply basophilic, granular cytoplasm. Some organisms contained endospores. Negatively-stained structures of similar size and shape were considered to be empty casings (theca) of ruptured sporulating and nonsporulating forms of the organism. Protothecosis usually is a disseminated, fatal disease in dogs. The Prototheca organisms observed in this case showed characteristic morphology, illustrating the ability to diagnose protothecosis in cytologic samples.

  5. Simultaneous RGB lasing from a single-chip polymer device.

    PubMed

    Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao

    2010-07-15

    This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.

  6. In vitro growth of flat aragonite crystals between the layers of the insoluble organic matrix of the abalone Haliotis laevigata

    NASA Astrophysics Data System (ADS)

    Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika

    2012-11-01

    Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.

  7. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NASA Astrophysics Data System (ADS)

    Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.

    2012-08-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.

  8. Langmuir-Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles.

    PubMed

    Lo, Chi Kin; Wang, Cheng-Yin; Oosterhout, Stefan D; Zheng, Zilong; Yi, Xueping; Fuentes-Hernandez, Canek; So, Franky; Coropceanu, Veaceslav; Brédas, Jean-Luc; Toney, Michael F; Kippelen, Bernard; Reynolds, John R

    2018-04-11

    We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir-Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on the LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D-A-D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.

  9. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo

    PubMed Central

    Chen, Chen; Lim, Hong Hwa; Shi, Jian; Tamura, Sachiko; Maeshima, Kazuhiro; Surana, Uttam; Gan, Lu

    2016-01-01

    Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin—nucleosomes—are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae. Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an “open” configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome–nucleosome associations. PMID:27605704

  10. Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles

    DOE PAGES

    Lo, Chi Kin; Wang, Cheng -Yin; Oosterhout, Stefan D.; ...

    2018-03-30

    Here, we report on two π-conjugated donor–acceptor–donor (D–A–D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir–Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on themore » LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D–A–D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.« less

  11. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    NASA Astrophysics Data System (ADS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  12. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  13. The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model

    PubMed Central

    Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe

    2008-01-01

    Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794

  14. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

    USGS Publications Warehouse

    McClain-Counts, Jennifer P.; Demopoulos, Amanda W.J.; Ross, Steve W.

    2017-01-01

    Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North-Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co-occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non-crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft-bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth-specific isotope trends in sources and consumers, and assimilation of 15N-depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was no direct measure of mesopelagic fishes assimilating chemosynthetic material, detection of infrequent consumption of this food resource may be hindered by the assimilation of isotopically enriched photosynthetic organic matter. By utilizing multiple dietary metrics (e.g. GCA, δ13C, δ15N, MixSIAR), this study better defined the trophic structure of mesopelagic fishes and allowed for insights on feeding, ultimately providing useful baseline information from which to track mesopelagic trophodynamics over time and space.

  15. Early diagenesis of organic matter in a Sawgrass peat from the Everglades, Florida

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    The transformation of plant biopolymers to humic substances in peats during early diagenesis is a critical but poorly understood step in the formation of coal. This paper presents results concerning the structural interrelationships among various fractions of the organic matter in peat and the dissolved organic matter in the pore water from a site in The Everglades, relying primarily on elemental analysis and 13C nuclear magnetic resonance for structural elucidation. Our goal was to obtaine some insight into the sequence of steps involved in the formation of humic substances. Results show that the major change occurring in the whole peat during diagenesis is loss of carbohydrates. The components of the peat which are more resistant to microbial degradation become concentrated in the humin fraction. This resistant fraction of the organic matter includes aliphatic and aromatic components. The aromatic components are thought to be derived from lignin while the aliphatic moieties may represent decomposed algal remains. The carbohydrates lost from the whole peat appear to be concentrated in the fulvic acids and the dissolved organic matter in the pore water. The humic acids consist predominantly of aromatic and aliphatic structures, and may represent partially degraded lignin-like structures and aliphatic compounds from algae. The data presented here suggest that humic and fulvic acids are the partially degraded fractions of the peat while the humin contains the resistant or preserved portion of the organic matter. The proposition that humic substances are formed by the condensation of amino acids and sugars is not supported by the results of this study. ?? 1987.

  16. NanoSIMS Sheds Light on the Origin and Significance of Early Archean Organic Microstructures from the Pilbara of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Walter, Malcolm, R.; Sugitani, Kenichiro; Allwood, Abigail; Gibson, Everett K.

    2008-01-01

    NanoSIMS was used to characterize sub-micron scale morphology and elemental composition (C, N, S, Si, O) of organic microstructures in Early Archean (3 - 3.4 Ga) charts from the Pilbara of Western Australia. Three categories of structures were analyzed: small spheroids in clusters; spindle-shaped remains; and large spheroids. All are relatively poorly preserved and occur within the chert matrix of the samples. Carbonaceous material in a secondary hydrothermal vein also was analyzed, as an example of non-indigenous organic matter. Comparisons were made of NanoSIMS characteristics of the Archean samples and those from well-preserved, biogenic microfossils in the 0.8 Ga Bitter Springs Formation. The comparisons show that the Pilbara microstructures are generally distinct from material in the hydrothermal vein but similar in morphology and elemental composition to the Bitter Springs microfossils. In addition, the Pilbara structures exhibit a spatial relationship to silicon and oxygen that seemingly reflects silica nucleation on organic surfaces; this argues that the organic frameworks of the Archean structures were present in the sediment during crystallization of the silica matrix. The structures are thus interpreted as being indigenous to the enclosing sediment. While these results are suggestive of Early Archean biogenicity and are consistent with a growing body of data suggesting that life on Earth was well established by 3 to 3.4 Ga, work is continuing to determine the N/C and 13C ratios of individual forms, and this should provide additional insight into the derivation and significance of these ancient organic remains.

  17. Unities in Inductive Reasoning. Technical Report No. 18.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.; Gardner, Michael K.

    Two experiments were performed to study inductive reasoning as a set of thought processes that operates on the structure, as opposed to the content, of organized memory. The content of the reasoning consisted of inductions concerning the names of mammals, assumed to occupy a Euclidean space of three dimensions (size, ferocity, and humanness) in…

  18. Nurses in Practice: A Perspective on Work Environments.

    ERIC Educational Resources Information Center

    Davis, Marcella Z., Ed.; And Others

    A major portion of the collection of 20 readings authored by practicing professionals consists of field observations presented both as raw data (field notes) and as analyzed and organized data. About the work of nurses in a variety of settings, a recurrent theme is that work behavior is greatly influenced by organizational and structural elements…

  19. 77 FR 7225 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... particular venue to be excessive. The proposed rule change reflects a competitive pricing structure designed... BATS + NYSE Arca destination specific routing option to continue to offer a ``one under'' pricing model... exchange that is routed to plus or minus a certain differential. EDGA's pricing is consistent with this...

  20. 76 FR 70183 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... proposed rule change reflects a competitive pricing structure designed to incent market participants to... offer a ``one under'' pricing model). \\15\\ See footnote 5 of the EDGA fee schedule. The Exchange... minus a certain differential. EDGA's pricing is consistent with this premise. The Exchange believes that...

  1. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ).

    DTIC Science & Technology

    Position Analysis Questionnaire ( PAQ ). This job analysis instrument consists of 187 job elements organized into six divisions. In the analysis of a job...with the PAQ the relevance of the individual elements to the job are rated using any of several rating scales such as importance, or time.

  2. Organization a Culture of Self-Education of Music Teachers

    ERIC Educational Resources Information Center

    Dyganova, Elena Aleksandrovna; Yavgildina, Ziliya Mukhtarovna

    2015-01-01

    The article discusses the culture of self-education of music teacher as a professionally necessary quality of a modern specialist in the field of music education. The author proposes finalized definitions of basic concepts; consistently reveals the essence, structure, criteria and indicators of self-culture of music teacher; reveals the potential…

  3. A Model for Teaching Rational Behavior Therapy in a Public School Setting.

    ERIC Educational Resources Information Center

    Patton, Patricia L.

    A training model for the use of rational behavior therapy (RBT) with emotionally disturbed adolescents in a school setting is presented, including a structured, didactic format consisting of five basic RBT training techniques. The training sessions, lasting 10 weeks each, are described. Also presented is the organization for the actual classroom…

  4. Teaching and Learning Cycles in a Constructivist Approach to Instruction

    ERIC Educational Resources Information Center

    Singer, Florence Mihaela; Moscovici, Hedy

    2008-01-01

    This study attempts to analyze and synthesize the knowledge collected in the area of conceptual models used in teaching and learning during inquiry-based projects, and to propose a new frame for organizing the classroom interactions within a constructivist approach. The IMSTRA model consists in three general phases: Immersion, Structuring,…

  5. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  6. Development and Evaluation of the Telephone Crisis Support Skills Scale.

    PubMed

    Kitchingman, Taneile A; Wilson, Coralie J; Caputi, Peter; Woodward, Alan; Hunt, Tara

    2015-01-01

    Although telephone services continue to play an important role in the delivery of front-line crisis support, published evidence of the standardized assessment of such services does not exist to date. To describe the development of the Telephone Crisis Support Skills Scale (TCSSS), an instrument to assess workers' intentions to use recommended skills with callers, and to evaluate its factor structure and reliability. TCSSS items were mapped to a national telephone crisis support practice model. A national sample of workers (n = 210) completed the TCSSS as part of a larger online survey. Principal axis factoring was used to evaluate the structure of the instrument. Internal consistency was assessed by Cronbach's α values. A single factor accounted for more than 40% of the variance within TCSSS ratings, indicating unidimensional structure. Cronbach's α coefficients suggested adequate internal consistency. Results indicate that the TCSSS is an internally consistent, unidimensional scale, sufficiently sensitive to detect workers' skill priorities for different caller problem types. Further study is required to confirm the factor structure and reliability of the TCSSS using workers from different organizations. Following further evaluation, the TCSSS may be applied to assessing readiness for and quality of service delivery.

  7. Contrast-enhancement in organic light-emitting diodes.

    PubMed

    Wu, Zhaoxin; Wang, Liduo; Qiu, Yong

    2005-03-07

    A high-contrast organic light-emitting diode (OLED) structure is presented. Because of poor contrast of conventional OLED resulting from high reflective metal cathode, the hybrid cathode structure was developed for low reflectivity. It consists the semitransparent cathode layers, passivation layers and a thick light-absorbing film. By optical reflectivity measurement and OLED electrical characterization tests for both OLED with the hybrid cathode and conventional OLED, it was found that the spectrum reflectance of OLED with hybrid cathode is among 8%-12%, about eight times lower than the conventional one when the two types of devices have similar turn-on voltages and current-voltage characteristics. The hybrid cathode for the high-contrast OLED is easily fabricated and its optical reflectance is slightly dependent on wavelength.

  8. P21 activated kinases: structure, regulation, and functions.

    PubMed

    Rane, Chetan K; Minden, Audrey

    2014-01-01

    The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.

  9. Zeolites with Continuously Tuneable Porosity**

    PubMed Central

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  10. Experiments in concept modeling for radiographic image reports.

    PubMed Central

    Bell, D S; Pattison-Gordon, E; Greenes, R A

    1994-01-01

    OBJECTIVE: Development of methods for building concept models to support structured data entry and image retrieval in chest radiography. DESIGN: An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system. RESULTS: The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus. CONCLUSIONS: A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process. PMID:7719807

  11. Recent trends in bioinks for 3D printing.

    PubMed

    Gopinathan, Janarthanan; Noh, Insup

    2018-01-01

    The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.

  12. Complexity VIII. Ontology of closure in complex systems: The C* hypothesis and the O° notation

    NASA Astrophysics Data System (ADS)

    Chandler, Jerry LR

    1999-03-01

    Closure is a common characteristic of mathematical, natural and socio-cultural systems. Whether one is describing a graph, a molecule, a cell, a human, or a nation state, closure is implicitly understood. An objective of this paper is to continue a construction of a systematic framework for closure which is sufficient for future quantitative transdisciplinary investigations. A further objective is to extend the Birkhoff-von Neumann criterion for quantum systems to complex natural objects. The C* hypothesis is being constructed to be consistent with algebraic category theory (Ehresmann and Vanbremeersch, 1987, 1997, Chandler, 1990, 1991, Chandler, Ehresmann and Vanbremeersch, 1996). Five aspects of closure will be used to construct a framework for categories of complex systems: 1. Truth functions in mathematics and the natural sciences 2. Systematic descriptions in the mks and O° notations 3. Organizational structures in hierarchical scientific languages 4. Transitive organizational pathways in the causal structures of complex behaviors 5. Composing additive, multiplicative and exponential operations in complex systems Truth functions can be formal or objective or subjective, depending on the complexity of the system and on our capability to represent the fine structure of the system symbolically, observationally or descriptively. "Complete" material representations of the fine structure of a system may allow truth functions to be created over sets of one to one correspondences. Less complete descriptions can support less stringent truth functions based on coherence or subjective judgments. The role of human values in creating and perpetuating truth functions can be placed in context of the degree of fine structure in the system's description. The organization of complex systems are hypothesized to be categorizable into degrees relative to one another, thereby creating an ordering relationship. This ordering relationship is denoted by the symbols: O°1, O°2,O°3... For example, for material systems, an ordering relation such as particles, atoms, molecules, cells, tissues, organs, individuals and social groups might be assigned to classify observations for medical purposes. The C* hypothesis asserts that any complex system can be described in terms of four enumerable concepts: closure, conformation, concatenation and cyclicity. Mappings between objects are constructed within a notation for organization. Causality is organized within C* as pathways of relationships in time. The notation of organizational degrees is used to distinguish a directionality for causality: 1. bottom-up (energy flows) 2. top-down (control processes or dominating variables), 3. outside — inward (ecoment on organism) and 4. inside — outward (organism on ecoment). Closures are asserted to emerge from evolutionary cooperation. It is asserted that truth functions emerged from the necessity of an organism to identify ecoments where life can prosper. For example, basic truth functions of mathematics (operations of addition, multiplication and exponentiation) are made operationally consistent within the biochemical operations of sustaining exponential cellular growth. These fundamental mathematical functions can provide a logical basis (in conjunction with conservation rules) for a construction of complex material categories at higher degrees of organization. It is remarked that these simple functions suggests a biochemical origin for the intuitionistic philosophy of mathematics. The emergence and success of mathematics is conjectured to result from the need to acquire a consistent basis for communication among individuals seeking to cooperate socially. This suggests a cultural closure over a collection of individual closures.

  13. On Practical Charge Injection at the Metal/Organic Semiconductor Interface

    PubMed Central

    Kumatani, Akichika; Li, Yun; Darmawan, Peter; Minari, Takeo; Tsukagoshi, Kazuhito

    2013-01-01

    We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices. PMID:23293741

  14. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    PubMed

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  15. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  16. Biologic origin of iron nodules in a marine terrace chronosequence, Santa Cruz, California

    USGS Publications Warehouse

    Schulz, M.S.; Vivit, D.; Schulz, C.; Fitzpatrick, J.; White, A.

    2010-01-01

    The distribution, chemistry, and morphology of Fe nodules were studied in a marine terrace soil chronosequence northwest of Santa Cruz, California. The Fe nodules are found at depths <1 m on all terraces. The nodules consisted of soil mineral grains cemented by Fe oxides. The nodules varied in size from 0.5 to 25 mm in diameter. Nodules did not occur in the underlying regolith. The Fe-oxide mineralogy of the nodules was typically goethite; however, a subset of nodules consisted of maghemite. There was a slight transformation to hematite with time. The abundance of soil Fe nodules increased with terrace age on the five terraces studied (aged 65,000-226,000 yr). Scanning electron microscopy (SEM) revealed Fe-oxide-containing fungal hyphae throughout the nodules, including organic structures incorporating fine-grained Fe oxides. The fine-grained nature of the Fe oxides was substantiated by M??ssbauer spectroscopy. Our microscopic observations led to the hypothesis that the nodules in the Santa Cruz terrace soils are precipitated by fungi, perhaps as a strategy to sequester primary mineral grains for nutrient extraction. The fungal structures are fixed by the seasonal wetting and dry cycles and rounded through bioturbation. The organic structures are compacted by the degradation of fungal C with time. ?? Soil Science Society of America. All rights reserved.

  17. Biomineralization in Newly Settled Recruits of the Scleractinian Coral Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Gilis, M.; Domart-Coulon, I.; Grauby, O.; Stolarski, J.; Baronnet, A.

    2014-12-01

    Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is therefore warranted. We present a multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation timescales: A (<24 h), B (24-36 h), C (36-48 h), D (48- 72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhom- boidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 mm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton.

  18. Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis.

    PubMed

    Gilis, Melany; Meibom, Anders; Domart-Coulon, Isabelle; Grauby, Olivier; Stolarski, Jarosław; Baronnet, Alain

    2014-12-01

    Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is, therefore, warranted. Here, we present a thorough, multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation time-scales: A (<24 h), B (24-36 h), C (36-48 h), D (48-72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhomboidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 µm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton. © 2014 Wiley Periodicals, Inc.

  19. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.

  20. Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.

    PubMed

    Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart

    2016-08-18

    Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals.

  1. Chromosome ends: different sequences may provide conserved functions.

    PubMed

    Louis, Edward J; Vershinin, Alexander V

    2005-07-01

    The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection. Copyright (c) 2005 Wiley Periodicals, Inc.

  2. Simplified DFT methods for consistent structures and energies of large systems

    NASA Astrophysics Data System (ADS)

    Caldeweyher, Eike; Gerit Brandenburg, Jan

    2018-05-01

    Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.

  3. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R. L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  4. Development of mesoporous structures of composite silica particles with various organic functional groups in the presence and absence of ammonia catalyst

    NASA Astrophysics Data System (ADS)

    Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man

    2017-06-01

    Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.

  5. Policies for patient access to clinical data via PHRs: current state and recommendations.

    PubMed

    Collins, Sarah A; Vawdrey, David K; Kukafka, Rita; Kuperman, Gilad J

    2011-12-01

    Healthcare delivery organizations are increasingly using online personal health records (PHRs) to provide patients with direct access to their clinical information; however, there may be a lack of consistency in the data made available. We aimed to understand the general use and functionality of PHRs and the organizational policies and decision-making structures for making data available to patients. A cross-sectional survey was administered by telephone structured interview to 21 organizations to determine the types of data made available to patients through PHRs and the presence of explicit governance for PHR data release. Organizations were identified based on a review of the literature, PHR experts, and snowball sampling. Organizations that did not provide patients with electronic access to their data via a PHR were excluded. Interviews were conducted with 17 organizations for a response rate of 81%. Half of the organizations had explicit governance in the form of a written policy that outlined the data types made available to patients. Overall, 88% of the organizations used a committee structure for the decision-making process and included senior management and information services. All organizations sought input from clinicians. Discussion There was considerable variability in the types of clinical data and the time frame for releasing these data to patients. Variability in data release policies may have implications for PHR use and adoption. Future policy activities, such as requirement specification for the latter stages of Meaningful Use, should be leveraged as an opportunity to encourage standardization of functionality and broad deployment of PHRs.

  6. Internal Structure and Partial Invariance across Gender in the Spanish Version of the Reasoning Test Battery.

    PubMed

    Elosua, Paula; Mujika, Josu

    2015-10-13

    The Reasoning Test Battery (BPR) is an instrument built on theories of the hierarchical organization of cognitive abilities and therefore consists of different tasks related with abstract, numerical, verbal, practical, spatial and mechanical reasoning. It was originally created in Belgium and later adapted to Portuguese. There are three forms of the battery consisting of different items and scales which cover an age range from 9 to 22. This paper focuses on the adaptation of the BPR to Spanish, and analyzes different aspects of its internal structure: (a) exploratory item factor analysis was applied to assess the presence of a dominant factor for each partial scale; (b) the general underlined model was evaluated through confirmatory factor analysis, and (c) factorial invariance across gender was studied. The sample consisted of 2624 Spanish students. The results concluded the presence of a general factor beyond the scales, with equivalent values for men and women, and gender differences in the factorial structure which affect the numerical reasoning, abstract reasoning and mechanical reasoning scales.

  7. Architecture of the sperm whale forehead facilitates ramming combat.

    PubMed

    Panagiotopoulou, Olga; Spyridis, Panagiotis; Mehari Abraha, Hyab; Carrier, David R; Pataky, Todd C

    2016-01-01

    Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would reduce skull stresses, it would also cause high compressive stresses on the anterior aspect of the organ and the connective tissue case, possibly making these structures more prone to failure. This outcome, coupled with the facts that the spermaceti organ houses sensitive and essential sonar producing structures and the rostral portion of junk, rather than the spermaceti organ, is frequently a site of significant scarring in mature males suggest that whales avoid impact with the spermaceti organ. Although the unique structure of the junk certainly serves multiple functions, our results are consistent with the hypothesis that the structure also evolved to function as a massive battering ram during male-male competition.

  8. Architecture of Columnar Nacre, and Implications for Its Formation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Rebecca A.; Olabisi, Ronke M.; Coppersmith, Susan N.

    2007-06-29

    We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.

  9. Role of Acoustoelectric Interaction in the Formation of Nanoscale Periodic Structures of Adsorbed Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peleshchak, R. M., E-mail: peleshchak@rambler.ru; Lazurchak, I. I.; Kuzyk, O. V.

    The role of acoustoelectric effects in the formation of nanoscale structures of adatoms, resulting from the self-consistent interaction of adatoms with a surface acoustic wave and the electronic subsystem, is studied for the case of charged and uncharged adatoms. It is shown that an increase in the doping level of a semiconductor with donor impurities at a fixed average adatom concentration results in an increase in the critical temperature below which self-organization processes occur.

  10. Structural dynamics division research and technology accomplishments for F.Y. 1991 and plans for F.Y. 1992

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1992-01-01

    The work under each technical area is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest. The structural dynamics division consist of the following branches: configuration aeroelasticity; unsteady aerodynamics; aeroservoelasticity; landing and impact dynamics; and spacecraft dynamics.

  11. THE SKIN | Functional morphology of the integumentary system in fishes

    USGS Publications Warehouse

    Elliott, D.G.; Farrell, Anthony P.

    2011-01-01

    The integument that covers the outer surface of a fish’s body and fins is a multifunctional organ, with morphological features highly adapted to carry out these functions. The integument consists of two layers. The outer layer, the epidermis, is essentially cellular in structure, comprised of a multilayered epithelium that usually includes specialized cells. The inner layer, the dermis, is primarily a fibrous structure with relatively few cells, although it may contain scales, nerves, blood vessels, adipose tissue, and pigment cells.

  12. Bacterialike (filamentous) structures associated with pyritized burrow linings, Arnheim Formation (Upper Ordovician), southeastern Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, W.H.; Martin, A.J.

    Much naturally occurring pyritization is biologically mediated, with specific types of bacteria (sulfate reducers) promoting the reactions. Among the criteria required for pyritization in a marine environment are the presence of: (1) interstitial iron ions, (2) a primarily anaerobic (reducing) environment; (3) an organic-rich substrate, and (4) sulfate-reducing bacteria (releasing sulfide). However, the direct connection between pyritization and bacteria (microfloral remains) is difficult to visualize in the fossil record. This study focuses specifically on pyritized burrow linings that occur in strongly bioturbated wackestones from the Arnheim Formation (Cincinnatian Series, Upper Ordovician). Specific reducing microenvironments (i.e. mucoidal burrow linings) were themore » sites of early diagenetic pyritization in otherwise oxygenated, organic-rich sediments. Material examined under both the light and electron microscopes revealed occasional evidence of pyrite associated with filamentous structures. These structures possess a shape and size consistent with certain types of bacteria. This relationship, bacterialike structures with pyrite, may be more common in the fossil record than previously suspected.« less

  13. Fragmentation studies of fulvic acids using collision induced dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Witt, Matthias; Fuchser, Jens; Koch, Boris P

    2009-04-01

    The complex natural organic matter standard Suwannee river fulvic acid (SRFA) was analyzed by negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS) using on-resonance collision induced dissociation (CID) of single ultrahigh resolved mass peaks in the ICR cell. Molecular formula assignment of precursor masses resulted in exactly one molecular formula for each of the peaks. Analyses of the corresponding fragment spectra and comparison to different standard substances revealed specific neutral losses and fragmentation patterns which result in structures consisting of a high degree of carboxyl- and fewer hydroxyl groups. The comparison of fragmented mass peaks within different pseudohomologous series (CH(2)-series, and CH(4) vs O exchange) suggested structurally based differences between these series. CID FTICR MS allowed isolating single mass peaks in a very complex natural organic matter spectrum. Subsequently, fragmentation gave structural insights into this material. Our results suggest that the structural diversity in complex humic substances is not as high as expected.

  14. Growth and interfacial structure of methylammonium lead iodide thin films on Au(111)

    NASA Astrophysics Data System (ADS)

    She, Limin; Liu, Meizhuang; Li, Xiaoli; Cai, Zeying; Zhong, Dingyong

    2017-02-01

    Due to the promising optoelectronic properties, organic-inorganic hybrid perovskites have been intensively studied as the active layers in perovskite solar cells. However, the structural information about their interface, one of the key factors determining device performances, is so far very rare. Herein, we report on the growth of CH3NH3PbI3 (MAPbI3, MA=CH3NH3) thin films by means of vapor deposition under ultrahigh vacuum. The surface morphology and interfacial structure have been investigated by scanning tunneling microscopy. At the initial growth stage, a complicated transient phase consisting of three atomic layers, i.e., iodine, MA-PbI4 and MA-I, was formed on the Au(111) substrate. With the coverage increasing, atomically smooth MAPbI3 films with orthorhombic structure have been obtained after annealing to 373 K. The films followed a self-organized twofold-layer by twofold-layer growth mode with the formation of complete PbI6 octahedrons and the exposure of MA-I terminated (001) surface.

  15. Structural and Optical Analysis of the Bio-mineralized Photonic Structures in the Shell of the Blue- Rayed Limpet Ansates Pellucida

    NASA Astrophysics Data System (ADS)

    Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna

    2013-03-01

    Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.

  16. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    NASA Astrophysics Data System (ADS)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  17. New organic photorefractive material composed of a charge-transporting dendrimer and a stilbene chromophore

    NASA Astrophysics Data System (ADS)

    Bai, Jaeil; Ducharme, Stephen; Leonov, Alexei G.; Lu, Liu; Takacs, James M.

    1999-10-01

    In this report, we introduce new organic photorefractive composites consisting of charge transporting den-drimers highly doped with a stilbene nonlinear optic chromophore, The purpose of making these composites is to improve charge transport, by reducing inhomogeneity when compared to ordinary polymer-based systems. Because the structure of this material gives us freedom to control the orientation of charge transport agents synthetically, we can study the charge transport mechanism more systematically than in polymers. We discuss this point and present the characterization results for this material.

