Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
An approach to determination of shunt circuits parameters for damping vibrations
NASA Astrophysics Data System (ADS)
Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov
2018-04-01
This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.
NASA Astrophysics Data System (ADS)
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
NASA Astrophysics Data System (ADS)
Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao
2018-07-01
Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.
NASA Astrophysics Data System (ADS)
Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano
2017-11-01
The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.
Improved Technique for Finding Vibration Parameters
NASA Technical Reports Server (NTRS)
Andrew, L. V.; Park, C. C.
1986-01-01
Filtering and sample manipulation reduce noise effects. Analysis technique improves extraction of vibrational frequencies and damping rates from measurements of vibrations of complicated structure. Structural vibrations measured by accelerometers. Outputs digitized at frequency high enough to cover all modes of interest. Use of method on set of vibrational measurements from Space Shuttle, raised level of coherence from previous values below 50 percent to values between 90 and 99 percent
NASA Astrophysics Data System (ADS)
He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin
2017-03-01
When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.
NASA Astrophysics Data System (ADS)
Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.
2017-06-01
In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.
Vibration isolation by exploring bio-inspired structural nonlinearity.
Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert
2015-10-08
Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind
NASA Astrophysics Data System (ADS)
Jendzelovsky, Norbert; Antal, Roland
2017-10-01
Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case vibration rises and structure can be snapped or deformed permanently. In the long term vibration, fatigue stress can be significant. At the conclusion hazardous wind speed and recommendations for different shapes and parameters of lamellas are shown.
NASA Astrophysics Data System (ADS)
Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam
2006-06-01
The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.
A Handbook of Sound and Vibration Parameters
1978-09-18
fixed in space. (Reference 1.) no motion atay node Static Divergence: (See Divergence.) Statistical Energy Analysis (SEA): Statistical energy analysis is...parameters of the circuits come from statistics of the vibrational characteristics of the structure. Statistical energy analysis is uniquely successful
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.
2018-03-01
The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.
NASA Astrophysics Data System (ADS)
Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.
2017-01-01
Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Optimal Regulation of Structural Systems with Uncertain Parameters.
1981-02-02
been addressed, in part, by Statistical Energy Analysis . Moti- vated by a concern with high frequency vibration and acoustical- structural...Parameter Systems," AFOSR-TR-79-0753 (May, 1979). 25. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, (M.I.T...Press, Cambridge, Mass., 1975). 26. E. E. Ungar, " Statistical Energy Analysis of Vibrating Systems," Trans. ASME, J. Eng. Ind. 89, 626 (1967). 139 27
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
NASA Astrophysics Data System (ADS)
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
NASA Astrophysics Data System (ADS)
Sun, Xiuting; Jing, Xingjian
2016-12-01
This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.
NASA Astrophysics Data System (ADS)
Ni, Yan-Chun; Zhang, Feng-Liang
2018-05-01
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.
Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)
2001-01-01
Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.
The influence of vertical load to the natural vibration of series isolation system
NASA Astrophysics Data System (ADS)
Lin, Z. D.; Shi, H.
2018-02-01
The influence of axial load to the natural vibration of series isolation system is analyzed. The natural frequency of series isolation system is solved by differential quadrature method. According to the vertical load which is the main factor of natural vibration characteristic on the series isolation system, the parameter analysis is carried out. It should provide the basis for the vibration characteristic analysis for the structure of bearing on the top of first story column, and it can also provide evidence for the overall stability analysis of series isolation structure.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
NASA Astrophysics Data System (ADS)
Arefi, Mohammad; Zenkour, Ashraf M.
2017-08-01
Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.
Some problems of control of dynamical conditions of technological vibrating machines
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher
NASA Technical Reports Server (NTRS)
Vu, Bruce T.
2007-01-01
A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.
Conceptural Study of Gyroscopic Damping Systems for Structural Indentification
NASA Astrophysics Data System (ADS)
Furuya, H.; Senba, A.
2002-01-01
System identification of the adaptive gyroscopic damper system (AGDS) is treated in this paper. The adaptive gyroscopic damper system was proposed as the extension of the conventional gyroscopic damper under the concept of intelligent adaptive structure systems [1]. The conventional gyroscopic damper has passive characteristics similar to a tuned mass damper (TMD). Because the conventional gyroscopic damper has one natural frequency, several applications to the ground structures have been studied to suppress the fundamental vibration mode (e.g. [2]). On the other hand, as the AGDS has a property of adjusting the natural frequency of the gimbal to that of the structural system by controlling the moment of inertia around its gimbal axis, the performance for suppressing the vibration of one-DOF system was improved. In addition, by extending this property, suppression of multiple modes vibration by quasi-static control for the AGDS was demonstrated [3]. To realize the high performance for suppressing the structural vibration, the identification of characteristics of the structural system with AGDS is significant, because the adaptability of the AGDS to the natural frequency of the system reflects to the performance. By using a capability of AGDS as changing its moment of inertia around its gimbals axis by controlling appendage mass, the system identification is also possible. A sensitivity analysis for the change of the response amplitude and the natural frequency with modal parameters is applied to the method. The errors included in the identification results of modal parameters for cantilevered beam model is examined. The numerical demonstrations were performed to investigate the identification errors of system parameters by the response amplitude and the natural frequency with modal parameters, respectively. The results show that the technique used in the study can identify the structural system and the identification errors occur for near the natural frequency of the system by using the response amplitude, and for the optimum momentum inertia by using the natural frequency. References [1] Hiroshi FURUYA, Masanori TAKAHASHI, and Tatsuo OHMACHI: Concept of Adaptive Gyroscopic Damper and Vibration Suppression of Flexible Structures, 8th International Conference on Adaptive Structures and Technologies, Wakayama, Oct. 29-31, 1997, eds. Y. Murotsu, C.A. Rogers, P. Santini, and H. Okubo, Technomic Publishing, pp.247-254, 1998. [2] Hiroshi FURUYA, Masanori TAKAHASHI, and Tatsuo OHMACHI: Pseudo Feedback Control of Adaptive Gyroscopic Damper for Vibration Suppression, 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, AIAA 98-1796, Long Beach, CA, April 20-23, pp.830-834, 1998. [3] Hiroshi FURUYA and Atsuo KOBORI: Suppression of Multiple Modes Vibration of Flexible Structures with Adaptive Gyroscopic Damper System, 10th International Conference on Adaptive Structures and Technologies, Paris, Oct. 13-15, 1999, eds. R. Ohayon, and M. Bernadou, Technomic Publishing, pp. 127-134, 1999.
NASA Astrophysics Data System (ADS)
Ding, Yi; Wang, Yanli; Ni, Jun; Shi, Lin; Shi, Siqi; Tang, Weihua
2011-05-01
Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.
Floor vibration evaluations for medical facilities
NASA Astrophysics Data System (ADS)
Himmel, Chad N.
2003-10-01
The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.
Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building
Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo
2013-01-01
This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
NASA Astrophysics Data System (ADS)
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun
1994-01-01
A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang
2014-08-01
In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.
Performance of tensor decomposition-based modal identification under nonstationary vibration
NASA Astrophysics Data System (ADS)
Friesen, P.; Sadhu, A.
2017-03-01
Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramey, G. ED; Jenkins, Robert C.
1994-01-01
The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
The Shock and Vibration Digest. Volume 13, Number 5
1981-05-01
Ducts................ 82 Numerical Methods..107 VEHICLE SYSTEMS ........ 51 Building Components..85 Parameter Identification. . 107 Groud Veicls ...in Hybrid Systems Beam Vibrations W. Wed ig 68 Inst. for Technical Mechanics, Univ. of Karlsruhe, CYLINDERS Recent Advances in Structural Dynamics
NASA Astrophysics Data System (ADS)
Ni, Yanchun; Lu, Xilin; Lu, Wensheng
2017-03-01
The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.
Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance
NASA Technical Reports Server (NTRS)
Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan
2008-01-01
In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Kiana, Samaneh; Yazdanbakhsh, Mohammad; Jamialahmadi, Mina; Tayyari, Sayyed Faramarz
2014-09-01
[Fe3O(OOCH)6(H2O)3]OOCH·HCOOH, and [Cr3O(OOCH)6(H2O)3]OOCH·2.5HNO3 were synthesized and the molecular structure and vibrational assignments of their cations were investigated by means of density functional theory (DFT) calculations. The harmonic vibrational frequencies of [Fe3O(OOCH)6(H2O)3]+ and [Cr3O(OOCH)6(H2O)3]+ were obtained at the UB3LYP level using a series of basis sets. The topological properties of the charge distribution of both cations in their ground states are discussed in detail by means of natural bond orbital (NBO) theory and of [Fe3O(OOCH)6(H2O)3]+ by the quantum theory of atoms in molecules (AIM). The calculated geometrical parameters and vibrational frequencies were compared with the experimental results. The scaled theoretical frequencies and the structural parameters were found to be in good agreement with the experimental data.
Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal
2014-04-24
2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.
Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning
NASA Astrophysics Data System (ADS)
Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.
2018-03-01
Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
So Hirata
2012-01-03
This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Liu, Xiang-Ru; Zhang, Xian-Zhou
2011-01-01
The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.
Anomalous Structural Disorder in Supported Pt Nanoparticles
Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.; ...
2017-07-02
Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.
Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less
Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
NASA Astrophysics Data System (ADS)
Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin
2017-06-01
This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.
Chandran, Asha; Varghese, Hema Tresa; Mary, Y Sheena; Panicker, C Yohannan; Manojkumar, T K; Van Alsenoy, Christian; Rajendran, G
2012-02-15
FT-IR and FT-Raman spectra of (E)-N-Carbamimidoyl-4-((naphthalen-1-yl-methylene)amino)benzene sulfonamide were recorded and analyzed. The vibrational wavenumbers were computing at various levels of theory. The data obtained from theoretical calculations are used to assign vibrational bands obtained experimentally. The results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and structural parameters. The calculated first hyperpolarizability is comparable with reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound are in agreement with that of similar derivatives. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Pappa, Richard S.
1996-01-01
Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.
On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun
2017-08-01
It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.
Noise elimination algorithm for modal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less
A data driven control method for structure vibration suppression
NASA Astrophysics Data System (ADS)
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
NASA Astrophysics Data System (ADS)
Ferwerda, R.; van der Maas, J. H.
1995-11-01
The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
Experimental analysis of thread movement in bolted connections due to vibrations
NASA Technical Reports Server (NTRS)
Ramsey, G. ED; Jenkins, Robert C.
1995-01-01
This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator
Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong
2013-01-01
Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033
Influence of structural parameters of deep groove ball bearings on vibration
NASA Astrophysics Data System (ADS)
Yu, Guangwei; Wu, Rui; Xia, Wei
2018-04-01
Taking 6201 bearing as the research object, a dynamic model of 4 degrees of freedom is established to solve the vibration characteristics such as the displacement, velocity and acceleration of deep groove ball bearings by MATLAB and Runge-Kutta method. By calculating the theoretical value of the frequency of the rolling element passing through the outer ring and the simulation value of the model, it can be known that the theoretical calculation value and the simulation value have good consistency. By the experiments, the measured values and simulation values are consistent. Using the mathematical model, the effect of structural parameters on vibration is obtained. The method in the paper is testified to be feasible and the results can be used as references for the design, manufacturing and testing of deep groove ball bearings.
NASA Astrophysics Data System (ADS)
Ertürk, Esra; Gürel, Tanju
2018-05-01
We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.
2016-05-01
One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome
NASA Astrophysics Data System (ADS)
Pau, Annamaria; Vestroni, Fabrizio
2013-12-01
The present paper addresses the analysis of the ambient vibrations of the Basilica of Maxentius in Rome. This monument, in the city centre and close to busy roads, was the largest vaulted structure in the Roman Empire. Today, only one aisle of the structure remains, suffering from a complex crack scenario. The ambient vibration response is used to investigate traffic induced vibration and compare this to values that could be a potential cause of structural damage according to international standards. Using output-only methods, natural frequencies and mode shapes are obtained from the response, allowing comparison with predictions made with a finite element model. Notwithstanding simplifications regarding material behavior and crack pattern in the finite element model, an agreement between numerical and experimental results is reached once selected mechanical parameters are adjusted. A knowledge of modal characteristics and the availability of an updated model may be a first step of a structural monitoring program that could reveal any decay over time in the structural integrity of the monument.
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
On parameters identification of computational models of vibrations during quiet standing of humans
NASA Astrophysics Data System (ADS)
Barauskas, R.; Krušinskienė, R.
2007-12-01
Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.
Controlling coupled bending-twisting vibrations of anisotropic composite wing
NASA Astrophysics Data System (ADS)
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-01-01
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated. PMID:29088077
Jung, Ho-Yeon; Kim, In-Ho; Jung, Hyung-Jo
2017-10-31
Cable structure is a major component of long-span bridges, such as cable-stayed and suspension bridges, and it transfers the main loads of bridges to the pylons. As these cable structures are exposed to continuous external loads, such as vehicle and wind loads, vibration control and continuous monitoring of the cable are required. In this study, an electromagnetic (EM) damper was designed and fabricated for vibration control and monitoring of the cable structure. EM dampers, also called regenerative dampers, consist of permanent magnets and coils. The electromagnetic force due to the relative motion between the coil and the permanent magnet can be used to control the vibration of the structure. The electrical energy can be used as a power source for the monitoring system. The effects of the design parameters of the damper were numerically analyzed and the damper was fabricated. The characteristics of the damper were analyzed with various external load changes. Finally, the vibration-control and energy-harvesting performances of the cable structure were evaluated through a hybrid simulation. The vibration-control and energy-harvesting performances for various loads were analyzed and the applicability to the cable structure of the EM damper was evaluated.
Computer analysis of railcar vibrations
NASA Technical Reports Server (NTRS)
Vlaminck, R. R.
1975-01-01
Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.
NASA Astrophysics Data System (ADS)
Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.
2018-01-01
In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.
NASA Astrophysics Data System (ADS)
Kaewunruen, Sakdirat; Remennikov, Alex M.
2006-11-01
The vibration of in situ concrete sleepers in a railway track structure is a major factor causing cracking of prestressed concrete sleepers and excessive railway track maintenance cost. Not only does the ballast interact with the sleepers, but the rail pads also take part in affecting their free vibration characteristics. This paper presents a sensitivity analysis of free vibration behaviors of an in situ railway concrete sleeper (standard gauge sleeper), incorporating sleeper/ballast interaction, subjected to the variations of rail pad properties. Through finite element analysis, Timoshenko-beam and spring elements were used in the in situ railway concrete sleeper modeling. This model highlights the influence of rail pad parameters on the free vibration characteristics of in situ sleepers. In addition, information on the first five flexural vibration modes indicates the dynamic performance of railway track when using different types of rail pads, as it plays a vital role in the cracking deterioration of concrete sleepers.
Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators
NASA Astrophysics Data System (ADS)
Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi
2018-06-01
A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.
Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng
2014-11-11
A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.
Piezoceramic devices and artificial intelligence time varying concepts in smart structures
NASA Technical Reports Server (NTRS)
Hanagud, S.; Calise, A. J.; Glass, B. J.
1990-01-01
The problem of development of smart structures and their vibration control by the use of piezoceramic sensors and actuators have been discussed. In particular, these structures are assumed to have time varying model form and parameters. The model form may change significantly and suddenly. Combined identification of the model from parameters of these structures and model adaptive control of these structures are discussed in this paper.
Damage detection in rotating machinery by means of entropy-based parameters
NASA Astrophysics Data System (ADS)
Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr
2014-11-01
The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.
Design and initial validation of a wireless control system based on WSN
NASA Astrophysics Data System (ADS)
Yu, Yan; Li, Luyu; Li, Peng; Wang, Xu; Liu, Hang; Ou, Jinping
2013-04-01
At present, cantilever structure used widely in civil structures will generate continuous vibration by external force due to their low damping characteristic, which leads to a serious impact on the working performance and service time. Therefore, it is very important to control the vibration of these structures. The active vibration control is the primary means of controlling the vibration with high precision and strong adaptive ability. Nowadays, there are many researches using piezoelectric materials in the structural vibration control. Piezoelectric materials are cheap, reliable and they can provide braking and sensing method harmless to the structure, therefore they have broad usage. They are used for structural vibration control in a lot of civil engineering research currently. In traditional sensor applications, information exchanges with the monitoring center or a computer system through wires. If wireless sensor networks(WSN) technology is used, cabling links is not needed, thus the cost of the whole system is greatly reduced. Based on the above advantages, a wireless control system is designed and validated through preliminary tests. The system consists of a cantilever, PVDF as sensor, signal conditioning circuit(SCM), A/D acquisition board, control arithmetic unit, D/A output board, power amplifier, piezoelectric bimorph as actuator. DSP chip is used as the control arithmetic unit and PD control algorithm is embedded in it. PVDF collects the parameters of vibration, sends them to the SCM after A/D conversion. SCM passes the data to the DSP through wireless technology, and DSP calculates and outputs the control values according to the control algorithm. The output signal is amplified by the power amplifier to drive the piezoelectric bimorph for vibration control. The structural vibration duration reduces to 1/4 of the uncontrolled case, which verifies the feasibility of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.
2013-12-14
The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{submore » 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key to unambiguous assignment of the satellite spectra to specific vibration modes.« less
Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester.
Jiang, Shunong; Hu, Yuantai
2007-07-01
This article analyzes the performance of a piezoelectric energy harvester in the flexural mode for scavenging ambient vibration energy. The energy harvester consists of a piezoelectric bimorph plate with a central-attached mass. The linear piezoelectricity theory is applied to evaluate the performance dependence upon the physical and geometrical parameters of the model bimorph plate. The analytical solution for the flexural motion of the piezoelectric bimorph plate energy harvester shows that the output power density increases initially, reaches a maximum, then decreases monotonically with the increasing load impedance, which is normalized by a parameter that is a simple combination of the physical and geometrical parameters of the scavenging structure, the bimorph plate, and the frequency of the ambient vibration, underscoring the importance for the load circuit to have the impedance desirable by the scavenging structure. The numerical results illustrate the considerably enhanced performances by adjusting the physical and geometrical parameters of the scavenging structure.
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Summary of semi-initiative and initiative control automobile engine vibration
NASA Astrophysics Data System (ADS)
Qu, Wei; Qu, Zhou
2009-07-01
Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.
Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S
2013-05-01
Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.
1989-01-01
A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
NASA Astrophysics Data System (ADS)
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
Computer animation of modal and transient vibrations
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1987-01-01
An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.
Vibration Control of Deployable Astromast Boom: Preliminary Experiments
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Hamilton, David A.