  18. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    PubMed Central

    Nicolini, Claudio; Sivozhelezov, Victor; Bavastrello, Valter; Bezzerra, Tercio; Scudieri, Dora; Spera, Rosanna; Pechkova, Eugenia

    2011-01-01

    Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays. PMID:28824154

  19. A SWOT analysis of the organization and financing of the Danish health care system.

    PubMed

    Christiansen, Terkel

    2002-02-01

    The organization and financing of the Danish health care system was evaluated within a framework of a SWOT analysis (analysis of Strengths, Weaknesses, Opportunities and Threats) by a panel of five members with a background in health economics. The present paper describes the methods and materials used for the evaluation: selection of panel members, structure of the evaluation task according to the health care triangle model, selection of background material consisting of documents and literature on the Danish health care system, and a 1-week study visit.

  20. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    NASA Astrophysics Data System (ADS)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  1. Structural hierarchy in molecular films of two class II hydrophobins.

    PubMed

    Paananen, Arja; Vuorimaa, Elina; Torkkeli, Mika; Penttilä, Merja; Kauranen, Martti; Ikkala, Olli; Lemmetyinen, Helge; Serimaa, Ritva; Linder, Markus B

    2003-05-13

    Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of hydrophobins, representing the most detailed structural study of hydrophobin films so far. Langmuir-Blodgett films of class II hydrophobins HFBI and HFBII from Trichoderma reesei were prepared and analyzed by atomic force microscopy. The films showed highly ordered two-dimensional crystalline structures. By combining our recent results on small-angle X-ray scattering of hydrophobin solutions, we found that the unit cells in the films have dimensions similar to those of tetrameric aggregates found in solutions. Further analysis leads to a model in which the building blocks of the two-dimensional crystals are shape-persistent supramolecules consisting of four hydrophobin molecules. The results also indicate functional and structural differences between HFBI and HFBII that help to explain differences in their properties. The possibility that the highly organized surface assemblies of hydrophobins could allow a route for manufacturing functional surfaces is suggested.

  2. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  4. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3

  5. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map

    PubMed Central

    Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan

    2017-01-01

    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307

  6. Large image microscope array for the compilation of multimodality whole organ image databases.

    PubMed

    Namati, Eman; De Ryk, Jessica; Thiesse, Jacqueline; Towfic, Zaid; Hoffman, Eric; Mclennan, Geoffrey

    2007-11-01

    Three-dimensional, structural and functional digital image databases have many applications in education, research, and clinical medicine. However, to date, apart from cryosectioning, there have been no reliable means to obtain whole-organ, spatially conserving histology. Our aim was to generate a system capable of acquiring high-resolution images, featuring microscopic detail that could still be spatially correlated to the whole organ. To fulfill these objectives required the construction of a system physically capable of creating very fine whole-organ sections and collecting high-magnification and resolution digital images. We therefore designed a large image microscope array (LIMA) to serially section and image entire unembedded organs while maintaining the structural integrity of the tissue. The LIMA consists of several integrated components: a novel large-blade vibrating microtome, a 1.3 megapixel peltier cooled charge-coupled device camera, a high-magnification microscope, and a three axis gantry above the microtome. A custom control program was developed to automate the entire sectioning and automated raster-scan imaging sequence. The system is capable of sectioning unembedded soft tissue down to a thickness of 40 microm at specimen dimensions of 200 x 300 mm to a total depth of 350 mm. The LIMA system has been tested on fixed lung from sheep and mice, resulting in large high-quality image data sets, with minimal distinguishable disturbance in the delicate alveolar structures. Copyright 2007 Wiley-Liss, Inc.

  7. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease.

    PubMed

    Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G

    2017-01-01

    Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.

  8. 78 FR 39365 - Self-Regulatory Organizations; BOX Options Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ..., offering detailed data from, and analysis of, the PIP Pilot Program. Specifically, the Exchange believes... further analysis of the PIP Pilot Program and a determination of how the PIP Pilot Program shall be structured in the future. 2. Statutory Basis The Exchange believes that the proposal is consistent with the...

  9. The role of amenities and quality of life in rural economic growth

    Treesearch

    Steven C. Deller; Tsung-Hsiu (Sue) Tsai; David W. Marcouiller; Donald B.K. English

    2001-01-01

    A structural model of regional economic growth is estimated using data for 2243 rural US. counties. Five indices designed to capture specific amenity and quality of life characteristics are constructed using 54 separate indicators. Results suggest that amenity characteristics can be organized into consistent and meaningful empirical measures that move beyond ad hoc...

  10. Selected Bibliography of Educational Materials: Algeria, Libya, Morocco, Tunisia. Vol. 4 No. 3, 1970.

    ERIC Educational Resources Information Center

    Azzouz, Azzedine, Comp.; And Others

    This report, part of a series of educational bibliographies from the Maghreb countries (Algeria, Morocco, and Tunisia) and Libya, consists of excerpts from periodicals published in those countries. Each entry is marked to indicate the particular country. The articles are organized under 13 major subjects that include: the structure of educational…

  11. Research into Higher Education: Processes and Structures. Information on Higher Education in Sweden.

    ERIC Educational Resources Information Center

    National Swedish Board of Universities and Colleges, Stockholm. Research and Development Unit.

    Taken from an international conference organized by the Swedish National Board of Universities and Colleges, the report consists of six overview papers, five reports from discussion groups, and a transcript of the concluding discussion. The conference was designed to allow an informal exchange between researchers and practitioners in the field of…

  12. Neighborhoods of Words in the Mental Lexicon. Research on Speech Perception. Technical Report No. 6.

    ERIC Educational Resources Information Center

    Luce, Paul A.

    A study employed computational and experimental methods to address a number of issues related to the representation and structural organization of spoken words in the mental lexicon. Using a computerized lexicon consisting of phonetic transcriptions of 20,000 words, "similarity neighborhoods" for each of the transcriptions were computed.…

  13. Telecommunications Policy Research Conference. The Changing Scope and Structure of Telecommunications and Its Effects on Government and Industrial Organizations Section. Papers.

    ERIC Educational Resources Information Center

    Telecommunications Policy Research Conference, Inc., Washington, DC.

    This document consist of the abstracts for two papers which considered the impact of information technologies on political and economic systems. The first paper, "The Political Repercussions of Transnational Corporate Information Systems" (Terry Curtis), argued that information technologies are the most recent in a series of…

  14. The Discourse Organization of Filipino Homilies and Indian Homilies: An Intercultural Rhetoric Approach

    ERIC Educational Resources Information Center

    Alamis, Ma. Melvyn P.

    2013-01-01

    The study examined the discourse structure of homily as a genre. It investigated homilies delivered by Filipino and Indian priests that represent varied types of Englishes in the Outer Circle. It described the organizational moves present in the two sets of homilies. The data which consisted of sixty orally delivered homilies transcribed into…

  15. Reforming the University Sector: Effects on Teaching Efficiency--Evidence from Italy

    ERIC Educational Resources Information Center

    Agasisti, Tommaso; Dal Bianco, Antonio

    2009-01-01

    In this article, we analyse the effects of teaching reforms in Italy. These were introduced in 1999, and changed the entire organization of university courses, where the Bachelor-Master (BA-MA) structure was adopted. The first step is to define the production process of higher education (HE). This process consists of several inputs (professors,…

  16. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.

  17. Austrian results from Matroshka poncho and organ dose determination

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.

    Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than

  18. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.

    PubMed

    Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J

    2000-11-02

    So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.

  19. Interconnected Cavernous Structure of Bacterial Fruiting Bodies

    DOE PAGES

    Harvey, Cameron W.; Du, Huijing; Xu, Zhiliang; ...

    2012-12-27

    The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicelular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to Imitations at different imaging methods. A new technique using Infrared Opticalmore » Coherence Tomography (OCT) revealed previously unknown details of the Internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative nigh and low spore density regions. Here, to make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The Integration of novel OCT experimental techniques with computational simulations can provide new insight Into the mechanisms that can give rise to the pattern formation seen In other biological systems such as dlctyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.« less

  20. 3D printing of layered brain-like structures using peptide modified gellan gum substrates.

    PubMed

    Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G

    2015-10-01

    The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions.

    PubMed

    Karadima, Katerina S; Mavrantzas, Vlasis G; Pandis, Spyros N

    2017-06-28

    Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C 30 H 62 ), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C 30 H 62 ), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

  2. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  3. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.

    PubMed

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2015-11-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.

  4. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata

    PubMed Central

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2016-01-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours’ values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level. PMID:27660398

  5. Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development.

    PubMed

    Nakanishi, Nagayasu; Camara, Anthony C; Yuan, David C; Gold, David A; Jacobs, David K

    2015-01-01

    In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.

  6. Anatomy and histology of the newly discovered adipose sac structure within the labia majora: international original research.

    PubMed

    Ostrzenski, Adam; Krajewski, Pawel; Davis, Kern

    2016-09-01

    To determine whether there is any new anatomical structure present within the labia majora. A case serial study was executed on eleven consecutive fresh human female cadavers. Stratum-by-stratum dissections of the labia majora were performed. Twenty-two anatomic dissections of labia majora were completed. Eosin and Hematoxylin agents were used to stain newly discovered adipose sac's tissues of the labia majora and the cylinder-like structures, which cover condensed adipose tissues. The histology of these two structures was compared. All dissected labia majora demonstrated the presence of the anatomic existence of the adipose sac structure. Just under the dermis of the labia majora, the adipose sac was located, which was filled with lobules containing condensed fatty tissues in the form of cylinders. The histological investigation established that the well-organized fibro-connective-adipose tissues represented the adipose sac. The absence of descriptions of the adipose sac within the labia majora in traditional anatomic and gynecologic textbooks was noted. In this study group, the newly discovered adipose sac is consistently present within the anatomical structure of the labia majora. The well-organized fibro-connective-adipose tissue represents microscopic characteristic features of the adipose sac.

  7. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    PubMed

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  8. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  9. The metathoracic wing-hinge chordotonal organ of an atympanate moth, Actias luna (Lepidoptera, Saturniidae): a light- and electron-microscopic study.

    PubMed

    Yack, J E; Roots, B I

    1992-03-01

    The structure of a simple chordotonal organ, the presumed homologue of the noctuoid moth tympanal organ, is described in the atympanate moth, Actias luna. The organ consists of a proximal scolopidial region and a distal strand, which attaches peripherally to the membraneous cuticle ventral to the hindwing alula. The strand is composed of elongate, microtubule-rich cells encased in an extracellular connective tissue sheath. The scolopidial region houses three mononematic, monodynal scolopidia, each comprised of a sensory cell, scolopale cell, and attachment cell. The dendritic apex is octagonally shaped in transverse section, its inner membrane lined by a laminated structure reminiscent of the noctuoid tympanal organ 'collar'. A 9 + 0-type cilium emerges from the dendritic apex, passes through both the scolopale lumen and cap, and terminates in an extracellular space distal to the latter. Proximal extensions of the attachment cell and distal prolongations of the scolopale cell surrounding the cap are joined by an elaborate desmosome, with which is associated an extensive electron-dense fibrillar plaque. Within the scolopale cell, this plaque constitutes the scolopale 'rod' material. The data are discussed in terms of both the organ's potential function, and its significance as the evolutionary prototype of the noctuoid moth ear.

  10. Petrographic Evidence of Microbial Mats in the Upper Cretaceous Fish-Bearing, Organic-Rich Limestone, Agua Nueva Formation, Central Mexico

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Maurrasse, F. J.; Hernández-Ávila, J.; Ángeles-Trigueros, S. A.; García-Cabrera, M. E.

    2013-05-01

    We document petrographic evidence of microbial mats in the Upper Cretaceous Agua Nueva Formation in the area of Xilitla (San Luis Potosí, Central Mexico), located in the southern part of the Tampico-Misantla basin. The sequence consists predominantly of alternating decimeter-thick beds of fossiliferous dark laminated limestone (C-org > 1.0wt%), and light gray, bioturbated limestone (C-org < 1.0wt%), with occasional brown shale and green bentonite layers. Well-preserved fossil-fish assemblages occur in the laminated dark limestone beds, which include shark teeth (cf. Ptychodus), scales of teleosteans (Ichthyodectiformes), as well as skeletal remains of holosteans (Nursallia. sp), and teleosteans (cf. Rhynchodercetis, Tselfatia, and unidentified Enchodontids). Thin section and SEM analyses of the laminated, dark limestones, reveal a micritic matrix consisting of dark and light sub-parallel wavy laminae, continuous and discontinuous folded laminae with shreds of organic matter, filaments, oncoids, and interlocking structures. The structures are identical to those previously described for the Cenomanian-Turonian Indidura Fm at Parras de la Fuente (Coahuila state) demonstrated to be of microbial origin (Duque-Botero and Maurrasse, 2005; 2008). These structures are also analogous to microbial mats in present environments, and Devonian deposits (Kremer, 2006). In addition, the laminae at Xilitla include filamentous bacterial structures, as thin and segmented red elements. In some thin sections, filaments appear to be embedded within the crinkly laminae and shreds showing the same pattern of folding, suggestive of biomorphic elements that represent the main producers of the organic matter associated with the laminae. Thus, exceptional bacterial activity characterizes sedimentation during the accumulation of the Agua Nueva Formation. Oxygen-deficient conditions related to the microbial mats were an important element in the mass mortality and preservation of the fish assemblages. Absence of bioturbation, pervasive framboidal pyrite, and the high concentration of organic matter (TOC ranges from 1.2% to 8wt%) in the dark limestones are consistent with persistent recurring dysoxic/anoxic conditions, and the light-gray bioturbated limestones represent relatively well-oxygenated episodes. Planktonic foraminifera (Rotalipora cushmani) and Inoceramu labiatus indicate a time interval from the latest Cenomanian through the earliest Turonian, thus this long interval of severe oxygen deficiency is coeval with Oceanic Anoxic Event 2 (OAE-2). [Duque-Botero and Maurrasse. 2005. Jour. Iberian Geology (31), 85-98; 2008. Cret. Res., 29, 957-964; Kremer. 2006. Acta Palaeontologica Polonica (51, 1), 143-154

  11. The Role of the Baldwin Effect in the Evolution of Human Musicality.

    PubMed

    Podlipniak, Piotr

    2017-01-01

    From the biological perspective human musicality is the term referred to as a set of abilities which enable the recognition and production of music. Since music is a complex phenomenon which consists of features that represent different stages of the evolution of human auditory abilities, the question concerning the evolutionary origin of music must focus mainly on music specific properties and their possible biological function or functions. What usually differentiates music from other forms of human sound expressions is a syntactically organized structure based on pitch classes and rhythmic units measured in reference to musical pulse. This structure is an auditory (not acoustical) phenomenon, meaning that it is a human-specific interpretation of sounds achieved thanks to certain characteristics of the nervous system. There is historical and cross-cultural diversity of this structure which indicates that learning is an important part of the development of human musicality. However, the fact that there is no culture without music, the syntax of which is implicitly learned and easily recognizable, suggests that human musicality may be an adaptive phenomenon. If the use of syntactically organized structure as a communicative phenomenon were adaptive it would be only in circumstances in which this structure is recognizable by more than one individual. Therefore, there is a problem to explain the adaptive value of an ability to recognize a syntactically organized structure that appeared accidentally as the result of mutation or recombination in an environment without a syntactically organized structure. The possible solution could be explained by the Baldwin effect in which a culturally invented trait is transformed into an instinctive trait by the means of natural selection. It is proposed that in the beginning musical structure was invented and learned thanks to neural plasticity. Because structurally organized music appeared adaptive (phenotypic adaptation) e.g., as a tool of social consolidation, our predecessors started to spend a lot of time and energy on music. In such circumstances, accidentally one individual was born with the genetically controlled development of new neural circuitry which allowed him or her to learn music faster and with less energy use.

  12. The Role of the Baldwin Effect in the Evolution of Human Musicality

    PubMed Central

    Podlipniak, Piotr

    2017-01-01

    From the biological perspective human musicality is the term referred to as a set of abilities which enable the recognition and production of music. Since music is a complex phenomenon which consists of features that represent different stages of the evolution of human auditory abilities, the question concerning the evolutionary origin of music must focus mainly on music specific properties and their possible biological function or functions. What usually differentiates music from other forms of human sound expressions is a syntactically organized structure based on pitch classes and rhythmic units measured in reference to musical pulse. This structure is an auditory (not acoustical) phenomenon, meaning that it is a human-specific interpretation of sounds achieved thanks to certain characteristics of the nervous system. There is historical and cross-cultural diversity of this structure which indicates that learning is an important part of the development of human musicality. However, the fact that there is no culture without music, the syntax of which is implicitly learned and easily recognizable, suggests that human musicality may be an adaptive phenomenon. If the use of syntactically organized structure as a communicative phenomenon were adaptive it would be only in circumstances in which this structure is recognizable by more than one individual. Therefore, there is a problem to explain the adaptive value of an ability to recognize a syntactically organized structure that appeared accidentally as the result of mutation or recombination in an environment without a syntactically organized structure. The possible solution could be explained by the Baldwin effect in which a culturally invented trait is transformed into an instinctive trait by the means of natural selection. It is proposed that in the beginning musical structure was invented and learned thanks to neural plasticity. Because structurally organized music appeared adaptive (phenotypic adaptation) e.g., as a tool of social consolidation, our predecessors started to spend a lot of time and energy on music. In such circumstances, accidentally one individual was born with the genetically controlled development of new neural circuitry which allowed him or her to learn music faster and with less energy use. PMID:29056895

  13. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    PubMed Central

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-01-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879

  14. Structural Characterization of Vapor-deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit

    Physical vapor deposition, a common route of thin film fabrication for organic electronic devices, has recently been shown to produce organic glassy films with enhanced kinetic stability and anisotropic structure. Anisotropic structures are of interest in the organic electronics community as it has been shown that certain structures lead to enhanced device performance, such as higher carrier mobility and better light outcoupling. A mechanism proposed to explain the origin of the stability and anisotropy of vapor-deposited glasses relies on two parameters: 1) enhanced molecular mobility at the free surface (vacuum interface) of a glass, and 2) anisotropic molecular packing at the free surface of the supercooled liquid of the glass-forming system. By vapor-depositing onto a substrate maintained at Tsubstrate < Tg (where Tg is the glass transition temperature), the enhanced molecular mobility at the free surface allows every molecule that lands on the surface to at least partially equilibrate to the preferred anisotropic molecular packing motifs before being buried by further deposition. The extent of equilibration depends on the mobility at the surface, controlled by Tsubstrate, and the residence time on the free surface, controlled by the rate of deposition. This body of work deals with the optimization of deposition conditions and system chemistry to prepare and characterize films with functional anisotropic structures. Here, we show that structural anisotropy can be attained for a variety of molecular systems including a rod-shaped non-mesogen, TPD, a rod-shaped smectic mesogen, itraconazole, two discotic mesogens, phenanthroperylene-ester and triphenylene-ester, and a disc-shaped non-mesogen, m-MTDATA. Experimental evidence is also provided of the anisotropic molecular packing at the free surface (vacuum interface) for the disc-shaped systems that are consistent with the expectations of the proposed mechanism and the final bulk state of the vapor-deposited glasses.

  15. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix.

    PubMed

    Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L

    2011-02-01

    Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.

  16. Implementing HIPAA security in a membership organization.

    PubMed

    Hillabrant, L P; Gaignard, K E

    2000-01-01

    The upcoming HIPAA security regulations are forcing a change in business and operating procedures that many, if not most, healthcare organizations are ill-prepared to tackle. Of all healthcare organizational structures, membership organizations will most likely face the greatest number of obstacles in preparing for and implementing the HIPAA security regulations. This is because the membership organization as a whole must find a way to accommodate the disparate technologies, business and operating methodologies and processes, and available, limited resources of its individual member organizations, and integrate these into a uniform implementation plan. Compounding these obvious difficulties is the unique challenge of enforcement authority. The individual member organizations are autonomous business entities, whereas the membership organization as a whole merely acts as an advisor or consultant, and has only limited enforcement authority over any individual member organization. This article explores this unique situation in depth. We focus on PROMINA Health System, a nonprofit healthcare membership organization that consists of five disparate member healthcare organizations. We examine the challenges PROMINA has encountered in its quest to institute an organization-wide HIPAA security program and its methodology for accomplishing program implementation.

  17. The De Facto National Curriculum in Elementary Social Studies: Critique of a Representative Sample. Elementary Subjects Center Series No. 17.

    ERIC Educational Resources Information Center

    Brophy, Jere

    Despite scholarly disagreement about the nature and purposes of social studies education, the most widely adopted elementary social studies textbook series tend to be remarkably uniform, consisting of compendia of facts organized within the expanding communities curriculum structure. Content selection and explication tend to be guided primarily by…

  18. Structural morphology study of Cd2+ induced Langmuir Blodgett multilayer films of arachidic acid

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.

    2013-04-01

    The organization and headgroup co-ordination of Cadmium Arachidate (CdAA) molecule in Langmuir-Blodgett (LB) multilayer films deposited on hydrophilic Glass (SiO2) and Silicon (100) substrate at normal subphase pH (6.8) are studied. X-ray diffraction (XRD) and X-ray reflectivity (XRR) study reveals ordered layer by layer organization with uniform packing of CdAA molecules, and with a small tilt angle of alkyl chain of CdAA molecule equal to 6.8° ± 1.75°. Electron density profiles (EDPs) shows that the coverage of films remains almost constant with increase in bilayer thickness which indicate very little presence of pinhole defects. AFM study for 25 ML shows that coverage of the film remain intact upto 22nd ML and then decreases sharply due to presence of pinhole defects. Fourier transform infrared spectroscopy (FTIR) study is also consistent with XRD and XRR study of ordered deposition of CdAA molecule. FTIR and X-ray photoelectron spectroscopy (XPS) study indicates the formation of unidentate bridging metal-carboxylate coordination type headgroups consistent with one cadmium metal ion between two carboxylate (COO) groups in each headgroup structure.

  19. Structural characterization and viscoelastic constitutive modeling of skin.

    PubMed

    Sherman, Vincent R; Tang, Yizhe; Zhao, Shiteng; Yang, Wen; Meyers, Marc A

    2017-04-15

    A fascinating material, skin has a tensile response which exhibits an extended toe region of minimal stress up to nominal strains that, in some species, exceed 1, followed by significant stiffening until a roughly linear region. The large toe region has been attributed to its unique structure, consisting of a network of curved collagen fibers. Investigation of the structure of rabbit skin reveals that it consists of layers of wavy fibers, each one with a characteristic orientation. Additionally, the existence of two preferred layer orientations is suggested based on the results of small angle X-ray scattering. These observations are used to construct a viscoelastic model consisting of collagen in two orientations, which leads to an in-plane anisotropic response. The structure-based model presented incorporates the elastic straightening and stretching of fibrils, their rotation towards the tensile axis, and the viscous effects which occur in the matrix of the skin due to interfibrillar and interlamellar sliding. The model is shown to effectively capture key features which dictate the mechanical response of skin. Examination by transmission and scanning electron microscopy of rabbit dermis enabled the identification of the key elements in its structure. The organization of collagen fibrils into flat fibers was identified and incorporated into a constitutive model that reproduces the mechanical response of skin. This enhanced quantitative predictive capability can be used in the design of synthetic skin and skin-like structures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae.

    PubMed

    Ulrich, Yuko; Perrin, Nicolas; Chapuisat, Michel

    2009-04-01

    The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.

  1. Organizations as Cognitive Systems: is Knowledge AN Emergent Property of Information Networks?

    NASA Astrophysics Data System (ADS)

    Biggiero, Lucio

    The substitution of knowledge to information as the entity that organizations process and deliver raises a number of questions concerning the nature of knowledge. The dispute on the codifiability of tacit knowledge and that juxtaposing the epistemology of practice vs. the epistemology of possession can be better faced by revisiting two crucial debates. One concerns the nature of cognition and the other the famous mind-body problem. Cognition can be associated with the capability of manipulating symbols, like in the traditional computational view of organizations, interpreting facts or symbols, like in the narrative approach to organization theory, or developing mental states (events), like argued by the growing field of organizational cognition. Applied to the study of organizations, the mind-body problem concerns the possibility (if any) and the forms in which organizational mental events, like trust, identity, cultures, etc., can be derived from the structural aspects (technological, cognitive or communication networks) of organizations. By siding in extreme opposite positions, the two epistemologies appear irreducible one another and pay its own inner consistency with remarkable difficulties in describing and explaining some empirical phenomena. Conversely, by legitimating the existence of both tacit and explicit knowledge, by emphasizing the space of human interactions, and by assuming that mental events can be explained with the structural aspects of organizations, Nonaka's SECI model seems an interesting middle way between the two rival epistemologies.

  2. Chemical-mechanical stability of the hierarchical structure of shell nacre

    NASA Astrophysics Data System (ADS)

    Sun, Jinmei; Guo, Wanlin

    2010-02-01

    The hierarchical structure and mechanical property of shell nacre are experimentally investigated from the new aspects of chemical stability and chemistry-mechanics coupling. Through chemical deproteinization or demineralization methods together with characterization techniques at micro/nano scales, it is found that the nacre of abalone, haliotis discus hannai, contains a hierarchical structure stacked with irregular aragonite platelets and interplatelet organic matrix thin layers. Yet the aragonite platelet itself is a nanocomposite consisting of nanoparticles and intraplatelet organic matrix framework. The mean diameter of the nanoparticles and the distribution of framework are quite different for different platelets. Though the interplatelet and intraplatelet organic matrix can be both decomposed by sodium hydroxide solution, the chemical stability of individual aragonite platelets is much higher than that of the microstructure stacked with them. Further, macroscopic bending test or nanoindentation experiment is performed on the micro/nanostructure of nacre after sodium hydroxide treatment. It is found that the Young’s modulus of both the stacked microstructure and nanocomposite platelet reduced. The reduction of the microstructure is more remark than that of the platelet. Therefore the chemical-mechanical stability of the nanocomposite platelet itself is much higher than that of the stacked microstructure of nacre.

  3. Structural analysis of benzothienobenzothiophene-based soluble organic semiconducting crystals grown by liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo

    2018-06-01

    In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.

  4. Six sigma for revenue retrieval.

    PubMed

    Plonien, Cynthia

    2013-01-01

    Deficiencies in revenue retrieval due to failures in obtaining charges have contributed to a negative bottom line for numerous hospitals. Improving documentation practices through a Six Sigma process improvement initiative can minimize opportunities for errors through reviews and instill structure for compliance and consistency. Commitment to the Six Sigma principles with continuous monitoring of outcomes and constant communication of results to departments, management, and payers is a strong approach to reducing the financial impact of denials on an organization's revenues and expenses. Using Six Sigma tools can help improve the organization's financial performance not only for today, but also for health care's uncertain future.

  5. New technology planning and approval: critical factors for success.

    PubMed

    Haselkorn, Ateret; Rosenstein, Alan H; Rao, Anil K; Van Zuiden, Michele; Coye, Molly J

    2007-01-01

    The steady evolution of technology, with the associated increased costs, is a major factor affecting health care delivery. In the face of limited capital resources, it is important for hospitals to integrate technology management with the strategic plan, mission, and resource availability of the organization. Experiences in technology management have shown that having a well-organized, consistent approach to technology planning, assessment, committee membership, approval, evaluation, implementation, and monitoring are key factors necessary to ensure a successful program. We examined the results of a survey that assessed the structure, processes, and cultural support behind hospital committees for new technology planning and approval.

  6. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  7. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  8. The first data on the porous space structure of the Domanik shales as a potential object for EOR applying

    NASA Astrophysics Data System (ADS)

    Kadyrov, R.; Statsenko, E.

    2018-05-01

    The resources of shale oil, contained in the organic matter of the wood deposits, can be considered as a source of profitable production of hydrocarbons, when modern EOR technologies are used. As a result of the primary studies of the pore space structure, it is revealed that two types of porous space are prevailing in the studied samples of the Domanik oil shales. The most prevailing is intrakerogen porosity with pore volumes of 5 × 10-8 1 × 10-6 mm3. The volumetric reconstruction of the structure of this pore space shows that the voids are confined directly to micro lenses of organic matter. The second type of the found void is represented by leaching cracks. It is characteristic of more carbonate varieties of the Dominik oil shale with spotted structure. It is the oil shale intervals with such cracks that are of greatest interest to the EOR, since they consist of a large area with smaller pores and through which pressurization and spread of various agents are possible to occur in order to increase the oil recovery.

  9. Toward validation of a structural approach to conceptualizing psychopathology: A special section of the Journal of Abnormal Psychology.

    PubMed

    Krueger, Robert F; Tackett, Jennifer L; MacDonald, Angus

    2016-11-01

    Traditionally, psychopathology has been conceptualized in terms of polythetic categories derived from committee deliberations and enshrined in authoritative psychiatric nosologies-most notably the Diagnostic and Statistical Manual of Mental Disorders (DSM; American Psychiatric Association [APA], 2013). As the limitations of this form of classification have become evident, empirical data have been increasingly relied upon to investigate the structure of psychopathology. These efforts have borne fruit in terms of an increasingly consistent set of psychopathological constructs closely connected with similar personality constructs. However, the work of validating these constructs using convergent sources of data is an ongoing enterprise. This special section collects several new efforts to use structural approaches to study the validity of this empirically based organizational scheme for psychopathology. Inasmuch as a structural approach reflects the natural organization of psychopathology, it has great potential to facilitate comprehensive organization of information on the correlates of psychopathology, providing evidence for the convergent and discriminant validity of an empirical approach to classification. Here, we highlight several themes that emerge from this burgeoning literature. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE PAGES

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    2018-05-03

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  11. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    PubMed

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  12. The brief family relationship scale: a brief measure of the relationship dimension in family functioning.

    PubMed

    Fok, Carlotta Ching Ting; Allen, James; Henry, David

    2014-02-01

    The Relationship dimension of the Family Environment Scale, which consists of the Cohesion, Expressiveness, and Conflict subscales, measures a person's perception of the quality of his or her family relationship functioning. This study investigates an adaptation of the Relationship dimension of the Family Environment Scale for Alaska Native youth. The authors tested the adapted measure, the Brief Family Relationship Scale, for psychometric properties and internal structure with 284 12- to 18-year-old predominately Yup'ik Eskimo Alaska Native adolescents from rural, remote communities. This non-Western cultural group is hypothesized to display higher levels of collectivism traditionally organized around an extended kinship family structure. Results demonstrate a subset of the adapted items function satisfactorily, a three-response alternative format provided meaningful information, and the subscale's underlying structure is best described through three distinct first-order factors, organized under one higher order factor. Convergent and discriminant validity of the Brief Family Relationship Scale was assessed through correlational analysis.

  13. Models of protocellular structures, functions and evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The central step in the origin of life was the emergence of organized structures from organic molecules available on the early earth. These predecessors to modern cells, called 'proto-cells,' were simple, membrane bounded structures able to maintain themselves, grow, divide, and evolve. Since there is no fossil record of these earliest of life forms, it is a scientific challenge to discover plausible mechanisms for how these entities formed and functioned. To meet this challenge, it is essential to create laboratory models of protocells that capture the main attributes associated with living systems, while remaining consistent with known, or inferred, protobiological conditions. This report provides an overview of a project which has focused on protocellular metabolism and the coupling of metabolism to energy transduction. We have assumed that the emergence of systems endowed with genomes and capable of Darwinian evolution was preceded by a pre-genomic phase, in which protocells functioned and evolved using mostly proteins, without self-replicating nucleic acids such as RNA.

  14. Mass Spectrometry and Antibody-Based Characterization of Blood Vessels from Brachylophosaurus canadensis

    PubMed Central

    Cleland, Timothy P.; Schroeter, Elena R.; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C.; Bern, Marshall; Duncan, Michael B.; Lebleu, Valerie S.; Ahlf, Dorothy R.; Thomas, Paul M.; Kalluri, Raghu; Kelleher, Neil L.; Schweitzer, Mary H.

    2016-01-01

    Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738. PMID:26595531

  15. Mass Spectrometry and Antibody-Based Characterization of Blood Vessels from Brachylophosaurus canadensis.

    PubMed

    Cleland, Timothy P; Schroeter, Elena R; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C; Bern, Marshall; Duncan, Michael B; Lebleu, Valerie S; Ahlf, Dorothy R; Thomas, Paul M; Kalluri, Raghu; Kelleher, Neil L; Schweitzer, Mary H

    2015-12-04

    Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738.

  16. Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methods

    NASA Astrophysics Data System (ADS)

    Meister, Stefan; Brückner, Robert; Fröb, Hartmut; Leo, Karl

    2016-04-01

    An electrical driven organic solid state laser is a very challenging goal which is so far well beyond reach. As a step towards realization, we monolithically implemented an Organic Light Emitting Diode (OLED) into a dielectric, high quality microcavity (MC) consisting of two Distributed Bragg Reectors (DBR). In order to account for an optimal optical operation, the OLED structure has to be adapted. Furthermore, we aim to excite the device not only electrically but optically as well. Different OLED structures with an emission layer consisting of Alq3:DCM (2 wt%) were investigated. The External Quantum Efficiencies (EQE) of this hybrid structures are in the range of 1-2 %, as expected for this material combination. Including metal layers into a MC is complicated and has a huge impact on the device performance. Using Transfer-Matrix-Algorithm (TMA) simulations, the best positions for the metal electrodes are determined. First, the electroluminescence (EL) of the adjusted OLED structure on top of a DBR is measured under nitrogen atmosphere. The modes showed quality factors of Q = 60. After the deposition of the top DBR, the EL is measured again and the quality factors increased up to Q = 600. Considering the two 25-nm-thick-silver contacts a Q-factor of 600 is very high. The realization of a suitable encapsulation method is important. Two approaches were successfully tested. The first method is based on the substitution of a DBR layer with a layer produced via Atomic Layer Deposition (ALD). The second method uses a 0.15-mm-thick cover glass glued on top of the DBR with a 0.23-μm-thick single-component glue layer. Due to the working encapsulation, it is possible to investigate the sample under ambient conditions.

  17. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  18. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    PubMed

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  19. The effects of corrosive substances on human bone, teeth, hair, nails, and soft tissue.

    PubMed

    Hartnett, Kristen M; Fulginiti, Laura C; Di Modica, Frank

    2011-07-01

    This research investigates the effects of household chemicals on human tissues. Five different human tissues (bone, tooth, hair, fingernails, and skin/muscle/fat) were immersed into six different corrosive agents. These agents consisted of hydrochloric acid, sulfuric acid, lye, bleach, organic septic cleaner, and Coca-Cola(®) soda. Tap water was used as a control. Tissue samples were cut to consistent sizes and submerged in the corrosive liquids. Over time, the appearance, consistency, and weight were documented. Hydrochloric acid was the most destructive agent in this study, consuming most tissues within 24 h. Sulfuric acid was the second most destructive agent in this study. Bleach, lye, and cola had no structural effects on the hard tissues of the body, but did alter the appearance or integrity of the hair, nails, or flesh in some way. The organic septic cleaner and tap water had no effect on any of the human tissue tested during the timeframe of the study. 2011 American Academy of Forensic Sciences. Published 2011. This article is a U.S. Government work and is in the public domain in the U.S.A.

  20. Bioinspired Synthesis of Well-Ordered Layered Organic-Inorganic Nanohybrids: Mimicking the Natural Processing of Nacre by Mineralization of Block Copolymer Templates.

    PubMed

    Voet, Vincent S D; Kumar, Kamlesh; ten Brinke, Gerrit; Loos, Katja

    2015-10-01

    The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  2. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  3. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.

  4. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping

    PubMed Central

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-01-01

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED. PMID:27578199

  5. Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping.

    PubMed

    Yuan, Chih-Hsien; Lee, Chih-Chien; Liu, Chun-Fu; Lin, Yun-Hsuan; Su, Wei-Cheng; Lin, Shao-Yu; Chen, Kuan-Ting; Li, Yan-De; Chang, Wen-Chang; Li, Ya-Ze; Su, Tsung-Hao; Liu, Yu-Hsuan; Liu, Shun-Wei

    2016-08-31

    Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Spataru, Dan Catalin

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2)more » metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.« less

  7. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  8. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  9. Subtle Effects of Aliphatic Alcohol Structure on Water Extraction and Solute Aggregation in Biphasic Water/ n -Dodecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Andrew W.; Qiao, Baofu; Chiarizia, Renato

    Organic phase aggregation behavior of 1-octanol and its structural isomer, 2-ethylhexanol, in a biphasic n-dodecane water system is studied with a combination of physical measurement, small-angle X-ray scattering (SAXS), and atomistic molecular dynamic simulations. Physical properties of the organic phases are probed following their mixing and equilibration with immiscible water phases. Studies reveal that the interfacial tension decreases as a function of increasing alcohol concentration over the solubility range of the alcohol with no evidence for a critical aggregate concentration (cac). An uptake of water into the organic phases is quantified, as a function of alcohol content, by Karl Fischermore » titrations. The extraction of water into dodecane was further assessed as a function of alcohol concentration via the slope-analysis method sometimes employed in chemical separations. This provides a qualitative understanding of solute (water/alcohol) aggregation in the organic phase. The physical results are supported by analyses of SAXS data that reveals an emergence of aggregates in n-dodecane at elevated alcohol concentrations. The observed aggregate structure is dependent on the alcohol tail group geometry, consistent with surfactant packing parameter. The formation of these aggregates is discussed at a molecular level, where alcohol-alcohol and alcohol-water H-bonding interactions likely dominate the occurrence and morphology of the aggregates.« less

  10. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    PubMed

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Exploring the Role of Metonymy in Mathematical Understanding and Reasoning: The Concept of Derivative as an Example

    ERIC Educational Resources Information Center

    Zandieh, Michelle J.; Knapp, Jessica

    2006-01-01

    In this paper we examine the roles that metonymy may play in student reasoning. To organize this discussion we use the lens of a structured derivative framework. The derivative framework consists of three layers of process-object pairs, one each for ratio, limit, and function. Each of the layers can then be illustrated in any appropriate context,…

  12. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9.

    ERIC Educational Resources Information Center

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  13. Current management of penetrating torso trauma: nontherapeutic is not good enough anymore.

    PubMed

    Ball, Chad G

    2014-04-01

    A highly organized approach to the evaluation and treatment of penetrating torso injuries based on regional anatomy provides rapid diagnostic and therapeutic consistency. It also minimizes delays in diagnosis, missed injuries and nontherapeutic laparotomies. This review discusses an optimal sequence of structured rapid assessments that allow the clinician to rapidly proceed to gold standard therapies with a minimal risk of associated morbidity.

  14. Trade Agreements: Impact on the U.S. Economy

    DTIC Science & Technology

    2007-03-15

    model is consistent with the Ricardian and Heckscher-Ohlin models . An important drawback of the model is that it can estimate only the aggregate...These models incorporate assumptions about consumer behavior, market structure and organization, production technology, investment, and capital flows...industry and assess the impact of the change on employment, production , and economic welfare. The Michigan Model and Estimates One well-known and often

  15. Trade Agreements: Impact on the U.S. Economy

    DTIC Science & Technology

    2010-03-11

    the models have been criticized for lacking a strong theoretical basis, recent work has demonstrated that the model is consistent with the Ricardian ...structure and organization, production technology, investment, and capital flows in the form of foreign direct investment. General equilibrium models ...given sector or industry and assess the impact of the change on employment, production , and economic welfare. The Michigan Model and Estimates One

  16. Nature and chlorine reactivity of organic constituents from reclaimed water in groundwater, Los Angeles County, California

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Barber, L.B.; Schroeder, R.A.; Anders, R.; Davisson, M.L.

    2001-01-01

    The nature and chlorine reactivity of organic constituents in reclaimed water (tertiary-treated municipal wastewater) before, during, and after recharge into groundwater at the Montebello Forebay in Los Angeles County, CA, was the focus of this study. Dissolved organic matter (DOM) in reclaimed water from this site is primarily a mixture of aromatic sulfonates from anionic surfactant degradation, N-acetyl amino sugars and proteins from bacterial activity, and natural fulvic acid, whereas DOM from native groundwaters in the aquifer to which reclaimed water was recharged consists of natural fulvic acids. The hydrophilic neutral N-acetyl amino sugars that constitute 40% of the DOM in reclaimed water are removed during the first 3 m of vertical infiltration in the recharge basin. Groundwater age dating with 3H and 3He isotopes, and determinations of organic and inorganic C isotopes, enabled clear differentiation of recent recharged water from older native groundwater. Phenol structures in natural fulvic acids in DOM isolated from groundwater produced significant trihalomethanes (THM) and total organic halogen (TOX) yields upon chlorination, and these structures also were responsible for the enhanced SUVA and specific fluorescence characteristics relative to DOM in reclaimed water. Aromatic sulfonates and fulvic acids in reclaimed water DOM produced minimal THM and TOX yields.

  17. Nuclear speckles: molecular organization, biological function and role in disease

    PubMed Central

    Galganski, Lukasz; Urbanek, Martyna O.

    2017-01-01

    Abstract The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders. PMID:28977640

  18. The behaviour of tributyl phosphate in an organic diluent

    NASA Astrophysics Data System (ADS)

    Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.

    2014-09-01

    Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.

  19. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  20. Effect of molecular mass on supramolecular organisation of poly(4,4''-dioctyl-2,2':5',2''-terthiophene).

    PubMed

    Jaroch, Tomasz; Knor, Marek; Nowakowski, Robert; Zagórska, Małgorzata; Proń, Adam

    2008-10-28

    The effect of the chain length on the type and extent of the 2D supramolecular organization in poly(4,4''-dioctyl-2,2':5',2''-terthiophene) (PDOTT) monomolecular layers deposited on highly oriented pyrolytic graphite (HOPG) is studied by scanning tunneling microscopy (STM) and analyzed in terms of molecular modeling. The strictly monodispersed fractions of increasing molecular mass used in this study were obtained by chromatographic fractionation of the crude product of 4,4''-dioctyl-2,2':5',2''-terthiophene oxidative polymerization. STM investigations of PDOTT layers, deposited on HOPG from poly- and monodispersed fractions, show that polydispersity can be considered as a key factor seriously limiting supramolecular ordering. This is a consequence of significant differences in the type of supramolecular order observed for molecules of different chain length. It has been demonstrated that shorter molecules (consisting of 6 and 9 thiophene units) form well-defined two-dimensional islands, while the interactions between longer molecules (consisting of 12 and 15 thiophene units) become anisotropic. Consequently, for higher molecular mass fractions, the supramolecular organization is one-dimensional and consists of more or less separated rows of ordered macromolecules. In this case an increase of the chain length leads to amplification of the intermolecular interactions proceeding via interdigitation of the alkyl substituents of adjacent molecules. Polydispersed fractions show much less ordered organization because of the incompatibility of the supramolecular structures of molecules of different molecular masses. This finding is of crucial importance for the application of polythiophene derivatives in organic and molecular electronics since ordered supramolecular organization constitutes the condition sine qua non of good electrical transport properties.

  1. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.

    PubMed

    Dong, Renhao; Zhang, Tao; Feng, Xinliang

    2018-06-18

    The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)-that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by a brief classification of inorganic and organic 2DMs achieved by interfacial synthesis. Next, the currently developed interfacial synthesis strategies combined with representative inorganic and organic 2DMs are summarized, including the description of method details, the corresponding structural features, and the insights into the advantages and limitations of the synthesis methods, along with some recommendable characterization methods for understanding the interfacial assembly of the precursors and crystal growth of 2DMs. After that, we will discuss several classes of emerging organic 2DMs with particular emphasis on the structural control by the interfacial synthesis strategies. Note that, inorganic 2DMs will not be categorized separately due to the fact that a number of review articles have covered the synthesis, structure, processing, and applications. Finally, the challenges and perspectives are provided regarding the future development of interface-assisted synthesis of 2DMs with diverse structural and functional control.

  2. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  3. Organization and regional distribution of centers for the management of children and adolescents with diabetes in Italy.

    PubMed

    Giorgetti, Chiara; Ferrito, Lucia; Zallocco, Federica; Iannilli, Antonio; Cherubini, Valentino

    2015-10-08

    The incidence of type 1 diabetes in childhood is increasing by 3 % per year, placing growing demands on healthcare professionals and medical expenditures. Aim of this study wars to assess the organization of care to children with diabetes in Italy. During 2012 a structured questionnaire was sent to all of the members of Italian Society of Paediatric Endocrinology and Diabetology (ISPED). Questions examined organizational structure of Centers, personnel dedicated to the care of children with diabetes, number of subjects followed, local legal legislation supporting centres. A total of 68 centers taking care to 15,563 children and adolescents with diabetes under 18 years of age were identified with a prevalence of 1.4 per 1,000 people. A wide variation in the organizational background was also reported. Fourty-four centers were organized as outpatient departments, 17 as simple units, 5 as complex units and 2 as simple departmental structures. Most centers had a multidisciplinary team. Ten out of twenty Italian regions had introduced supportive regional legislation, but it was fully applied only in six of them. Great differences between regions were found in organizational structures, staffing levels and supportive legislation. The national legislation on diabetes was broadly implemented throughout the country regions. Further efforts are needed to improve standards and consistency of pediatric diabetes care in Italy.

  4. DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.

    PubMed

    Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar

    2012-05-30

    One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.

  5. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region.

    PubMed

    Guo, Xu-jing; Xi, Bei-dou; Yu, Hui-bin; Ma, Wen-chao; He, Xiao-song

    2011-01-01

    To develop a proper indicator which could predict water quality and trace pollution sources is critically important for the management of sustainable aquatic ecosystem. In our study, seven water samples collected from Wuliangsuhai Lake in Inner Mongolia were used. UV-visible spectra and synchronous fluorescence spectra were applied to investigate the humification degree and aromatic structure of dissolved organic matter (DOM) extracted from water samples. The results showed that both samples from W1 site and W3 site display lower humification degree and less aromatic structure, where industrial wastewater and domestic sewage, and reclaimed water of farmland irrigation, were accepted respectively. After computing the values of SUVA(254), A(280), A(250/365), A(253/203) and A(226-400), we reached the conclusion that they have a consistent trend (W4> W6> W5> W2> W7> W1> W3). Fluorescence index (f(450/500)) was always utilised to interpret the origin of organic matter in a complex aquatic environment system. Values of f(450/500) are closer to 1.60, indicating that humic substances derived from terrestrial sources and biological sources. Our study demonstrated that reclaimed water of farmland irrigation, industrial wastewater and domestic sewage will definitely influence the humification degree and amount of the aromatic structure of DOM.

  6. Evolution and coevolution of developmental programs

    NASA Astrophysics Data System (ADS)

    Jacob, Christian

    1999-09-01

    The developmental processes of single organisms, such as growth and structure formation, can be described by parallel rewrite systems in the form of Lindenmayer systems, which also allow one to generate geometrical structures in 3D space using turtle interpretation. We present examples of L-systems for growth programs of plant-like structures. Evolution-based programming techniques are applied to design L-systems by Genetic L-system Programming (GLP), demonstrating how developmental programs for plants, exhibiting specific morphogenetic properties can be interactively bred or automatically evolved. Finally, we demonstrate coevolutionary effects among plant populations consisting of different species, interacting with each other, competing for resources like sunlight and nutrients, and evolving successful reproduction strategies in their specific environments.

  7. Ground Software Maintenance Facility (GSMF) system manual

    NASA Technical Reports Server (NTRS)

    Derrig, D.; Griffith, G.

    1986-01-01

    The Ground Software Maintenance Facility (GSMF) is designed to support development and maintenance of spacelab ground support software. THE GSMF consists of a Perkin Elmer 3250 (Host computer) and a MITRA 125s (ATE computer), with appropriate interface devices and software to simulate the Electrical Ground Support Equipment (EGSE). This document is presented in three sections: (1) GSMF Overview; (2) Software Structure; and (3) Fault Isolation Capability. The overview contains information on hardware and software organization along with their corresponding block diagrams. The Software Structure section describes the modes of software structure including source files, link information, and database files. The Fault Isolation section describes the capabilities of the Ground Computer Interface Device, Perkin Elmer host, and MITRA ATE.

  8. Structure elucidation of organic compounds aided by the computer program system SCANNET

    NASA Astrophysics Data System (ADS)

    Guzowska-Swider, B.; Hippe, Z. S.

    1992-12-01

    Recognition of chemical structure is a very important problem currently solved by molecular spectroscopy, particularly IR, UV, NMR and Raman spectroscopy, and mass spectrometry. Nowadays, solution of the problem is frequently aided by the computer. SCANNET is a computer program system for structure elucidation of organic compounds, developed by our group. The structure recognition of an unknown substance is made by comparing its spectrum with successive reference spectra of standard compounds, i.e. chemical compounds of known chemical structure, stored in a spectral database. The computer program system SCANNET consists of six different spectral databases for following the analytical methods: IR, UV, 13C-NMR, 1H-NMR and Raman spectroscopy, and mass spectrometry. A chemist, to elucidate a structure, can use one of these spectral methods or a combination of them and search the appropriate databases. As the result of searching each spectral database, the user obtains a list of chemical substances whose spectra are identical and/or similar to the spectrum input into the computer. The final information obtained from searching the spectral databases is in the form of a list of chemical substances having all the examined spectra, for each type of spectroscopy, identical or simlar to those of the unknown compound.

  9. Scientific designs of pine seeds and pine cones for species conservation

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  10. The geography of trust.

    PubMed

    Joni, Saj-nicole A

    2004-03-01

    Leaders who rely forever on the same internal advisers, entrusting them with issues of ever greater sensitivity and consequence, run the risk of being sold short and possibly betrayed. Alternatively, lone-wolf leaders who trust no one may make enormous, yet preventable, mistakes when trying to sort through difficult decisions. A sophisticated understanding of trust can protect leaders from both fates. During the past decade, author and consultant Saj-nicole Joni studied leadership in more than 150 European and North American companies. Her research reveals three fundamental types of trustpersonal trust, expertise trust, and structural trust. Executives may persevere in relationships that are based on personal trust, no matter how exalted their leadership roles become. But such relationships are unlikely to remain static. They also probably won't provide the kinds of deep, often specialized knowledge leaders need. In circumstances where advisers' competence matters as much as their character, expertise trust--reliance on an adviser's ability in a specific subject--enters the picture. In organizations, leaders develop expertise trust by working closely with people who consistently demonstrate their mastery of particular subjects or processes. Structural trust refers to how roles and ambitions influence advisers' perspectives and candor. It shifts constantly as people rise through organizations. High-level structural trust can provide leaders with pure insight and information--but advisers in positions of the highest structural trust generally reside outside organizations. These advisers provide leaders with insights that their organizations cannot. High-performing leaders' most enduring--and most valuable--relationships are characterized by enormous levels of all three kinds of trust.

  11. Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.

  12. Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices.

    PubMed

    Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta

    2009-04-09

    Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.

  13. Self-assembly of a binodal metal-organic framework exhibiting a demi-regular lattice.

    PubMed

    Yan, Linghao; Kuang, Guowen; Zhang, Qiushi; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2017-10-26

    Designing metal-organic frameworks with new topologies is a long-standing quest because new topologies often accompany new properties and functions. Here we report that 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene molecules coordinate with Cu atoms to form a two-dimensional framework in which Cu adatoms form a nanometer-scale demi-regular lattice. The lattice is articulated by perfectly arranged twofold and threefold pyridyl-Cu coordination motifs in a ratio of 1 : 6 and features local dodecagonal symmetry. This structure is thermodynamically robust and emerges solely when the molecular density is at a critical value. In comparison, we present three framework structures that consist of semi-regular and regular lattices of Cu atoms self-assembled out of 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene and trispyridylbenzene molecules. Thus a family of regular, semi-regular and demi-regular lattices can be achieved by Cu-pyridyl coordination.

  14. A novel metal-organic coordination polymer with unprecedented floor-like structural configuration consisting of two kinds of independent building blocks of triple- and double-stranded braids

    NASA Astrophysics Data System (ADS)

    Che, Yun-Xia; Luo, Feng; Zheng, Ji-Min

    2007-02-01

    This paper presents a novel and distinctive metal-organic compound, {[Cd 4(bet) 4Cl 6(H 2O) 4][Cd 2Cl 6]} n (bet=(CH 3) 3NCH 2CO 2, namely betaine) 1, assembled from two independent building blocks of triple- and double-stranded braids, and characterized by an unprecedented floor-like structural configuration. Furthermore, IR, element analysis, and TG-DTA were employed to characterize it. Compound 1 belongs to triclinic system, space group P-1, a = 6.704(2) Å, b = 9.338(3) Å, c = 20.056(7) Å, α = 101.409(5)°, β = 96.650(5)°, γ = 93.148(5)°, V = 1218.5(7) Å 3, Z = 1, R1 = 0.0340, ωR2 = 0.1017.

  15. Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.

    2016-02-01

    Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.

  16. Organization of Amphiphilic Molecular Disks with Branched Hydrophilic Tails and Hexa-peri-hexabenzocoronene Core

    NASA Astrophysics Data System (ADS)

    Lee, Myongsoo; Kim, Jung-Woo; Yoo, Yong-Sik; Peleshanko, Sergey; Larson, Kirsten; Vaknin, David; Markutsya, Sergei; Tsukruk, Vladimir V.

    2002-03-01

    Amphiphilic branched discotics consisting of the aromatic core and oligoethers as the branched peripheral chains have been characterized in bulk and monolayer states. The discotics based on di-branched oligoether side chains have been observed to self-organize into an ordered hexagonal columnar structure within liquid crystalline (LC) phases. The tetrabranched molecule showed only an isotropic liquid. The LC molecules with di-branched tails have been observed to form stable monolayers on the water surface in contrast to the tetra-branched tails. We suggest a crab-like molecular conformation and cluster-segregated monolayers with six-fold symmetry of face-on packing on a solid surface.