1994-01-01
This paper deals with the dynamic characterization of a flexible aerospace solar boom. The modeling issues and sine dwell vibration testing to determine natural frequencies and mode shapes of a continuous-longer on deployable ASTROMAST lattice boom are discussed. The details of the proof-of-concept piezoelectric active vibration experiments on a simple cantilever beam to control its vibrations are presented. The control parameters like voltage to the controller crystal and its location are investigated, to determine the effectiveness of control element to suppress selected resonant vibrations of the test specimen. Details of this experiment and plans for its future adaptation to the prototype structure are also discussed.
NASA Astrophysics Data System (ADS)
Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.
Frequency analysis of a two-stage planetary gearbox using two different methodologies
NASA Astrophysics Data System (ADS)
Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed
2017-12-01
This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.
NASA Astrophysics Data System (ADS)
Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang
2018-05-01
The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.
NASA Astrophysics Data System (ADS)
Nimmi, D. E.; Sam, S. P. Chandhini; Praveen, S. G.; Binoy, J.
2018-05-01
Many organophosphate compounds exhibiting toxicity are widely used as pesticides and insecticides whose structural features can be explained excellently using geometric simulation using density functional theory and vibrational spectrum. In this work, the molecular structural parameters and vibrational frequencies of the fundamental modes of Monocrotophoshave been obtained using Density functional theory (DFT), using B3LYP functional with 6-311++G(d, p) basis sets and the detailed vibrational analysis of FT-IR and FT-Ramanspectral bands have been carried out using potential energy distribution (PED). The deviation from the resonance structure of phosphate group due to `bridging of oxygen' and π-resonance of amides has been investigated based on the spectral and geometric data. The molecular docking simulation of Monocrotophos with BSA and DNA has been performed to find the mode of binding and the interactions with BSA has been investigated with UV-Visible spectroscopic method, to assess the strength of binding.
A 6DOF passive vibration isolator using X-shape supporting structures
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming
2016-10-01
A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.
On location of piezoelectric element in a smart-structure: numerical investigation and experiment
NASA Astrophysics Data System (ADS)
Oshmarin, D.; Iurlov, M.
2017-06-01
In this paper, based on some example problems it was demonstrated that in examining the possibilities of smart structure applications, the matter of considerable researchers’ concern is the problem of location of piezoelectric elements in the structure to allow effective realization of its smart functions in the framework of the specified strategy of structure control and target purposes (vibration damping, defectoscopy, etc.) The numerical and experimental investigations have shown that for structures with the elements made of piezoelectric materials, it is more convenient to use as a parameter, specifying the best location of the piezoelectric element for damping the vibrations at the prescribed frequency, the coefficient of electromechanical coupling, which is evaluated by the values of eigenfrequencies of the structure in the short-circuit and open-circuit regimes. The values of eigenfrequencies of vibrations are evaluated by solving the problem of natural vibrations of electromechanical systems by the finite element method using the applied ANSYS package. The investigation were conducted for a thin-walled aluminum shell in the form of half-cylinder.
Linear and nonlinear analysis of fluid slosh dampers
NASA Astrophysics Data System (ADS)
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
NASA Astrophysics Data System (ADS)
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-01
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
In the present study, the experimental and theoretical vibrational spectra of 5-bromo-2'-deoxyuridine were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF) and density functional B3LYP method with 6-31G(d), 6-31G(d,p), 6-311++G(d) and 6-311++G(d,p) basis sets by Gaussian program, for the first time. The assignments of vibrational frequencies were performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and theoretical vibrational frequencies are compared with the corresponding experimental data and they were seen to be in a good agreement with the each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-25
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. Copyright © 2014 Elsevier B.V. All rights reserved.
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
An experimental approach to free vibration analysis of smart composite beam
NASA Astrophysics Data System (ADS)
Yashavantha Kumar, G. A.; Sathish Kumar, K. M.
2018-02-01
Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.
[Contemporary approach to evaluation of sensory disorders in polyneuropathy due to vibration].
Nepershina, C P; Lagutina, G N; Kuzmina, L P; Skrypnik, O V; Ryabininal, S N; Lagutina, A P
2016-08-01
Recently, the studies search possibilities to visualize and objectify sensory disorders in polyneuropathy caused by vibration. Special attention is paid on studies of injuried structures responsible for temperature and pain sensitivity. Examination covered 92 patients with vibration disease, aged 34 to 73 years. Methods used are: pallesthesiometry, quantitative sensory tests, questionnaires and s 'cales of pain (visual analog scale (VAS) of pain, Pain-Detect, MPQ DN-, HADS). Correlation was found between.temperature, pain thresholds and VAS and pallesthesiometry parameters. The obtained results analysis indicates formation distal polyneuropathy syndrome of upper limbs with concomitant pain during vibration disease.
NASA Astrophysics Data System (ADS)
de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei
2016-11-01
The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a new one, which are compared in terms of their capability for damage identification. The experimental and numerical results show that the vibration-based damage methods combined to the metrics can be used in Structural Health Monitoring (SHM) systems to identify the damage in the structure.
NASA Astrophysics Data System (ADS)
Wyjadłowski, Marek
2017-12-01
The constant development of geotechnical technologies imposes the necessity of monitoring techniques to provide a proper quality and the safe execution of geotechnical works. Several monitoring methods enable the preliminary design of work process and current control of hydrotechnical works (pile driving, sheet piling, ground improvement methods). Wave parameter measurements and/or continuous histogram recording of shocks and vibrations and its dynamic impact on engineering structures in the close vicinity of the building site enable the modification of the technology parameters, such as vibrator frequency or hammer drop height. Many examples of practical applications have already been published and provide a basis for the formulation of guidelines, for work on the following sites. In the current work the author's experience gained during sheet piling works for the reconstruction of City Channel in Wrocław (Poland) was presented. The examples chosen describe ways of proceedings in the case of new and old residential buildings where the concrete or masonry walls were exposed to vibrations and in the case of the hydrotechnical structures (sluices, bridges).
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
Propellant grain dynamics in aft attach ring of shuttle solid rocket booster
NASA Technical Reports Server (NTRS)
Verderaime, V.
1979-01-01
An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.
NASA Astrophysics Data System (ADS)
Gokula Krishnan, K.; Sivakumar, R.; Thanikachalam, V.; Saleem, H.; Arockia doss, M.
2015-06-01
The molecular structure and vibrational modes of 3-acetylcoumarin oxime carbonate (abbreviated as 3-ACOC) have been investigated by FT-IR, FT-Raman, NMR spectra and also by computational methods using HF and B3LYP with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths, bond angles and dihedral angles) were in good agreement with the corresponding experimental values of 3-ACOC. The calculated vibrational frequencies of normal modes from DFT method matched well with the experimental values. The complete assignments were made on the basis of the total energy distribution (TED) of the vibrational modes. NMR (1H and 13C) chemical shifts were calculated by GIAO method and the results were compared with the experimental values. The other parameters like dipole moment, polarizability, first order hyperpolarizability, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been computed.
Impedance approach to designing efficient vibration energy absorbers
NASA Astrophysics Data System (ADS)
Bobrovnitskii, Y. I.; Morozov, K. D.; Tomilina, T. M.
2017-03-01
The concept introduced previously by the authors on the best sound absorber having the maximum allowable efficiency in absorbing the energy of an incident sound field has been extended to arbitrary linear elastic media and structures. Analytic relations have been found for the input impedance characteristics that the best vibrational energy absorber should have. The implementation of these relations is the basis of the proposed impedance method of designing efficient vibration and noise absorbers. We present the results of a laboratory experiment that confirms the validity of the obtained theoretical relations, and we construct the simplest best vibration absorber. We also calculate the parameters and demonstrate the efficiency of a dynamic vibration absorber as the best absorber.
Integrated tuned vibration absorbers: a theoretical study.
Gardonio, Paolo; Zilletti, Michele
2013-11-01
This article presents a simulation study on two integrated tuned vibration absorbers (TVAs) designed to control the global flexural vibration of lightly damped thin structures subject to broad frequency band disturbances. The first one consists of a single axial switching TVA composed by a seismic mass mounted on variable axial spring and damper elements so that the characteristic damping and natural frequency of the absorber can be switched iteratively to control the resonant response of three flexural modes of the hosting structure. The second one consists of a single three-axes TVA composed by a seismic mass mounted on axial and rotational springs and dampers, which are arranged in such a way that the suspended mass is characterized by uncoupled heave and pitch-rolling vibrations. In this case the three damping and natural frequency parameters of the absorber are tuned separately to control three flexural modes of the hosting structure. The simulation study shows that the proposed single-unit absorbers produce, respectively, 5.3 and 8.7 dB reductions of the global flexural vibration of a rectangular plate between 20 and 120 Hz.
NASA Astrophysics Data System (ADS)
Yurdakul, Ş.; Bilkana, M. T.
2015-10-01
The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Galván, Jorge E.; Gil, Diego M.; Lanús, Hernán E.; Altabef, Aida Ben
2015-02-01
The fourth member of the series of compounds of the type POX3 with X = I was synthesized and characterized by infrared spectroscopy. The geometrical parameters and vibrational properties of POX3 (X = F, Cl, Br, I) molecules were investigated theoretically by means DFT and ab initio methods. Available geometrical and vibrational data were used together with theoretical calculations in order to obtain a set of scaled force constants. The observed trends in geometrical parameters are analyzed and compared with those obtained in a previous work for the VOX3 (X = F, Cl, Br, I) series of compounds. NBO analysis was performed in order to know the hyper-conjugative interactions that favor one structure over another. The molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, chemical hardness, softness and global electrophilicity index have been deduced from HOMO-LUMO analysis.
NASA Astrophysics Data System (ADS)
Liu, Bing; Sun, Li Guo
2018-06-01
This paper chooses the Nanjing-Hangzhou high speed overbridge, a self-anchored suspension bridge, as the research target, trying to identify the dynamic characteristic parameters of the bridge by using the peak-picking method to analyze the velocity response data under ambient excitation collected by 7 vibration pickup sensors set on the bridge deck. The ABAQUS is used to set up a three-dimensional finite element model for the full bridge and amends the finite element model of the suspension bridge based on the identified modal parameter, and suspender force picked by the PDV100 laser vibrometer. The study shows that the modal parameter can well be identified by analyzing the bridge vibration velocity collected by 7 survey points. The identified modal parameter and measured suspender force can be used as the basis of the amendment of the finite element model of the suspension bridge. The amended model can truthfully reflect the structural physical features and it can also be the benchmark model for the long-term health monitoring and condition assessment of the bridge.
Identification of walking human model using agent-based modelling
NASA Astrophysics Data System (ADS)
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
Vortex-induced vibrations mitigation through a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Wang, L.
2017-01-01
The passive suppression mechanism of the vortex-induced vibrations (VIV) of the cylinder by means of an essentially nonlinear element, the nonlinear energy sink (NES) is investigated. The flow-induced loads on the cylinder are modeled using a prevalent van der Pol oscillator which is experimentally validated, coupling to the structural vibrations in the presence of the NES structure. Based on the coupled nonlinear governing equations of motion, the performed analysis indicates that the mass and damping of NES have significant effects on the coupled frequency and damping of the aero-elastic system, leading to the shift of synchronization region and mitigation of vibration responses. It is demonstrated that the coupled system of flow-cylinder-NES behaves resonant interactions, showing periodic, aperiodic, and multiple stable responses which depend on the values of the NES parameters. In addition, it is found that the occurrence of multiple stable responses can enhance the nonlinear energy pumping effect, resulting in the increment of transferring energy from the flow via the cylinder to the NES, which is related to the essential nonlinearity of the sink stiffness. This results in a significant reduction in the VIV amplitudes of the primary circular cylinder for appropriate NES parameter values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, A.C.; Hardis, J.E.; Southworth, S.H.
1988-01-15
Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira
The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.
Detection of damage in welded structure using experimental modal data
NASA Astrophysics Data System (ADS)
Abu Husain, N.; Ouyang, H.
2011-07-01
A typical automotive structure could contain thousands of spot weld joints that contribute significantly to the vehicle's structural stiffness and dynamic characteristics. However, some of these joints may be imperfect or even absent during the manufacturing process and they are also highly susceptible to damage due to operational and environmental conditions during the vehicle lifetime. Therefore, early detection and estimation of damage are important so necessary actions can be taken to avoid further problems. Changes in physical parameters due to existence of damage in a structure often leads to alteration of vibration modes; thus demonstrating the dependency between the vibration characteristics and the physical properties of structures. A sensitivity-based model updating method, performed using a combination of MATLAB and NASTRAN, has been selected for the purpose of this work. The updating procedure is regarded as parameter identification which aims to bring the numerical prediction to be as closely as possible to the measured natural frequencies and mode shapes data of the damaged structure in order to identify the damage parameters (characterised by the reductions in the Young's modulus of the weld patches to indicate the loss of material/stiffness at the damage region).
Autonomous Modal Identification of the Space Shuttle Tail Rudder
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; James, George H., III; Zimmerman, David C.
1997-01-01
Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.
Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration
NASA Astrophysics Data System (ADS)
Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma
In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.
NASA Technical Reports Server (NTRS)
He, X. M.; Craven, B. M.
1993-01-01
For molecular crystals, a procedure is proposed for interpreting experimentally determined atomic mean square anisotropic displacement parameters (ADPs) in terms of the overall molecular vibration together with internal vibrations with the assumption that the molecule consists of a set of linked rigid segments. The internal librations (molecular torsional or bending modes) are described using the variable internal coordinates of the segmented body. With this procedure, the experimental ADPs obtained from crystal structure determinations involving six small molecules (sym-trinitrobenzene, adenosine, tetra-cyanoquinodimethane, benzamide, alpha-cyanoacetic acid hydrazide and N-acetyl-L-tryptophan methylamide) have been analyzed. As a consequence, vibrational corrections to the bond lengths and angles of the molecule are calculated as well as the frequencies and force constants for each internal torsional or bending vibration.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.
2012-01-01
Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.
Chaotic dynamics of flexible beams driven by external white noise
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, A. V.; Papkova, I. V.; Zakharov, V. M.; Erofeev, N. P.; Krylova, E. Yu.; Mrozowski, J.; Krysko, V. A.
2016-10-01
Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear).
Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S
2013-04-15
Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.
Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber
NASA Astrophysics Data System (ADS)
Kecik, Krzysztof
2018-06-01
The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.
A revised version of the transfer matrix method to analyze one-dimensional structures
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1983-01-01
A new and general method to analyze both free and forced vibration characteristics of one-dimensional structures is discussed in this paper. This scheme links for the first time the classical transfer matrix method with the recently developed integrating matrix technique to integrate systems of differential equations. Two alternative approaches to the problem are presented. The first is based upon the lumped parameter model to account for the inertia properties of the structure. The second releases that constraint allowing a more precise description of the physical system. The free vibration of a straight uniform beam under different support conditions is analyzed to test the accuracy of the two models. Finally some results for the free vibration of a 12th order system representing a curved, rotating beam prove that the present method is conveniently extended to more complicated structural dynamics problems.
Inner structural vibration isolation method for a single control moment gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Jingrui; Guo, Zixi; Zhang, Yao; Tang, Liang; Guan, Xin
2016-01-01
Assembling and manufacturing errors of control moment gyros (CMG) often generate high frequency vibrations which are detrimental to spacecrafts with high precision pointing requirement. In this paper, some design methods of vibration isolation between CMG and spacecraft is dealt with. As a first step, the dynamic model of the CMG with and without supporting isolation structures is studied and analyzed. Subsequently, the frequency domain analysis of CMG with isolation system is performed and the effectiveness of the designed system is ascertained. Based on the above studies, an adaptive design suitable with appropriate design parameters are carried out. A numerical analysis is also performed to understand the effectiveness of the system and the comparison made. The simulation results clearly indicate that when the ideal isolation structure was implemented in the spacecraft, the vibrations generated by the rotor were found to be greatly reduced, while the capacity of the output torque was not lost, which means that the isolation system will not affect the performance of attitude control.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.
2017-01-01
It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.
Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossner, H. H.; Schmitz, D.; Imperia, P.
2006-10-01
Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less
Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules
NASA Astrophysics Data System (ADS)
Garner, Scott M.; Miller, Terry A.
2017-06-01
The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.
Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta
2014-07-15
In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S
2014-09-15
The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.
2013-08-01
The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.
Combined Euler column vibration isolation and energy harvesting
NASA Astrophysics Data System (ADS)
Davis, R. B.; McDowell, M. D.
2017-05-01
A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.
NASA Astrophysics Data System (ADS)
Arslan, Hakan; Demircan, Aydın; Göktürk, Ersen
2008-01-01
The IR spectra of 5-chloro-10-oxa-3-thia-tricyclo[5.2.1.0 1,5]dec-8-ene-3,3-dioxide (COTDO) has been recorded in the region 4000-525 cm -1. The optimized molecular geometry, frequency and intensity of the vibrational bands of COTDO in the ground state has been calculated using the Hartree-Fock and density functional using Becke's three-parameter hybrid method with the Lee, Yang, and Parr correlation functional methods with 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental IR spectra. The calculated geometrical parameters and harmonic vibrations are predicted in a very good agreement with the experimental data. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using VEDA 4 program. With the help of this modern technique we were able to complete the assignment of the vibrational spectra of the title compound.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-01
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Use of asymptotic methods in vibration analysis
NASA Technical Reports Server (NTRS)
Ashley, H.
1978-01-01
The derivation of dynamic differential equations, suitable for studying the vibrations of rotating, curved, slender structures was examined, and the Hamiltonian procedure was advocated for this purpose. Various reductions of the full system are displayed, which govern the vibrating troposkien when various order of magnitude restrictions are placed on important parameters. Possible advantages of the WKB asymptotic method for solving these classes of problems are discussed. A special case of this method is used illustratively to calculate eigenvalues and eigenfunctions for a flat turbine blade with small flexural stiffness.
Design of vibration sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Zhang, Zhengyi; Liu, Chuntong
2017-12-01
Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio
2012-06-01
In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.
Detection of Internal Delamination in Composite Mono Leaf Spring based on Vibration Characteristics
NASA Astrophysics Data System (ADS)
Jamadar, Nagendra Iranna; Kivade, S. B.
2017-06-01
Structural health monitoring (SHM) is one of the non destructive evaluations universally accepted to detect defect or damage in composite structures. The paper deals with detection of inter laminar delamination problems in composite mono leaf spring during service conditions by vibration techniques. The delamination detection is crucial issue as it leads to catastrophic failure. The vibration parameters such as natural frequency and modes shapes are evaluated for healthy and delaminated spring. It has been observed that some mode shapes are found to be more sensitive to the delaminated region. The presence, location and severity of delamination are simulated and validated by experimental modal analysis for both the spring and found closer approximation with each other.
NASA Astrophysics Data System (ADS)
Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu
2016-08-01
One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Modeling the human body/seat system in a vibration environment.
Rosen, Jacob; Arcan, Mircea
2003-04-01
The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.
NASA Astrophysics Data System (ADS)
Sadigh Vishkaee, Teherh; Fazaeli, Reza
2018-06-01
Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.
Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements
NASA Astrophysics Data System (ADS)
Nelson, G.; Rajamani, R.; Erdman, A.
2015-09-01
This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.
Nichols, J.M.; Link, W.A.; Murphy, K.D.; Olson, C.C.
2010-01-01
This work discusses a Bayesian approach to approximating the distribution of parameters governing nonlinear structural systems. Specifically, we use a Markov Chain Monte Carlo method for sampling the posterior parameter distributions thus producing both point and interval estimates for parameters. The method is first used to identify both linear and nonlinear parameters in a multiple degree-of-freedom structural systems using free-decay vibrations. The approach is then applied to the problem of identifying the location, size, and depth of delamination in a model composite beam. The influence of additive Gaussian noise on the response data is explored with respect to the quality of the resulting parameter estimates.
Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2018-06-15
At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B.V. All rights reserved.
Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.
Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo
2012-10-18
Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.
Vibration parameters affecting vibration-induced reflex muscle activity.
Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir
2017-03-01
To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.
Vibrations of single-crystal gold nanorods and nanowires
NASA Astrophysics Data System (ADS)
Saviot, L.
2018-04-01
The vibrations of gold nanowires and nanorods are investigated numerically in the framework of continuum elasticity using the Rayleigh-Ritz variational method. Special attention is paid to identify the vibrations relevant in Raman scattering experiments. A comprehensive description of the vibrations of nanorods is proposed by determining their symmetry, comparing with standing waves in the corresponding nanowires, and estimating their Raman intensity. The role of experimentally relevant parameters such as the anisotropic cubic lattice structure, the presence of faceted lateral surfaces, and the shape of the ends of the nanorods is evaluated. Elastic anisotropy is shown to play a significant role contrarily to the presence of facets. Localized vibrations are found for nanorods with flat ends. Their evolution as the shape of the ends is changed to half-spheres is discussed.
NASA Astrophysics Data System (ADS)
Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun
2009-04-01
N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2017-11-01
Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.
Parlak, Cemal; Ramasami, Ponnadurai; Kumar, Chandraju Sadolalu Chidan; Tursun, Mahir; Quah, Ching Kheng; Rhyman, Lydia; Bilge, Metin; Fun, Hoong-Kun; Chandraju, Siddegowda
2015-01-01
A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals. Copyright © 2015 Elsevier B.V. All rights reserved.
Free Vibration of Fiber Composite Thin Shells in a Hot Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1995-01-01
Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chern-Hwa
2010-05-01
This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.
Ahmed, Houssem Eddine; Kamoun, Slaheddine
2017-09-05
The crystal structure of (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O is built up of [NH 3 (CH 2 ) 3 NH 2 (CH 2 ) 3 NH 3 ] 3+ cations, [SbCl 5 ] 2- anions, free Cl - anions and neutral water molecules connected together by NH⋯Cl, NH⋯O and OH⋯Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, Houssem Eddine; Kamoun, Slaheddine
2017-09-01
The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.
Sert, Yusuf; Mahendra, M; Chandra; Shivashankar, K; Puttaraju, K B; Doğan, H; Çırak, Çagrı; Ucun, Fatih
2014-07-15
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bioactive agent namely, 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one (TIP) have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Mahendra, M.; Chandra; Shivashankar, K.; Puttaraju, K. B.; Doğan, H.; Çırak, Çagrı; Ucun, Fatih
2014-07-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bioactive agent namely, 2-Trifluoromethyl-10H-benzo[4,5]-imidazo[1,2-a]pyrimidin-4-one (TIP) have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and bond angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
Accelerated lifetime test of vibration isolator made of Metal Rubber material
NASA Astrophysics Data System (ADS)
Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan
2017-01-01
The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.
Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy
Chung, Chao-Yu; Boik, John; Potma, Eric O.
2014-01-01
Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525
Structural parameter study on polymer-based ultrasonic motor
NASA Astrophysics Data System (ADS)
Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro
2017-11-01
Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.
Active control of structures using macro-fiber composite (MFC)
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Barkanov, E.; Gluhihs, S.
2007-12-01
This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.
NASA Astrophysics Data System (ADS)
Tang, Qiangang; Sun, Shixian
1992-03-01
In this paper, the perturbation technique is introduced into the method of harmonic balance. A new method used for analyzing nonlinear free vibration of multidegree-of-freedom systems and structures is obtained. The form of solution is expanded into a series of small parameters and harmonics, so no term will be lost in the solution and the algebraic equations are linear. With the linear transformations, the matrices of the equations become diagonal. As soon as the modes related to linear vibration are found, the solution can be obtained. This method is superior to the method of linearized iteration. The examples show that the method has high accuracy for small-amplitude problems and the results for rather large amplitudes are satisfactory.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-05
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
NASA Astrophysics Data System (ADS)
Kolev, Tsonko M.; Stamboliyska, Bistra A.
2002-12-01
Geometry and vibrational spectroscopic data of benzil-d 0 benzil-d 10 and benzil- 18O calculated at various levels of theory (RHF/6-31G*, B3LYP/6-31G*, BLYP/6-31G*) are reported. The theoretical results are discussed mainly in terms of the comparisons with infrared (4000-100 cm -1) and Raman (4000-50 cm -1) spectral data. The calculated isotopic frequency shifts, induced by the 18O- and d 10-labeling, are in a good agreement with the measured values. A complete vibrational assignment was made with the help of ab initio force field calculations. The data thus obtained were used for reassigning some vibrational frequencies. The results of the optimized molecular structure obtained on the basis of RHF and the DFT calculations are presented and compared with the experimental X-ray diffraction for the benzil-d 0 single crystal. It turns out that the best structural parameters are predicted by the B3LYP/6-31G* method.
Kolev, Tsonko M; Stamboliyska, Bistra A
2002-12-01
Geometry and vibrational spectroscopic data of benzil-d0 benzil-d10 and benzil-18O calculated at various levels of theory (RHF/6-31G*, B3LYP/6-31G*, BLYP/6-31G*) are reported. The theoretical results are discussed mainly in terms of the comparisons with infrared (4000-100 cm(-1)) and Raman (4000-50 cm(-1)) spectral data. The calculated isotopic frequency shifts, induced by the 18O- and d10-labeling, are in a good agreement with the measured values. A complete vibrational assignment was made with the help of ab initio force field calculations. The data thus obtained were used for reassigning some vibrational frequencies. The results of the optimized molecular structure obtained on the basis of RHF and the DFT calculations are presented and compared with the experimental X-ray diffraction for the benzil-d0 single crystal. It turns out that the best structural parameters are predicted by the B3LYP/6-31G* method.
NASA Astrophysics Data System (ADS)
Ponomarev, Yury K.
2018-01-01
The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.
NASA Astrophysics Data System (ADS)
Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona
2018-01-01
Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.
Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid
NASA Astrophysics Data System (ADS)
Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali
2016-09-01
Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.
NASA Astrophysics Data System (ADS)
Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph
2009-04-01
Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Sathe, V. G.; Milton Franklin Benial, A.
2014-08-01
The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis.
Mechanical energy flow models of rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1992-01-01
It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.
NASA Astrophysics Data System (ADS)
Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie
2017-08-01
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi; Bloino, Julien; Tasinato, Nicola; Carnimeo, Ivan; Biczysko, Malgorzata; Puzzarini, Cristina
2017-05-04
The medium-resolution gas-phase infrared (IR) spectra of 1-bromo-1-fluoroethene (BrFC═CH 2 , 1,1-C 2 H 2 BrF) were investigated in the range 300-6500 cm -1 , and the vibrational analysis led to the assignment of all fundamentals as well as many overtone and combination bands up to three quanta, thus giving an accurate description of its vibrational structure. Integrated band intensity data were determined with high precision from the measurements of their corresponding absorption cross sections. The vibrational analysis was supported by high-level ab initio investigations. CCSD(T) computations accounting for extrapolation to the complete basis set and core correlation effects were employed to accurately determine the molecular structure and harmonic force field. The latter was then coupled to B2PLYP and MP2 computations in order to account for mechanical and electrical anharmonicities. Second-order perturbative vibrational theory was then applied to the thus obtained hybrid force fields to support the experimental assignment of the IR spectra.
Arjunan, V; Devi, L; Remya, P; Mohan, S
2013-09-01
The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed. The structural parameters, energies, thermodynamic properties, vibrational frequencies and the NBO charges of 34DMBN were determined. The (1)H and (13)C chemical shifts with respect to TMS were investigated and also calculated theoretically using the gauge independent atomic orbital method and compared with the experimental data. The delocalisation energy of different types of bonding interactions was investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Segregation simulation of binary granular matter under horizontal pendulum vibrations
NASA Astrophysics Data System (ADS)
Ma, Xuedong; Zhang, Yanbing; Ran, Heli; Zhang, Qingying
2016-08-01
Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.
The effects of low-frequency vibrations on hepatic profile of blood
NASA Astrophysics Data System (ADS)
Damijan, Z.
2008-02-01
Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of bilirubin level [umol/l] in blood serum from 14.05 to 9.70 for 82% of participants, the probability level being p = 0.000041.
Vibration control in smart coupled beams subjected to pulse excitations
NASA Astrophysics Data System (ADS)
Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.
2016-10-01
In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.
2013-04-01
The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.
Vibration exercise makes your muscles and bones stronger: fact or fiction?
Cardinale, Marco; Rittweger, Jörn
2006-03-01
Vibration transmitted to the whole body or part of it has been extensively studied in relation to the risks to the health and safety of workers. These studies have highlighted the particular danger of lower-back morbidity and spinal trauma arising after prolonged exposure to vibration. However, short-term exposure to whole-body vibration (WBV) or the use of vibrating dumbbells can have beneficial effects on the musculoskeletal system. As a consequence of this encouraging work, many manufacturers have developed exercise devices characterized by vibrating plates transmitting vibration to the whole body and vibrating dumbbells. Preliminary results seem to recommend WBV exercise as a therapeutic alternative for preventing/reversing sarcopenia and possibly osteoporosis. However, there is a paucity of well designed studies in the elderly. In particular, there is a lack of understanding of the physiological mechanisms involved in the adaptive responses to vibration exposure, and of the most appropriate vibration parameters to be used in order to maximize gains and improve safety. The effectiveness of this novel exercise modality on musculoskeletal structures is examined in this review. The physiological mechanisms involved in the adaptive responses to vibration exercise are discussed and suggestions for future studies are made.
NASA Astrophysics Data System (ADS)
Mariappan, G.; Sundaraganesan, N.
2015-04-01
A comprehensive screening of the density functional theoretical approach to structural analysis is presented in this section. DFT calculations using B3LYP/6-311++G(d,p) level of theory were found to yield results that are very comparable to experimental IR and Raman spectra. Computed geometrical parameters and harmonic vibrational wavenumbers of the fundamentals were found in satisfactory agreement with the experimental data and also its parent structure. The vibrational assignments of the normal modes were performed on the basis of the potential energy distribution (PED) calculations. It can be proven from the comparative results of mitotane and its parent structure Dichlorodiphenyldichloroethane (DDD), the intramolecular nonbonding interaction between (C1sbnd H19⋯Cl18) in the ortho position which is calculated 2.583 Å and the position of the substitution takeover the vibrational wavenumber to redshift of 47 cm-1. In addition, natural bond orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity and charge delocalization has been analyzed. 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method and compared with published results.
Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.
Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less
Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.
Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S
2013-06-01
The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho
2016-03-11
This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility.
Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho
2016-01-01
This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366
Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, M.; Basaran, M. E.; Porfiri, M.
2012-03-01
In this paper, we study flexural vibrations of a cantilever beam with thin rectangular cross section submerged in a quiescent viscous fluid and undergoing oscillations whose amplitude is comparable with its width. The structure is modeled using Euler-Bernoulli beam theory and the distributed hydrodynamic loading is described by a single complex-valued hydrodynamic function which accounts for added mass and fluid damping experienced by the structure. We perform a parametric 2D computational fluid dynamics analysis of an oscillating rigid lamina, representative of a generic beam cross section, to understand the dependence of the hydrodynamic function on the governing flow parameters. We find that increasing the frequency and amplitude of the vibration elicits vortex shedding and convection phenomena which are, in turn, responsible for nonlinear hydrodynamic damping. We establish a manageable nonlinear correction to the classical hydrodynamic function developed for small amplitude vibration and we derive a computationally efficient reduced order modal model for the beam nonlinear oscillations. Numerical and theoretical results are validated by comparison with ad hoc designed experiments on tapered beams and multimodal vibrations and with data available in the literature. Findings from this work are expected to find applications in the design of slender structures of interest in marine applications, such as biomimetic propulsion systems and energy harvesting devices.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
NASA Astrophysics Data System (ADS)
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
4-Methyl-1H-Indazole-5-Boronic acid: Crystal structure, vibrational spectra and DFT simulations
NASA Astrophysics Data System (ADS)
Dikmen, Gökhan
2017-12-01
Molecular structure, conformer forms, geometric parameters and vibrational assignments and properties of 4-Methyl-1H-Indazole-5-Boronic Acid (4M1HI5BA) were theoretically and experimentally studied using Raman, FT-IR, XRD spectroscopic methods and quantum chemical calculations. Raman and FT-IR spectra were examined range from 4000 to 400 cm-1. Moreover, single crystals of 4M1HI5BA were prepared in order to use in XRD experiments. Vibrational assignments were carried out using total energy distribution (TED) values. Furthermore, HOMO and LUMO were calculated for 4M1HI5BA. Four different conformations of 4M1HI5BA were calculated in only gas phase. The theoretical and experimental results show that in order to predict vibrational wavenumbers B3LYP/6-311++G(d,p) may provide acceptable results and the most stable conformer of 4M1HI5BA is predicted to be envelope conformer.
NASA Astrophysics Data System (ADS)
Arslan, Hakan; Algül, Öztekin; Önkol, Tijen
2008-08-01
The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman
2011-08-01
Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...
2014-05-01
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
NASA Astrophysics Data System (ADS)
Nagaraja, T.; Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Angadi, Basavaraj
2018-04-01
In this paper, the complex structured A(B'B''B''')O3 perovskite Pb(Fe0.585Nb0.25W0.165)O3(PFNW) type multiferroic, was successfully synthesized in a single phase by a single step solid state reaction method and optimized synthesis parameters are calcination at 700 °C/2hr and sintering at 800 °C/3hr. The detailed room temperature (RT) structural, vibrational and temperature dependent magnetization were carried out through the X ray diffraction, Raman spectroscopy and vibrating sample magnetometer (VSM). Rietveld refinement was carried out on RT XRD data it confirms the cubic structure with Pm-3m space group, the obtained lattice parameters: a = b = c = 3.9948 Å, and α = β = γ = 90°. The RT Raman spectroscopy confirms the formation of cubic structure broad peak at 820 cm-1, related to the A1g mode. PFNW exhibits a cusp at around 255 K in the temperature dependent magnetic susceptibility corresponding to the Néel temperature (TN) and another peak around 10 K (Tsg) corresponding to spin-glass like transition. The M-H loops were measured at few selected temperatures above and below TN. The M-H loop at 5 K shows the well saturated loop with significant coercive field compared to 260 and 300K data, due to the existence of spin-glass ordering.
NASA Astrophysics Data System (ADS)
Kong, Lingfeng; Zhang, Jinhui; Wang, Huiyuan; Ma, Shenglin; Li, Fang; Wang, Qing-Ming; Qin, Lifeng
2016-12-01
In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E) and open circuit voltage (Vo) were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.
Real-time moving horizon estimation for a vibrating active cantilever
NASA Astrophysics Data System (ADS)
Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris
2017-03-01
Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article
NASA Technical Reports Server (NTRS)
Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.
2017-01-01
Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.
Mode tuning of a simplified string instrument using time-dimensionless state-derivative control
NASA Astrophysics Data System (ADS)
Benacchio, Simon; Chomette, Baptiste; Mamou-Mani, Adrien; Finel, Victor
2015-01-01
In recent years, there has been a growing interest in smart structures, particularly in the field of musical acoustics. Control methods, initially developed to reduce vibration and damage, can be a good way to shift modal parameters of a structure in order to modify its dynamic response. This study focuses on smart musical instruments and aims to modify their radiated sound. This is achieved by controlling the modal parameters of the soundboard of a simplified string instrument. A method combining a pole placement algorithm and a time-dimensionless state-derivative control is used and quickly compared to a usual state control method. Then the effect of the mode tuning on the coupling between the string and the soundboard is experimentally studied. Controlling two vibration modes of the soundboard, its acoustic response and the damping of the third partial of the sound are modified. Finally these effects are listened in the radiated sound.
High frequency modal identification on noisy high-speed camera data
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.
Structural modal parameter identification using local mean decomposition
NASA Astrophysics Data System (ADS)
Keyhani, Ali; Mohammadi, Saeed
2018-02-01
Modal parameter identification is the first step in structural health monitoring of existing structures. Already, many powerful methods have been proposed for this concept and each method has some benefits and shortcomings. In this study, a new method based on local mean decomposition is proposed for modal identification of civil structures from free or ambient vibration measurements. The ability of the proposed method was investigated using some numerical studies and the results compared with those obtained from the Hilbert-Huang transform (HHT). As a major advantage, the proposed method can extract natural frequencies and damping ratios of all active modes from only one measurement. The accuracy of the identified modes depends on their participation in the measured responses. Nevertheless, the identified natural frequencies have reasonable accuracy in both cases of free and ambient vibration measurements, even in the presence of noise. The instantaneous phase angle and the natural logarithm of instantaneous amplitude curves obtained from the proposed method have more linearity rather than those from the HHT algorithm. Also, the end effect is more restricted for the proposed method.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.
Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun
2012-05-01
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).
Damage localization of marine risers using time series of vibration signals
NASA Astrophysics Data System (ADS)
Liu, Hao; Yang, Hezhen; Liu, Fushun
2014-10-01
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
Spectroscopic notes of Methyl Red (MR) dye.
El-Mansy, M A M; Yahia, I S
2014-09-15
In the present work, a combined experimental and theoretical study on molecular structure and vibrational frequencies of MR were reported. The FT-IR spectrum of MR is recorded in the solid phase. The equilibrium geometries, harmonic vibrational frequencies, thermo-chemical parameters, total dipole moment and HOMO-LUMO energies are calculated by DFT/B3LYP utilizing 6-311G(d,p) basis set. Results showed that MR is highly recommended to be a promising structure for many applications in optoelectronic devices due to its high calculated dipole moment value (7.2 Debye) and lower HOMO-LUMO energy gap of 3.5 eV. Copyright © 2014 Elsevier B.V. All rights reserved.
Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Sathe, V G; Milton Franklin Benial, A
2014-08-14
The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method with 6-311G (d,p), 6-311++G (d,p) and cc-pVTZ basis sets using the Gaussian 09 program. The most stable optimized structure of the molecule was predicted by the DFT/B3LYP method with cc-pVTZ basis set. The vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals and thermodynamical parameters were calculated. These calculations were done at the ground state energy level of BABP without applying any constraint on the potential energy surface. The vibrational spectra were experimentally recorded using Fourier Transform-Infrared (FT-IR) and micro-Raman spectrometer. The computed vibrational frequencies were scaled by scale factors to yield a good agreement with observed experimental vibrational frequencies. The complete theoretically calculated and experimentally observed vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program. The vibrational modes assignments were performed by using the animation option of GaussView 05 graphical interface for Gaussian program. The Mulliken atomic charge distribution was calculated for BABP molecule. The molecular reactivity and stability of BABP were also studied by frontier molecular orbitals (FMOs) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S
2013-04-15
The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z
2013-11-25
The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
NASA Astrophysics Data System (ADS)
Killoran, N.; Huelga, S. F.; Plenio, M. B.
2015-10-01
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.
Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators
NASA Astrophysics Data System (ADS)
Deng, Jing-hui; Cheng, Qi-you
2017-07-01
The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.
In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
Distributed Fiber-Optic Sensors for Vibration Detection
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-01-01
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334
Distributed Fiber-Optic Sensors for Vibration Detection.
Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai
2016-07-26
Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.
Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis
NASA Astrophysics Data System (ADS)
Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea
2017-07-01
The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.
Continuous monitoring of high-rise buildings using seismic interferometry
NASA Astrophysics Data System (ADS)
Mordret, A.; Sun, H.; Prieto, G. A.; Toksoz, M. N.; Buyukozturk, O.
2016-12-01
The linear seismic response of a building is commonly extracted from ambient vibration measurements. Seismic deconvolution interferometry performed on ambient vibration measurements can also be used to estimate the dynamic characteristics of a building, such as the velocity of shear-waves travelling inside the building as well as a damping parameter depending on the intrinsic attenuation of the building and the soil-structure coupling. The continuous nature of the ambient vibrations allows us to measure these parameters repeatedly and to observe their temporal variations. We used 2 weeks of ambient vibration recorded by 36 accelerometers installed in the Green Building on the Massachusetts Institute of Technology campus (Cambridge, MA) to continuously monitor the shear-wave speed and the attenuation factor of the building. Due to the low strain of the ambient vibrations, the observed changes are totally reversible. The relative velocity changes between a reference deconvolution function and the current deconvolution functions are measured with two different methods: 1) the Moving Window Cross-Spectral technique and 2) the stretching technique. Both methods show similar results. We show that measuring the stretching coefficient for the deconvolution functions filtered around the fundamental mode frequency is equivalent to measuring the wandering of the fundamental frequency in the raw ambient vibration data. By comparing these results with local weather parameters, we show that the relative air humidity is the factor dominating the relative seismic velocity variations in the Green Building, as well as the wandering of the fundamental mode. The one-day periodic variations are affected by both the temperature and the humidity. The attenuation factor, measured as the exponential decay of the fundamental mode waveforms, shows a more complex behaviour with respect to the weather measurements.
Proceedings of the 3rd Annual SCOLE Workshop
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1987-01-01
Topics addressed include: modeling and controlling the Spacecraft Control Laboratory Experiment (SCOLE) configurations; slewing maneuvers; mathematical models; vibration damping; gravitational effects; structural dynamics; finite element method; distributed parameter system; on-line pulse control; stability augmentation; and stochastic processes.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
Noori Tahneh, Akram; Bagheri Novir, Samaneh; Balali, Ebrahim
2017-11-25
The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.
DFT simulations and vibrational spectra of 2-amino-2-methyl-1,3-propanediol
NASA Astrophysics Data System (ADS)
Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.
2014-12-01
The FTIR and FT-Raman spectra of 2-amino-2-methyl-1,3-propanediol were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and density functional method (B3LYP) with the augmented-correlation consistent-polarized valence double zeta (aug-cc-pVDZ) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed on the basis of the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Mulliken charges were calculated using both Hartee-Fock and density functional method using the aug-cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-Independent Atomic Orbital (GIAO) method and were compared with experimental results.
Vibrational spectroscopy and theoretical studies on 2,4-dinitrophenylhydrazine
NASA Astrophysics Data System (ADS)
Chiş, V.; Filip, S.; Miclăuş, V.; Pîrnău, A.; Tănăselia, C.; Almăşan, V.; Vasilescu, M.
2005-06-01
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 2,4-dinitrophenylhydrazine. FT-IR, FT-IR/ATR and Raman spectra of normal and deuterated DNPH have been recorded and analyzed in order to get new insights into molecular structure and properties of this molecule, with particular emphasize on its intra- and intermolecular hydrogen bonds (HB's). For computational purposes we used density functional theory (DFT) methods, with B3LYP and BLYP exchange-correlation functionals, in conjunction with 6-31G(d) basis set. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of DFT calculations and isotopic shifts and by comparison to other dinitro- substituted compounds [V. Chiş, Chem. Phys., 300 (2004) 1]. To aid in mode assignments, we based on the direct comparison between experimental and calculated spectra by considering both the frequency sequence and the intensity pattern of the experimental and computed vibrational bands. It is also shown that semiempirical AM1 method predicts geometrical parameters and vibrational frequencies related to the HB in a pleasant agreement with experiment, being surprisingly accurate from this perspective.
Dynamics and control of high precision magnetically levitated vibration isolation systems
NASA Technical Reports Server (NTRS)
Youcef-Toumi, K.; Yeh, T-J.
1992-01-01
Vibration control of flexible structures has received a great deal of interest in recent years. Several authors have investigated this topic in the areas of robot manipulators, space structures, and flexible rotors. Key issues associated with the dynamics and control of vibration isolation systems are addressed. Among other important issues to consider in the control of such systems, the location and number of actuators and sensors are essential to effectively control and suppress vibration. We first address the selection of proper actuator and sensor locations leading to a controllable and observable system. The Rayleigh-Ritz modal analysis method is used to develop a lumped-parameter model of a flexible vibration isolation table top. This model is then used to investigate the system's controllability and observability including the coupling effects introduced by the magnetic bearing. This analysis results in necessary and sufficient conditions for proper selection of actuator and sensor locations. These locations are also important for both controller system's complexity and stability of point of views. A favorable pole-zero plot of the open loop transfer functions is presented. Necessary and sufficient conditions for reducing the controller complexity are derived. The results are illustrated by examples using approximate mode shape functions.
Vibration isolation design for periodically stiffened shells by the wave finite element method
NASA Astrophysics Data System (ADS)
Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong
2018-04-01
Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Nanda, B. K.
2018-04-01
Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.
NASA Astrophysics Data System (ADS)
Mammo, Tulu Wegayehu; Murali, N.; Sileshi, Yonatan Mulushoa; Arunamani, T.
2018-02-01
Partially substituted spinel structured CoFe2-xCexO4 (x = 0, 0.03, 0.06, and 0.09) samples have been synthesized using the sol-gel autocombustion route. Stoichiometric amounts of metal nitrates and citric acid were mixed in double distilled water to get homogeneously mixed solutions which were then heated to burn and result in samples for the next two-step annealing procedures. Structural and phase characterization using powder X-ray diffraction (XRD) has been carried out; and a pure spinel structured samples with lattice parameters increasing with the increase of Ce concentration levels have been obtained. The lattice parameters were calculated to be in the range of 8.42774-8.4744 Å. Field emission scanning electron microscopy (FESEM) microstructure characterizations revealed clear grain structures of the so synthesized samples with grain sizes decreasing with Ce. Fourier transform Infrared (FT-IR) characterization measured in the wave number ranges of 400-4000 cm-1 showed the cation vibrations and stretching at characteristic frequency of 668-418 cm-1. The DC resistivity measurements confirmed a decrease in the resistivity of the samples with the increase of Ce concentration and with the increase of temperature in all of the samples synthesized. Room temperature vibrating sample magnetometer measurement revealed the magnetic properties of the samples with decreasing magnetic parameters as Ce concentration increases.
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6
NASA Astrophysics Data System (ADS)
Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.
2014-10-01
The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.
Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers.
Vignola, Joseph; Glean, Aldo; Judge, John; Ryan, Teresa
2013-08-01
The transient response of a resonant structure can be altered by the attachment of one or more substantially smaller resonators. Considered here is a coupled array of damped harmonic oscillators whose resonant frequencies are distributed across a frequency band that encompasses the natural frequency of the primary structure. Vibration energy introduced to the primary structure, which has little to no intrinsic damping, is transferred into and trapped by the attached array. It is shown that, when the properties of the array are optimized to reduce the settling time of the primary structure's transient response, the apparent damping is approximately proportional to the bandwidth of the array (the span of resonant frequencies of the attached oscillators). Numerical simulations were conducted using an unconstrained nonlinear minimization algorithm to find system parameters that result in the fastest settling time. This minimization was conducted for a range of system characteristics including the overall bandwidth of the array, the ratio of the total array mass to that of the primary structure, and the distributions of mass, stiffness, and damping among the array elements. This paper reports optimal values of these parameters and demonstrates that the resulting minimum settling time decreases with increasing bandwidth.
Vibration control by limiting the maximum axial forces in space trusses
NASA Technical Reports Server (NTRS)
Chawla, Vikas; Utku, Senol; Wada, Ben K.
1993-01-01
Proposed here is a method of vibration control based on limiting the maximum axial forces in the active members of an adaptive truss. The actuators simulate elastic rigid-plastic behavior and consume the vibrational energy as work. The method is applicable to both statically determinate as well as indeterminate truss structures. However, for energy efficient control of statistically indeterminate trusses extra actuators may be provided on the redundant bars. An energy formulation relating the various control parameters is derived to get an estimate of the control time. Since the simulation of elastic rigid-plastic behavior requires a piecewise linear control law, a general analytical solution is not possible. Numerical simulation by step-by-step integration is performed to simulate the control of an example truss structure. The problems of application to statically indeterminate trusses and optimal actuator placement are identified for future work.
A vibration-based health monitoring program for a large and seismically vulnerable masonry dome
NASA Astrophysics Data System (ADS)
Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.
2017-05-01
Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin
2016-12-01
Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.
DFT, FT-IR, FT-Raman and NMR studies of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles
NASA Astrophysics Data System (ADS)
Kınalı, Selin; Demirci, Serkan; Çalışır, Zühre; Kurt, Mustafa; Ataç, Ahmet
2011-05-01
We present a detailed analysis of the structural and vibrational spectra of some novel azo dyes. 2-(Substituted phenylazo)malononitriles were synthesized by the coupling reaction of the diazonium salts, which were prepared with the use of various aniline derivatives with malononitrile, and then 4-(substituted phenylazo)-3,5-diamino-1H-pyrazole azo dyes were obtained via the ring closure of the azo compounds with hydrazine monohydrate. The experimental and theoretical vibrational spectra of azo dyes were studied. The structural and spectroscopic analysis of the molecules were carried out by using Becke's three-parameters hybrid functional (B3LYP) and density functional harmonic calculations. The 1H nuclear magnetic resonance (NMR) chemical shifts of the azo dye molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method. The calculated vibrational wavenumbers and chemical shifts were compared with the experimental data of the molecules.
NASA Astrophysics Data System (ADS)
Pirali, O.; Goubet, M.; Boudon, V.; D'Accolti, L.; Fusco, C.; Annese, C.
2017-08-01
We have synthesized 1-aza-adamantan-4-one (C9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide, following a procedure already described in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements and its structure evidenced by 1H and 13C NMR spectroscopy. Among numerous interests in physical chemistry, this target molecule is of high relevance for mechanistic evaluation and the synthesis of novel pharmaceutical compounds. We present a thorough spectroscopic study of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined from infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier transform microwave spectroscopy in the 2-20 GHz region by supersonically expanding the vapor pressure of the warm sample and by room-temperature absorption spectroscopy in the 140-220 GHz range. Accurate sets of rotational and centrifugal distortion parameters of 1-aza-adamantan-4-one in its ground state and in five vibrationally excited states have been derived from these measurements and compared to accurate quantum chemical calculations. The hyperfine parameters have been discussed in terms of molecular structure around the nitrogen quadrupole nucleus.
Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements
NASA Astrophysics Data System (ADS)
Czajkowska, Marzena
2012-06-01
One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in the range of 2,5-5 kHz in comparison with low-class instruments. The study showed that variance, which is a measure of statistical dispersion, is a relevant parameter. The better the quality of the guitar the greater the variance value in 1-2 kHz band. It was observed that higher-quality instruments are characterized by stronger structural resonances of top plate in the range of 4-5 kHz, which means that luthiers should pay special attention to top plate vibrational behaviour in this particular frequency band. Additionally, the result analysis show that best spruce guitars are distinguished by greater top plate vibrations in the range of 2-3 kHz in opposite to best cedar instruments. It can be assumed that top plate vibrations in this particular frequency band may be associated with subjective impression of tone brightness, as commonly known opinion indicates that guitars with spruce tops sound relatively "brighter" in comparison to cedar-top instruments.
Fractal structures in centrifugal flywheel governor system
NASA Astrophysics Data System (ADS)
Rao, Xiao-Bo; Chu, Yan-Dong; Lu-Xu; Chang, Ying-Xiang; Zhang, Jian-Gang
2017-09-01
The global structure of nonlinear response of mechanical centrifugal governor, forming in two-dimensional parameter space, is studied in this paper. By using three kinds of phases, we describe how responses of periodicity, quasi-periodicity and chaos organize some self-similarity structures with parameters varying. For several parameter combinations, the regular vibration shows fractal characteristic, that is, the comb-shaped self-similarity structure is generated by alternating periodic response with intermittent chaos, and Arnold's tongues embedded in quasi-periodic response are organized according to Stern-Brocot tree. In particular, a new type of mixed-mode oscillations (MMOs) is found in the periodic response. These unique structures reveal the natural connection of various responses between part and part, part and the whole in parameter space based on self-similarity of fractal. Meanwhile, the remarkable and unexpected results are to contribute a valid dynamic reference for practical applications with respect to mechanical centrifugal governor.
NASA Astrophysics Data System (ADS)
Van Hoozen, Brian L.; Petersen, Poul B.
2018-04-01
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.
Polat, Turgay; Yıldırım, Gurcan
2014-04-05
The main scope of this study is to determine the effects of 8 solvents on the geometric structure and vibrational spectra of the title compound, xanthine, by means of the DFT/B3LYP level of theory in the combination with the polarizable conductor continuum model (CPCM) for the first time. After determination of the most-steady state (favored structure) of the xanthine molecule, the role of the solvent polarity on the SCF energy (for the molecule stability), atomic charges (for charge distribution) and dipole moments (for molecular charge transfer) belonging to tautomer is discussed in detail. The results obtained indicate not only the presence of the hydrogen bonding and strong intra-molecular charge transfer (ICT) in the compound but the increment of the molecule stability with the solvent polarity, as well. Moreover, it is noted that the optimized geometric parameters and the theoretical vibrational frequencies are in good agreement with the available experimental results found in the literature. In fact, the correlations between the experimental and theoretical findings for the molecular structures improve with the enhancement of the solvent polarity. At the same time, the dimer forms of the xanthine compound are simulated to describe the effect of intermolecular hydrogen bonding on the molecular geometry and vibrational frequencies. It is found that the CO and NH stretching vibrations shift regularly to lower frequency value with higher IR intensity as the dielectric medium enhances systematically due to the intermolecular NH⋯O hydrogen bonds. Theoretical vibrational spectra are also assigned based on the potential energy distribution (PED) using the VEDA 4 program. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.
2015-03-01
The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
NASA Astrophysics Data System (ADS)
Jha, Omkant; Yadav, T. K.; Yadav, R. A.
2018-01-01
Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311 ++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH2 group the other four modes are pure group modes. The rocking and wagging modes of the NH2 group show mixing with the other modes. The two Osbnd H stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Gómez-Cabello, Alba; González-Agüero, Alejandro; Morales, Silvia; Ara, Ignacio; Casajús, José A; Vicente-Rodríguez, Germán
2014-03-01
We aimed to clarify whether a short-term whole body vibration training has a beneficial effect on bone mass and structure in elderly men and women. Randomised controlled trial. A total of 49 non-institutionalised elderly (20 men and 29 women) volunteered to participate in the study. Participants who met the inclusion criteria were randomly assigned to one of the study groups (whole body vibration or control). A total of 24 elderly trained squat positioned on a vibration platform 3 times per week for 11 weeks. Bone-related variables were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Two-way repeated measures one-way analysis of variance (group by time) was used to determine the effects of the intervention on the bone-related variables and also to determinate the changes within group throughout the intervention period. Analysis of covariance was used to test the differences between groups for bone-related variables in pre- and post-training assessments and in the percentage of change between groups. All analysis were carried out including age, height, subtotal lean mass and daily calcium intake as covariates. 11 weeks of whole body vibration training led to no changes in none of the bone mineral content and bone mineral density parameters measured by dual-energy X-ray absorptiometry through the skeleton. At the tibia, total, trabecular and cortical volumetric bone mineral density decreased significantly in the whole body vibration group (all P<0.05). A short-term whole body vibration therapy is not enough to cause any changes on bone mineral content or bone mineral density and it only produces a slight variation on bone structure among elderly people. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killoran, N.; Huelga, S. F.; Plenio, M. B.
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principlemore » and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.« less
Vibration suppression and slewing control of a flexible structure
NASA Technical Reports Server (NTRS)
Inman, Daniel J.; Garcia, Ephrahim; Pokines, Brett
1991-01-01
Examined here are the effects of motor dynamics and secondary piezoceramic actuators on vibration suppression during the slewing of flexible structures. The approach focuses on the interaction between the structure, the actuators, and the choice of control law. The results presented here are all simulated, but are based on experimentally determined parameters for the motor, structure, piezoceramic actuators, and piezofilm sensors. The simulation results clearly illustrate that the choice of motor inertia relative to beam inertia makes a critical difference in the performance of the system. In addition, the use of secondary piezoelectric actuators reduces the load requirements on the motor and also reduces the overshoot of the tip deflection. The structures considered here are a beam and a frame. The majority of results are based on a Euler Bernoulli beam model. The slewing frame introduces substantial torsional modes and a more realistic model. The slewing frame results are incomplete and represent work in progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir
The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Granular metamaterials for vibration mitigation
NASA Astrophysics Data System (ADS)
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Damage monitoring of aircraft structures made of composite materials using wavelet transforms
NASA Astrophysics Data System (ADS)
Molchanov, D.; Safin, A.; Luhyna, N.
2016-10-01
The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.