  17. Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.

    2007-05-25

    This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.

  18. Current management of penetrating torso trauma: nontherapeutic is not good enough anymore

    PubMed Central

    Ball, Chad G.

    2014-01-01

    A highly organized approach to the evaluation and treatment of penetrating torso injuries based on regional anatomy provides rapid diagnostic and therapeutic consistency. It also minimizes delays in diagnosis, missed injuries and nontherapeutic laparotomies. This review discusses an optimal sequence of structured rapid assessments that allow the clinician to rapidly proceed to gold standard therapies with a minimal risk of associated morbidity. PMID:24666458

  19. Influence of soil structure on nutrient cycling using microfluidic techniques

    NASA Astrophysics Data System (ADS)

    Arellano Caicedo, Carlos; Aleklett, Kristin; Ohlsson, Pelle; Hammer, Edith

    2017-04-01

    The rising of atmospheric CO2 levels and its effects on global warming make it necessary to understand the elements that regulate such levels and furthermore try to slow down the CO2 accumulation in the atmosphere. The exchange of carbon between soil and atmosphere plays a significant role in the atmospheric carbon budget. Soil organisms deposit organic compounds on and in soil aggregates, either as exudates or dead remains. Much of this dead organic material is quickly recycled, but a portion, however, will stay in the soil for long term. Evidence suggests that micro-scale biogeochemical interactions could play a highly significant role in degradation or persistence of organic matter in soils, thus, soil physical structure might play a decisive role in preventing accessibility of nutrients to microorganisms. For studying effects of spatial microstructure on soil nutrient cycles, we have constructed artificial habitats for microbes that simulate soil structures. Microfluidic, so called Lab-on-a-chip technologies, are one of the tools used to achieve our purpose. Such micro-habitats consist of pillar structures of difference density and surface area, tunnels with increasing depth, and mazes of increasing complexity to simulate different stages of soil aggregation. Using microscopy and analytical chemistry, we can follow the growth of microorganisms inoculated into the "soil chip" as well as the chemical degradation of organic matter compounds provided as nutrient source. In this way, we want to be able to predict how soil structure influences soil microbial activity leading to different effects on the carbon cycle. Our first results of a chip inoculated with natural soil showed a succession of organisms colonizing channels leading to dead-end arenas, starting with a high presence of bacteria inside the chip during the first days. Fungal hyphae growth gradually inside the channels until it finally occupied the big majority of the spaces isolating bacteria which dramatically decreased in number. The structure inside the soil chip changes dynamically due to the creation of biofilms. Such changes alter the spatial distribution inside the chip gradually, to the point of getting significantly different from the original structures. Fungal hyphae, bacterial biofilms, and microbial necro mass accumulation where the components altering the chip structure. These findings suggest that a considerable part of the soil structure is microbial biomass. Using Lab-on-a-chip techniques leads to the creation of a much more realistic soil and ecosystem model, resembling spatial and chemical complexity in real soil structures at a micrometer scale, the scale relevant for soil organisms. Understanding small-scale processes in the soils is crucial to predict carbon and nutrient cycling, and to enable us to give recommendations for soil management in agriculture, horticulture and nature conservation. If parameterization of soil structure as a central determinant for carbon sequestration is possible, it will allow strong argumentation for management practices that conserve and foster soil structure, such as low-tillage, support of mycorrhizal fungi, and reduction of heavy machinery usage.

  20. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    NASA Astrophysics Data System (ADS)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  1. First cosmic-ray images of bone and soft tissue

    NASA Astrophysics Data System (ADS)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  2. Examination of the Work Organization Assessment Questionnaire in public sector workers.

    PubMed

    Wynne-Jones, Gwenllian; Varnava, Alice; Buck, Rhiannon; Karanika-Murray, Maria; Griffiths, Amanda; Phillips, Ceri; Cox, Tom; Kahn, Sayeed; Main, Chris J

    2009-05-01

    To investigate the utility of the Work and Organization Assessment Questionnaire (WOAQ) for public sector data. A cross-sectional survey was performed in public sector organizations measuring demographics, work characteristics, work perceptions (WOAQ), sickness absence, and work performance. Confirmatory factor analysis of the WOAQ showed that factor structure derived for the manufacturing sector, for which the questionnaire was developed, could be replicated moderately well with public sector data. The study then considered whether a better more specific fit for public sector data was possible. Principal components analysis of the public sector data identified a two-factor structure linked to four of the five scales of the WOAQ assessing Management and Work Design, and Work Culture. These two factors may offer a context-sensitive scoring method for the WOAQ in public sector populations. These two factors were found to have good internal consistency, and correlated with the full WOAQ scales and the measures of performance and absence. The WOAQ is a useful and potentially transferable tool. The modified scoring may be used to assess work and organizational factors in the public sector.

  3. Properties of dissolved and total organic matter in throughfall, stemflow and forest floor leachate of Central European forests

    NASA Astrophysics Data System (ADS)

    Bischoff, S.; Schwarz, M. T.; Siemens, J.; Thieme, L.; Wilcke, W.; Michalzik, B.

    2014-10-01

    For the first time, we investigated the composition of dissolved organic matter (DOM) compared to total OM (TOM, consisting of DOM and particulate OM, POM) in throughfall, stemflow and forest floor leachate of beech and spruce forests using solid state 13C nuclear magnetic resonance spectroscopy. We hypothesized that the composition and properties of OM in forest ecosystem water samples differed between DOM and TOM and between the two tree species. Under beech, a contribution of phyllosphere-derived fresh POM was echoed in structural differences. Compared with DOM, TOM exhibited higher relative intensities for the alkyl C region, representing aliphatic C from less decomposed organic material, and lower relative intensities for lignin-derived and aromatic C of the aryl C region, resulting in lower aromaticity indices and reduced humification intensities. Since differences in the structural composition of DOM and TOM were less pronounced under spruce than under beech, we suspect a~tree species-related effect on the origin of OM composition and resulting properties (e.g. recalcitrance, allelopathic potential).

  4. Metal–organic and covalent organic frameworks as single-site catalysts

    PubMed Central

    Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.

    2017-01-01

    Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128

  5. Molecular Basis of Infrared Detection by Snakes

    PubMed Central

    Gracheva, Elena O.; Ingolia, Nicolas T.; Kelly, Yvonne M.; Cordero-Morales, Julio F.; Hollopeter, Gunther; Chesler, Alexander T.; Sánchez, Elda E.; Perez, John C.; Weissman, Jonathan S.; Julius, David

    2010-01-01

    Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibers of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibers that innervate the pit organ. TRPA1 orthologues from pit bearing snakes (vipers, pythons, and boas) are the most heat sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of TRP channels as thermosensors in the vertebrate nervous system. PMID:20228791

  6. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  7. Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids

    NASA Technical Reports Server (NTRS)

    Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan

    2003-01-01

    The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.

  8. An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations.

    PubMed

    Sawai, Satoshi; Thomason, Peter A; Cox, Edward C

    2005-01-20

    Nutrient-deprived Dictyostelium amoebae aggregate to form a multicellular structure by chemotaxis, moving towards propagating waves of cyclic AMP that are relayed from cell to cell. Organizing centres are not formed by founder cells, but are dynamic entities consisting of cores of outwardly rotating spiral waves that self-organize in a homogeneous cell population. Spiral waves are ubiquitously observed in chemical reactions as well as in biological systems. Although feedback control of spiral waves in spatially extended chemical reactions has been demonstrated in recent years, the mechanism by which control is achieved in living systems is unknown. Here we show that mutants of the cyclic AMP/protein kinase A pathway show periodic signalling, but fail to organize coherent long-range wave territories, owing to the appearance of numerous spiral cores. A theoretical model suggests that autoregulation of cell excitability mediated by protein kinase A acts to optimize the number of signalling centres.

  9. Emergent organization in a model market

    NASA Astrophysics Data System (ADS)

    Yadav, Avinash Chand; Manchanda, Kaustubh; Ramaswamy, Ramakrishna

    2017-09-01

    We study the collective behaviour of interacting agents in a simple model of market economics that was originally introduced by Nørrelykke and Bak. A general theoretical framework for interacting traders on an arbitrary network is presented, with the interaction consisting of buying (namely consumption) and selling (namely production) of commodities. Extremal dynamics is introduced by having the agent with least profit in the market readjust prices, causing the market to self-organize. In addition to examining this model market on regular lattices in two-dimensions, we also study the cases of random complex networks both with and without community structures. Fluctuations in an activity signal exhibit properties that are characteristic of avalanches observed in models of self-organized criticality, and these can be described by power-law distributions when the system is in the critical state.

  10. Transport Mechanisms in Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  11. Biodiversity in Organic Farmland - How Does Landscape Context Influence Species Diversity in Organic Vs. Conventional Agricultural Fields?

    NASA Astrophysics Data System (ADS)

    Seufert, V.; Wood, S.; Reid, A.; Gonzalez, A.; Rhemtulla, J.; Ramankutty, N.

    2014-12-01

    The most important current driver of biodiversity loss is the conversion of natural habitats for human land uses, mostly for the purpose of food production. However, by causing this biodiversity loss, food production is eroding the very same ecosystem services (e.g. pollination and soil fertility) that it depends on. We therefore need to adopt more wildlife-friendly agricultural practices that can contribute to preserving biodiversity. Organic farming has been shown to typically host higher biodiversity than conventional farming. But how is the biodiversity benefit of organic management dependent on the landscape context farms are situated in? To implement organic farming as an effective means for protecting biodiversity and enhancing ecosystem services we need to understand better under what conditions organic management is most beneficial for species. We conducted a meta-analysis of the literature to answer this question, compiling the most comprehensive database to date of studies that monitored biodiversity in organic vs. conventional fields. We also collected information about the landscape surrounding these fields from remote sensing products. Our database consists of 348 study sites across North America and Europe. Our analysis shows that organic management can improve biodiversity in agricultural fields substantially. It is especially effective at preserving biodiversity in homogeneous landscapes that are structurally simplified and dominated by either cropland or pasture. In heterogeneous landscapes conventional agriculture might instead already hold high biodiversity, and organic management does not appear to provide as much of a benefit for species richness as in simplified landscapes. Our results suggest that strategies to maintain biodiversity-dependent ecosystem services should include a combination of pristine natural habitats, wildlife-friendly farming systems like organic farming, and high-yielding conventional systems, interspersed in structurally diverse, heterogeneous landscapes.

  12. Examination of the solution behaviors of the giant inorganic-organic amphiphilic hybrids

    NASA Astrophysics Data System (ADS)

    Zhang, Baofang

    Presently, the self-assembly behaviors of traditional small surfactants and amphiphilic block copolymers are fairly well understood. In comparison, rather little is known about the self-assembly behaviors of the giant inorganic-organic amphiphilic hybrids in solution. It remains a wide open field to explore. Giant inorganic-organic amphiphilic hybrids, consisting of nanoscale inorganic clusters and organic functional groups, represent a novel class of functional hybrid materials. They have unique physical and chemical properties and potential applications in catalysis, electronic, optics, magnetic materials, medicine and biology. Therefore, as emerging building blocks, they have promising prospects in the advanced materials. In this PhD work, several representative giant inorganic-organic amphiphilic hybrids (triangular-shaped polyoxometalate (POM)-containing inorganic/organic amphiphilic hybrids, POM-containing fluorosurfactants hybrids, POM-containing peptide hybrids POM-peptide hybrids and polyhedral oligometric silsesquioxane (POSS)-polystyrene (PS) are chosen for studying their self-assembly behaviors in solution. Based on the knowledge of the physical chemistry, colloid and polymer science, we focus on the mechanism of the self-assembly process, and the morphology control of the supramolecular structures through the internal and external conditions, such as the composition of the giant amphiphilies, molecular architectures, solvent nature, temperature, concentration, and extrally added salts. It is found that the counterion-meditated interactions dominate the self-assembly of triangular-shaped hybrids in acetone/water mixed solutions, due to the highly dominant hydrophilic portions; the solvent-swelling effect, instead of the charge effect, dominates the whole self-assembly process of the POM-containing fluorosurfactants; the analogy between small surfactants and giant amphiphiles POSS-PS allows a rough assessment of the possible morphologies of the supramolecular structures, and the particular values of the molecular packing parameter can be translated via simple geometrical relations into specific shape of the equilibrium supramolecular structures. For the experiments, laser light scattering (LLS) technique is used to monitor the entire self-assembly processes. The morphology and size of the supramolecular structures are determined by using dynamic light scattering (DLS) and static light scattering (SLS). Electron microscopies (TEM, SEM and AFM) are used to confirm the assembly structures and size. The stability of the assembly solution system is characterized by zeta potential.

  13. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications.

    PubMed

    Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D

    2015-06-15

    Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  15. Forgotten but not gone: an examination of fit between leader consideration and initiating structure needed and received.

    PubMed

    Lambert, Lisa Schurer; Tepper, Bennett J; Carr, Jon C; Holt, Daniel T; Barelka, Alex J

    2012-09-01

    We examined the effects of fit between leader consideration and initiating structure needed and received on employees' work-related attitudes (i.e., trust in the supervisor, job satisfaction, and affective commitment to the organization). Consistent with predictions that derive from the person-environment fit research tradition, results from Study 1 suggested that deficient amounts of both leadership behaviors were associated with unfavorable attitudinal outcomes. However, while excess levels of consideration were associated with favorable attitudinal outcomes, excess levels of initiating structure were associated with unfavorable attitudes, and for both forms of leadership, higher levels of absolute fit were associated with more favorable outcomes. Results from Study 2 suggested that attitudes generated by the fit between leadership needed and received influence employees' organizational citizenship behavior as reported by their supervisors. The relationship between consideration needed and received and subordinates' organizational citizenship behavior relating to individuals (OCBI) and organizational citizenship behavior relating to the organization itself (OCBO) was partially mediated by employees' trust in the supervisor, while the relationship between initiating structure needed and received and OCBI was fully mediated by trust in the supervisor, and for OCBO was partially mediated.

  16. Mental health professionals' natural taxonomies of mental disorders: implications for the clinical utility of the ICD-11 and the DSM-5.

    PubMed

    Reed, Geoffrey M; Roberts, Michael C; Keeley, Jared; Hooppell, Catherine; Matsumoto, Chihiro; Sharan, Pratap; Robles, Rebeca; Carvalho, Hudson; Wu, Chunyan; Gureje, Oye; Leal-Leturia, Itzear; Flanagan, Elizabeth H; Correia, João Mendonça; Maruta, Toshimasa; Ayuso-Mateos, José Luís; de Jesus Mari, Jair; Xiao, Zeping; Evans, Spencer C; Saxena, Shekhar; Medina-Mora, María Elena

    2013-12-01

    To examine the conceptualizations held by psychiatrists and psychologists around the world of the relationships among mental disorders in order to inform decisions about the structure of the classification of mental and behavioral disorders in World Health Organization's International Classification of Diseases and Related Health Problems 11th Revision (ICD-11). 517 mental health professionals in 8 countries sorted 60 cards containing the names of mental disorders into groups of similar disorders, and then formed a hierarchical structure by aggregating and disaggregating these groupings. Distance matrices were created from the sorting data and used in cluster and correlation analyses. Clinicians' taxonomies were rational, interpretable, and extremely stable across countries, diagnostic system used, and profession. Clinicians' consensus classification structure was different from ICD-10 and the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV), but in many respects consistent with ICD-11 proposals. The clinical utility of the ICD-11 may be improved by making its structure more compatible with the common conceptual organization of mental disorders observed across diverse global clinicians. © 2013 Wiley Periodicals, Inc.

  17. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  18. A scanning tunneling microscope study on an ordered mixed monolayer of bis(4,5-dihydronaphtho[1,2-d])-tetrathiafulvalene and n-tetradecane on highly oriented pyrolytic graphite.

    PubMed

    Zhao, Miao; Jiang, Peng; Deng, Ke; Jiang, Chao

    2010-11-01

    Tetrathiafulvalene (TTF) and its derivatives (TTFs) have been successfully used as building blocks to form charge transfer salts and organic semiconductors because of their special structures and rich electron nature. We report the formation of ordered mixed binary-component monolayer consisting of Bis(4,5-dihydronaphtho[1,2-d])tetrathiafulvalene (DH-TTF) and n-tetradecane (n-C14H30) molecules on highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscope (STM) imaging reveals that the two different kinds of molecules can spontaneously form ordered periodic phase separation structures on the substrate, in which ordered DH-TTF double- (or single-) lamella structures are periodically tuned by ordered n-C14H30 double- (or single-) lamella structures. Furthermore, scanning tunneling spectrum (STS) measurements by addressing the individual DH-TTF and n-C14H30 molecules in the ordered monolayer show that the two different kinds of molecules exhibit completely different I(V) characters on the HOPG substrate. The modulated arrangement of the TTF derivative by insulating molecules opens a possible route to construct organic conducting molecule ribbons for potential application in nanodevices.

  19. Scaling of phloem structure and optimality of sugar transport in conifer needles

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Ronellenfitsch, Henrik; Liesche, Johannes; Holbrook, N. Michele; Schulz, Alexander; Katifori, Eleni

    2015-11-01

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 cm (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level.

  20. Maximal Neighbor Similarity Reveals Real Communities in Networks

    PubMed Central

    Žalik, Krista Rizman

    2015-01-01

    An important problem in the analysis of network data is the detection of groups of densely interconnected nodes also called modules or communities. Community structure reveals functions and organizations of networks. Currently used algorithms for community detection in large-scale real-world networks are computationally expensive or require a priori information such as the number or sizes of communities or are not able to give the same resulting partition in multiple runs. In this paper we investigate a simple and fast algorithm that uses the network structure alone and requires neither optimization of pre-defined objective function nor information about number of communities. We propose a bottom up community detection algorithm in which starting from communities consisting of adjacent pairs of nodes and their maximal similar neighbors we find real communities. We show that the overall advantage of the proposed algorithm compared to the other community detection algorithms is its simple nature, low computational cost and its very high accuracy in detection communities of different sizes also in networks with blurred modularity structure consisting of poorly separated communities. All communities identified by the proposed method for facebook network and E-Coli transcriptional regulatory network have strong structural and functional coherence. PMID:26680448

  1. The Inversion Effect for Chinese Characters is Modulated by Radical Organization.

    PubMed

    Luo, Canhuang; Chen, Wei; Zhang, Ye

    2017-06-01

    In studies of visual object recognition, strong inversion effects accompany the acquisition of expertise and imply the involvement of configural processing. Chinese literacy results in sensitivity to the orthography of Chinese characters. While there is some evidence that this orthographic sensitivity results in an inversion effect, and thus involves configural processing, that processing might depend on exact orthographic properties. Chinese character recognition is believed to involve a hierarchical process, involving at least two lower levels of representation: strokes and radicals. Radicals are grouped into characters according to certain types of structure, i.e. left-right structure, top-bottom structure, or simple characters with only one radical by itself. These types of radical structures vary in both familiarity, and in hierarchical level (compound versus simple characters). In this study, we investigate whether the hierarchical-level or familiarity of radical-structure has an impact on the magnitude of the inversion effect. Participants were asked to do a matching task on pairs of either upright or inverted characters with all the types of structure. Inversion effects were measured based on both reaction time and response sensitivity. While an inversion effect was observed in all 3 conditions, the magnitude of the inversion effect varied with radical structure, being significantly larger for the most familiar type of structure: characters consisting of 2 radicals organized from left to right. These findings indicate that character recognition involves extraction of configural structure as well as radical processing which play different roles in the processing of compound characters and simple characters.

  2. DWARF – a data warehouse system for analyzing protein families

    PubMed Central

    Fischer, Markus; Thai, Quan K; Grieb, Melanie; Pleiss, Jürgen

    2006-01-01

    Background The emerging field of integrative bioinformatics provides the tools to organize and systematically analyze vast amounts of highly diverse biological data and thus allows to gain a novel understanding of complex biological systems. The data warehouse DWARF applies integrative bioinformatics approaches to the analysis of large protein families. Description The data warehouse system DWARF integrates data on sequence, structure, and functional annotation for protein fold families. The underlying relational data model consists of three major sections representing entities related to the protein (biochemical function, source organism, classification to homologous families and superfamilies), the protein sequence (position-specific annotation, mutant information), and the protein structure (secondary structure information, superimposed tertiary structure). Tools for extracting, transforming and loading data from public available resources (ExPDB, GenBank, DSSP) are provided to populate the database. The data can be accessed by an interface for searching and browsing, and by analysis tools that operate on annotation, sequence, or structure. We applied DWARF to the family of α/β-hydrolases to host the Lipase Engineering database. Release 2.3 contains 6138 sequences and 167 experimentally determined protein structures, which are assigned to 37 superfamilies 103 homologous families. Conclusion DWARF has been designed for constructing databases of large structurally related protein families and for evaluating their sequence-structure-function relationships by a systematic analysis of sequence, structure and functional annotation. It has been applied to predict biochemical properties from sequence, and serves as a valuable tool for protein engineering. PMID:17094801

  3. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.

    PubMed

    Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H

    2010-03-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.

  4. The connectivity structure, giant strong component and centrality of metabolic networks.

    PubMed

    Ma, Hong-Wu; Zeng, An-Ping

    2003-07-22

    Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/

  5. Multisector Health Policy Networks in 15 Large US Cities.

    PubMed

    Harris, Jenine K; Leider, J P; Carothers, Bobbi J; Castrucci, Brian C; Hearne, Shelley

    2016-01-01

    Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks.

  6. Multisector Health Policy Networks in 15 Large US Cities

    PubMed Central

    Leider, J. P.; Carothers, Bobbi J.; Castrucci, Brian C.; Hearne, Shelley

    2016-01-01

    Context: Local health departments (LHDs) have historically not prioritized policy development, although it is one of the 3 core areas they address. One strategy that may influence policy in LHD jurisdictions is the formation of partnerships across sectors to work together on local public health policy. Design: We used a network approach to examine LHD local health policy partnerships across 15 large cities from the Big Cities Health Coalition. Setting/Participants: We surveyed the health departments and their partners about their working relationships in 5 policy areas: core local funding, tobacco control, obesity and chronic disease, violence and injury prevention, and infant mortality. Outcome Measures: Drawing on prior literature linking network structures with performance, we examined network density, transitivity, centralization and centrality, member diversity, and assortativity of ties. Results: Networks included an average of 21.8 organizations. Nonprofits and government agencies made up the largest proportions of the networks, with 28.8% and 21.7% of network members, whereas for-profits and foundations made up the smallest proportions in all of the networks, with just 1.2% and 2.4% on average. Mean values of density, transitivity, diversity, assortativity, centralization, and centrality showed similarity across policy areas and most LHDs. The tobacco control and obesity/chronic disease networks were densest and most diverse, whereas the infant mortality policy networks were the most centralized and had the highest assortativity. Core local funding policy networks had lower scores than other policy area networks by most network measures. Conclusion: Urban LHDs partner with organizations from diverse sectors to conduct local public health policy work. Network structures are similar across policy areas jurisdictions. Obesity and chronic disease, tobacco control, and infant mortality networks had structures consistent with higher performing networks, whereas core local funding networks had structures consistent with lower performing networks. PMID:26910868

  7. The investigation of solid slag obtained by neutralization of sewage sludge.

    PubMed

    Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus

    2015-11-01

    The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.

  8. Multidimensional structure of a questionnaire to assess barriers to and motivators of physical activity in recipients of solid organ transplantation.

    PubMed

    van Adrichem, Edwin J; Krijnen, Wim P; Dekker, Rienk; Ranchor, Adelita V; Dijkstra, Pieter U; van der Schans, Cees P

    2017-11-01

    To explore the underlying dimensions of the Barriers and Motivators Questionnaire that is used to assess barriers to and motivators of physical activity experienced by recipients of solid organ transplantation and thereby improve the application in research and clinical settings. A cross-sectional study was performed in recipients of solid organ transplantation (n = 591; median (IQR) age = 59 (49; 66); 56% male). The multidimensional structure of the questionnaire was analyzed by exploratory principal component analysis. Cronbach's α was calculated to determine internal consistency of the entire questionnaire and individual components. The barriers scale had a Cronbach's α of 0.86 and was subdivided into four components; α of the corresponding subscales varied between 0.80 and 0.66. The motivator scale had an α of 0.91 and was subdivided into four components with an α between 0.88 to 0.70. Nine of the original barrier items and two motivator items were not included in the component structure. A four-dimensional structure for both the barriers and motivators scale of the questionnaire is supported. The use of the indicated subscales increases the usability in research and clinical settings compared to the overall scores and provide opportunities to identify modifiable constructs to be targeted in interventions. Implications for rehabilitation Organ transplant recipients are less active than the general population despite established health benefits of physical activity. A multidimensional structure is shown in the Barriers and Motivators Questionnaire, the use of the identified subscales increases applicability in research and clinical settings. The use of the questionnaire with its component structure in the clinical practice of a rehabilitation physician could result in a faster assessment of problem areas in daily practice and result in a higher degree of clarity as opposed to the use of the individual items of the questionnaire.

  9. Structure-function relationships in soft tissue mechanics: Examining how the micro-scale architecture of biochemical constituents effects health

    NASA Astrophysics Data System (ADS)

    Schultz, David Sheldon

    Countless debilitating pathologies exhibit symptoms that result from altered mechanical behavior of soft tissue. Therefore, it is of clinical and economic importance to mechanically evaluate soft tissues and attribute degenerative changes to alterations in structural constituents. The studies presented here focus on the annulus fibrosus and the sclera. Failure in these tissues is common and catastrophic. The annulus fibrosus may fail, resulting in herniation and nerve impingement, or the disc may degenerate over time, resulting in reduced mobility and pain. Similarly, the sclera may degenerate over time with intraocular pressure spurring creep behavior that distends the eye beyond its ideal shape. This causes myopic vision and puts patients at risk of macular degeneration and retinal detachment. These two tissues share a common structural role as the outer wall of a pressure vessel. Also, they are made of strikingly similar constituents, primarily consisting of water, type I collagen, glycosaminoglycans and elastin. The microstructure of these tissues, however, is very different. The annulus fibrosus is representative of an anisotropic tissue. Its well-organized fibril structure was analyzed via polarization modulated second harmonic microscopy in order to characterize fibril architecture. Structurally relevant biochemical constituents were quantified with biochemical assays. Morphologically healthy annulus tended to have a more highly organized microstructure and tended to absorb more strain energy when subject to a tensile load cycle. Given the strong correlation between fibril organization and select mechanical properties, predictive models will likely benefit from a characterization of fibril continuity and orientation coherence. The sclera is representative of an isotropic tissue. Its less-organized fibril structure has evolved to sustain biaxial plane stress. In the sclera, collagen content and associated crosslinks were primary determinants of stiffness. Substantial collagen crosslink accumulation is a primary factor causing the stiffening of sclera with increased age. The influence of crosslinks dominates diffusion and permeability behavior. Exogenous crosslinking may help modulate the mechanical and fluid transport properties of the sclera and cornea. Treatment with methylglyoxal reduces the permeability and increases the stiffness of both. However, differences in the pre-treatment level of organization within the microstructure encourages asymmetric results.

  10. HATCN-based charge recombination layers as effective interconnectors for tandem organic solar cells.

    PubMed

    Wang, Rong-Bin; Wang, Qian-Kun; Xie, Hao-Jun; Xu, Lu-Hai; Duhm, Steffen; Li, Yan-Qing; Tang, Jian-Xin

    2014-09-10

    A comprehensive understanding of the energy-level alignment at the organic heterojunction interfaces is of paramount importance to optimize the performance of organic solar cells (OSCs). Here, the detailed electronic structures of organic interconnectors, consisting of cesium fluoride-doped 4,7-diphenyl-1,10-phenanthroline and hexaazatriphenylene-hexacarbonitrile (HATCN), have been investigated via in situ photoemission spectroscopy, and their impact on the charge recombination process in tandem OSCs has been identified. The experimental determination shows that the HATCN interlayer plays a significant role in the interface energetics with a dramatic decrease in the reverse built-in potential for electrons and holes from stacked subcells, which is beneficial to the charge recombination between HATCN and the adjacent layer. In accordance with the energy-level alignments, the open-circuit voltage of tandem OSC incorporating a HATCN-based interconnector is almost 2 times that of a single-cell OSC, revealing the effectiveness of the HATCN-based interconnectors in tandem organic devices.

  11. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less

  12. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    DOE PAGES

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; ...

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less

  13. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    PubMed Central

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  14. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    NASA Astrophysics Data System (ADS)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  15. Reduced rich-club connectivity is related to disability in primary progressive MS

    PubMed Central

    Hodecker, Sibylle; Cheng, Bastian; Wanke, Nadine; Young, Kim Lea; Hilgetag, Claus; Gerloff, Christian; Heesen, Christoph; Thomalla, Götz; Siemonsen, Susanne

    2017-01-01

    Objective: To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. Methods: We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes were reconstructed based on diffusion-weighted imaging data using probabilistic tractography and analyzed with graph theory. Results: We observed the same topological organization of brain networks in patients and controls. Consistent with the originally defined rich-club regions, we identified superior frontal, precuneus, superior parietal, and insular cortex in both hemispheres as rich-club nodes. Connectivity within the rich club was significantly reduced in patients with MS (p = 0.039). The extent of reduced rich-club connectivity correlated with clinical measurements of mobility (Kendall rank correlation coefficient τ = −0.20, p = 0.047), hand function (τ = −0.26, p = 0.014), and information processing speed (τ = −0.20, p = 0.049). Conclusions: In patients with primary progressive MS, the fundamental organization of the structural connectome in rich-club and peripheral nodes was preserved and did not differ from healthy controls. The proportion of rich-club connections was altered and correlated with disability measures. Thus, the rich-club organization of the brain may be a promising network phenotype for understanding the patterns and mechanisms of neurodegeneration in MS. PMID:28804744

  16. Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L.

    PubMed

    Jin, Hui; Yang, Xiao-Yan; Yan, Zhi-Qiang; Liu, Quan; Li, Xiu-Zhuang; Chen, Ji-Xiang; Zhang, Deng-Hong; Zeng, Li-Ming; Qin, Bo

    2014-07-01

    A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Derivation of the stress-strain behavior of the constituents of bio-inspired layered TiO2/PE-nanocomposites by inverse modeling based on FE-simulations of nanoindentation test.

    PubMed

    Lasko, G; Schäfer, I; Burghard, Z; Bill, J; Schmauder, S; Weber, U; Galler, D

    2013-03-01

    Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a 'brick' (CaCO3 crystals) and 'mortar' (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre's structural design principle in the synthesis of novel nanocomposites. However, the direct transfer of nacre's architecture to an artificial inorganic material has not been achieved yet. In the present contribution we report on laminated architecture, composed of the inorganic oxide (TiO2) and organic polyelectrolyte (PE) layers which fulfill this task. To get a better insight and understanding concerning the mechanical behaviour of bio-inspired layered materials consisting of oxide ceramics and organic layers, the elastic-plastic properties of titanium dioxide and organic polyelectrolyte phase are determined via FE-modelling of the nanoindentation process. With the use of inverse modeling and based on numerical models which are applied on the microscopic scale, the material properties of the constituents are derived.

  18. `G.A.T.E': Gap analysis for TTX evaluation

    NASA Astrophysics Data System (ADS)

    Cacciotti, Ilaria; Di Giovanni, Daniele; Pergolini, Alessandro; Malizia, Andrea; Carestia, Mariachiara; Palombi, Leonardo; Bellecci, Carlo; Gaudio, Pasquale

    2016-06-01

    A Table Top Exercise (TTX) gap analysis tool was developed with the aim to provide a complete, systematic and objective evaluation of TTXs organized in safety and security fields. A TTX consists in a discussion-based emergency management exercise, organized in a simulated emergency scenario, involving groups of players who are subjected to a set of solicitations (`injects'), in order to evaluate their emergency response abilities. This kind of exercise is devoted to identify strengths and shortfalls and to propose potential and promising changes in the approach to a particular situation. In order to manage the TTX derived data collection and analysis, a gap analysis tool would be very useful and functional at identifying the 'gap' between them and specific areas and actions for improvement, consisting the gap analysis in a comparison between actual performances and optimal/expected ones. In this context, a TTX gap analysis tool was designed, with the objective to provide an evaluation of Team players' competences and performances and TTX organization and structure. The influence of both the players' expertise and the reaction time (difference between expected time and time necessary to actually complete the injects) on the final evaluation of the inject responses was also taken into account.

  19. Solid-phase microextraction for qualitative and quantitative determination of migrated degradation products of antioxidants in an organic aqueous solution.

    PubMed

    Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders

    2005-07-08

    Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.

  20. Retinoic acid deficiency impairs the vestibular function.

    PubMed

    Romand, Raymond; Krezel, Wojciech; Beraneck, Mathieu; Cammas, Laura; Fraulob, Valérie; Messaddeq, Nadia; Kessler, Pascal; Hashino, Eri; Dollé, Pascal

    2013-03-27

    The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular-motor function tests. In addition, video-oculography revealed a complete loss of the maculo-ocular reflex and a significant reduction in the horizontal angular vestibulo-ocular reflex, indicating that detection of both linear acceleration and angular rotation were compromised in the mutants. Consistent with these behavioral and functional deficiencies, morphological anomalies, characterized by a smaller vestibular organ with thinner semicircular canals and a significant reduction in the number of otoconia in the saccule and the utricle, were consistently observed in the Raldh3 mutants. The loss of otoconia in the mutants may be attributed, at least in part, to significantly reduced expression of Otop1, which encodes a protein known to be involved in calcium regulation in the otolithic organs. Our data thus reveal a previously unrecognized role of Raldh3 in structural and functional development of the vestibular end organs.

  1. Disability management and organizational culture in Australia and Canada.

    PubMed

    Buys, Nicholas; Wagner, Shannon; Randall, Christine; Harder, Henry; Geisen, Thomas; Yu, Ignatius; Hassler, Benedikt; Howe, Caroline; Fraess-Phillips, Alex

    2017-01-01

    Organizational culture has received increasing attention in terms of its influence on workplace health and productivity, yet there has been little research on its relationship with employer-based disability programs. This study explored the relationship between disability management and organizational culture in Australian and Canadian organizations. Thematic analysis was conducted on data from semi-structured interviews with 16 employees, including injured workers, human resource managers and disability managers in two Australian and two Canadian large organizations. Seven themes were identified: 1. Consistency between espoused beliefs and artifacts in organization; 2. Genuineness of interest in well-being of injured worker; 3. Level of ongoing support of worker following injury; 4. Communication with injured workers; 5. Level of support from supervisors and co-workers; 6. Promptness in claims processing and covering medical costs and; 7. Focus on wellness and injury prevention. It was found that organizational culture may impact the delivery and perceived value of employer-based disability management programs. Given the potential relationship between organizational culture and disability management, employers should facilitate a positive workplace culture by ensuring consistency among underlying values, espoused values and actual treatment of employees, including injured workers.

  2. Nanomechanical properties of hybrid coatings for bone tissue engineering.

    PubMed

    Skarmoutsou, Amalia; Lolas, Georgios; Charitidis, Costas A; Chatzinikolaidou, Maria; Vamvakaki, Maria; Farsari, Maria

    2013-09-01

    Bone tissue engineering has emerged as a promising alternative approach in the treatment of bone injuries and defects arising from malformation, osteoporosis, and tumours. In this approach, a temporary scaffold possessing mechanical properties resembling those of natural bone is needed to serve as a substrate enhancing cell adhesion and growth, and a physical support to guide the formation of the new bone. In this regard, the scaffold should be biocompatible, biodegradable, malleable and mechanically strong. Herein, we investigate the mechanical properties of three coatings of different chemical compositions onto silanized glass substrates; a hybrid material consisting of methacryloxypropyl trimethoxysilane and zirconium propoxide, a type of a hybrid organic-inorganic material of the above containing also 50 mol% 2-(dimethylamino)ethyl methacrylate (DMAEMA) moieties and a pure organic material, based on PDMAEMA. This study investigates the variations in the measured hardness and reduced modulus values, wear resistance and plastic behaviour before and after samples' submersion in cell culture medium. Through this analysis we aim to explain how hybrid materials behave under applied stresses (pile-up formations), how water uptake changes this behaviour, and estimate how these materials will react while interaction with cells in tissue engineering applications. Finally, we report on the pre-osteoblastic cell adhesion and proliferation on three-dimensional structures of the hybrid materials within the first hour and up to 7 days in culture. It was evident that hybrid structure, consisting of 50 mol% organic-inorganic material, reveals good mechanical behaviour, wear resistance and cell adhesion and proliferation, suggesting a possible candidate in bone tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    NASA Astrophysics Data System (ADS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  4. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao

    2017-10-01

    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  5. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.

    PubMed

    Patel, Shruti N; Graether, Steffen P

    2010-04-01

    Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.

  6. You’re a good structure, Charlie Brown: The distribution of narrative categories in comic strips

    PubMed Central

    Cohn, Neil

    2014-01-01

    Cohn’s (2013) theory of “Visual Narrative Grammar” argues that sequential images take on categorical roles in a narrative structure, which organizes them into hierarchic constituents analogous to the organization of syntactic categories in sentences. This theory proposes that narrative categories, like syntactic categories, can be identified through diagnostic tests that reveal tendencies for their distribution throughout a sequence. This paper describes four experiments testing these diagnostics to provide support for the validity of these narrative categories. In Experiment 1, participants reconstructed unordered panels of a comic strip into an order that makes sense. Experiment 2 measured viewing times to panels in sequences where the order of panels was reversed. In Experiment 3 participants again reconstructed strips, but also deleted a panel from the sequence. Finally, in Experiment 4 participants identified where a panel had been deleted from a comic strip, and rated that strip’s coherence. Overall, categories had consistent distributional tendencies within experiments and complementary tendencies across experiments. These results point toward an interaction between categorical roles and a global narrative structure. PMID:24646175

  7. Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system.

    PubMed

    Duckworth, O W; Rivera, N A; Gardner, T G; Andrews, M Y; Santelli, C M; Polizzotto, M L

    2017-01-25

    Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.

  8. You're a good structure, Charlie Brown: the distribution of narrative categories in comic strips.

    PubMed

    Cohn, Neil

    2014-01-01

    Cohn's (2013) theory of "Visual Narrative Grammar" argues that sequential images take on categorical roles in a narrative structure, which organizes them into hierarchic constituents analogous to the organization of syntactic categories in sentences. This theory proposes that narrative categories, like syntactic categories, can be identified through diagnostic tests that reveal tendencies for their distribution throughout a sequence. This paper describes four experiments testing these diagnostics to provide support for the validity of these narrative categories. In Experiment 1, participants reconstructed unordered panels of a comic strip into an order that makes sense. Experiment 2 measured viewing times to panels in sequences where the order of panels was reversed. In Experiment 3, participants again reconstructed strips but also deleted a panel from the sequence. Finally, in Experiment 4 participants identified where a panel had been deleted from a comic strip and rated that strip's coherence. Overall, categories had consistent distributional tendencies within experiments and complementary tendencies across experiments. These results point toward an interaction between categorical roles and a global narrative structure. © 2014 Cognitive Science Society, Inc.

  9. Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid

    PubMed Central

    Vinogradov, Evgeny; St. Michael, Frank; Homma, Kiyonobu; Sharma, Ashu; Cox, Andrew D.

    2017-01-01

    Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2→4)-β-D-Galp-(1→3)-α-D-FucpNAc4NAc-(1-]-where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain. PMID:28199859

  10. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  11. Herpesvirus infections in psittacine birds in Japan.

    PubMed

    Tsai, S S; Park, J H; Hirai, K; Itakura, C

    1993-03-01

    Herpesvirus infection was diagnosed histologically and electron microscopically in 21 out of 241 pet birds examined. The infected birds included 14 parakeets (Psittacula krameri manillensis) with respiratory infection and three parrots (Ama-zona aestiva aestiva), two cockatiels (Nymphicus hollandicus) and two rosellas (Platycercus emimius) with Pacheco's disease. The consistent lesions of respiratory herpesvirus infection were the formation of syncytial cells associated with the presence of intranuclear inclusion bodies, mainly in the lung and air sac. There was lack of an apparent cellular reaction in situ. The agent induced tubular structures containing a clear core in the nuclei of the affected cells. The present study indicated that it was a distinct entity from infectious laryngotracheitis based on tissue tropism, host reaction and morphology of the tubular structures. The striking lesions of Pacheco's disease consisted of syncytial cell formation with intranuclear inclusion bodies in various organs, especially the liver, parathyroid, ovary, bone marrow and intestine. This agent showed similar morphology to that of the respiratory herpesvirus infection, but was larger in size and had no tubular structure formation in the nuclei of affected cells.

  12. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales.

    PubMed

    Wang, Bin; Yang, Wen; Sherman, Vincent R; Meyers, Marc A

    2016-09-01

    The pangolin has a flexible dermal armor consisting of overlapping keratinous scales. Although they show potential for bioinspired flexible armor, the design principles of pangolin armor are barely known. Here we report on the overlapping organization, hierarchical structure (from the nano to the mesolevel), and mechanical response of scales from ground (Chinese) and arboreal (African tree) pangolins. Both scales exhibit the same overlapping organization, with each scale at the center of neighboring scales arranged in a hexagonal pattern. The scales have a cuticle of several layers of loosely attached flattened keratinized cells, while the interior structure exhibits three regions distinguished by the geometry and orientations of the keratinized cells, which form densely packed lamellae; each one corresponds to one layer of cells. Unlike most other keratinous materials, the scales show a crossed-lamellar structure (∼5μm) and crossed fibers (∼50μm). A nano-scale suture structure, observed for the first time, outlines cell membranes and leads to an interlocking interface between lamellae, thus enhancing the bonding and shear resistance. The tensile response of the scales shows an elastic limit followed by a short plateau prior to failure, with Young's modulus ∼1 GPa and tensile strength 60-100MPa. The mechanical response is transversely isotropic, a result of the cross lamellar structure. The strain rate sensitivity in the range of 10(-5)-10(-1)s(-1) region is found to be equal to 0.07-0.08, typical of other keratins and polymers. The mechanical response is highly dependent on the degree of hydration, a characteristic of keratins. Although many fish and reptiles have protective scales and carapaces, mammals are characteristically fast and light. The pangolin is one of the few mammal possessing a flexible dermal armor for protection from predators, such as lions. Here we study the arrangement of the scales as well as their hierarchical structure from the nano to the mesolevel and correlate it to the mechanical properties. The study reveals a unique structure consisting of crossed lamellae and interlocking sutures that provide exceptional performance and in-plane isotropy. Copyright © 2016. Published by Elsevier Ltd.

  13. Structural features of blood lymphocytes according to data of atomic force microscopy in alloxan induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Stolbovskaya, Olga V.; Khayrullin, Radik M.; Kostishko, Boris B.; Bakhtiyarov, Rinat I.

    2018-04-01

    Structural changes in blood lymphocytes during the development of alloxan induced diabetes in rats were revealed. The changes were characterized by decreased volume, surface area, flatness coefficient of cells in comparison with normal lymphocytes. A consistent increase in the Young's modulus of rat lymphocytes during the development of diabetes in comparison with the Young's modulus of normal lymphocytes has been established, which indicates a decrease of the elastic-viscous properties of the cell membrane, changes in the molecular structure of its and in the organization of the lymphocyte cytoskeleton. It was found that during the development of induced diabetes the roughness and adhesiveness of the cytoplasmic membrane of blood lymphocytes decrease.

  14. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    PubMed

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. Fabrication of ion bombardment induced rippled TiO2 surfaces to influence subsequent organic thin film growth.

    PubMed

    Kratzer, Markus; Szajna, Konrad; Wrana, Domink; Belza, Wojciech; Krok, Franciszek; Teichert, Christian

    2018-05-23

    Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(110) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(110) (11) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length to width ratio can be controlled by tuning of the ripples' shape. © 2018 IOP Publishing Ltd.

  16. History of the Standing Joint Force Headquarters for Elimination (SJFHQ-E): No More Ad Hoc

    DTIC Science & Technology

    2014-05-22

    on Max Weber’s organizational hierarchy or did it follow historical examples and Joint doctrine as exampled by Anthony Giddens’ structuration theory...way they do and how agency influences that formation. Max Weber’s theory of ideal bureaucracy defined how an organization could enable employees to...act rationally, serving their clients with impartiality and more efficiently. 35 According to Weber , “ bureaucracy must consist of neutral

  17. Human Augmentation of Reasoning Through Patterning (HARP)

    DTIC Science & Technology

    2008-04-01

    develop what we then referred to as “ Uber - CIM,” in which a set of independent but tightly-joined CIM models could be developed. However, although that...analysts to apply “tags” (keywords) to Web-based resources, and to see and leverage the tags and tagged resources of others. Catalyst is a modeling ...issues. Catalyst models consist of nodes of information organized into hierarchical tree structures. Nodes can contain attachments or links to tags

  18. A cytochemical and radioautographic study of the ultrastructural organization of puff-like fibrillar structures in plant interphase nuclei (Allium porrum).

    PubMed

    Lafontaine, J G; Luck, B T; Dontigny, D

    1979-10-01

    Loose, fibrillar, spherical structures have been observed during recent years in interphase nuclei of both animal and plant cells. These nuclear formations have been referred to as karyosomes, fibrillar bodies, micropuffs and centromeres. In order to gain further information on the nature of these structures, a cytochemical and radioautographic investigation was undertaken using plant meristematic cells (Allium porrum). For that purpose roots were fixed with either formaldehyde or glutaraldehyde in order to carry out cytochemical tests for DNA, RNA and proteins. Certain of the preparations were also first digested with DNase, RNase or proteinase K and then stained according to different procedures. Other specimens were labelled with thymidine for high-resolution radioautographic observations. Staining with diaminobenzidine (DAB) revealed that these nuclear puff-like formations consisted partly of a loose fibrillar meshwork containing nucleic acids. Part of this fine fibrillar reticulum persisted whether the preparations were digested with DNase or RNase before staining with DAB, thus indicating that these nuclear structures contained both DNA and RNA. The fact that these formations incorporate thymidine furnished additional support for the view that they correspond to specific chromosome segments. Staining with ethanolic phosphotungstic acid or digestion of specimens with proteinase K showed that these loose fibrillar structures also consisted of proteins. Judging from their ultrastructure, their association with the chromatin reticulum as well as from their cytochemical characteristics, these nuclear formations most likely correspond to centromeres. In view of the presence of DNA within these structures, it is possible to distinguish them from other equally spherical nuclear formations, observed in certain plant species, that have generally been referred to as karyosomes or micronucleoli and that appear to consist of ribonucleoproteins.

  19. New charge transfer salts based on bis(ethylenedithio)tetrathiafulvalene (ET) and ferro- or antiferromagnetic oxalato-bridged dinuclear anions: syntheses, structures and magnetism of ET5[MM'(C2O4)(NCS)8] with MM' = Cr(III)Fe(III), Cr(III)Cr(III).

    PubMed

    Triki, S; Bérézovsky, F; Sala Pala, J; Gómez-García, C J; Coronado, E; Costuas, K; Halet, J F

    2001-09-24

    Electrochemical combination of the magnetic dinuclear anion [MM'(C2O4)(NCS)8](4-) (MM' = Cr(III)Cr(III), Cr(III)Fe(III)) with the ET organic pi-donor (ET = BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) gives rise to two new isostructural molecular hybrid salts ET5[MM'(C2O4)(NCS)8], with MM' = CrCr (1), CrFe (2). The molecular structure of compound 1 has been determined by single crystal X-ray diffraction. The particular arrangement of the organic units consists of an unprecedented two-dimensional organic sublattice nearly similar to that observed in kappa-phase structures. For both compounds, the magnetic susceptibility measurements indicate (i) the ET radicals do not contribute to the magnetic moment probably due to the presence of strong antiferromagnetic interaction between them, and (ii) in the anion, the magnetic coupling is antiferromagnetic for 1 (J = -3.65 cm(-1)) and ferromagnetic for 2 (J = 1.14 cm(-1), J being the parameter of the exchange Hamiltonian H = -2JS1S2). The field dependence of the magnetization of compound 2 at 2.0 K gives further evidence of the S = 4 ground-state arising from the interaction between S = 3/2 Cr(III) and S = 5/2 Fe(III). EPR measurements confirm the nature of the magnetic interactions and the absence of any contribution from the organic part, as observed from the static magnetic measurement. Conductivity measurements and electronic band structure calculations show that both salts are semiconductors with low activation energies.

  20. Molecular structure of self-assembled chiral nanoribbons and nanotubules revealed in the hydrated state.

    PubMed

    Oda, Reiko; Artzner, Franck; Laguerre, Michel; Huc, Ivan

    2008-11-05

    A detailed molecular organization of racemic 16-2-16 tartrate self-assembled multi-bilayer ribbons in the hydrated state is proposed where 16-2-16 amphiphiles, tartrate ions, and water molecules are all accurately positioned by comparing experimental X-ray powder diffraction and diffraction patterns derived from modeling studies. X-ray diffuse scattering studies show that molecular organization is not fundamentally altered when comparing the flat ribbons of the racemate to chirally twisted or helical ribbons of the pure tartrate enantiomer. Essential features of the three-dimensional molecular organizations of these structures include interdigitation of alkyl chains within each bilayer and well-defined networks of ionic and hydrogen bonds between cations, anions, and water molecules between bilayers. The detailed study of diffraction patterns also indicated that the gemini headgroups are oriented parallel to the long edge of the ribbons. The structure thus possesses a high cohesion and good crystallinity, and for the first time, we could relate the packing of the chiral molecules to the expression of the chirality at a mesoscopic scale. The organization of the ribbons at the molecular level sheds light on a number of their macroscopic features. Among these are the reason why enantiomerically pure 16-2-16 tartrate forms ribbons that consist of exactly two bilayers, and a plausible mechanism by which a chirally twisted or helical shape may emerge from the packing of chiral tartrate ions. Importantly, the distinction between commonly observed helical and twisted morphologies could be related to a subtle symmetry breaking. These results demonstrate that accurately solving the molecular structure of self-assembled soft materials--a process rarely achieved--is within reach, that it is a valid approach to correlate molecular parameters to macroscopic properties, and thus that it offers opportunities to modulate properties through molecular design.

  1. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly.

    PubMed

    Bernecky, Carrie; Grob, Patricia; Ebmeier, Christopher C; Nogales, Eva; Taatjes, Dylan J

    2011-03-01

    The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.

  2. Molecular Architecture of the Human Mediator–RNA Polymerase II–TFIIF Assembly

    PubMed Central

    Bernecky, Carrie; Grob, Patricia; Ebmeier, Christopher C.; Nogales, Eva; Taatjes, Dylan J.

    2011-01-01

    The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator–pol II interface is not well-characterized, whereas attempts to structurally define the Mediator–pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator–pol II–TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator–pol II–TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator–pol II–TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator–CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator–pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly. PMID:21468301

  3. The intriguing plant nuclear lamina.

    PubMed

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2014-01-01

    The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.

  4. Postembryonic development of the auditory system of the cicada Okanagana rimosa (Say) (Homoptera: Auchenorrhyncha: Cicadidae).

    PubMed

    Strauss, Johannes; Lakes-Harlan, Reinhard

    2009-01-01

    Cicadas (Homoptera: Auchenorrhyncha: Cicadidae) use acoustic signalling for mate attraction and perceive auditory signals by a tympanal organ in the second abdominal segment. The main structural features of the ear are the tympanum, the sensory organ consisting of numerous scolopidial cells, and the cuticular link between sensory neurones and tympanum (tympanal ridge and apodeme). Here, a first investigation of the postembryonic development of the auditory system is presented. In insects, sensory neurones usually differentiate during embryogenesis, and sound-perceiving structures form during postembryogenesis. Cicadas have an elongated and subterranian postembryogenesis which can take several years until the final moult. The neuroanatomy and functional morphology of the auditory system of the cicada Okanagana rimosa (Say) are documented for the adult and the three last larval stages. The sensory organ and the projection of sensory afferents to the CNS are present in the earliest stages investigated. The cuticular structures of the tympanum, the tympanal frame holding the tympanum, and the tympanal ridge differentiate in the later stages of postembryogenesis. Thus, despite the different life styles of larvae and adults, the neuronal components of the cicada auditory system develop already during embryogenesis or early postembryogenesis, and sound-perceiving structures like tympana are elaborated later in postembryogenesis. The life cycle allows comparison of cicada development to other hemimetabolous insects with respect to the influence of specially adapted life cycle stages on auditory maturation. The neuronal development of the auditory system conforms to the timing in other hemimetabolous insects.