Synthesis and characterization of Y2O3 nano-material: An experimental and theoretical study
NASA Astrophysics Data System (ADS)
Ahmad, Sheeraz; Faizan, Mohd; Ahmad, Shabbir; Ikram, Mohd
2018-04-01
We made an attempt to synthesize pure Y2O3 nanomaterial by using the sol-gel method followed by annealing at 600°C and 900°C. The synthesized Y2O3 nanoparticle was characterized by using XRD, FTIR, and UV-Vis spectroscopy. The structural refinement was performed using FULLPROF software by the Rietveld method. The refinement parameters such as lattice constant, atomic position, occupancy, R-factor and goodness of fit (χ2) were calculated. The nanoparticle has a single phase cubic structure with Ia -3 space group. The main absorption band in FTIR spectra centered at 560 cm-1 is attributed to Y-O vibration while the broadband at 3450 cm-1 arises due to O-H vibration. The band gap was obtained from the reflectance spectra using the K-M function F(R∞). The optimized structural parameters and UV-Vis spectrum were calculated using DFT and TD-DFT/B3LYP methods in bulk phase of Y2O3 and compared with experimental UV-Vis spectra in nanophase.
Vibrational spectra, DFT quantum chemical calculations and conformational analysis of P-iodoanisole.
Arivazhagan, M; Anitha Rexalin, D; Geethapriya, J
2013-09-01
The solid phase FT-IR and FT-Raman spectra of P-iodoanisole (P-IA) have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by ab initio (HF) and density functional theory (B3LYP) methods with LanL2DZ as basis set. The potential energy surface scan for the selected dihedral angle of P-IA has been performed to identify stable conformer. The optimized structure parameters and vibrational wavenumbers of stable conformer have been predicted by density functional B3LYP method with LanL2DZ (with effective core potential representations of electrons near the nuclei for post-third row atoms) basis set. The nucleophilic and electrophilic sites obtained from the molecular electrostatic potential (MEP) surface were calculated. The temperature dependence of thermodynamic properties has been analyzed. Several thermodynamic parameters have been calculated using B3LYP with LanL2DZ basis set. Copyright © 2013 Elsevier B.V. All rights reserved.
Method development of damage detection in asymmetric buildings
NASA Astrophysics Data System (ADS)
Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy
2018-01-01
Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.
NASA Astrophysics Data System (ADS)
Ponomarev, Yury K.
2018-01-01
The paper gives an overview of the design of rope vibration insulators with elastic elements of the center line in the form of two rectilinear and one curved section. In the Russian-language scientific literature this type of rope vibration insulators received a stable name "Γ-shaped vibration insulators” by analogy with the shape of the letter “gamma-Γ" of the Greek alphabet and a similar letter of the Cyrillic alphabet. Despite the wide using of vibration insulators designed on this shape, its mathematical calculation model has not yet been developed. In this connection, in this article, for the first time on the basis of the “Method of Forces” and the “Mohr Method”, an analytical technique has been developed for calculating the characteristics of a vibration insulator in the directions of three mutually perpendicular axes. In addition, the article proposes a new structure of a vibration insulator consisting of several tiers of elements of this type, based on a new patented technology for manufacturing quasi-continuous woven rings, proposed by the author of this article in co-authorship with several employees of the Samara National Research University. Simple formulas are obtained for calculating the load characteristics in three mutually perpendicular directions. This makes it possible to calculate the corresponding stiffness and natural frequencies of mechanical vibration protection systems. It is established that the stiffness of the vibration insulator in the direction of the Z axis is greater than the stiffness in the X and Y axis directions, however, if a vibration insulator with equal, or close to equal characteristics, along three axes has to be designed according to the technical specification, this can be done by selecting the parameters included in the equations given in article for load characteristics.
Krzyzosiak, W; Jaskólski, M; Sierzputowska-Gracz, H; Wiewiórowski, M
1982-01-01
The IR spectra of crystalline cytidine (Cyd), ethenocytidine (epsilon Cyd), and their hydrochlorides (Cyd-Hcl and epsilon CyD-HCl) have been analyzed to determine the spectroscopic manifestations of the structural differences that were previously established for these nucleosides from X-ray studies. O,N-Deuteration of the samples turned out to be a successful approach to obtaining interpretable spectra. The analysis was carried out in three frequency ranges: (i) The 2600-1900 cm-1 range originating from the vO-D and VN-D vibrations. All intermolecular hydrogen bonds could be recognized here. The positions of the individual vO-D (vN-D) bands were correlated with the geometrical delta HB parameters presenting the strengths of hydrogen bonds in which these groups act as donors (ii) The 1750-1500 cm-1 region originating from the stretching vibrations of double bonds. All absorption bands in this region were interpreted in terms of electronic structures of the base fragments. (iii) The region of the C-H stretching vibrations of the base fragments (3200-3000 cm-1) and sugar moieties (3000-2800 cm-1). The Csp2-H vibrations also reflect the electronic structures of the base fragments, whereas the vCsp-H frequencies seem to be sensitive to etheno-bridging and to the presence of an intramolecular C6-H...05' hydrogen bond. PMID:7079184
Research of rotating machinery vibration parameters - Shaft speed relationship
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.
2017-08-01
The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.
Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence
NASA Astrophysics Data System (ADS)
Pogudalina, S. V.; Fedorova, N. N.
2018-03-01
The results of simulations of the oscillations of an elastic rod placed normally to the external air flow and rigidly fixed on a substrate are presented. The computations were carried out in ANSYS using the technology of two-way fluid-structure interaction (2FSI). Calculations of the problem were performed for various flow velocities, geometric parameters and properties of the rod material. The frequencies, amplitudes and shapes of vortex induced vibration were studied including those that are close to the lock-in mode.
Magnetically induced rotor vibration in dual-stator permanent magnet motors
NASA Astrophysics Data System (ADS)
Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie
2015-07-01
Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.
Application of a computerized vibroacoustic data bank for random vibration criteria development
NASA Technical Reports Server (NTRS)
Ferebee, R. C.
1982-01-01
A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablets, and a dry silver hard copier which are all desk top type hardware and occupy minimal space. Currently, the data bank contains data from the Saturn 5 and Titan 3 flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one third octave band plots over the frequency range from 20 to 2000 Hz. The data were stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data were statistically analyzed, and the resulting 97.5 percent confidence levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. A user's manual is included to guide potential users through the programs.
Influence of parameter changes to stability behavior of rotors
NASA Technical Reports Server (NTRS)
Fritzen, C. P.; Nordmann, R.
1982-01-01
The occurrence of unstable vibrations in rotating machinery requires corrective measures for improvement of the stability behavior. A simple approximate method is represented to find out the influence of parameter changes to the stability behavior. The method is based on an expansion of the eigenvalues in terms of system parameters. Influence coefficients show the effect of structural modifications. The method first of all was applied to simple nonconservative rotor models. It was approved for an unsymmetric rotor of a test rig.
DFT simulations and vibrational spectra of 2-amino-2-methyl-1,3-propanediol.
Renuga Devi, T S; Sharmi kumar, J; Ramkumaar, G R
2014-12-10
The FTIR and FT-Raman spectra of 2-amino-2-methyl-1,3-propanediol were recorded in the regions 4000-400cm(-1) and 4000-50cm(-1) respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and density functional method (B3LYP) with the augmented-correlation consistent-polarized valence double zeta (aug-cc-pVDZ) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed on the basis of the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Mulliken charges were calculated using both Hartee-Fock and density functional method using the aug-cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. (1)H and (13)C NMR chemical shifts of the molecule were calculated using Gauge-Independent Atomic Orbital (GIAO) method and were compared with experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Hu, Sanbao
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
Experimental chaotic quantification in bistable vortex induced vibration systems
NASA Astrophysics Data System (ADS)
Huynh, B. H.; Tjahjowidodo, T.
2017-02-01
The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear out the regularity of periodic responses. For this purpose, a surrogate data test is used in order to check the hypotheses for the presence of chaotic behavior. The analyses from the experimental results support the hypothesis from simulation that chaotic response is likely occur on the real system.
Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines
NASA Astrophysics Data System (ADS)
Suzuki, Atsushi; Oku, Takeo
2016-02-01
Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.
The new 3-(tert-butyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine: Experimental and computational studies
NASA Astrophysics Data System (ADS)
Cuenú, Fernando; Muñoz-Patiño, Natalia; Torres, John Eduard; Abonia, Rodrigo; Toscano, Rubén A.; Cobo, J.
2017-11-01
The molecular and supramolecular structure of the title compound, 3-(tertbutyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine (2NPz) from the single crystal X-ray diffraction (SC-XRD) and spectroscopic data analysis is reported. The computational analysis of the structure, geometry optimization, vibrational frequencies, nuclear magnetic resonance and UV-Vis is also described and compared with experimental data. Satisfactory theoretical aspects were made for the molecule using density functional theory (DFT), with B3LYP and B3PW91 functionals, and Hartree-Fock (HF), with 6-311++G(d,p) basis set, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA 4 software, vibrational frequencies were assigned in terms of the potential energy distribution while, with the GaussSum software, the percentage contribution of the frontier orbitals at each transition of the electronic absorption spectrum was established. The obtained results indicated that optimized geometry could well reflect the molecular structural parameters from SC-XRD. Theoretical data obtained for the vibrational analysis and NMR spectra are consistent with experimental data.
Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid
Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio
2014-01-01
In this paper, we study flexural vibrations of two thin beams that are coupled through an otherwise quiescent viscous fluid. While most of the research has focused on isolated beams immersed in placid fluids, inertial and viscous hydrodynamic coupling is ubiquitous across a multitude of engineering and natural systems comprising arrays of flexible structures. In these cases, the distributed hydrodynamic loading experienced by each oscillating structure is not only related to its absolute motion but is also influenced by its relative motion with respect to the neighbouring structures. Here, we focus on linear vibrations of two identical beams for low Knudsen, Keulegan–Carpenter and squeeze numbers. Thus, we describe the fluid flow using unsteady Stokes hydrodynamics and we propose a boundary integral formulation to compute pertinent hydrodynamic functions to study the fluid effect. We validate the proposed theoretical approach through experiments on centimetre-size compliant cantilevers that are subjected to underwater base-excitation. We consider different geometric arrangements, beam interdistances and excitation frequencies to ascertain the model accuracy in terms of the relevant non-dimensional parameters. PMID:24511249
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less
Wong, W O; Fan, R P; Cheng, F
2018-02-01
A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.
Wang, G; Wu, K; Hu, H; Li, G; Wang, L J
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
NASA Astrophysics Data System (ADS)
Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2
NASA Astrophysics Data System (ADS)
Changala, Bryan; Baraban, Joshua H.
2017-06-01
Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo
The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproducemore » well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.« less
Ground Vibration Generated by a Load Moving Along a Railway Track
NASA Astrophysics Data System (ADS)
SHENG, X.; JONES, C. J. C.; PETYT, M.
1999-11-01
The propagation of vibration generated by a harmonic or a constant load moving along a layered beam resting on the layered half-space is investigated theoretically in this paper. The solution to this problem can be used to study the ground vibration generated by the motion of a train axle load on a railway track. In this application, the ground is modelled as a number of parallel viscoelastic layers overlying an elastic half-space or a rigid foundation. The track, including the rails, rail pad, sleepers and ballast, is modelled as an infinite, layered beam structure. The modal nature of propagation in the ground for a chosen set of ground parameters is discussed and the results of the model are presented showing the characteristics of the vibration generated by a constant load and an oscillatory load at speeds below, near to, and above the lowest ground wave speed.
NASA Astrophysics Data System (ADS)
Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina
2016-05-01
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.
Microcomputer monitor system and device for non-touch measurement of turbine blade vibration
NASA Astrophysics Data System (ADS)
Zheng, Shu-Chen; Liu, Bo; Qu, Zhi-Huan; Din, Ke-Ke
To study the aeroelastic phenomena in turbomachinery, a microcomputer monitor system and device for nonintrusive measurement of turbine blade vibration is developed. The system can continuously measure blade amplitude of vibration, phase angle, and torsional angle, when the machinery blades encounter vibration. In the case of turbine operation, it can display and print the vibrating parameters measured by the system, automatically give out the warning when blade amplitude of vibration is bigger than safety value, or blades break. The vibrating parameters in a span of time before the break occurs is recorded. A forecast is produced as blades enter the flutter boundary.
NASA Astrophysics Data System (ADS)
Çoban, Cansu
2017-08-01
The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appalakondaiah, S.; Vaitheeswaran, G., E-mail: gvaithee@gmail.com; Lebègue, S.
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant incrementmore » in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.« less
NASA Astrophysics Data System (ADS)
Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai
2016-03-01
The identification of modal properties from field testing of civil engineering structures is becoming economically viable, thanks to the advent of modern sensor and data acquisition technology. Its demand is driven by innovative structural designs and increased performance requirements of dynamic-prone structures that call for a close cross-checking or monitoring of their dynamic properties and responses. Existing instrumentation capabilities and modal identification techniques allow structures to be tested under free vibration, forced vibration (known input) or ambient vibration (unknown broadband loading). These tests can be considered complementary rather than competing as they are based on different modeling assumptions in the identification model and have different implications on costs and benefits. Uncertainty arises naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, modeling error, etc. This is especially relevant in field vibration tests because the test condition in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is developed for modal identification using the free vibration response of structures. A frequency domain formulation is proposed that makes statistical inference based on the Fast Fourier Transform (FFT) of the data in a selected frequency band. This significantly simplifies the identification model because only the modes dominating the frequency band need to be included. It also legitimately ignores the information in the excluded frequency bands that are either irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior probability density function (PDF) of the modal parameters is derived rigorously from modeling assumptions and Bayesian probability logic. Computational difficulties associated with calculating the posterior statistics, including the most probable value (MPV) and the posterior covariance matrix, are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.
Far-infrared laser magnetic resonance of vibrationally excited CD2
NASA Technical Reports Server (NTRS)
Evenson, K. M.; Sears, T. J.; Mckellar, A. R. W.
1984-01-01
The detection of 13 rotational transitions in the first excited bending state (010) of CD2 using the technique of far-infrared laser magnetic resonance spectroscopy is reported. Molecular parameters for this state are determined from these new data together with existing infrared observations of the v(2) band. Additional information on the ground vibrational state (000) is also provided by the observation of a new rotational transition, and this is combined with existing data to provide a refined set of molecular parameters for the CD2 ground state. One spectrum has been observed that is assigned as a rotational transition within the first excited symmetric stretching state (100) of CD2. These data will be of use in refining the structure and the potential function of the methylene radical.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2018-02-01
Nonlocal and surface effects on nonlinear vibration characteristics of a flexoelectric nanobeams under magnetic field are examined. Eringen’s nonlocal elasticity as well as surface elasticity theories are employed to describe the size-dependency of the flexoelectric nanobeam. Also, flexoelectricity is an important size-dependent phenomena for piezoelectric structures at nanoscale, related to the strain gradient-electric polarization coupling. After the derivation of governing equation via Hamilton’s principle, Galerkin method is employed to satisfy boundary conditions. Also, analytical procedures are implemented to obtain the closed-form nonlinear frequency of flexoelectric nanobeam. It is showed that magnetic field intensity, flexoelectric parameter, nonlocal parameter, elastic foundation and applied voltage on the top surface of the nanobeam have great influences on nonlinear vibration frequency.
Citizen Sensors for SHM: Towards a Crowdsourcing Platform
Ozer, Ekin; Feng, Maria Q.; Feng, Dongming
2015-01-01
This paper presents an innovative structural health monitoring (SHM) platform in terms of how it integrates smartphone sensors, the web, and crowdsourcing. The ubiquity of smartphones has provided an opportunity to create low-cost sensor networks for SHM. Crowdsourcing has given rise to citizen initiatives becoming a vast source of inexpensive, valuable but heterogeneous data. Previously, the authors have investigated the reliability of smartphone accelerometers for vibration-based SHM. This paper takes a step further to integrate mobile sensing and web-based computing for a prospective crowdsourcing-based SHM platform. An iOS application was developed to enable citizens to measure structural vibration and upload the data to a server with smartphones. A web-based platform was developed to collect and process the data automatically and store the processed data, such as modal properties of the structure, for long-term SHM purposes. Finally, the integrated mobile and web-based platforms were tested to collect the low-amplitude ambient vibration data of a bridge structure. Possible sources of uncertainties related to citizens were investigated, including the phone location, coupling conditions, and sampling duration. The field test results showed that the vibration data acquired by smartphones operated by citizens without expertise are useful for identifying structural modal properties with high accuracy. This platform can be further developed into an automated, smart, sustainable, cost-free system for long-term monitoring of structural integrity of spatially distributed urban infrastructure. Citizen Sensors for SHM will be a novel participatory sensing platform in the way that it offers hybrid solutions to transitional crowdsourcing parameters. PMID:26102490
Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A
2015-03-05
The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations
NASA Astrophysics Data System (ADS)
Toso, Marcelo André; Gomes, Herbert Martins; da Silva, Felipe Tavares; Pimentel, Roberto Leal
2016-05-01
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations
NASA Astrophysics Data System (ADS)
Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.
1992-03-01
The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.
Medium-high frequency FBG accelerometer with integrative matrix structure.
Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna
2015-04-10
To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200 pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.
A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration
NASA Astrophysics Data System (ADS)
Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon
2009-06-01
Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G
2013-10-07
An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.
Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)
NASA Astrophysics Data System (ADS)
Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.
2015-06-01
Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm-1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ˜0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters.
Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)
Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.
2015-01-01
Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm−1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ∼0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters. PMID:26049458
Van Hoozen, Brian L; Petersen, Poul B
2018-04-07
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pK A and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.
NASA Astrophysics Data System (ADS)
Jha, Omkant; Yadav, R. A.
2016-11-01
Structural and vibrational studies have been carried out for the most stable conformer of serotonin (5-HT) at the DFT/B3LYP/6-311++G** level using the Gaussian 09 software. In light of the computed vibrational parameters the observed IR and Raman frequencies have been analyzed. To help assign the vibrational fundamentals the GAR2PED software has been used to compute PEDs. Several of the fundamentals are drastically changed in going from indole to serotonin. The two NH bonds of the NH2 group are slightly different possibly due to bonding of the two H atoms of the NH2 group with different atoms. The rocking and wagging modes of the NH2 groups show mixing with the other modes while the remaining four modes are pure group modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO energy gap supports to pharmacological active property of the serotonin molecule. The HOMO and LUMO study suggests the existence of charge transfer within the molecule. The NBO analysis has been carried out to gather information regarding the proper and improper hydrogen bonds.
NASA Astrophysics Data System (ADS)
Wang, Yan Qing
2018-02-01
To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.
Jha, Omkant; Yadav, T K; Yadav, R A
2018-01-15
Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH 2 group the other four modes are pure group modes. The rocking and wagging modes of the NH 2 group show mixing with the other modes. The two OH stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding. Copyright © 2017. Published by Elsevier B.V.
Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou
2014-01-24
Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou
2014-01-01
Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
NASA Technical Reports Server (NTRS)
Theofylaktos, Onoufrios; Warner, Joseph D.; Sheehe, Charles J.
2012-01-01
An experiment was performed to determine the degradation in the bit-error-rate (BER) in the high-data-rate cables chosen for the Orion Service Module due to extreme launch conditions of vibrations with a magnitude of 60g. The cable type chosen for the Orion Service Module was no. 8 quadrax cable. The increase in electrical noise induced on these no. 8 quadrax cables was measured at the NASA Glenn vibration facility in the Structural Dynamics Laboratory. The intensity of the vibrations was set at 32g, which was the maximum available level at the facility. The cable lengths used during measurements were 1, 4, and 8 m. The noise measurements were done in an analog fashion using a performance network analyzer (PNA) by recording the standard deviation of the transmission scattering parameter S(sub 21) over the frequency range of 100 to 900 MHz. The standard deviation of S(sub 210 was measured before, during, and after the vibration of the cables at the vibration facility. We observed an increase in noise by a factor of 2 to 6. From these measurements we estimated the increase expected in the BER for a cable length of 25 m and concluded that these findings are large enough that the noise increase due to vibration must be taken in to account for the design of the communication system for a BER of 10(exp -8).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov
Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less
Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J
2016-08-01
To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.
Active damping using a control structure interaction approach
NASA Astrophysics Data System (ADS)
Umland, Jeffrey W.
1991-12-01
The vibration control of flexible structures using electromagnetic actuators is investigated. A model of an electromagnetic voice coil actuator is developed from elementary theory, and the required parameters are measured. Given a constant magnetic field, the force output of the voice coil varies linearly with the current flowing through the coil. The primary damping mechanism of the actuator used is found to be Coulomb friction. It is seen that Coulomb friction inhibits the response of the actuator to low levels of excitation. It is also seen that the actuator displayed a nonlinear relationship between force and current indicating that the applied magnetic field was not constant. This nonlinearity leads to a closed loop instability. Several design improvements are considered. Four different feedback control laws are developed to add active damping to a structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The first control law uses the actuator as a traditional passive vibration absorber. The second control law is direct structural velocity feedback plus direct proof mass position feedback. The third control strategy is also direct structural velocity feedback but using compensated feedback of the proof mass position. The compensator is designed according to an H infinity optimization technique. The fourth control law uses the actuator as an equivalent mechanical viscous damper connected to two points on the structure. The results show that using direct structural velocity feedback provides improved vibration suppression in comparison to a traditional vibration absorber. Furthermore, the tuning criteria is only restricted to maintaining the actuator's single degree of freedom natural frequency below those of the structure to which it is attached.
Study on Nonlinear Vibration Analysis of Gear System with Random Parameters
NASA Astrophysics Data System (ADS)
Tong, Cao; Liu, Xiaoyuan; Fan, Li
2018-03-01
In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.
NASA Astrophysics Data System (ADS)
Fein, Howard
1999-03-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of aerodynamic control and airfoil structures for advanced aircraft has always required advanced instrumentation for data collection in either actual flight test or wind-tunnel simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data on the ground in a noninvasive environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced exotic metal control structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of exotic metal structures for high stress applications. Advanced Titanium alloy is a significant example of these sorts of materials which has found continually increased use in advanced aerodynamic, undersea, and other highly mobil platforms. Aircraft applications in particular must consider environments where extremes in vibration and impulsive mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of structures made with such advanced materials. Holographic techniques are nondestructive, real- time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as operational parameters of structural components fabricated from advanced and exotic materials. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects. Deriving such information can be crucial to the determination of mechanical configurations and designs, as well as critical operational parameters of structural components fabricated from advanced and exotic materials.
NASA Astrophysics Data System (ADS)
Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo
2017-03-01
Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which validates the proposed methods.
Vibration mitigation in partially liquid-filled vessel using passive energy absorbers
NASA Astrophysics Data System (ADS)
Farid, M.; Levy, N.; Gendelman, O. V.
2017-10-01
We consider possible solutions for vibration mitigation in reduced-order model (ROM) of partially filled liquid tank under impulsive forcing. Such excitations may lead to strong hydraulic impacts applied to the tank inner walls. Finite stiffness of the tank walls is taken into account. In order to mitigate the dangerous internal stresses in the tank walls, we explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performance in both cases is examined numerically. The liquid sloshing mass is modeled by equivalent mass-spring-dashpot system, which can both perform small-amplitude linear oscillations and hit the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for a well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite element approach to assess the natural frequencies for specific system parameters. Numerical evaluation criteria are suggested to determine the energy absorption performance.
Rigid body mode identification of the PAH-2 helicopter using the eigensystem realization algorithm
NASA Technical Reports Server (NTRS)
Schenk, Axel; Pappa, Richard S.
1992-01-01
The rigid body modes of the PAH-2 'Tiger' helicopter were identified using the Eigensystem Realization Algorithm (ERA). This work complements ground vibration tests performed using DLR's traditional phase resonance technique and the ISSPA (Identification of Structural System Parameters) method. Rigid body modal parameters are important for ground resonance prediction. Time-domain data for ERA were obtained by inverse Fourier transformation of frequency response functions measured with stepped-sine excitation. Mode purity (based on the Phase Resonance Criterion) was generally equal to or greater than corresponding results obtained in the ground vibration tests. All identified natural frequencies and mode shapes correlate well with corresponding ground vibration test results. The modal identification approach discussed in this report has become increasingly attractive in recent years due to the steadily declining cost and increased performance of scientific computers. As illustrated in this application, modern time-domain methods can be successfully applied to data acquired using DLR's existing test equipment. Some suggestions are made for future applications of time domain modal identification in this manner.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
NASA Astrophysics Data System (ADS)
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks
NASA Astrophysics Data System (ADS)
Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi
2018-03-01
Combining external dampers and cross-ties into a hybrid system to control bridge stay cable vibrations can address deficiencies associated with these two commonly used vibration control solutions while retaining their respective merits. Despite successful implementation of this strategy on a few cable-stayed bridges, behavior of such a structural system is still not fully understood. In the current study, an analytical model of a hybrid system consisting of two parallel taut cables interconnected by a transverse linear flexible cross-tie, with one cable also equipped with a transverse linear viscous damper close to one end support, is developed. The proposed model is validated by an experimental work in the literature and an independent numerical simulation. A parametric study is conducted to comprehend the impact of main design parameters on the performance of a hybrid system in terms of the in-plane frequency, the damping and the degree of mode localization of the system's fundamental mode. In addition, the concept of isoquant curve is applied not only to appreciate the effect of simultaneous variation in main design parameters on the modal behavior of a hybrid system, but also to identify the optimal ranges of these parameters to achieve the required cable vibration control effect.
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system
NASA Astrophysics Data System (ADS)
Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.; Parker, Robert G.
2014-10-01
This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.
Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source
NASA Astrophysics Data System (ADS)
Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.
2014-06-01
To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA method is suitable to compute the valueof the parameter C 2 .When no mathematical model of the source can be made available, estimations of the value C2 can be find in literature.In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The computation of the value C2 can be done in conjunction with the CMSA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively.Strength & stiffness design rules for spacecraft, instrumentation, units, etc. will be practiced, as mentioned in ECSS Standards and Handbooks, Launch Vehicle User's manuals, papers, books , etc. A probabilistic description of the design parameters is foreseen.As an example a simple experiment has been worked out.
Active vibration control of structures undergoing bending vibrations
NASA Technical Reports Server (NTRS)
Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)
1995-01-01
An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
NASA Astrophysics Data System (ADS)
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.
1994-01-01
A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.
Sierra Structural Dynamics User's Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
Analysis of vibration frequencies of uranyl ion in complexes with neutral bases (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobets, L.V.; Umreiko, D.S.
1986-12-01
It has been shown that any estimate of the changes in vibration frequencies of UO/sub 2//sup 2 +/ applies only to the series of isostructural compounds with similar stoichiometry. Either the same values of stretching vibration frequencies of uranyl correspond to complexes with ligands that have different donor abilities, or changes in these frequencies are not great and do not reflect the real increase in the donor ability of the bases with respect to proton-containing acceptors. When the acido ligands are replaced or the stoichiometry of the complexes is changed, no correlations can be carried out, since, besides the basicitiesmore » of donors, other parameters such as the dentateness of the ligand, and hence the symmetry and the structure of the compound, are also varied. In this paper, the authors evaluate the contributions of the ligands to the shift of the vibration frequencies of uranyl that have been made and do not take into account the characteristic features of the compounds which therefore led to very different values of the contributions for one and the same ligand in different compounds. To evaluate the shifts produced by the ligands, the value of 1065 cm/sup -1/ was taken as the vibration frequency of a hypothetical fee uranyl ion, not perturbed by bonds with equatorial ligands. The authors also evaluate the contributions of ions able to form polymer structures.« less
NASA Astrophysics Data System (ADS)
Hou, Tsung-Chin; Gao, Wei-Yuan; Chang, Chia-Sheng; Zhu, Guan-Rong; Su, Yu-Min
2017-04-01
The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.
NASA Astrophysics Data System (ADS)
Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.
2018-06-01
Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.
NASA Technical Reports Server (NTRS)
Ferebee, R. C.
1982-01-01
A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.
NASA Astrophysics Data System (ADS)
Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.
2015-02-01
The FTIR and FT-Raman spectra of 2-(cyclohexylamino)ethanesulfonic acid were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and Density functional method (B3LYP) with the correlation consistent-polarized valence double zeta (cc-pVDZ) basis set and 6-311++G(d,p) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed based on the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Atomic charges were calculated using both Hartee-Fock and density functional method using the cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge Including Atomic Orbital (GIAO) method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The first order hyperpolarizability (β) and Molecular Electrostatic Potential (MEP) of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemical reactivity site in the molecule.
Alizadeh-Meghrazi, Milad; Masani, Kei; Zariffa, José; Sayenko, Dimitry G.; Popovic, Milos R.; Craven, B. Catharine
2014-01-01
Objective Traumatic spinal cord injury (SCI) results in substantial reductions in lower extremity muscle mass and bone mineral density below the level of the lesion. Whole-body vibration (WBV) has been proposed as a means of counteracting or treating musculoskeletal degradation after chronic motor complete SCI. To ascertain how WBV might be used to augment muscle and bone mass, we investigated whether WBV could evoke lower extremity electromyography (EMG) activity in able-bodied individuals and individuals with SCI, and which vibration parameters produced the largest magnitude of effect. Methods Ten male subjects participated in the study, six able-bodied and four with chronic SCI. Two different manufacturers' vibration platforms (WAVE® and Juvent™) were evaluated. The effects of vibration amplitude (0.2, 0.6 or 1.2 mm), vibration frequency (25, 35, or 45 Hz), and subject posture (knee angle of 140°, 160°, or 180°) on lower extremity EMG activation were determined (not all combinations of parameters were possible on both platforms). A novel signal processing technique was proposed to estimate the power of the EMG waveform while minimizing interference and artifacts from the plate vibration. Results WBV can elicit EMG activity among subjects with chronic SCI, if appropriate vibration parameters are employed. The amplitude of vibration had the greatest influence on EMG activation, while the frequency of vibration had lesser but statistically significant impact on the measured lower extremity EMG activity. Conclusion These findings suggest that WBV with appropriate parameters may constitute a promising intervention to treat musculoskeletal degradation after chronic SCI. PMID:24986541
Experiments on vibration control of a piezoelectric laminated paraboloidal shell
NASA Astrophysics Data System (ADS)
Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen
2017-01-01
A paraboloidal shell plays a key role in aerospace and optical structural systems applied to large optical reflector, communications antenna, rocket fairing, missile radome, etc. Due to the complexity of analytical procedures, an experimental study of active vibration control of a piezoelectric laminated paraboloidal shell by positive position feedback is carried out. Sixteen PVDF patches are laminated inside and outside of the shell, in which eight of them are used as sensors and eight as actuators to control the vibration of the first two natural modes. Lower natural frequencies and vibration modes of the paraboloidal shell are obtained via the frequency response function analysis by Modal VIEW software. A mathematical model of the control system is formulated by means of parameter identification. The first shell mode is controlled as well as coupled the first and second modes based on the positive position feedback (PPF) algorithm. To minimize the control energy consumption in orbit, an adaptive modal control method is developed in this study by using the PPF in laboratory experiments. The control system collects vibration signals from the piezoelectric sensors to identify location(s) of the largest vibration amplitudes and then select the best two from eight PVDF actuators to apply control forces so that the modal vibration suppression could be accomplished adaptively and effectively.
NASA Astrophysics Data System (ADS)
Plenio, M. B.; Almeida, J.; Huelga, S. F.
2013-12-01
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
NASA Astrophysics Data System (ADS)
Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.
2011-01-01
The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.
Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting
NASA Astrophysics Data System (ADS)
Pei, Yalu; Liu, Yilun; Zuo, Lei
2018-06-01
This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.
Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies
NASA Astrophysics Data System (ADS)
Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.
2017-05-01
The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.
Arjunan, V; Raj, Arushma; Ravindran, P; Mohan, S
2014-01-24
The vibrational fundamental modes of 2-(methylthio)benzimidazole (2MTBI) have been analysed by combining FTIR, FT-Raman and quantum chemical calculations. The structural parameters of the compound are determined from the optimised geometry by B3LYP with 6-31G(∗∗), 6-311++G(∗∗) and cc-pVTZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra have been analysed and (1)H and (13)C nuclear magnetic resonance chemical shifts are calculated using the gauge independent atomic orbital (GIAO) method. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. The chemical reactivity and site selectivity of the molecule has been determined with the help of global and local reactivity descriptors. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Radgolchin, Moeen; Moeenfard, Hamid
2018-02-01
The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of micro/nano harvesters subjected to non-deterministic loads.
Godlewska, P; Jańczak, J; Kucharska, E; Hanuza, J; Lorenc, J; Michalski, J; Dymińska, L; Węgliński, Z
2014-01-01
Fourier transform IR and Raman spectra, XRD studies and DFT quantum chemical calculations have been used to characterize the structural and vibrational properties of 2-hydroxy-5-methylpyridine-3-carboxylic acid. In the unit-cell of this compound two molecules related by the inversion center interact via OH⋯N hydrogen bonds. The double hydrogen bridge system is spaced parallel to the (102) crystallographic plane forming eight-membered arrangement characteristic for pyridine derivatives. The six-membered ring is the second characteristic unit formed via the intramolecular OH⋯O hydrogen bond. The geometry optimization of the monomer and dimer have been performed applying the Gaussian03 program package. All calculations were performed in the B3LYP/6-31G(d,p) basis set using the XRD data as input parameters. The relation between the molecular and crystal structures has been discussed in terms of the hydrogen bonds formed in the unit cell. The vibrations of the dimer have been discussed in terms of the resonance inside the system built of five rings coupled via hydrogen bonds. Copyright © 2013 Elsevier B.V. All rights reserved.
Passive vibration suppression using inerters for a multi-storey building structure
NASA Astrophysics Data System (ADS)
Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon
2016-09-01
This paper investigates the use of inerters for vibration suppression of a multistorey building structure. The inerter was proposed as a two-terminal replacement for the mass element, with the property that the applied force is proportional to the relative acceleration across its terminals. It completes the force-current mechanical-electrical network analogy, providing the mechanical equivalent to a capacitor. Thus allows all passive mechanical impedances to be synthesised. The inerter has been used in Formula 1 racing cars and applications to various systems such as vehicle suspension have been identified. Several devices that incoporate inerter(s), as well as spring(s) and damper(s), have also been identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with an absorber located at the bottom subjected to base excitation is studied. Four simple absorber layouts, in terms of how spring, damper and inerter components should be arranged, have been studied. In order to minimise the maximum relative displacement of the building, the optimum parameter values for each of the layouts have been obtained with respect to the inerter's size.
NASA Astrophysics Data System (ADS)
Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa
2009-02-01
In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.
NASA Astrophysics Data System (ADS)
Fein, Howard
2003-09-01
Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.
Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate
NASA Astrophysics Data System (ADS)
Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth
2013-11-01
We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).
Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Barakat, Assem; Soliman, Saied M; Ghabbour, Hazem A; Quah, Ching Kheng; Fun, Hoong-Kun
2015-05-07
This paper describes an efficient and regioselective method for the synthesis of novel fluorinated spiro-heterocycles in excellent yield by cascade [5+1] double Michael addition reactions. The compounds 7,11-bis(4-fluorophenyl)-2,4-dimethyl- 2,4-diazaspiro[5.5] undecane-1,3,5,9-tetraone (3a) and 2,4-dimethyl-7,11-bis (4-(trifluoromethyl)phenyl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3b) were characterized by single-crystal X-ray diffraction, FT-IR and NMR techniques. The optimized geometrical parameters, infrared vibrational frequencies and NMR chemical shifts of the studied compounds have also been calculated using the density functional theory (DFT) method, using Becke-3-Lee-Yang-Parr functional and the 6-311G(d,p) basis set. There is good agreement between the experimentally determined structural parameters, vibrational frequencies and NMR chemical shifts of the studied compounds and those predicted theoretically. The calculated natural atomic charges using NBO method showed higher polarity of 3a compared to 3b.The calculated electronic spectra are also discussed based on the TD-DFT calculations.
3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.
Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng
2015-06-15
The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng
2013-01-01
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.
Chiariello, Maria Gabriella; Rega, Nadia
2018-03-22
Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.
Computational Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Sharpe, Lonnie, Jr.; Shen, Ji Yao
1994-01-01
The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.
Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina; Guella, Graziano; Mancini, Ines; Rossi, Barbara; Verrocchio, Paolo; Viliani, Gabriele; Stancanelli, Rosanna
2010-07-01
The vibrational dynamics of solid inclusion complexes of the nonsteroidal anti-inflammatory drug Ibuprofen (IBP) with beta-cyclodextrin (beta-CD) and methyl-beta-cyclodextrin (Me-beta-CD) has been investigated by using attenuated total reflection-Fourier transform infrared FTIR-ATR spectroscopy, in order to monitor the changes induced, as a consequence of complexation, on the vibrational spectrum of IBP, in the wavenumber range 600-4000 cm(-1). Quantum chemical calculations were performed on monomeric and dimeric structures of IBP, derived from symmetric hydrogen bonding of the two carboxylic groups, in order to unambiguously assign some characteristic IR bands in the IBP spectrum. The evolution in temperature from 250 to 340 K of the C horizontal lineO stretching vibration, described by a best-fit procedure, allowed us to extract the thermodynamic parameter DeltaH associated to the binding of IBP with betaCDs in the solid phase. By comparing these results, Me-beta-CD has been shown to be the most effective carrier for IBP.
Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid.
Arjunan, V; Remya, P; Sathish, U; Rani, T; Mohan, S
2014-08-14
The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. (1)H and (13)C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yilmaz, A.; Bolukbasi, O.