  5. Modeling spike-wave discharges by a complex network of neuronal oscillators.

    PubMed

    Medvedeva, Tatiana M; Sysoeva, Marina V; van Luijtelaar, Gilles; Sysoev, Ilya V

    2018-02-01

    The organization of neural networks and the mechanisms, which generate the highly stereotypical for absence epilepsy spike-wave discharges (SWDs) is heavily debated. Here we describe such a model which can both reproduce the characteristics of SWDs and dynamics of coupling between brain regions, relying mainly on properties of hierarchically organized networks of a large number of neuronal oscillators. We used a two level mesoscale model. The first level consists of three structures: the nervus trigeminus serving as an input, the thalamus and the somatosensory cortex; the second level of a group of nearby situated neurons belonging to one of three modeled structures. The model reproduces the main features of the transition from normal to epileptiformic activity and its spontaneous abortion: an increase in the oscillation amplitude, the emergence of the main frequency and its higher harmonics, and the ability to generate trains of seizures. The model was stable with respect to variations in the structure of couplings and to scaling. The analyzes of the interactions between model structures from their time series using Granger causality method showed that the model reproduced the preictal coupling increase detected previously from experimental data. SWDs can be generated by changes in network organization. It is proposed that a specific pathological architecture of couplings in the brain is necessary to allow the transition from normal to epileptiformic activity, next to by others modeled and reported factors referring to complex, intrinsic, and synaptic mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    PubMed Central

    2012-01-01

    Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network. PMID:22646980

  7. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila.

    PubMed

    Andersen, Darcy; Horne-Badovinac, Sally

    2016-04-15

    Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a 'molecular corset' mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ. © 2016. Published by The Company of Biologists Ltd.

  8. Influence of ovarian muscle contraction and oocyte growth on egg chamber elongation in Drosophila

    PubMed Central

    Andersen, Darcy; Horne-Badovinac, Sally

    2016-01-01

    Organs are formed from multiple cell types that make distinct contributions to their shape. The Drosophila egg chamber provides a tractable model to dissect such contributions during morphogenesis. Egg chambers consist of 16 germ cells (GCs) surrounded by a somatic epithelium. Initially spherical, these structures elongate as they mature. This morphogenesis is thought to occur through a ‘molecular corset’ mechanism, whereby structural elements within the epithelium become circumferentially organized perpendicular to the elongation axis and resist the expansive growth of the GCs to promote elongation. Whether this epithelial organization provides the hypothesized constraining force has been difficult to discern, however, and a role for GC growth has not been demonstrated. Here, we provide evidence for this mechanism by altering the contractile activity of the tubular muscle sheath that surrounds developing egg chambers. Muscle hypo-contraction indirectly reduces GC growth and shortens the egg, which demonstrates the necessity of GC growth for elongation. Conversely, muscle hyper-contraction enhances the elongation program. Although this is an abnormal function for this muscle, this observation suggests that a corset-like force from the egg chamber's exterior could promote its lengthening. These findings highlight how physical contributions from several cell types are integrated to shape an organ. PMID:26952985

  9. Simple single-emitting layer hybrid white organic light emitting with high color stability

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  10. Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata.

    PubMed

    Okumura, Taiga; Suzuki, Michio; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-10-01

    The fine structure of the calcite prism in the outer layer of a pearl oyster, Pinctada fucata, has been investigated using various electron beam techniques, in order to understand its characteristics and growth mechanism including the role of intracrystalline organic substances. As the calcite prismatic layer grows thicker, sinuous boundaries develop to divide the prism into a number of domains. The crystal misorientation between the adjacent domains is several to more than ten degrees. The component of the misorientation is mainly the rotation about the c-axis. There is no continuous organic membrane at the boundaries. Furthermore, the crystal orientation inside the domains changes gradually, as indicated by the electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Transmission electron microscopy (TEM) examination revealed that the domain consists of sub-grains of a few hundred nanometers divided by small-angle grain boundaries, which are probably the origin of the gradual change of the crystal orientation inside the domains. Spherular Fresnel contrasts were often observed at the small-angle grain boundaries, in defocused TEM images. Electron energy-loss spectroscopy (EELS) indicated the spherules are organic macromolecules, suggesting that incorporation of organic macromolecules during the crystal growth forms the sub-grain structure of the calcite prism.

  11. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  12. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics.

    PubMed

    Turc, Olivier; Tardieu, François

    2018-06-06

    Abortion of reproductive organs is a major limiting factor of yield under water deficit, but is also a trait selected for by evolutionary processes. The youngest reproductive organs must be prone to abortion so older organs can finish their development in case of limited resources. Water deficit increases natural abortion via two developmentally driven processes, namely a signal from the first fertilized ovaries and a simultaneous arrest of the expansive growth of all ovaries at a precise stage. In maize (Zea mays) subjected to water deficits typically encountered in dryland agriculture, these developmental mechanisms account for 90% of drought-associated abortion and are irreversible 3 d after silk emergence. Consistently, transcripts and enzyme activities suggest that the molecular events associated with abortion affect expansive growth in silks whereas ovaries maintain a favourable carbon status. Abortion due to carbon starvation is only observed for severe drought scenarios occurring after silking. Both kinetic and genetic evidence indicates that vegetative and reproductive structures share a partly common hydraulic control of expansive growth. Hence, the control of expansive growth of reproductive structures probably has a prominent effect on abortion for mild water deficits occurring at flowering time, while carbon starvation dominates in severe post-flowering drought scenarios.

  13. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    PubMed Central

    Pai, Vaibhav P.; Vandenberg, Laura N.; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways. PMID:23346115

  14. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry.

    PubMed

    Pai, Vaibhav P; Vandenberg, Laura N; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V(mem)) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V(mem). The ATP-sensitive K(+) channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  15. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins

    PubMed Central

    Ichikawa, Muneyoshi; Liu, Dinan; Kastritis, Panagiotis L.; Basu, Kaustuv; Hsu, Tzu Chin; Yang, Shunkai; Bui, Khanh Huy

    2017-01-01

    Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule. PMID:28462916

  16. Internal structure of copper(II)-phthalocyanine thin films on SiO2/Si substrates investigated by grazing incidence x-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Brieva, A. C.; Jenkins, T. E.; Jones, D. G.; Strössner, F.; Evans, D. A.; Clark, G. F.

    2006-04-01

    The internal structure of copper(II)-phthalocyanine (CuPc) thin films grown on SiO2/Si by organic molecular beam deposition has been studied by grazing incidence x-ray reflectometry (GIXR) and atomic force microscopy. The electronic density profile is consistent with a structure formed by successive monolayers of molecules in the α form with the b axis lying in the substrate surface plane. The authors present an electronic density profile model of CuPc films grown on SiO2/Si. The excellent agreement between the model and experimental data allows postdeposition monitoring of the internal structure of the CuPc films with the nondestructive GIXR technique, providing a tool for accurate control of CuPc growth on silicon-based substrates. In addition, since the experiments have been carried out ex situ, they show that these structures can endure ambient conditions.

  17. [Soil microbial community structure in Picea asperata plantations with different ages in subalpine of western Sichuan, Southwest China.

    PubMed

    Luo, Da; Liu, Shun; Shi, Zuo Min; Feng, Qiu Hong; Liu, Qian Li; Zhang, Li; Huang, Quan; He, Jian She

    2017-02-01

    The effects of four Picea asperata plantations with different ages (50-, 38-, 27- and 20-year-old), in subalpine of western Sichuan, on the characteristics of soil microbial diversity and microbial community structure were studied by the method of phospholipid fatty acid (PLFA) profiles. The results showed that, with the increase of age, the contents of soil organic carbon and total nitrogen gradually improved, while Shannon's diversity index and Pielou's evenness index of soil microorganisms increased at first and then decreased. The amounts of microbial total PLFAs, bacterial PLFAs, fungal PLFAs, actinobacterial PLFAs, and arbuscular mycorrhizal fungal (AMF) PLFAs in soils consistently increased with increasing age. The principal component analysis (PCA) indicated that the soil microbial communities in different plantations were structurally distinct from each other. The first principal component (PC1) and the second principal component (PC2) together accounted for 66.8% of total variation of the soil microbial community structure. The redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil organic carbon, total nitrogen, total potassium, and fine root mass were the key determinants influencing the microbial community structure. Our study suggested that, with the extension of artificialafforestation time, the soil fertility and microbial biomass were enhanced, and the restoration processes of forest ecosystem were stable.

  18. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units

    NASA Astrophysics Data System (ADS)

    Chen, Miaoxiang; Kobashi, Kazufumi

    2012-09-01

    Hybridizing air-stable organic-molecules with advanced III-V semiconductor quantum-dots (QDs) structures can be utilized to create a new generation of biochemical sensing devices. In order to enhance their optical performances, the active regions in these QDs structures commonly consist of multistacked dots-in-a-well (DWELL) units. The effects of grafted molecules on the performances of the QDs structures with multistacked DWELLs, however, still remain unclear. Here, we show the significant improvements in the optical properties of InAs QDs in a hybrid nanosystem obtained by grafting biocompatible diazonium salt compound (amine donor) atop InAs QDs structure. Since its interface between the QDs structure and molecular monolayer retains an uncontaminated and non-oxidized condition, the nanosystem is an ideal platform to study the intrinsic properties of charge-carrier transport inside the system. Because of the complexity of the energy-levels in the QDs structure due to the existing surface QDs and DWELLs, selective excitation wavelengths (400, 633, and 885 nm, respectively) with different photo-energies are used to exactly analyze the complete charging mechanism in these QDs. A clear view of charge-carrier transfer inside the nanosystem is revealed by employing photoluminescence technique under selective-wavelength excitations. The present work provides new quantitative evidences for exploiting inorganic QDs applications in complex biological systems.

  19. Structure-property relationship of supramolecular ferroelectric [H-66dmbp][Hca] accompanied by high polarization, competing structural phases, and polymorphs.

    PubMed

    Kobayashi, Kensuke; Horiuchi, Sachio; Ishibashi, Shoji; Kagawa, Fumitaka; Murakami, Youichi; Kumai, Reiji

    2014-12-22

    Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric β- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length () was observed, and was attributed to the potential barrier height for proton off-centering or order/disorder phenomena. The optimized spontaneous polarization (Ps ) agreed well with the results of the first-principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing . These data consistently demonstrated that stretching is a promising way to enhance the polarization performance and thermal stability of hydrogen-bonded organic ferroelectrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Some insights on hard quadratic assignment problem instances

    NASA Astrophysics Data System (ADS)

    Hussin, Mohamed Saifullah

    2017-11-01

    Since the formal introduction of metaheuristics, a huge number Quadratic Assignment Problem (QAP) instances have been introduced. Those instances however are loosely-structured, and therefore made it difficult to perform any systematic analysis. The QAPLIB for example, is a library that contains a huge number of QAP benchmark instances that consists of instances with different size and structure, but with a very limited availability for every instance type. This prevents researchers from performing organized study on those instances, such as parameter tuning and testing. In this paper, we will discuss several hard instances that have been introduced over the years, and algorithms that have been used for solving them.

  1. Molecular aspects of aromatic C additions to soils: Implications of char quality for ecosystem functionality

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M.

    2009-12-01

    Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since biochar is a highly aromatic organic material such additions will modify the native molecular structure of soil organic matter and thus alter interactions with the global atmosphere and hydrosphere. Here we present a molecular level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Differences among wood and grass charred at temperatures from 100 to 700°C are investigated. BET-N2 surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS) and Fourier transform infrared (FT-IR) spectroscopy results demonstrate how the two plant precursor materials undergo analogous, but quantitatively different physical-chemical transitions as charring intensity increases. These changes suggest the existence of four distinct physical and chemical categories of char. We find that each category of char consists of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by turbostratic (disordered) graphitic crystallites. There is wide variation in both the chemical and the physical nature of aromatic carbon among these char categories. In this presentation we will point out how molecular variations among the aromatic components of the different char categories translate into differences in their ability to: (i) persist in the environment, (ii) function as environmental sorbents, and (iii) to enable the soil to provide environmental services.

  2. [Organization of olfactory system of the Indian major carp Labeo rohita (Ham.): a study using scanning and transmission microscopy].

    PubMed

    Bhute, Y V; Baile, V V

    2007-01-01

    Catla catla, Labeo rohita, and Cirrhinus mrigala are important alimentary fish in India. Their reproduction (breeding) depends on season. The fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in the central regulation of reproduction. However, in the available literature, any electron microscopy data on organization of olfactory elements in these fish are absent. We have studied ultrastructure of the olfactory organ in male L. rohita by using scanning (SEM) and transmission electron microscopy (TEM). The olfactory organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The organ has oval shape and consists of approximately 47-52 lamellae in adult fish and of 14-20 lamellae in fish at the stage of fingerling. These lamellae originate from the midline raphe. By using SEM, the presence of microvillar sensory and ciliated non-sensory cells in these lamellae is shown. By using TEM, a microvillar receptor cell is revealed, which has rough endoplasmic reticulum and Golgi apparatus towards the apical end. Basal cells are found at the base of the receptor cell; supporting cells are located adjacent to olfactory receptor neurons, while epithelial cells--in the non-sensory part of olfactory epithelium. Mast, blastema and macrophages cells are also found in the basal lamina. This work is the first publication on structural organization of olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of olfactory system and opens new opportunities for study of chemical neuroanatomy, sensory signal processing, and nervous regulation of reproduction of the Indian major carp.

  3. [Modern aspects of organization of medical support for the Armed Forces].

    PubMed

    Stavila, A G; Krasavin, K D; Levchenko, V N; Lemeshko, A L; Roenko, A S

    2015-09-01

    The challenges that medical service of the Armed Forces of the Russian Federation faces cannot be solved without a new qualitative approach to military and medical support. In order to create a complete organizational system of the medical support, consisting of united process of material flow management and management of accompanying elements, the. structure of the medical support and its equipment must correspond to performed tasks. The article describes a set of activities that are performed in the system of military-medical support and offers some promising approaches, which are supposed to solve assigned tasks imposed upon the center of pharmacy and medical technology and its interaction with superior body control, maintainable and third party organizations.

  4. A Simple Method for High Throughput Chemical Screening in Caenorhabditis Elegans

    PubMed Central

    Lucanic, Mark; Garrett, Theo; Gill, Matthew S.; Lithgow, Gordon J.

    2018-01-01

    Caenorhabditis elegans is a useful organism for testing chemical effects on physiology. Whole organism small molecule screens offer significant advantages for identifying biologically active chemical structures that can modify complex phenotypes such as lifespan. Described here is a simple protocol for producing hundreds of 96-well culture plates with fairly consistent numbers of C. elegans in each well. Next, we specified how to use these cultures to screen thousands of chemicals for effects on the lifespan of the nematode C. elegans. This protocol makes use of temperature sensitive sterile strains, agar plate conditions, and simple animal handling to facilitate the rapid and high throughput production of synchronized animal cultures for screening. PMID:29630057

  5. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays

    PubMed Central

    Reisner, Walter; Larsen, Niels B.; Flyvbjerg, Henrik; Tegenfeldt, Jonas O.; Kristensen, Anders

    2009-01-01

    We show that arrays of nanopit structures etched in a nanoslit can control the positioning and conformation of single DNA molecules in nanofluidic devices. By adjusting the spacing, organization and placement of the nanopits it is possible to immobilize DNA at predetermined regions of a device without additional chemical modification and achieve a high degree of control over local DNA conformation. DNA can be extended between two nanopits and in closely spaced arrays will self-assemble into “connect-the-dots” conformations consisting of locally pinned segments joined by fluctuating linkers. These results have broad implications for nanotechnology fields that require methods for the nanoscale positioning and manipulation of DNA. PMID:19122138

  6. Retrofit Audits and Cost Estimates. A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community-based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low-and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block bymore » Block program.« less

  7. Retrofit Audits and Cost Estimates: A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC:more » Block by Block program.« less

  8. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1990-01-01

    A three-tier structure consisting of organization, coordination, and execution levels forms the architecture of an intelligent machine using the principle of increasing precision with decreasing intelligence from a hierarchically intelligent control. This system has been formulated as a probabilistic model, where uncertainty and imprecision can be expressed in terms of entropies. The optimal strategy for decision planning and task execution can be found by minimizing the total entropy in the system. The focus is on the design of the organization level as a Boltzmann machine. Since this level is responsible for planning the actions of the machine, the Boltzmann machine is reformulated to use entropy as the cost function to be minimized. Simulated annealing, expanding subinterval random search, and the genetic algorithm are presented as search techniques to efficiently find the desired action sequence and illustrated with numerical examples.

  9. The organic matrix of gallstones

    PubMed Central

    Sutor, D. June; Wooley, Susan E.

    1974-01-01

    Dissolution of gallstones consisting of cholesterol, calcium carbonate, or calcium phosphate in different solvents left an amorphous organic gel-like substance (the matrix). Matrix from cholesterol stones could be colourless but was usually orange, yellow, or brown while that from calcium carbonate and calcium phosphate stones was almost invariably coloured black or dark brown. These pigments were also shown to be organic and amorphous. The amount of matrix present and its structure varied with the texture of the crystalline material. Irrespective of their composition, laminated pieces of material yielded compact laminated matrix of the same shape as the original piece and areas of loose crystalline material gave small pieces of non-cohesive matrix. Only large cholesterol crystals which usually radiate from the stone nucleus had no associated matrix. ImagesFig 1Fig 2Fig 3Fig 4Fig 5 PMID:4854981

  10. The midline metathoracic ear of the praying mantis, Mantis religiosa.

    PubMed

    Yager, D D; Hoy, R R

    1987-12-01

    The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180 degrees out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.

  11. Energy and Spectroscopic Characterization of the Isomers of C4H3-, C6H3-, and C6H5-

    NASA Technical Reports Server (NTRS)

    Wright, Danielle; Bera, Partha P.; Lee, Timothy J.

    2015-01-01

    Organic and inorganic molecules, neutral and ions have been observed in the interstellar medium. A few anions of organic molecules have also been observed recently. The Cassini spacecraft in the upper atmosphere of Titan has observed anions of large organic molecules. In this project we have studied the physical and spectroscopic properties of C4H3-, C6H3-, and C6H5-. We have optimized the geometrical structures of all low-lying isomers of the anions, calculated rotational, and harmonic vibrational frequencies of the anions mentioned above using the B3LYP density functional along with the augmented correlation consistent polar valence triple zeta (aug-cc-pVTZ) basis set. We have found many low-lying isomers on the potential energy surface of these anions.

  12. Development of New Supramolecular Lyotropic Liquid Crystals and Their Application as Alignment Media for Organic Compounds.

    PubMed

    Leyendecker, Martin; Meyer, Nils-Christopher; Thiele, Christina M

    2017-09-11

    Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod-like polymers dissolved in organic solvents or of swollen cross-linked polymer gels. Thus far, the synthesis of polymer-based alignment media has been a challenging process, which is often followed by a time-consuming sample preparation. We herein propose the use of non-polymeric alignment media based on benzenetricarboxamides (BTAs), which self-assemble into rod-like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant-and-soldier principle by blending achiral with chiral substituted BTAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Three-dimensional topographic fiber tract anatomy of the cerebrum.

    PubMed

    Yagmurlu, Kaan; Vlasak, Alexander L; Rhoton, Albert L

    2015-06-01

    The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.

  14. Encoding strategies in self-initiated visual working memory.

    PubMed

    Magen, Hagit; Berger-Mandelbaum, Anat

    2018-06-11

    During a typical day, visual working memory (VWM) is recruited to temporarily maintain visual information. Although individuals often memorize external visual information provided to them, on many other occasions they memorize information they have constructed themselves. The latter aspect of memory, which we term self-initiated WM, is prevalent in everyday behavior but has largely been overlooked in the research literature. In the present study we employed a modified change detection task in which participants constructed the displays they memorized, by selecting three or four abstract shapes or real-world objects and placing them at three or four locations in a circular display of eight locations. Half of the trials included identical targets that participants could select. The results demonstrated consistent strategies across participants. To enhance memory performance, participants reported selecting abstract shapes they could verbalize, but they preferred real-world objects with distinct visual features. Furthermore, participants constructed structured memory displays, most frequently based on the Gestalt organization cue of symmetry, and to a lesser extent on cues of proximity and similarity. When identical items were selected, participants mostly placed them in close proximity, demonstrating the construction of configurations based on the interaction between several Gestalt cues. The present results are consistent with recent findings in VWM, showing that memory for visual displays based on Gestalt organization cues can benefit VWM, suggesting that individuals have access to metacognitive knowledge on the benefit of structure in VWM. More generally, this study demonstrates how individuals interact with the world by actively structuring their surroundings to enhance performance.

  15. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of cells, is imperative for successful 3D bioprinting.

  16. Consistent Individual Differences Drive Collective Behavior and Group Functioning of Schooling Fish.

    PubMed

    Jolles, Jolle W; Boogert, Neeltje J; Sridhar, Vivek H; Couzin, Iain D; Manica, Andrea

    2017-09-25

    The ubiquity of consistent inter-individual differences in behavior ("animal personalities") [1, 2] suggests that they might play a fundamental role in driving the movements and functioning of animal groups [3, 4], including their collective decision-making, foraging performance, and predator avoidance. Despite increasing evidence that highlights their importance [5-16], we still lack a unified mechanistic framework to explain and to predict how consistent inter-individual differences may drive collective behavior. Here we investigate how the structure, leadership, movement dynamics, and foraging performance of groups can emerge from inter-individual differences by high-resolution tracking of known behavioral types in free-swimming stickleback (Gasterosteus aculeatus) shoals. We show that individual's propensity to stay near others, measured by a classic "sociability" assay, was negatively linked to swim speed across a range of contexts, and predicted spatial positioning and leadership within groups as well as differences in structure and movement dynamics between groups. In turn, this trait, together with individual's exploratory tendency, measured by a classic "boldness" assay, explained individual and group foraging performance. These effects of consistent individual differences on group-level states emerged naturally from a generic model of self-organizing groups composed of individuals differing in speed and goal-orientedness. Our study provides experimental and theoretical evidence for a simple mechanism to explain the emergence of collective behavior from consistent individual differences, including variation in the structure, leadership, movement dynamics, and functional capabilities of groups, across social and ecological scales. In addition, we demonstrate individual performance is conditional on group composition, indicating how social selection may drive behavioral differentiation between individuals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all ofmore » these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.« less

  18. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    PubMed

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale organizational control of structure not only makes de novo tissue engineering a possibility, but also suggests a clearer pathway to organization for fibroblasts than direct matrix printing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Developing leading indicators from OHS management audit data: Determining the measurement properties of audit data from the field.

    PubMed

    Robson, Lynda S; Ibrahim, Selahadin; Hogg-Johnson, Sheilah; Steenstra, Ivan A; Van Eerd, Dwayne; Amick, Benjamin C

    2017-06-01

    OHS management audits are one means of obtaining data that may serve as leading indicators. The measurement properties of such data are therefore important. This study used data from Workwell audit program in Ontario, a Canadian province. The audit instrument consisted of 122 items related to 17 OHS management elements. The study sought answers regarding (a) the ability of audit-based scores to predict workers' compensation claims outcomes, (b) structural characteristics of the data in relation to the organization of the audit instrument, and (c) internal consistency of items within audit elements. The sample consisted of audit and claims data from 1240 unique firms that had completed one or two OHS management audits during 2007-2010. Predictors derived from the audit results were used in multivariable negative binomial regression modeling of workers' compensation claims outcomes. Confirmatory factor analyses were used to examine the instrument's structural characteristics. Kuder-Richardson coefficients of internal consistency were calculated for each audit element. The ability of audit scores to predict subsequent claims data could not be established. Factor analysis supported the audit instrument's element-based structure. KR-20 values were high (≥0.83). The Workwell audit data display structural validity and high internal consistency, but not, to date, construct validity, since the audit scores are generally not predictive of subsequent firm claim experience. Audit scores should not be treated as leading indicators of workplace OHS performance without supporting empirical data. Analyses of the measurement properties of audit data can inform decisionmakers about the operation of an audit program, possible future directions in audit instrument development, and the appropriate use of audit data. In particular, decision-makers should be cautious in their use of audit scores as leading indicators, in the absence of supporting empirical data. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  20. Architecture and assembly of the Bacillus subtilis spore coat.

    PubMed

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.

  1. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism. PMID:25259857

  2. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination polymer ranging from 1D supramolecular structures to true 3D coordination polymers is covered in Chapter 4. The observation of a new 2D Kagome lattice and unique layered perovskite-type bismuth-based coordination polymers and their photoluminescence properties is the focus of Chapter 5. In chapters 6 and 7, a successful approach to implement our novel hybrid strategy for synthesizing enantiomerically pure single crystals consisting of Second Order Jahn Teller (SOJT)-possessing main group metal cations, specifically bismuth and tin, and homochiral ligands or unsymmetric ligands is discussed. The new MOMs with polar space groups exhibit second harmonic generation and have potential for ferroelectric properties.

  3. On some genetic consequences of social structure, mating systems, dispersal, and sampling

    PubMed Central

    Parreira, Bárbara R.; Chikhi, Lounès

    2015-01-01

    Many species are spatially and socially organized, with complex social organizations and dispersal patterns that are increasingly documented. Social species typically consist of small age-structured units, where a limited number of individuals monopolize reproduction and exhibit complex mating strategies. Here, we model social groups as age-structured units and investigate the genetic consequences of social structure under distinct mating strategies commonly found in mammals. Our results show that sociality maximizes genotypic diversity, which contradicts the belief that social groups are necessarily subject to strong genetic drift and at high risk of inbreeding depression. Social structure generates an excess of genotypic diversity. This is commonly observed in ecological studies but rarely reported in population genetic studies that ignore social structure. This heterozygosity excess, when detected, is often interpreted as a consequence of inbreeding avoidance mechanisms, but we show that it can occur even in the absence of such mechanisms. Many seemly contradictory results from ecology and population genetics can be reconciled by genetic models that include the complexities of social species. We find that such discrepancies can be explained by the intrinsic properties of social groups and by the sampling strategies of real populations. In particular, the number of social groups and the nature of the individuals that compose samples (e.g., nonreproductive and reproductive individuals) are key factors in generating outbreeding signatures. Sociality is an important component of population structure that needs to be revisited by ecologists and population geneticists alike. PMID:26080393

  4. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.

    PubMed

    Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  5. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

    PubMed Central

    Zhang, Yuchen; Alsop, Richard J.; Soomro, Asfia; Yang, Fei-Chi

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers. PMID:26557428

  6. Advanced Computation Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2013-02-01

    additional load with increased cracking and deflection. Eventually, the walls failed in flexure due to self-weight and did not indicate any signs of shear...overall volume of the FEM block to be 432.2 in3, instead of 415.1 in3; the overall volume increased of area is 1.041%. This additional material is...sections in addition to the summary. Section 2 consists of an introduction, objectives, scope and methodology, and organization of the report. Section 2

  7. Supplement to the Study on the Structures of the Education and Initial Training Systems in the European Union. The Situation in Bulgaria, the Czech Republic, Hungary, Poland, Romania and Slovakia.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education, Training, and Youth.

    This document consists of six reports that each provide essential basic information on the organization of the education system of one of the following countries as of 1995-1996: Bulgaria, Czech Republic, Hungary, Poland, Romania, and Slovakia. Each report includes information on some or all of the following aspects of the given country's initial…

  8. A mechanism-mediated model for carcinogenicity: Model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, R.

    A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coefficient, molecular size, atomic partial charge, bond angle strain, atomic acceptor delocalizibility, atomic radical superdelocalizibility, the lowest unoccupied molecular orbital (LUMO) energy of hypothesized intermediate nitrenium ion of primary aromatic amines, difference in charge of ionized and unionized carbon-chlorine bonds, substituent size and pattern on polynuclear aromatic hydrocarbons, the distance between lone electron pairsmore » over a rigid structure, and the presence of functionalities such as nitroso and hydrazine. The model correctly classified 96% of the carcinogens in the training set of 306 chemicals, and 90% of the carcinogens in the test set of 301 chemicals. The test set by chance contained 84% of the positive thiocontaining chemicals. A QSAR for these chemicals was developed. This posttest set modified model correctly predicted 94% of the carcinogens in the test set. This model was used to predict the carcinogenicity of the 25 organic chemicals the U.S. National Toxicology Program was testing at the writing of this article. 12 refs., 3 tabs.« less

  9. Imaging Cytoskeleton Components by Electron Microscopy.

    PubMed

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  10. Validating the Implementation Climate Scale (ICS) in Child Welfare Organizations

    PubMed Central

    Ehrhart, Mark G.; Torres, Elisa M.; Wright, Lisa A.; Martinez, Sandra Y.; Aarons, Gregory A.

    2015-01-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization’s climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. PMID:26563643

  11. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China.

    PubMed

    Liu, Jun; Chen, Xi; Shu, Hao-Yue; Lin, Xue-Rui; Zhou, Qi-Xing; Bramryd, Torleif; Shu, Wen-Sheng; Huang, Li-Nan

    2018-04-01

    The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were better explained using both soil physicochemical test values and bacterial community structure data than using soil tests alone. Pursuing a better understanding of bacterial community composition and how it is affected by farming practices is a promising avenue for increasing our ability to predict the impact of management practices on important soil functions. Copyright © 2016. Published by Elsevier B.V.

  13. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  14. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  15. The role of DNA methylation in directing the functional organization of the cancer epigenome.

    PubMed

    Lay, Fides D; Liu, Yaping; Kelly, Theresa K; Witt, Heather; Farnham, Peggy J; Jones, Peter A; Berman, Benjamin P

    2015-04-01

    The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes. © 2015 Lay et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Large-Scale Cooperative Dissemination of Governmental Information in Emergency — An Experiment and Future Strategies

    NASA Astrophysics Data System (ADS)

    Horiba, Katsuhiro; Okawa, Keiko; Murai, Jun

    On the 11th of March, 2011, a massive earthquake hit the northeast region of Japan. The government of Japan needed to publish information regarding the earthquake and its influences. However, their capacity of Web services overflowed. They called the industry and academia for help for providing stable information service to the people. Industry and academia formed a team to answer the call and named themselves the “EQ project”. This paper describes how the EQ Project was organized and operated, and gives analyses of the statistics. An academic organization took the lead in the EQ Project. Ten organizations which consisted of commercial IT industry and academics specialized in Internet technology, were participating in the EQ Project and they structured the three clusters based on their relationships and technological approach. In WIDE Cluster, one of three clusters in the structure of EQ, the peak number of file accesses per day was over 90 thousand, the mobile browsers was 3.4% and foreign languages (translated contents) were referred 35%. We have also discussed the future information distribution strategies in emergency situation based on the experiences of the EQ Project, and proposed nine suggestions to the MEXT as a future strategy.

  17. Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases.

    PubMed

    Ravera, Mauro; Moreno-Viguri, Elsa; Paucar, Rocio; Pérez-Silanes, Silvia; Gabano, Elisabetta

    2018-06-01

    The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design. Copyright © 2018. Published by Elsevier Masson SAS.

  18. The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.

    PubMed

    El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey

    2014-01-01

    The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.

  19. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  20. Determining the structure of an optimal personnel profile for a transformed commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graniere, R.J.

    1998-06-01

    In the classic sociological sense, an organization such as a public utility commission is a social unit consisting of specific groupings constructed and reconstructed deliberately and with forethought to achieve specific goals. These organizational groupings determined on the basis of rational divisions of labor, power, and communication are designed with the objective of placing individuals into positions where they are expected to make the largest contribution towards achieving the organization`s goals. It is reasonable then to conclude that proponents of the classical view had in mind a readily identifiable common ground among the organization`s members that the organization exploits asmore » it selects its goals. Recently, it has been argued that metaphors are an acceptable shorthand for this common ground that provides an insight into the types of personnel an organization would find most suitable for assisting its efforts to reach its goals. This report is one of a series of reports on the transformation of public utility commissions. Previous reports in the series have focused on the transformation of a commission`s culture, roles, and activities. This report focuses on the staffing dimension of the personnel mix needed to support these changes.« less

  1. Development and validity of a scale to measure workplace culture of health.

    PubMed

    Kwon, Youngbum; Marzec, Mary L; Edington, Dee W

    2015-05-01

    To describe the development of and test the validity and reliability of the Workplace Culture of Health (COH) scale. Exploratory factor analysis and confirmatory factor analysis were performed on data from a health care organization (N = 627). To verify the factor structure, confirmatory factor analysis was performed on a second data set from a medical equipment manufacturer (N = 226). The COH scale included a structure of five orthogonal factors: senior leadership and polices, programs and rewards, quality assurance, supervisor support, and coworker support. With regard to construct validity (convergent and discriminant) and reliability, two different US companies showed the same factorial structure, satisfactory fit statistics, and suitable internal and external consistency. The COH scale represents a reliable and valid scale to assess the workplace environment and culture for supporting health.

  2. Analysis of Titan tholin pyrolysis products by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    McGuigan, Megan; Waite, J Hunter; Imanaka, Hiroshi; Sacks, Richard D

    2006-11-03

    The reddish brown haze that surrounds Titan, Saturn's largest moon, is thought to consist of tholin-like organic aerosols. Tholins are complex materials of largely unknown structure. The very high peak capacity and structured chromatograms obtained from comprehensive two-dimensional GC (GC x GC) are attractive attributes for the characterization of tholin pyrolysis products. In this report, GC x GC with time-of-flight MS detection and a flash pyrolysis inlet is used to characterize tholin pyrolysis products. Identified pyrolysis products include low-molecular-weight nitriles, alkyl substituted pyrroles, linear and branched hydrocarbons, alkyl-substituted benzenes and PAH compounds. The pyrolysis of standards found in tholin pyrolysate showed that little alteration occurred and thus these structures are likely present in the tholin material.

  3. The Role of Connectivity on Electronic Properties of Lead Iodide Perovskite-Derived Compounds

    PubMed Central

    2017-01-01

    We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin–orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds. PMID:28677956

  4. The growing outer epidermal wall: design and physiological role of a composite structure.

    PubMed

    Kutschera, U

    2008-04-01

    The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a 'tensile skin'. The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These 'plywood laminates' contain crystalline 'cables' orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic 'OEW-like' herringbone patterns. Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design 'without an intelligent designer' evolved independently in the protective 'skin' of plants, animals and many other organisms.

  5. [Barriers and facilitators to health care coordination in two integrated health care organizations in Catalonia (Spain)].

    PubMed

    Vargas Lorenzo, Ingrid; Vázquez Navarrete, M Luisa

    2007-01-01

    To analyze 2 integrated delivery systems (IDS) in Catalonia and identify areas for future development to improve their effectiveness. An exploratory, descriptive, qualitative study was carried out based on case studies by means of document analysis and semi-structured individual interviews. A criterion sample of cases and, for each case, of documents and informants was selected. Study cases consisted of the Consorci Sanitari del Maresme (CSdM) and the Consorci Sanitari de Terrassa/Fundació Hospital Sant Llàtzer (FHSLL). A total of 127 documents were analyzed and 29 informants were interviewed: IDS managers (n = 10), technical staff (n = 5), operational unit managers (n = 5) and health professionals (n = 9). Content analysis was conducted, with mixed generation of categories and segmentation by cases and subjects. CSdM and CSdT/FHSLL are health care organizations with backward vertical integration, total services production, and real (CSdM) and virtual (CSdT/FHSLL) ownership. Funds are allocated by care level. The governing body is centralized in CSdM and decentralized in CSdT/FHSLL. In both organizations, the global objectives are oriented toward improving coordination and efficiency but are not in line with those of the operational units. Both organizations present a functional structure with integration of support functions and utilize mechanisms for collaboration between care levels based on work processes standardization. Both IDS present facilitators and barriers to health care coordination. To improve coordination, changes in external elements (payment mechanism) and in internal elements (governing body role, organizational structure and coordination mechanisms) are required.

  6. Titan tholins formed from simuolated upper and lower atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, Toshinori; Hosogai, Tomohiro; Takano, Yoshinori; Kaneko, Takeo; Kobayashi, Kensei; Khare, Bishun; McKay, Chris

    Titan, the biggest satellite of Saturn, has dense atmosphere that mainly consists of nitrogen and methane. In this study, we irradiated proton beams to the mixture of nitrogen and methane, and analyzed the structure, the chemical composition, and molecular weight of the resulting aerosols (named PI-tholins), in order to simulate possible reactions in the lower Titan atmosphere. On the other hand, magnetosphere electrons could be effective for the formation of organic molecules in the upper atmosphere of Titan. Thus we compared PI-tholin with the tholin formed by plasma discharge (named PD-tholins). A mixture of methane and nitrogen was irradiated with 3 MeV protons from a van de Graaff accelerator (Tokyo Institute of Technology). Many nitriles and nitrogen-containing heterocyclic compounds were detected by Py-GC/MS, showing that quite complex organics were formed from the simulated Titan atmosphere by proton irradiation. Microscopic observation showed that the complex organic aerosols had the structure bigger than 0.01 mm. G-value of Gly was 0.03. PD-tholins were produced by plasma discharge in 1 Torr of a mixture of methane and nitrogen by using plasma discharge facility RFX-600 (NASA Ames Research Center). Discharges were continued at 100 W for 72 hours. PD-tholins had similar chemical structures to PI-tholins. But the G-value of Gly in PD-tholins was 0.000091, which was much less thatn that in PI-tholins. It was implied that cosmic rays in the lower Titan atmosphere was much more effective to form complex organics yielding amino acids than other energies in the upper Titan atmosphere.

  7. The Cbf5-Nop10 Complex is a Molecular Bracket that Organizes Box H/ACA RNPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamma, Tomoko; Reichow, Steve L.; Varani, Gabriele

    2005-12-01

    Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP componenets between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the activemore » site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.« less

  8. Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity

    NASA Astrophysics Data System (ADS)

    Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung

    2016-03-01

    In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.

  9. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    PubMed

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  10. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  11. Role of excess ligand and effect of thermal treatment in hybrid inorganic-organic EUV resists

    NASA Astrophysics Data System (ADS)

    Mattson, Eric C.; Rupich, Sara M.; Cabrera, Yasiel; Chabal, Yves J.

    2018-03-01

    The chemical structure and thermal reactivity of recently discovered inorganic-organic hybrid resist materials are characterized using a combination of in situ and ex situ infrared (IR) spectroscopy and x-ray photoemission spectroscopy (XPS). The materials are comprised of a small HfOx core capped with methacrylic acid ligands that form a combined hybrid cluster, HfMAA. The observed IR modes are consistent with the calculated modes predicted from the previously determined x-ray crystal structure of the HfMAA-12 cluster, but also contain extrinsic hydroxyl groups. We find that the water content of the films is dependent on the concentration of excess ligand added to the solution. The effect of environment used during post-application baking (PAB) is studied and correlated to changes in solubility of the films. In doing so, we find that hydroxylation of the clusters results in formation of additional Hf-O-Hf linkages upon heating, which in turn impacts the solubility of the films.

  12. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    NASA Astrophysics Data System (ADS)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  13. Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak

    2009-01-01

    In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.

    Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less

  15. Defining the cortical visual systems: "what", "where", and "how"

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  16. Evaluation of environmental aspects significance in ISO 14001.

    PubMed

    Põder, Tõnis

    2006-05-01

    The methodological framework set by standards ISO 14001 and ISO 14004 gives only general principles for environmental aspects assessment, which is regarded as one of the most critical stages of implementing environmental management system. In Estonia, about 100 organizations have been certified to the ISO 14001. Experience obtained from numerous companies has demonstrated that limited transparency and reproducibility of the assessment process serves as a common shortcoming. Despite rather complicated assessment schemes sometimes used, the evaluation procedures have been largely based on subjective judgments because of ill-defined and inadequate assessment criteria. A comparison with some similar studies in other countries indicates a general nature of observed inconsistencies. The diversity of approaches to the aspects' assessment in concept literature and to the related problems has been discussed. The general structure of basic assessment criteria, compatible with environmental impact assessment and environmental risk analysis has also been outlined. Based on this general structure, the article presents a tiered approach to help organize the assessment in a more consistent manner.

  17. A critical survey of methods to detect plasma membrane rafts

    PubMed Central

    Klotzsch, Enrico; Schütz, Gerhard J.

    2013-01-01

    The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale. PMID:23267184

  18. Internal Characteristics of Phobos and Deimos from Spectral Properties and Density: Relationship to Landforms and Comparison with Asteroids

    NASA Technical Reports Server (NTRS)

    Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.

    2013-01-01

    Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior.

  19. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of somemore » antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.« less

  20. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    NASA Astrophysics Data System (ADS)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  1. Are Organic Falls Bridging Reduced Environments in the Deep Sea? - Results from Colonization Experiments in the Gulf of Cádiz

    PubMed Central

    Cunha, Marina R.; Matos, Fábio L.; Génio, Luciana; Hilário, Ana; Moura, Carlos J.; Ravara, Ascensão; Rodrigues, Clara F.

    2013-01-01

    Organic falls create localised patches of organic enrichment and disturbance where enhanced degradation is mediated by diversified microbial assemblages and specialized fauna. The view of organic falls as “stepping stones” for the colonization of deep-sea reducing environments has been often loosely used, but much remains to be proven concerning their capability to bridge dispersal among such environments. Aiming the clarification of this issue, we used an experimental approach to answer the following questions: Are relatively small organic falls in the deep sea capable of sustaining taxonomically and trophically diverse assemblages over demographically relevant temporal scales? Are there important depth- or site-related sources of variability for the composition and structure of these assemblages? Is the proximity of other reducing environments influential for their colonization? We analysed the taxonomical and trophic diversity patterns and partitioning (α- and β-diversity) of the macrofaunal assemblages recruited in small colonization devices with organic and inorganic substrata after 1-2 years of deployment on mud volcanoes of the Gulf of Cádiz. Our results show that small organic falls can sustain highly diverse and trophically coherent assemblages for time periods allowing growth to reproductive maturity, and successive generations of dominant species. The composition and structure of the assemblages showed variability consistent with their biogeographic and bathymetric contexts. However, the proximity of cold seeps had limited influence on the similarity between the assemblages of these two habitats and organic falls sustained a distinctive fauna with dominant substrate-specific taxa. We conclude that it is unlikely that small organic falls may regularly ensure population connectivity among cold seeps and vents. They may be a recurrent source of evolutionary candidates for the colonization of such ecosystems. However, there may be a critical size of organic fall to create the necessary intense and persistent reducing conditions for sustaining typical chemosymbiotic vent and seep organisms. PMID:24098550

  2. Spatio-structural granularity of biological material entities

    PubMed Central

    2010-01-01

    Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i) they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii) they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO) as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc.), the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio-structural granularity framework for all domain reference ontologies that model cumulative-constitutively organized material entities. With its multi-perspectives approach it allows querying an ontology stored in a database at one's own desired different levels of detail: The contents of a database can be organized according to diverse granularity perspectives, which in their turn provide different views on its content (i.e. data, knowledge), each organized into different levels of detail. PMID:20509878

  3. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models

    DOE PAGES

    Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.; ...

    2017-11-09

    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less

  4. Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.

    Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less

  5. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  6. Stochastic Time Models of Syllable Structure

    PubMed Central

    Shaw, Jason A.; Gafos, Adamantios I.

    2015-01-01

    Drawing on phonology research within the generative linguistics tradition, stochastic methods, and notions from complex systems, we develop a modelling paradigm linking phonological structure, expressed in terms of syllables, to speech movement data acquired with 3D electromagnetic articulography and X-ray microbeam methods. The essential variable in the models is syllable structure. When mapped to discrete coordination topologies, syllabic organization imposes systematic patterns of variability on the temporal dynamics of speech articulation. We simulated these dynamics under different syllabic parses and evaluated simulations against experimental data from Arabic and English, two languages claimed to parse similar strings of segments into different syllabic structures. Model simulations replicated several key experimental results, including the fallibility of past phonetic heuristics for syllable structure, and exposed the range of conditions under which such heuristics remain valid. More importantly, the modelling approach consistently diagnosed syllable structure proving resilient to multiple sources of variability in experimental data including measurement variability, speaker variability, and contextual variability. Prospects for extensions of our modelling paradigm to acoustic data are also discussed. PMID:25996153

  7. Synthesis and characterization of electrical conducting porous carbon structures based on resorcinol-formaldehyde

    NASA Astrophysics Data System (ADS)

    Najeh, I.; Ben Mansour, N.; Mbarki, M.; Houas, A.; Nogier, J. Ph.; El Mir, L.

    2009-10-01

    Electrical conducting carbon (ECC) porous structures were explored by changing the pyrolysis temperature of organic xerogel compounds prepared by sol-gel method from resorcinol-formaldehyde (RF) mixtures in acetone using picric acid as catalyst. The effect of this preparation parameter on the structural and electrical properties of the obtained ECCs was studied. The analysis of the obtained results revealed that the polymeric insulating xerogel phase was transformed progressively with pyrolysis temperature into carbon conducting phase; this means the formation of long continuous conducting path for charge carriers to move inside the structure with thermal treatment and the samples exhibited tangible percolation behaviour where the percolation threshold can be determined by pyrolysis temperature. The temperature-dependent conductivity of the obtained ECC structures shows a semi-conducting behaviour and the I( V) characteristics present a negative differential resistance. The results obtained from STM micrographs revealed that the obtained ECC structures consist of porous electrical conducting carbon materials.

  8. Characterizing the molecular architectures of chromatin-modifying complexes.

    PubMed

    Setiaputra, Dheva T; Yip, Calvin K

    2017-11-01

    Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Probabilistic Graphical Model to Detect Chromosomal Domains

    NASA Astrophysics Data System (ADS)

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  10. The organization of scientists and its relation to scientific productivity: Perceptions of Chinese stem cell researchers

    PubMed Central

    Zhang, Joy Yueyue

    2013-01-01

    Chinese government funding of R&D ranks third in the world. Yet China ranks only 17th in terms of scientific productivity per unit of investment. The author recently conducted fieldwork on the team structure of 22 Chinese stem cell research groups. Interview data suggest that although Chinese research groups closely resemble their international counter-parts in many respects, there are also significant differences which are perceived by interviewees to affect levels of scientific productivity. One characteristic of Chinese research teams is a common deficiency in middle-layer positions. This shortage of experienced professionals is perceived by scientists participating in this study to have led to two consequences. First, inexperienced student researchers often form the backbone of scientific teams in China, which leads to frequent interruptions of research and extended laboratory training. Second, research teams consist of a relatively small number of personnel. These structural features are seen to create excessive social boundaries, which impede the exchange of information and further worsens the segmentation of resources. This article engages the question of the extent to which interviewees’ local ‘embedded’ understandings of these difficulties may make a productive contribution to the analysis of the structural, and infra-structural, organization of Chinese professional bioscience teams. PMID:24143153

  11. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles.

    PubMed

    Ronellenfitsch, Henrik; Liesche, Johannes; Jensen, Kaare H; Holbrook, N Michele; Schulz, Alexander; Katifori, Eleni

    2015-02-22

    The phloem vascular system facilitates transport of energy-rich sugar and signalling molecules in plants, thus permitting long-range communication within the organism and growth of non-photosynthesizing organs such as roots and fruits. The flow is driven by osmotic pressure, generated by differences in sugar concentration between distal parts of the plant. The phloem is an intricate distribution system, and many questions about its regulation and structural diversity remain unanswered. Here, we investigate the phloem structure in the simplest possible geometry: a linear leaf, found, for example, in the needles of conifer trees. We measure the phloem structure in four tree species representing a diverse set of habitats and needle sizes, from 1 (Picea omorika) to 35 cm (Pinus palustris). We show that the phloem shares common traits across these four species and find that the size of its conductive elements obeys a power law. We present a minimal model that accounts for these common traits and takes into account the transport strategy and natural constraints. This minimal model predicts a power law phloem distribution consistent with transport energy minimization, suggesting that energetics are more important than translocation speed at the leaf level. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Structure of Mesozooplankton Communities in the Coastal Waters of Morocco

    NASA Astrophysics Data System (ADS)

    Lidvanov, V. V.; Grabko, O. G.; Kukuev, E. I.; Korolkova, T. G.

    2018-03-01

    Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic-oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998-1999.

  13. Computational study of stability of an H-H-type pseudoknot motif.

    PubMed

    Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi

    2015-12-01

    Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.

  14. Enzymes of acetylcholine metabolism in the rat cochlea.

    PubMed

    Godfrey, D A; Ross, C D

    1985-01-01

    The distributions within the rat cochlea of choline acetyltransferase and acetylcholinesterase activities were measured to evaluate the prominence of cholinergic mechanisms in cochlear function. Samples obtained by microdissection of freeze-dried bony labyrinths were assayed radiometrically. Activities of both enzymes were highest in regions containing olivocochlear fibers and terminals, especially the organ of Corti and spiral ganglion. Within the organ of Corti, activities of both enzymes were consistently higher in the vicinity of the inner hair cells than in that of the outer hair cells and were much lower in the apical turn than in middle or basal turns. Surgical cuts in the brain stem transecting the olivocochlear pathway on one side led within seven days to total loss of choline acetyltransferase activity in the ipsilateral organ of Corti. It is concluded that all cholinergic structures in the rat organ of Corti derive from the brain stem and that synapses on or near both inner and outer hair cells are cholinergic.

  15. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    PubMed

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

  16. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  17. Fe-oxidizing microbes are hydrothermal vent ecosystem engineers at the Loihi Seamount (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; McAllister, S.; Leavitt, A.; Emerson, D.; Moyer, C. L.; Glazer, B. T.

    2013-12-01

    Microaerophilic Fe-oxidizing microorganisms (FeOM) colonize gradients of Fe(II) and oxygen, taking advantage of the available chemical energy. Vast communities of FeOM proliferate at deep sea hydrothermal vents, forming mineralized mats that range from centimeters to meters thick. Because these mats structure the environment for both FeOM and the entire microbial community, the Fe-oxidizers are acting as ecosystem engineers. What organisms are responsible for initiating these mats, and how does the physical structure and community composition develop as the mats mature? By connecting structure, function, and ecology, we can better interpret modern mat structures, as well as ancient fossilized mats. We have been studying Fe microbial mats at Loihi Seamount in Hawaii, a long-term study site that has become a model for Fe oxidation in marine hydrothermal systems. Recent improvements in ROV imaging systems allow us to see a great range of mat textures and colors, which may represent diverse habitats and/or different stages of mat development. With improved imaging and sampling techniques, we have been able to obtain discrete, intact samples of these delicate microbial mats. Previous bulk sampling methods showed that mats consist of a mixture of Fe-mineralized morphologies. Our analyses of intact mats show that mats are initiated by one type of structure-former (either a stalk-former like Mariprofundus ferrooxydans or a Zetaproteobacterial sheath-former). These microbes may be the vanguard organisms that stabilize chemical gradients in this dynamic environment, allowing colonization by other organisms (evidenced by branching tubes, fibrillar nests, and other morphologies). We will show evidence of the composition and development of these mats, and discuss parallels between these marine Fe mats and their freshwater counterparts, supporting the idea that FeOM engineer environments favorable for growth.

  18. Interfacial Engineering of Nanoporous Architectures in Ga2O3 Film toward Self-Aligned Tubular Nanostructure with an Enhanced Photocatalytic Activity on Water Splitting.

    PubMed

    Shrestha, Nabeen K; Bui, Hoa Thi; Lee, Taegweon; Noh, Yong-Young

    2018-04-17

    The present work demonstrates the formation of self-aligned nanoporous architecture of gallium oxide by anodization of gallium metal film controlled at -15 °C in aqueous electrolyte consisting of phosphoric acid. SEM examination of the anodized film reveals that by adding ethylene glycol to the electrolyte and optimizing the ratio of phosphoric acid and water, chemical etching at the oxide/electrolyte interfaces can be controlled, leading to the formation of aligned nanotubular oxide structures with closed bottom. XPS analysis confirms the chemical composition of the oxide film as Ga 2 O 3 . Further, XRD and SAED examination reveals that the as-synthesized nanotubular structure is amorphous, and can be crystallized to β-Ga 2 O 3 phase by annealing the film at 600 °C. The nanotubular structured film, when used as photoanode for photoelectrochemical splitting of water, achieved a higher photocurrent of about two folds than that of the nanoporous film, demonstrating the rewarding effect of the nanotubular structure. In addition, the work also demonstrates the formation of highly organized nonporous Ga 2 O 3 structure on a nonconducting glass substrate coated with thin film of Ga-metal, highlighting that the current approach can be extended for the formation of self-organized nanoporous Ga 2 O 3 thin film even on nonconducting flexible substrates.

  19. Synthesis and time-resolved structural characterization of framework and mineral sulfides

    NASA Astrophysics Data System (ADS)

    Cahill, Christopher Langley

    A new class of open-framework organic/inorganic hybrid materials based on In-S chemistry has been discovered. The compounds therein exhibit unprecedented structural diversity compared to known porous sulfides, primarily due to variation in framework building units. Further, large increases in pore dimensions (vs. zeolites, for example) are observed as these materials consist of comer and edge linked clusters, e.g. In10S20, In9S17, In4S10 and In6S 15. Choice of organic structure directing agents (templates) and careful control of reaction conditions (temperature, pH) both in the In-S and Ge-S systems is shown not only to dictate which building unit will form, but also to direct the resulting framework topology. Several of the compounds described herein crystallize either as powders, or as crystals too small for standard in-house X-ray structural analysis. Diffraction experiments have thus required synchrotron based single crystal techniques for structure determination. Further, certain reaction mixture compositions result in multi-phase end products, the formation pathways of which have been studied with time resolved, in situ synchrotron powder diffraction. An extension of the applicability of the in situ techniques investigated the role of oxygen in hydrothermal systems. Oxidation state is proposed to dictate speciation in the Ni-Ge-S system and to promote phase transformations in the Fe-S mineral system.

  20. Functional Groups and Structural Insights of Water-Soluble Organic Carbon using Ultrahigh Resolution FT-ICR Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.

    2013-12-01

    Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses were CO2 (~65%), H2O (~60%) and CH3OH (~40%). Several of the studied precursors had two or more losses associated with them and combinations of neutral losses such as, H4O2, CH2O3, C2H4O3 and C2O4. These neutral losses clearly indicate a multifunctional nature of the studied aerosol WSOC. Analysis of the fragment ions which were not associated with typical neutral losses indicates an overall aliphatic SOA-like structure with regular differences of 14 Da and 18 Da between low molecular weight fragment ions. Many of the fragment ions were observed in 85% or more of the MS2 spectra. The patterns observed in the low molecular weight fragment ions were very consistent over all of the mass spectra providing evidence for the significance of the non-oxidative accretion formation pathways.

  1. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.

    PubMed

    Cazzoli, Dario; Chechlacz, Magdalena

    2017-01-01

    Considerable evidence suggests that, on a group level, human visuospatial attention is asymmetrically organized, with a right-hemispheric dominance. The asymmetrical organization of the superior longitudinal fasciculus (SLF) has been shown to account for the right-hemispheric dominance in visual attention. However, such account is by no means universal, and large individual differences in asymmetrical performance on visuospatial tasks have been reported. Furthermore, the variability in the SLF lateralization has been shown to correlate with behavioural asymmetries. Continuous theta burst stimulation (cTBS) enables to temporarily interfere with cortical activity. cTBS applied over the posterior parietal cortex (PPC) has been previously used to systematically study attentional asymmetries. Interestingly, large individual differences in the effectiveness of stimulation have been reported. In accordance with earlier both animal and human studies, one possible cause underlying these striking individual differences might lie in the structural organization of frontoparietal pathways subserving visuospatial attention. Thus, the current study employed diffusion tractography to examine the relationship between the variability in the structural organization of the SLF and the individual differences in attentional shifts induced by a modified cTBS (cTBS mod ; triplets of pulses at 30 Hz, repeated at 6 Hz) applied over the IPS, as measured by a line bisection task. Consistent with previous studies, on a group level, cTBS mod applied over the right intraparietal sulcus (IPS) triggered a rightward bisection bias shift, and there were no significant effects of cTBS mod applied over the left IPS. However, further analyses demonstrated that both handedness and structural variability (as assessed based on hindrance modulated orientational anisotropy) within the middle and the ventral branches of the SLF predicted individual differences in the cTBS mod -induced attentional shifts. Our study thus suggests that the effects of cTBS mod over the IPS may depend on intra-hemispheric interactions between cortical loci controlling visual attention. To conclude, our findings provide converging evidence for the notion put forward previously that inter-individual variability in the structural organization of intra-hemispheric frontoparietal connections has important implications for the functional models of human visual attention. Moreover, we hypothesize that this may also be relevant for the understanding of attentional disorders and their rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  3. Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.

    Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and

  4. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.

    PubMed

    Rigon, Francesca; Stach, Thomas; Caicci, Federico; Gasparini, Fabio; Burighel, Paolo; Manni, Lucia

    2013-06-04

    Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in tunicates, represented by a simple monociliated cell. This cell successively differentiated into the current variety of oral mechanoreceptors in the various tunicate lineages. Finally, we demonstrated that the inferred evolutionary changes coincide with major transitions in the feeding strategies in each respective lineage.

  5. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals

    NASA Astrophysics Data System (ADS)

    Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.

    2010-05-01

    Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly separated at the meso-scale. However, AFM and FESEM observations of RAD show nanogranular units (ca. 30-100 nm in diameter) typical of fast growing skeletal regions. Unique microstructural organization of the micrabaciid skeleton supports their monophyletic status (reinforced by macromorphological and molecular data), and points to a diversity of organic matrix-mediated biomineralization strategies in Scleractinia.

  6. Structural insights into the multifunctional protein VP3 of birnaviruses.

    PubMed

    Casañas, Arnau; Navarro, Aitor; Ferrer-Orta, Cristina; González, Dolores; Rodríguez, José F; Verdaguer, Núria

    2008-01-01

    Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.

  7. Microbial community structure in a shallow hydrocarbon-contaminated aquifer associated with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Duris, J. W.; Rossbach, S.; Atekwana, E. A.; Werkema, D., Jr.

    2003-04-01

    Little is known about the complex interactions between microbial communities and electrical properties in contaminated aquifers. In order to investigate possible connections between these parameters a study was undertaken to investigate the hypothesis that the degradation of hydrocarbons by resident microbial communities causes a local increase in organic acid concentrations, which in turn cause an increase in native mineral weathering and a concurrent increase in the bulk electrical conductivity of soil. Microbial community structure was analyzed using a 96-well most probable number (MPN) method and rDNA intergenic spacer region analysis (RISA). Microbial community structure was found to change in the presence of hydrocarbon contaminants and these changes were consistently observed in regions of high electrical conductivity. We infer from this relationship that geophysical methods for monitoring the subsurface are a promising new technology for monitoring changes in microbial community structure and simultaneous changes in geochemistry that are associated with hydrocarbon degradation.

  8. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating.

    PubMed

    Lee, Eun Je; Kim, Jae Joon; Cho, Sung Oh

    2010-03-02

    Polymer/ceramic composite films with micro- and nanocombined hierarchical structures are fabricated by electron irradiation of poly(methyl methacrylate) (PMMA) microspheres/silicone grease. Electron irradiation induces volume contraction of PMMA microspheres and simultaneously transforms silicone grease into a ceramic material of silicon oxycarbide with many nanobumps. As a result, highly porous structures that consist of micrometer-sized pores and microparticles decorated with nanobumps are created. The fabricated films with the porous hierarchical structure exhibit good superhydrophobicity with excellent self-cleaning and antiadhesion properties after surface treatment with fluorosilane. In addition, the porous hierarchical structures are covered with silicon oxycarbide, and thus the superhydrophobic coatings have high hardness and strong adhesion to the substrate. The presented technique provides a straightforward route to producing large-area, mechanically robust superhydrophobic films on various substrate materials.

  9. The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation.

    PubMed

    McNeil, Leslie Klis; Reich, Claudia; Aziz, Ramy K; Bartels, Daniela; Cohoon, Matthew; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Hwang, Kaitlyn; Kubal, Michael; Margaryan, Gohar Rem; Meyer, Folker; Mihalo, William; Olsen, Gary J; Olson, Robert; Osterman, Andrei; Paarmann, Daniel; Paczian, Tobias; Parrello, Bruce; Pusch, Gordon D; Rodionov, Dmitry A; Shi, Xinghua; Vassieva, Olga; Vonstein, Veronika; Zagnitko, Olga; Xia, Fangfang; Zinner, Jenifer; Overbeek, Ross; Stevens, Rick

    2007-01-01

    The National Microbial Pathogen Data Resource (NMPDR) (http://www.nmpdr.org) is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of approximately 50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.

  10. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less

  11. A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging.

    PubMed

    Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui

    2014-11-20

    Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.

  12. Economic organization of medicine and the Committee on the Costs of Medical Care.

    PubMed Central

    Perkins, B B

    1998-01-01

    Recent strategies in managed care and managed competition illustrate how health care reforms may reproduce the patterns of economic organization of their times. Such a reform approach is not a new development in the United States. The work of the 1927-1932 Committee on the Costs of Medical Care exemplifies an earlier effort that applied forms of economic organization to medical care. The committee tried to restructure medicine along lines consistent with its economic environment while attributing its models variously to science, profession, and business. Like current approaches, the committee's reports defined costs as the major problem and business models of organization as the major solution. The reports recommended expanded financial management and group medicine, which would include growth in self-supporting middle-class services such as fee clinics and middle-rate hospital units. Identifying these elements as corporate practice of medicine, the American Medical Association-based minority dissented from the final report in favor of conserving individual entrepreneurial practice. This continuum in forms of economic organization has limited structural reform strategies in medicine for the remainder of the century. PMID:9807547

  13. Discrete element modeling of microstructure of nacre

    NASA Astrophysics Data System (ADS)

    Chandler, Mei Qiang; Cheng, Jing-Ru C.

    2018-04-01

    The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.

  14. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  15. Participation and coordination in Dutch health care policy-making. A network analysis of the system of intermediate organizations in Dutch health care.

    PubMed

    Lamping, Antonie J; Raab, Jörg; Kenis, Patrick

    2013-06-01

    This study explores the system of intermediate organizations in Dutch health care as the crucial system to understand health care policy-making in the Netherlands. We argue that the Dutch health care system can be understood as a system consisting of distinct but inter-related policy domains. In this study, we analyze four such policy domains: Finances, quality of care, manpower planning and pharmaceuticals. With the help of network analytic techniques, we describe how this highly differentiated system of >200 intermediate organizations is structured and coordinated and what (policy) consequences can be observed with regard to its particular structure and coordination mechanisms. We further analyze the extent to which this system of intermediate organizations enables participation of stakeholders in policy-making using network visualization tools. The results indicate that coordination between the different policy domains within the health care sector takes place not as one would expect through governmental agencies, but through representative organizations such as the representative organizations of the (general) hospitals, the health care consumers and the employers' association. We further conclude that the system allows as well as denies a large number of potential participants access to the policy-making process. As a consequence, the representation of interests is not necessarily balanced, which in turn affects health care policy. We find that the interests of the Dutch health care consumers are well accommodated with the national umbrella organization NPCF in the lead. However, this is no safeguard for the overall community values of good health care since, for example, the interests of the public health sector are likely to be marginalized.

  16. The endoplasmic reticulum: structure, function and response to cellular signaling.

    PubMed

    Schwarz, Dianne S; Blower, Michael D

    2016-01-01

    The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.

  17. Meeting the DHCP Challenge: A Model for Implementing a Decentralized Hospital Computer Program

    PubMed Central

    Catellier, Julie; Benway, Paula K.; Perez, Kathleen

    1987-01-01

    The James A. Haley Veterans' Hospital in Tampa has been a consistent leader in the implementation of automated systems within the VA. Our approach has been essentially to focus on obtaining maximum user involvement and contribution to the automation program within the Medical Center. Since clinical acceptance is vital to a viable program, a great deal of our efforts have been aimed at maximizing the training and participation of physicians, nurses and other clinical staff. The following is a description of our organization structure relative to this topic. We believe it to be a highly workable approach which can be easily implemented structurally at any hospital — public or private.

  18. Nakhla: a Martian Meteorite with Indigenous Organic Carbonaceous Features

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Gibson, E. K.; Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Rahman, Z.; Wentworth, S. J.

    2011-01-01

    The Nakhla meteorite possesses discrete, well defined, structurally coherent morphologies of carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of organic phases the presence of pre-terrestrial organics is now recognized. Within the microcrystalline layers of Nakhla s iddingsite, discrete clusters of salt crystals are present. These salts are predominantly halite (NaCl) with minor MgCl2 crystals. Some CaSO4, likely gypsum, appears to be partially intergrown with some of the halite. EDX mapping shows discrete C-rich features are interspersed among these crystals. A hollow semi-spherical bowl structure ( 3 m ) has been identified and analyzed after using a focused ion beam (FIB) to cut a transverse TEM thin section of the feature and the underlying iddingsite. TEM/EDX analysis reveals that the feature is primarily carbonaceous containing C with lesser amounts of Si, S, Ca, Cl, F, Na, and minor Mn and Fe; additionally a small peak consistent with N, which has been previously seen in Nakhla carbonaceous matter, is also present. Selected area electron diffraction (SAED) shows that this C-rich material is amorphous (lacking any long-range crystallographic order) and is not graphite or carbonate. Micro-Raman spectra acquired from the same surface from which the FIB section was extracted demonstrate a typical kerogen-like D and G band structure with a weak absorption peak at 1350 and a stronger peak at 1600/cm. The C-rich feature is intimately associated with both the surrounding halite and underlying iddingsite matrix. Both iddingsite and salts are interpreted as having formed as evaporate assemblages from progressive evaporation of water bodies on Mars. This assemblage, sans the carbonaceous moieties, closely resembles iddingsite alteration features previously described which were interpreted as indigenous Martian assemblages. These distinctive macromolecular carbonaceous structures in Nakhla may represent one of the sources of the high molecular weight organic material previously identified in Nakhla. While we do not speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to construct a C-cycle for Mars based on the C chemistry of the Martian meteorites with obvious implications for astrobiology and the prebiotic evolution of Mars. In any case, our observations strongly suggest that organic C exists as micrometersize, discrete structures on Mars.

  19. Structure and organization of nanosized-inclusion-containing bilayer membranes

    NASA Astrophysics Data System (ADS)

    Ren, Chun-Lai; Ma, Yu-Qiang

    2009-07-01

    Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.

  20. German Version of the Inventory of Motivations for Hospice Palliative Care Volunteerism: Are There Gender Differences?

    PubMed

    Stelzer, Eva-Maria; Lang, Frieder R; Hörl, Melanie; Kamin, Stefan T; Claxton-Oldfield, Stephen

    2018-02-01

    The present study examined gender differences in motivations for volunteering for hospice using a German version of the Inventory of Motivations for Hospice Palliative Care Volunteerism (IMHPCV). The IMHPCV was translated into German and back-translated into English following the World Health Organization's guidelines for the translation and adaptation of instruments. In an online survey, 599 female and 127 male hospice volunteers from hospice organizations throughout Germany completed the translated version of the IMHPCV, the Scales of the Attitude Structure of Volunteers as well as questions pertaining to their volunteer experience. Based on an exploratory structural equation modeling approach, adequate model fit was found for the expected factor structure of the German version of the IMHPCV. The IMHPCV showed adequate internal consistency and construct validity. Both female and male hospice volunteers found altruistic motives and humanitarian concerns most influential in their decision to volunteer for hospice. Personal gain was least influential. Men rated self-promotion, civic responsibility, and leisure as more important than women. Analyses provided support for the use of the IMHPCV as a measurement tool to assess motivations to volunteer for hospice. Implications for recruitment and retention of hospice volunteers, in particular males, are given.

  1. The medial frontal cortex contributes to but does not organize rat exploratory behavior.

    PubMed

    Blankenship, Philip A; Stuebing, Sarah L; Winter, Shawn S; Cheatwood, Joseph L; Benson, James D; Whishaw, Ian Q; Wallace, Douglas G

    2016-11-12

    Animals use multiple strategies to maintain spatial orientation. Dead reckoning is a form of spatial navigation that depends on self-movement cue processing. During dead reckoning, the generation of self-movement cues from a starting position to an animal's current position allow for the estimation of direction and distance to the position movement originated. A network of brain structures has been implicated in dead reckoning. Recent work has provided evidence that the medial frontal cortex may contribute to dead reckoning in this network of brain structures. The current study investigated the organization of rat exploratory behavior subsequent to medial frontal cortex aspiration lesions under light and dark conditions. Disruptions in exploratory behavior associated with medial frontal lesions were consistent with impaired motor coordination, response inhibition, or egocentric reference frame. These processes are necessary for spatial orientation; however, they are not sufficient for self-movement cue processing. Therefore it is possible that the medial frontal cortex provides processing resources that support dead reckoning in other brain structures but does not of itself compute the kinematic details of dead reckoning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia.

    PubMed

    Roeder, Ingo; Herberg, Maria; Horn, Matthias

    2009-04-01

    Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 10(6). To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the "age"-structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

  3. Synthesis, crystal structure and thermal study of the hybrid nickel sulfate: C6N2H16[Ni(H2O)6(SO4)2].2H2O

    NASA Astrophysics Data System (ADS)

    Ngopoh, F. A. I.; Hamdi, N.; Chaouch, S.; Lachkar, M.; da Silva, I.; El Bali, B.

    2018-03-01

    A new inorganic-organic hybrid open framework nickel sulfate C6N2H16[Ni(H2O)6(SO4)2].2H2O has been synthesized by slow evaporation in aqueous solution using trans-1,4-diaminocyclohexane as structure-directing agent. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy and analyzed by TGA-DSC. The compound crystallizes in the monoclinic space group P21/n, with the unit cell parameters of a = 6.2586 Å, b = 12.3009 Å, c = 13.2451 Å, β = 98,047°, Z = 4. Its crystal structure consists of isolated polyhedrons [Ni(H2O)6]2+ and [SO4]2- and free water which connects through hydrogen bonds. This association results in the porous framework where the protonated organic molecule trans-1,4-diaminocyclohexane is located as a counter ion. The IR spectra Shows the bands corresponding to the sulfate anion, water molecule and diprotonated trans-1-4-diaminocyclohexane. Thermal study indicates the loss of water molecules and the degradation of trans-1-4-diaminocyclohexane.

  4. An advanced application of the quantitative structure-activity relationship concept in electrokinetic chromatography of metal complexes.

    PubMed

    Oszwałdowski, Sławomir; Timerbaev, Andrei R

    2008-02-01

    The relevance of the quantitative structure-activity relationship (QSAR) principle in MEKC and microemulsion EKC (MEEKC) of metal-ligand complexes was evaluated for a better understanding of analyte migration mechanism. A series of gallium chelates were applied as test solutes with available experimental migration data in order to reveal the molecular properties that govern the separation. The QSAR models operating with n-octanol-water partition coefficients or van der Waals volumes were found to be valid for estimation of the retention factors (log k') of neutral compounds when using only an aqueous MEEKC electrolyte. On the other hand, consistent approximations of log k' for both uncharged and charged complexes in either EKC mode (and also with hydro-organic BGEs) were achievable with two-parametric QSARs in which the dipole moment is additionally incorporated as a structural descriptor, reflecting the electrostatic solute-pseudostationary phase interaction. The theoretical analysis of significant molecular parameters in MEKC systems, in which the micellar BGE is modified with an organic solvent, confirmed that concomitant consideration of hydrophobic, electrostatic, and solvation factors is essential for explaining the migration behavior of neutral metal complexes.

  5. Synthesis, structure and electrochemical behavior of a 3D crystalline copper(II) metal-organic framework

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Ye; Fan, Wei-Qiang; Liu, Chun-Bo; Shi, Wei-Dong; Yan, Yong-Sheng

    2014-05-01

    Using an flexible amide-type tripodal ligand N,N‧,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L) and 1,4-benzenedicarboxylic acid (H2bdc), a three-dimensional copper(II) metal-organic framework (MOF) formulated as [Cu(bdc)(L)]n has been hydrothermally synthesized and structurally characterized by IR, elemental, X-ray single-crystal diffraction and thermal analysis. The complex crystallizes in the triclinic, space group P - 1, a = 8.891(2) Å, b = 11.760(2) Å, c = 15.348(3) Å, α = 96.73(3)°, β = 105.96(3)°, γ = 106.47(3)°, V = 1446.2(5) Å3, Mr = 666.10, Dc = 1.530 g/cm3, Z = 2, F(000) = 682, GOOF = 1.0560, μ(MoKα) = 0.817 mm-1, R = 0.0366 and wR = 0.0885. The structural analyses reveal that the title compound consists of one Cu(II) atom, two halves of bdc, and one L ligand. Each Cu(II) atom is linked by two bdc ligands and three L ligands to form a three-dimensional network. In addition, the electrochemical behavior of title compound has been studied. CCDC No. 990526.

  6. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.

    PubMed

    Keeley, Fred W; Bellingham, Catherine M; Woodhouse, Kimberley A

    2002-02-28

    Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.

  7. An object-oriented class library for medical software development.

    PubMed

    O'Kane, K C; McColligan, E E

    1996-12-01

    The objective of this research is the development of a Medical Object Library (MOL) consisting of reusable, inheritable, portable, extendable C++ classes that facilitate rapid development of medical software at reduced cost and increased functionality. The result of this research is a library of class objects that range in function from string and hierarchical file handling entities to high level, procedural agents that perform increasingly complex, integrated tasks. A system built upon these classes is compatible with any other system similarly constructed with respect to data definitions, semantics, data organization and storage. As new objects are built, they can be added to the class library for subsequent use. The MOL is a toolkit of software objects intended to support a common file access methodology, a unified medical record structure, consistent message processing, standard graphical display facilities and uniform data collection procedures. This work emphasizes the relationship that potentially exists between the structure of a hierarchical medical record and procedural language components by means of a hierarchical class library and tree structured file access facility. In doing so, it attempts to establish interest in and demonstrate the practicality of the hierarchical medical record model in the modern context of object oriented programming.

  8. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in themore » 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.« less

  9. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene.

    PubMed

    Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.

  10. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  11. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  12. HESS Opinions: Functional units: a novel framework to explore the link between spatial organization and hydrological functioning of intermediate scale catchments

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Pfister, L.; Blume, T.; Schröder, B.; Westhoff, M.; Jackisch, C.; Schymanski, S. J.; Weiler, M.; Schulz, K.; Allroggen, N.; Tronicke, J.; Dietrich, P.; Scherer, U.; Eccard, J.; Wulfmeyer, V.; Kleidon, A.

    2014-03-01

    This opinion paper proposes a novel framework for exploring how spatial organization alongside with spatial heterogeneity controls functioning of intermediate scale catchments of organized complexity. Key idea is that spatial organization in landscapes implies that functioning of intermediate scale catchments is controlled by a hierarchy of functional units: hillslope scale lead topologies and embedded elementary functional units (EFUs). We argue that similar soils and vegetation communities and thus also soil structures "co-developed" within EFUs in an adaptive, self-organizing manner as they have been exposed to similar flows of energy, water and nutrients from the past to the present. Class members of the same EFU (class) are thus deemed to belong to the same ensemble with respect to controls of the energy balance and related vertical flows of capillary bounded soil water and heat. Class members of superordinate lead topologies are characterized by the same spatially organized arrangement of EFUs along the gradient driving lateral flows of free water as well as a similar surface and bedrock topography. We hence postulate that they belong to the same ensemble with respect to controls on rainfall runoff transformation and related vertical and lateral fluxes of free water. We expect class members of these functional units to have a distinct way how their architecture controls the interplay of state dynamics and integral flows, which is typical for all members of one class but dissimilar among the classes. This implies that we might infer on the typical dynamic behavior of the most important classes of EFU and lead topologies in a catchment, by thoroughly characterizing a few members of each class. A major asset of the proposed framework, which steps beyond the concept of hydrological response units, is that it can be tested experimentally. In this respect, we reflect on suitable strategies based on stratified observations drawing from process hydrology, soil physics, geophysics, ecology and remote sensing which are currently conducted in replicates of candidate functional units in the Attert basin (Luxembourg), to search for typical and similar functional and structural characteristics. A second asset of this framework is that it blueprints a way towards a structurally more adequate model concept for water and energy cycles in intermediate scale catchments, which balances necessary complexity with falsifiability. This is because EFU and lead topologies are deemed to mark a hierarchy of "scale breaks" where simplicity with respect to the energy balance and stream flow generation emerges from spatially organized process-structure interactions. This offers the opportunity for simplified descriptions of these processes that are nevertheless physically and thermodynamically consistent. In this respect we reflect on a candidate model structure that (a) may accommodate distributed observations of states and especially terrestrial controls on driving gradients to constrain the space of feasible model structures and (b) allows testing the possible added value of organizing principles to understand the role of spatial organization from an optimality perspective.

  13. Coexistence of Stochastic Oscillations and Self-Organized Criticality in a Neuronal Network: Sandpile Model Application.

    PubMed

    Saeedi, Alireza; Jannesari, Mostafa; Gharibzadeh, Shahriar; Bakouie, Fatemeh

    2018-04-01

    Self-organized criticality (SOC) and stochastic oscillations (SOs) are two theoretically contradictory phenomena that are suggested to coexist in the brain. Recently it has been shown that an accumulation-release process like sandpile dynamics can generate SOC and SOs simultaneously. We considered the effect of the network structure on this coexistence and showed that the sandpile dynamics on a small-world network can produce two power law regimes along with two groups of SOs-two peaks in the power spectrum of the generated signal simultaneously. We also showed that external stimuli in the sandpile dynamics do not affect the coexistence of SOC and SOs but increase the frequency of SOs, which is consistent with our knowledge of the brain.

  14. Artificial sensory organs: latest progress.

    PubMed

    Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji

    2018-03-01

    This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.

  15. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    NASA Astrophysics Data System (ADS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  16. Ground testing of bioconvective variables such as morphological characterizations and mechanisms which regulate macroscopic patterns

    NASA Technical Reports Server (NTRS)

    Johnson, Adriel D.

    1992-01-01

    Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.

  17. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    PubMed

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  19. [Organizational well-being and work-related stress in health care organizations: validation of the Work-related Stress Assessment Scale].

    PubMed

    Coluccia, Anna; Lorini, Francesca; Ferretti, Fabio; Pozza, Andrea; Gaetani, Marco

    2015-01-01

    The issue of the assessment of work-related stress has stimulated in recent years, the production of several theoretical paradigms and assessment tools. In this paper we present a new scale for the assessment of organizational well-being and work-related stress specific for healthcare organizations (Work-related Stress Assessment Scale - WSAS). The goal of the authors is to examine the psychometric properties of the scale, so that it can be used in the healthcare setting as a work-related stress assessment tool. The answers of 230 healthcare professionals belonging to different roles have been analyzed. The study was realized in 16 Units of the University Hospital "S. Maria alle Scotte "of Siena. The exploratory factor analysis (EFA) revealed the presence of five factors with good internal consistency and reliability, "relationship to the structure of proximity" (α = 0.93) "change" (α = 0.92), "organization of work "(α = 0.81)," relationship with the company / Governance "(α = 0.87)" working environment "(α = 0.83). The analysis of SEM (Structural Equation Models) has confirmed the goodness of the factor solution (NNFI = 0.835, CFI = 0.921, RMSEA = 0.060). The good psychometric qualities, the shortness and simplicity of the scale WSAS makes it a useful aid in the assessment of work-related stress in health care organizations.

  20. Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India.

    PubMed

    Lakshmanna, B; Jayaraju, N; Prasad, T Lakshmi; Sreenivasulu, G; Nagalakshmi, K; Kumar, M Pramod; Madakka, M

    2018-02-01

    X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and Fourier Transform Infrared Spectroscopy (FT-IR), were applied to analyze the organic matrix of two Molluscan shells . The Mollusca shells are mineral structure and calcium carbonate crystallized as aragonite. The FT-IR spectra showed Alkyl Halide, Alkanes, Alcohols, Amides, Aromatic, and Hydroxyl groups in the organic matrix of the whole (organic and mineral) Molluscan shells. SEM images of particles of the two Molluscan shells at different magnifications were taken. The morphologies of the samples show a flake like structures with irregular grains, their sizes are at micrometric scale and the chemical analysis of EDS indicated that the major elements of Cardita and Gastropoda were C, O, and Ca, consistent with the results of XRD analysis. The results of the analysis of the EDS spectra of the shells showed that the content of most of the powder composition of shells is the element carbon, calcium oxygen, aluminium, and lead peaks that appear on the Cardita and Gastropoda and shells powders tap EDS spectra. The present work examined organic matrix of the selected shells of the heavily polluted and light polluted sites, along Nellore Coast, South East Coast of India. The heavily polluted sites have significantly thickened shells. The data demonstrated the sensitivity of this abundant and widely distributed intertidal fragile environment.

Top