2016-01-01
Prothionamide (PTH) is the secondary drug used against Mycobacterium tuberculosis bacteria and leprosy. The aim of this work was to investigate the potential energy surface map, anharmonic and harmonic vibrational spectra, NBO analysis and ELF (Electron Localization Function) of the title compound using DFT approach with the B3LYP (Becke, three-parameter, Lee-Yang-Parr) exchange-correlation functional with the 6-31G++(d, p) and the Z3POLX basis sets were employed. In the experimental part of this study, FT-Mid IR, FT-Far IR and FT-Raman spectra of the molecule were recorded in the regions 4000-450 cm-1, 700-30 cm-1 and 4000-100 cm-1 respectively in the solid phase. The comparison between calculated and experimental vibrational spectra (infrared and Raman spectra) and assignments of fundamental vibrational modes were characterized by total energy distribution (TED). Theoretical spectra were seen to be in good agreement with those of the experimental ones.
NASA Astrophysics Data System (ADS)
Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.
2018-01-01
Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the linearized model, the control gain matrix is calculated using the pole placement technique. The results show that the OGY controller is capable of stabilizing the chaotic responses by driving them to the desired inter-well period-one periodic vibrations and it is also shown that the harvested power is successfully improved. For validation purpose, a real-time experiment was carried out on a computer-based forced-feedback testing platform to validate the applicability of the controller in real-time applications. The experimental results confirm the feasibility of the controller to stabilize the responses.
NASA Astrophysics Data System (ADS)
Rainieri, Carlo; Fabbrocino, Giovanni
2015-08-01
In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.
NASA Astrophysics Data System (ADS)
Karuppasamy, Ayyanar; Udhaya kumar, Chandran; Karthikeyan, Subramanian; Velayutham Pillai, Muthiah Pillai; Ramalingan, Chennan
2017-11-01
A novel conjugated octylcarbazole ornamented 3-phenothiazinal, 10-(9-octyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde (OCPTC) was synthesized and fully characterized by 1H-NMR, 13C-NMR, elemental and single crystal XRD analyses. The optimized geometrical structure, vibrational frequencies and NMR have been computed with M06-2X method using 6-31+G(d,p) basis set. Total electronic energies and HOMO-LUMO energy gaps in gas phase are discussed. The geometrical parameters of the title compound obtained from single crystal XRD studies have been found in accord with the calculated (DFT) values. The experimental and theoretical FT-IR and NMR results of the title molecule have been investigated. The experimentally observed vibrational frequencies have been compared with the calculated ones, which are in good agreement with each other. Single crystal X-ray structural analysis of OCPTC, evidences the ''butterfly conformation'' of phenothiazine ring with nearly perpendicular orientation of the carbazole structural motif to the phenothiazine moiety.
Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium
NASA Astrophysics Data System (ADS)
Lei, Y. J.; Zhang, D. P.; Shen, Z. B.
2017-12-01
Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Guo, Shuguang; Wong, Brian J. F.; Chen, Zhongping
2009-02-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality and has been used to image the human larynx during surgical endoscopy. The design of a long GRIN lens based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with 40 fame/second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cord, which provide important information for clinical diagnosis and treatment, as well as in fundamental research of the voice. Office-based OCT is a promising imaging modality to study the larynx.
NASA Technical Reports Server (NTRS)
Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben
2013-01-01
Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
NASA Astrophysics Data System (ADS)
Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma
2017-08-01
The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.
Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor.
Peng, Taijiang; Wu, Xiaoyu; Liang, Xiong; Shi, Hongyan; Luo, Feng
2015-08-01
A Langevin transducer can provide longitudinal vibration with larger amplitude while also possessing a greater fatigue life than other types of piezoelectric vibrators. A novel rotary Ultrasonic Motor (USM) was proposed based on the use of a longitudinal transducer (acting as the stator) and a spiral fin rotor: the front cover of the Langevin transducer was designed as a double-layer cup-shaped structure, with the rotor sustained by the inner-layer, and the bearing cover fixed to the outer-layer; the rotor consisted of a shaft and spiral fins which acted as the elastic coupler. It is different from a traditional traveling USM, because the stator provides longitudinal vibration and the rotor generates the elliptical motion. This paper analyzed the motion locus equation of the fin contact points. Additionally, a theoretical analysis was performed in regards to the mechanism and the motor's rotor motion characteristics, which demonstrates the relationships among the motor's driving force, the torque, the revolution speed, and the motor structure parameters. A motor prototype has been manufactured and surveyed to demonstrate the motor performance. The relationships between the amplitude and the preload on the rotor, the free revolution speed, and the torque of the motor have also been studied. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and vibrational analysis of methyl 3-amino-2-butenoate.
Berenji, Ali Reza; Tayyari, Sayyed Faramarz; Rahimizadeh, Mohammad; Eshghi, Hossein; Vakili, Mohammad; Shiri, Ali
2013-02-01
The molecular structure and vibrational spectra of methyl 3-(amino)-2-butenoate (MAB) and its deuterated analogous, D(3)MAB, were investigated using density functional theory (DFT) calculations. The geometrical parameters and harmonic vibrational wavenumbers of MAB and D(3)MAB were obtained at the B3LYP/6-311++G(d,p) level. The calculated vibrational wavenumbers were compared with the corresponding experimental results. The assignment of the IR and Raman spectra of MAB and D(3)MAB was facilitated by calculating the anharmonic wavenumbers at the B3LYP/6-311G(d,p) level as well as recording and calculating the MAB spectra in CCl(4) solution. The assigned normal modes were compared with a similar molecule, 4-amino-3-penten-2-one (APO). The theoretical results were in good agreement with the experimental data. All theoretical and experimental results indicate that substitution of a methyl group with a methoxy group considerably weakens the intramolecular hydrogen bond and reduces the π-electron delocalization in the chelated ring system. The IR spectra also indicate that in the solid state, MAB is not only engaged in an intramolecular hydrogen bond, but also forms an intermolecular hydrogen bond. However, the intermolecular hydrogen bond will be removed in dilute CCl(4) solution. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke
2016-01-01
A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.
Vibration sensing method and apparatus
Barna, B.A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Vibration sensing method and apparatus
Barna, B.A.
1987-07-07
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.
Vibration sensing method and apparatus
Barna, Basil A.
1989-04-25
A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
NASA Astrophysics Data System (ADS)
Krkošková, Katarína; Papán, Daniel; Papánová, Zuzana
2017-10-01
The technical seismicity negatively affects the environment, buildings and structures. Technical seismicity means seismic shakes caused by force impulse, random process and unnatural origin. The vibration influence on buildings is evaluated in the Eurocode 8 in Slovak Republic, however, the Slovak Technical Standard STN 73 0036 includes solution of the technical seismicity. This standard also classes bridges into the group of structures that are significant in light of the technical seismicity - the group “U”. Using the case studies analysis by FEM simulation and comparison is necessary because of brief norm evaluation of this issue. In this article, determinate dynamic parameters by experimental measuring and numerical method on two real bridges are compared. First bridge, (D201 - 00) is Scaffold Bridge on the road I/11 leading to the city of Čadca and is situated in the city of Žilina. It is eleven - span concrete road bridge. The railway is the obstacle, which this bridge spans. Second bridge (M5973 Brodno) is situated in the part of Žilina City on the road of I/11. It is concrete three - span road bridge built as box girder. The computing part includes 3D computational models of the bridges. First bridge (D201 - 00) was modelled in the software of IDA Nexis as the slab - wall model. The model outputs are natural frequencies and natural vibration modes. Second bridge (M5973 Brodno) was modelled in the software of VisualFEA. The technical seismicity corresponds with the force impulse, which was put into this model. The model outputs are vibration displacements, velocities and accelerations. The aim of the experiments was measuring of the vibration acceleration time record of bridges, and there was need to systematic placement of accelerometers. The vibration acceleration time record is important during the under - bridge train crossing, about the first bridge (D201 - 00) and the vibration acceleration time domain is important during deducing the force impulse under the bridge, about second bridge (M5973 Brodno). The analysis was done in the software of Sigview. About the first bridge (D201 - 00), the analysis output were values of power spectral density adherent to the frequencies values. These frequencies were compared with the natural frequencies values from the computational model whereby the technical seismicity influence on bridge natural frequencies was found out. About the second bridge (M5973 Brodno), the Sigview display of recorded vibration velocity time history was compared with the final vibration velocity time history from the computational model, whereby the results were incidental.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
Beltukov, Y M; Fusco, C; Parshin, D A; Tanguy, A
2016-02-01
The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.
Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A
2015-01-25
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Soft Computing Approach to Evaluate and Predict Blast-Induced Ground Vibration
NASA Astrophysics Data System (ADS)
Khandelwal, Manoj
2010-05-01
Drilling and blasting is still one of the major economical operations to excavate a rock mass. The consumption of explosive has been increased many folds in recent years. These explosives are mainly used for the exploitation of minerals in mining industry or the removal of undesirable rockmass for community development. The amount of chemical energy converted into mechanical energy to fragment and displace the rockmass is minimal. Only 20 to 30% of this explosive energy is utilized for the actual fragmentation and displacement of rockmass and rest of the energy is wasted in undesirable ill effects, like, ground vibration, air over pressure, fly rock, back break, noise, etc. Ground vibration induced due to blasting is very crucial and critical as compared to other ill effects due to involvement of public residing in the close vicinity of mining sites, regulating and ground vibration standards setting agencies together with mine owners and environmentalists and ecologists. Also, with the emphasis shifting towards eco-friendly, sustainable and geo-environmental activities, the field of ground vibration have now become an important and imperative parameter for safe and smooth running of any mining and civil project. The ground vibration is a wave motion, spreading outward from the blast like ripples spreading outwards due to impact of a stone dropped into a pond of water. As the vibration passes through the surface structures, it induces vibrations in those structures also. Sometimes, due to high ground vibration level, dwellings may get damaged and there is always confrontation between mine management and the people residing in the surroundings of the mine area. There is number of vibration predictors available suggested by different researchers. All the predictors estimate the PPV based on mainly two parameters (maximum charge used per delay and distance between blast face to monitoring point). However, few predictors considered attenuation/damping factor too. For the same excavation site, different predictors give different values of safe PPV vis-à-vis safe charge per delay. There is no uniformity in the predicted result by different predictors. All vibration predictor equations have their site specific constants. Therefore, they cannot be used in a generalized way with confidence and zero level of risk. To overcome on this aspect new soft computing tools like artificial neural network (ANN) has attracted because of its ability to learn from the pattern acquainted before. ANN has the ability to learn from patterns acquainted before. It is a highly interconnected network of a large number of processing elements called neurons in an architecture inspired by the brain. ANN can be massively parallel and hence said to exhibit parallel distributed processing. Once, the network has been trained, with sufficient number of sample data sets, it can make reliable and trustworthy predictions on the basis of its previous learning, about the output related to new input data set of similar pattern. This paper deals the application of ANN for the prediction of ground vibration by taking into consideration of maximum charge per delay and distance between blast face to monitoring point. To investigate the appropriateness of this approach, the predictions by ANN have been also compared with other vibration predictor equations.
Inverse problem of the vibrational band gap of periodically supported beam
NASA Astrophysics Data System (ADS)
Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei
2017-04-01
The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.
NASA Technical Reports Server (NTRS)
Barcilon, V.
1978-01-01
The problem of inferring the speed of sound in a contained spherically symmetric fluid solely from its natural frequencies of vibration is considered. An investigation of the case in which the data consist of the two spectra associated with the angular numbers 0 and 1, suggests the possibility that a one-parameter family of slowness profiles can be constructed. These profiles are compatible with the data, up to first order in the non-uniformity of the fluid. It is conjectured that for other angular numbers, the loss of information increases as the difference between them increases.
Are there reliable constitutive laws for dynamic friction?
Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew
2015-09-28
Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mingsen; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, 550018; Ye, Gui
The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precisemore » control of molecular devices.« less
NASA Astrophysics Data System (ADS)
Yan, Shi; Zhang, Hai
2005-05-01
The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.
Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael
2013-01-14
Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. NCT01702597.
2013-01-01
Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. Trial registration NCT01702597 PMID:23316791
NASA Astrophysics Data System (ADS)
Liu, Jinxin; Chen, Xuefeng; Yang, Liangdong; Gao, Jiawei; Zhang, Xingwu
2017-11-01
In the field of active noise and vibration control (ANVC), a considerable part of unwelcome noise and vibration is resulted from rotational machines, making the spectrum of response signal multiple-frequency. Narrowband filtered-x least mean square (NFXLMS) is a very popular algorithm to suppress such noise and vibration. It has good performance since a priori-knowledge of fundamental frequency of the noise source (called reference frequency) is adopted. However, if the priori-knowledge is inaccurate, the control performance will be dramatically degraded. This phenomenon is called reference frequency mismatch (RFM). In this paper, a novel narrowband ANVC algorithm with orthogonal pair-wise reference frequency regulator is proposed to compensate for the RFM problem. Firstly, the RFM phenomenon in traditional NFXLMS is closely investigated both analytically and numerically. The results show that RFM changes the parameter estimation problem of the adaptive controller into a parameter tracking problem. Then, adaptive sinusoidal oscillators with output rectification are introduced as the reference frequency regulator to compensate for the RFM problem. The simulation results show that the proposed algorithm can dramatically suppress the multiple-frequency noise and vibration with an improved convergence rate whether or not there is RFM. Finally, case studies using experimental data are conducted under the conditions of none, small and large RFM. The shaft radial run-out signal of a rotor test-platform is applied to simulate the primary noise, and an IIR model identified from a real steel structure is applied to simulate the secondary path. The results further verify the robustness and effectiveness of the proposed algorithm.
Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method
NASA Astrophysics Data System (ADS)
Kania, Dariusz
2017-06-01
The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
An all fiber-optic multi-parameter structure health monitoring system
Hu, Chennan; Yu, Zhihao; Wang, Anbo
2016-08-24
In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less
An all fiber-optic multi-parameter structure health monitoring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chennan; Yu, Zhihao; Wang, Anbo
In this article, we present an all fiber-optics based multi-parameter structure health monitoring system, which is able to monitor strain, temperature, crack and thickness of metal structures. This system is composed of two optical fibers, one for laser-acoustic excitation and the other for acoustic detection. A nano-second 1064 nm pulse laser was used for acoustic excitation and a 2 mm fiber Bragg grating was used to detect the acoustic vibration. The feasibility of this system was demonstrated on an aluminum test piece by the monitoring of the temperature, strain and thickness changes, as well as the appearance of an artificialmore » crack. The multiplexing capability of this system was also preliminarily demonstrated.« less
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site.
Adamczyk, Katrin; Simpson, Niall; Greetham, Gregory M; Gumiero, Andrea; Walsh, Martin A; Towrie, Michael; Parker, Anthony W; Hunt, Neil T
2015-01-01
Understanding the impact of fast dynamics upon the chemical processes occurring within the active sites of proteins and enzymes is a key challenge that continues to attract significant interest, though direct experimental insight in the solution phase remains sparse. Similar gaps in our knowledge exist in understanding the role played by water, either as a solvent or as a structural/dynamic component of the active site. In order to investigate further the potential biological roles of water, we have employed ultrafast multidimensional infrared spectroscopy experiments that directly probe the structural and vibrational dynamics of NO bound to the ferric haem of the catalase enzyme from Corynebacterium glutamicum in both H 2 O and D 2 O. Despite catalases having what is believed to be a solvent-inaccessible active site, an isotopic dependence of the spectral diffusion and vibrational lifetime parameters of the NO stretching vibration are observed, indicating that water molecules interact directly with the haem ligand. Furthermore, IR pump-probe data feature oscillations originating from the preparation of a coherent superposition of low-frequency vibrational modes in the active site of catalase that are coupled to the haem ligand stretching vibration. Comparisons with an exemplar of the closely-related peroxidase enzyme family shows that they too exhibit solvent-dependent active-site dynamics, supporting the presence of interactions between the haem ligand and water molecules in the active sites of both catalases and peroxidases that may be linked to proton transfer events leading to the formation of the ferryl intermediate Compound I. In addition, a strong, water-mediated, hydrogen bonding structure is suggested to occur in catalase that is not replicated in peroxidase; an observation that may shed light on the origins of the different functions of the two enzymes.
Renuga Devi, T S; Sharmi kumar, J; Ramkumaar, G R
2015-02-25
The FTIR and FT-Raman spectra of 2-(cyclohexylamino)ethanesulfonic acid were recorded in the regions 4000-400 cm(-1) and 4000-50 cm(-1) respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and Density functional method (B3LYP) with the correlation consistent-polarized valence double zeta (cc-pVDZ) basis set and 6-311++G(d,p) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed based on the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Atomic charges were calculated using both Hartee-Fock and density functional method using the cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. (1)H and (13)C NMR chemical shifts of the molecule were calculated using Gauge Including Atomic Orbital (GIAO) method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The first order hyperpolarizability (β) and Molecular Electrostatic Potential (MEP) of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemical reactivity site in the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic characterization of high damping viscoelastic materials from vibration test data
NASA Astrophysics Data System (ADS)
Martinez-Agirre, Manex; Elejabarrieta, María Jesús
2011-08-01
The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.
Parametric Studies of Square Solar Sails Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Sleight, David W.; Muheim, Danniella M.
2004-01-01
Parametric studies are performed on two generic square solar sail designs to identify parameters of interest. The studies are performed on systems-level models of full-scale solar sails, and include geometric nonlinearity and inertia relief, and use a Newton-Raphson scheme to apply sail pre-tensioning and solar pressure. Computational strategies and difficulties encountered during the analyses are also addressed. The purpose of this paper is not to compare the benefits of one sail design over the other. Instead, the results of the parametric studies may be used to identify general response trends, and areas of potential nonlinear structural interactions for future studies. The effects of sail size, sail membrane pre-stress, sail membrane thickness, and boom stiffness on the sail membrane and boom deformations, boom loads, and vibration frequencies are studied. Over the range of parameters studied, the maximum sail deflection and boom deformations are a nonlinear function of the sail properties. In general, the vibration frequencies and modes are closely spaced. For some vibration mode shapes, local deformation patterns that dominate the response are identified. These localized patterns are attributed to the presence of negative stresses in the sail membrane that are artifacts of the assumption of ignoring the effects of wrinkling in the modeling process, and are not believed to be physically meaningful. Over the range of parameters studied, several regions of potential nonlinear modal interaction are identified.
NASA Astrophysics Data System (ADS)
Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.
2014-01-01
In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).
Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A
2014-01-24
In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.
Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling
Toosizadeh, Nima; Mohler, Jane
2018-01-01
In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2015-02-01
Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via stochastic subspace identification (SSI) and linear parameter time-varying (LPTV) techniques. Structural response is assumed to be stationary ambient excitation produced by a Gaussian (white) noise within the operative range bandwidth of the machinery or structure in study. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to identify frequencies and complex-valued mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment. A numerical example is carried out based a spinning finite element (SFE) model, and verified using ANSYS® Ver. 12. Finally, comments and observations are provided on how this subspace realization technique can be extended to the problem of modal-parameter identification using only ambient vibration data.
Dong, Ren G; Dong, Jennie H; Wu, John Z; Rakheja, Subhash
2007-01-01
The objective of this study is to develop analytical models for simulating driving-point biodynamic responses distributed at the fingers and palm of the hand under vibration along the forearm direction (z(h)-axis). Two different clamp-like model structures are formulated to analyze the distributed responses at the fingers-handle and palm-handle interfaces, as opposed to the single driving point invariably considered in the reported models. The parameters of the proposed four- and five degrees-of-freedom models are identified through minimization of an rms error function of the model and measured responses under different hand actions, namely, fingers pull, push only, grip only, and combined push and grip. The results show that the responses predicted from both models agree reasonably well with the measured data in terms of distributed as well total impedance magnitude and phase. The variations in the identified model parameters under different hand actions are further discussed in view of the biological system behavior. The proposed models are considered to serve as useful tools for design and assessment of vibration isolation methods, and for developing a hand-arm simulator for vibration analysis of power tools.
Experiments In Characterizing Vibrations Of A Structure
NASA Technical Reports Server (NTRS)
Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.
1993-01-01
Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).
Temperature-dependent μ-Raman investigation of struvite crystals.
Prywer, Jolanta; Kasprowicz, D; Runka, T
2016-04-05
The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
Improvement of human operator vibroprotection system in the utility machine
NASA Astrophysics Data System (ADS)
Korchagin, P. A.; Teterina, I. A.; Rahuba, L. F.
2018-01-01
The article is devoted to an urgent problem of improving efficiency of road-building utility machines in terms of improving human operator vibroprotection system by determining acceptable values of the rigidity coefficients and resistance coefficients of operator’s cab suspension system elements and those of operator’s seat. Negative effects of vibration result in labour productivity decrease and occupational diseases. Besides, structure vibrations have a damaging impact on the machine units and mechanisms, which leads to reducing an overall service life of the machine. Results of experimental and theoretical research of operator vibroprotection system in the road-building utility machine are presented. An algorithm for the program to calculate dynamic impacts on the operator in terms of different structural and performance parameters of the machine and considering combination of external pertrubation influences was proposed.
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan
The Spitzer Space Telescope observation of spectra most likely attributable to diverse and abundant populations of polycyclic aromatic hydrocarbons (PAHs) in space has led to tremendous interest in these molecules as tracers of the physical conditions in different astrophysical regions. A major challenge in using PAHs as molecular tracers is the complexity of the spectral features in the 3-20 μm region. The large number and vibrational similarity of the putative PAHs responsible for these spectra necessitate determination for the most accurate basis spectra possible for comparison. It is essential that these spectra be established in order for the regions explored with the newest generation of observatories such as SOFIA and JWST to be understood. Current strategies to develop these spectra for individual PAHs involve either matrixisolation IR measurements or quantum chemical calculations of harmonic vibrational frequencies. These strategies have been employed to develop the successful PAH IR spectral database as a repository of basis functions used to fit astronomically observed spectra, but they are limited in important ways. Both techniques provide an adequate description of the molecules in their electronic, vibrational, and rotational ground state, but these conditions do not represent energetically hot regions for PAHs near strong radiation fields of stars and are not direct representations of the gas phase. Some non-negligible matrix effects are known in condensed-phase studies, and the inclusion of anharmonicity in quantum chemical calculations is essential to generate physically-relevant results especially for hot bands. While scaling factors in either case can be useful, they are agnostic to the system studied and are not robustly predictive. One strategy that has emerged to calculate the molecular vibrational structure uses vibrational perturbation theory along with a quartic force field (QFF) to account for higher-order derivatives of the potential energy surface. QFFs can regularly predict the fundamental vibrational frequencies to within 5 cm-1 of experimentally measured values. This level of accuracy represents a reduction in discrepancies by an order of magnitude compared with harmonic frequencies calculated with density functional theory (DFT). The major limitation of the QFF strategy is that the level of electronic-structure theory required to develop a predictive force field is prohibitively time consuming for molecular systems larger than 5 atoms. Recent advances in QFF techniques utilizing informed DFT approaches have pushed the size of the systems studied up to 24 heavy atoms, but relevant PAHs can have up to hundreds of atoms. We have developed alternative electronic-structure methods that maintain the accuracy of the coupled-cluster calculations extrapolated to the complete basis set limit with relativistic and core correlation corrections applied: the CcCR QFF. These alternative methods are based on simplifications of Hartree—Fock theory in which the computationally intensive two-electron integrals are approximated using empirical parameters. These methods reduce computational time to orders of magnitude less than the CcCR calculations. We have derived a set of optimized empirical parameters to minimize the difference molecular ions of astrochemical significance. We have shown that it is possible to derive a set of empirical parameters that will produce RMS energy differences of less than 2 cm- 1 for our test systems. We are proposing to adopt this reparameterization strategy and some of the lessons learned from the informed DFT studies to create a semi-empirical method whose tremendous speed will allow us to study the rovibrational structure of large PAHs with up to 100s of carbon atoms.
NASA Astrophysics Data System (ADS)
Mariappan, G.; Sundaraganesan, N.
2014-04-01
Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.
NASA Astrophysics Data System (ADS)
Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove
2018-01-01
A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2013-04-01
To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.
NASA Astrophysics Data System (ADS)
Cao, Bochao
Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.
NASA Astrophysics Data System (ADS)
Xian, Guangming
2018-03-01
In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.
Microgravity Vibration Control and Civil Applications
NASA Technical Reports Server (NTRS)
Whorton, Mark Stephen; Alhorn, Dean Carl
1998-01-01
Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.
NASA Astrophysics Data System (ADS)
Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.; Kuz'min, E. V.; Dorodnikov, A. N.
2017-05-01
The results of an investigation of the influence of the parameters of high-frequency acoustic wave on the structure and properties of the zone of joint of homogeneous metals bonded by explosive welding under the action of ultrasound have been presented. The influence of the frequency and amplitude of ultrasonic vibrations on the structure and properties of the explosively welded joints compared with the samples welded without the application of ultrasound has been established. The action of high-frequency acoustic waves on the metal leads to a reduction in the dynamic yield stress, which changes the properties of the surface layers of the metal and the conditions of the formation of the joint of the colliding plates upon the explosive welding. It has been shown that the changes in the length and amplitude of waves that arise in the weld joint upon the explosive welding with the simultaneous action of ultrasonic vibrations are connected with a decrease in the magnitude of the deforming pulse and time of action of the compressive stresses that exceed the dynamic yield stress beyond the point of contact.
NASA Astrophysics Data System (ADS)
Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib
2017-09-01
Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.
Molecular structure and vibrational spectroscopy of isoproturon
NASA Astrophysics Data System (ADS)
Vrielynck, L.; Dupuy, N.; Kister, J.; Nowogrocki, G.
2006-05-01
The crystal structure of isoproturon [ N-(4-isopropylphenyl)- N', N'-dimethylurea] has been determined: the compound crystallizes in the space group Pbca with unit cell parameters a=10.186(2) Å, b=11.030(2) Å, c=20.981(4) Å. The structure was solved and refined down to R1=0.0508 and ωR2=0.12470 for 3056 reflections. The crystalline molecular network of this pesticide is stabilized, as for many molecules of the same family, by π-π interactions but especially by a medium-strong N-H⋯C dbnd6 O intermolecular hydrogen bond (2.14 Å). The X-ray parameters were then compared with the results of DFT quantum chemical calculation computed with the GAUSSIAN 94 package. A tentative assignment of the ATR-FT-IR and Raman spectra was proposed supported by vibrational mode calculation and spectroscopic data on benzenic and urea derivatives available in the literature. The presence of a tight band around 3300 cm -1, which can be assigned to the NH bond stretching mode as well as the low frequency position of the amide I band at 1640 cm -1, sensitive to solvent polarity, confirms the existence of a quite strong intermolecular hydrogen bond between neighboring molecules in the crystal of isoproturon.
NASA Astrophysics Data System (ADS)
Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.
2014-09-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.
Govindasamy, P; Gunasekaran, S; Ramkumaar, G R
2014-09-15
The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm(-1) and 4000-50 cm(-1) respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Parra, J.; Vicuña, Cristián Molina
2017-08-01
Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.
Excellent low-frequency sound absorption of radial membrane acoustic metamaterial
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie
2017-01-01
This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.
SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.
Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.
1985-01-01
Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.
NASA Astrophysics Data System (ADS)
Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing
2018-03-01
A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.
Picosecond dynamics from lanthanide chloride melts
NASA Astrophysics Data System (ADS)
Kalampounias, Angelos G.
2012-12-01
The picosecond dynamics of molten lanthanide chlorides is studied by means of vibrational spectroscopy. Polarized Raman spectra of molten LaCl3, NdCl3, GdCl3, DyCl3, HoCl3 and YCl3 are fitted to a model enabling to obtain the times of vibrational dephasing, tν and vibrational frequency modulation tω. Our aim is to find possible sensitive indicators of short-time dynamics. It has been found that all lanthanide chlorides exhibit qualitative similarities in the vibrational relaxation and frequency modulation times in the molten state. It appears that the vibrational correlation functions of all melts comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α indicates the deviation of the melts from the model simple liquid and the similar local environment in which the oscillator is placed and with which it is coupled. The "packing" of the anions around central La3+ cation seems to be the key factor for the structure and the dynamics of the melts. The results are discussed in the framework of the current phenomenological status of the field.
Influence of tunnel and soil parameters on vibrations from underground railways
NASA Astrophysics Data System (ADS)
Gupta, S.; Stanus, Y.; Lombaert, G.; Degrande, G.
2009-10-01
A parametric study is performed to identify the key parameters which have an important influence on the generation and propagation of vibrations from underground railways. In this paper, the parameters related to the tunnel and the soil are considered and their influence on the free field response is studied. The coupled periodic finite element-boundary element model and the pipe-in-pipe model have been used for this study. Both models account for the dynamic interaction between the train, the track, the tunnel and the soil. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The response to moving loads is written in terms of the axle loads and the transfer functions. The parametric study can be carried out by separately analyzing the variations in the axle loads and the transfer functions. The axle loads are mainly influenced by the parameters related to the vehicle and the track, while the transfer functions are influenced by the properties of the track, the tunnel and the soil. In the present paper, the parameters related to the tunnel and soil are investigated. It is observed that the material damping and the shear modulus of the soil have an important influence on the propagation of vibrations. The influence of structural changes to the tunnel as well as geometrical properties such as the size and shape of the tunnel is investigated. It is observed that a larger tunnel results in a smaller response above the tunnel as more energy is radiated downwards. Moreover, it is demonstrated that the tunnel geometry has a considerable influence on the response closer to the tunnel.
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2018-01-01
Structures and vibrational spectra of 3-bromo-7-azaindole (3Br7AI), 4-bromo-7-azaindole (4Br7AI), 4-chloro-7-azaindole (4Cl7AI), 5-bromo-3-chloro-7-azaindole (5Br3Cl7AI) and 3-bromo-4-chloro-7-azaindole (3Br4Cl7AI) have been investigated. For the first time a single crystal analysis is reported for the three compounds: 3Br7AI (P21/n space group; a = 12.6586(3), b = 3.98664(12), c = 14.1189(4)Å, β = 100.901(2)o, Z = 4); 4Br7AI (P21/n space group; a = 5.38136 (13), b = 9.2262 (2), c = 13.9806 (4)Å, β = 90.052 (2)o, Z = 4); and 5Br3Cl7AI (C2/c space group; a = 22.9444(10), b = 3.91953(12), c = 17.8500(6)Å, β = 102.621(4)o, Z = 8). In the crystal structure, a pair of molecules forms a centrosymmetric dimer connected by dual nearly linear Nsbnd H⋯N hydrogen bonds between the pyrrole and pyridine rings. In addition, the structures of 4Br7AI and 5Br3Cl7AI are stabilized by C2sbnd H2⋯Br hydrogen bonds. The IR and Raman spectra of all compounds and their N-deuterated derivatives were recorded in the solid state. The theoretical molecular structures and vibrational spectra of the centrosymmetric dimers of five investigated compounds were calculated using the B3LYP method with the 6-311G++(d,p) basis set. The optimized structural parameters and the calculated vibrational spectra reproduce well the experiment. Detailed vibrational assignments for all these compounds have been made on the basis of the calculated potential energy distributions (PEDs). The characteristic marker bands for the chloro- and bromo-derivativeds of 7-azaindoles are reported.
NASA Astrophysics Data System (ADS)
Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han
2018-07-01
Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.
NASA Astrophysics Data System (ADS)
Yoo, David; Tang, J.
2017-04-01
Since weakly-coupled bladed disks are highly sensitive to the presence of uncertainties, they can easily undergo vibration localization. When vibration localization occurs, vibration modes of bladed disk become dramatically different from those under the perfectly periodic condition, and the dynamic response under engine-order excitation is drastically amplified. In previous studies, it is investigated that amplified vibration response can be suppressed by connecting piezoelectric circuitry into individual blades to induce the damped absorber effect, and localized vibration modes can be alleviated by integrating piezoelectric circuitry network. Delocalization of vibration modes and vibration suppression of bladed disk, however, require different optimal set of circuit parameters. In this research, multi-objective optimization approach is developed to enable finding the best circuit parameters, simultaneously achieving both objectives. In this way, the robustness and reliability in bladed disk can be ensured. Gradient-based optimizations are individually developed for mode delocalization and vibration suppression, which are then integrated into multi-objective optimization framework.
Vibration detection of component health and operability
NASA Technical Reports Server (NTRS)
Baird, B. C.
1975-01-01
In order to prevent catastrophic failure and eliminate unnecessary periodic maintenance in the shuttle orbiter program environmental control system components, some means of detecting incipient failure in these components is required. The utilization was investigated of vibrational/acoustic phenomena as one of the principal physical parameters on which to base the design of this instrumentation. Baseline vibration/acoustic data was collected from three aircraft type fans and two aircraft type pumps over a frequency range from a few hertz to greater than 3000 kHz. The baseline data included spectrum analysis of the baseband vibration signal, spectrum analysis of the detected high frequency bandpass acoustic signal, and amplitude distribution of the high frequency bandpass acoustic signal. A total of eight bearing defects and two unbalancings was introduced into the five test items. All defects were detected by at least one of a set of vibration/acoustic parameters with a margin of at least 2:1 over the worst case baseline. The design of a portable instrument using this set of vibration/acoustic parameters for detecting incipient failures in environmental control system components is described.
NASA Astrophysics Data System (ADS)
Yashiki, Satoshi; Ueda, Kazuo
2011-08-01
Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu--Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu--Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J. F.; Chen, Zhongping
2009-11-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.
The use of normal forms for analysing nonlinear mechanical vibrations
Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea
2015-01-01
A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917
[Research on the emission spectrum of NO molecule's γ-band system by corona discharge].
Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui
2012-05-01
The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.
N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method
NASA Astrophysics Data System (ADS)
Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.
2018-05-01
Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.
High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer
NASA Astrophysics Data System (ADS)
Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo
2018-02-01
We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J F; Chen, Zhongping
2009-01-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens-based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology.
Yu, Lingfeng; Liu, Gangjun; Rubinstein, Marc; Saidi, Arya; Wong, Brian J.F.; Chen, Zhongping
2009-01-01
Optical coherence tomography (OCT) is an evolving noninvasive imaging modality that has been used to image the human larynx during surgical endoscopy. The design of a long gradient index (GRIN) lens–based probe capable of capturing images of the human larynx by use of swept-source OCT during a typical office-based laryngoscopy examination is presented. In vivo OCT imaging of the human larynx is demonstrated with a rate of 40 frames per second. Dynamic vibration of the vocal folds is recorded to provide not only high-resolution cross-sectional tissue structures but also vibration parameters, such as the vibration frequency and magnitude of the vocal cords, which provides important information for clinical diagnosis and treatment, as well as fundamental research of the voice itself. Office-based OCT is a promising imaging modality to study the larynx for physicians in otolaryngology. PMID:20059258
NASA Astrophysics Data System (ADS)
Terao, Takamichi
2018-04-01
Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.
NASA Technical Reports Server (NTRS)
Book, W. J.
1973-01-01
An investigation is reported involving a mathematical procedure using 4 x 4 transformation matrices for analyzing the vibrations of flexible manipulators. Previous studies with the procedure are summarized and the method is extended to include flexible joints as well as links, and to account for the effects of various power transmission schemes. A systematic study of the allocation of structural material and the placement of components such as motors and gearboxes was undertaken using the analytical tools developed. As one step in this direction the variables which relate the vibration parameters of the arm to the task and environment of the arm were isolated and nondimensionalized. The 4 x 4 transformation matrices were also used to develop analytical expressions for the terms of the complete 6 x 6 compliance matrix for the case of two flexible links joined by a rotating joint, flexible about its axis of rotation.
Structure-borne noise at hotels
NASA Astrophysics Data System (ADS)
Wilson, George Paul; Jue, Deborah A.
2002-11-01
Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.
A multiple functional connector for high-resolution optical satellites
NASA Astrophysics Data System (ADS)
She, Fengke; Zheng, Gangtie
2017-11-01
For earth observation satellites, perturbations from actuators, such as CMGs and momentum wheels, and thermal loadings from support structures often have significant impact on the image quality of an optical. Therefore, vibration isolators and thermal deformation releasing devices nowadays often become important parts of an image satellite. However, all these devices will weak the connection stiffness between the optical instrument and the satellite bus structure. This will cause concern of the attitude control system design for worrying about possible negative effect on the attitude control. Therefore, a connection design satisfying all three requirements is a challenge of advanced image satellites. Chinese scientists have proposed a large aperture high-resolution satellite for earth observation. To meet all these requirements and ensure image quality, specified multiple function connectors are designed to meet these challenging requirements, which are: isolating vibration, releasing thermal deformation and ensuring whole satellite dynamic properties [1]. In this paper, a parallel spring guide flexure is developed for both vibration isolation and thermal deformation releasing. The stiffness of the flexure is designed to meet the vibration isolation requirement. To attenuate vibration, and more importantly to satisfy the stability requirement of the attitude control system, metal damping, which has many merits for space applications, are applied in this connecter to provide a high damping ratio and nonlinear stiffness. The capability of the connecter for vibration isolation and attenuation is validated through numerical simulation and experiments. Connecter parameter optimization is also conducted to meet both requirements of thermal deformation releasing and attitude control. Analysis results show that the in-orbit attitude control requirement is satisfied while the thermal releasing performance is optimized. The design methods and analysis results are also provided in the present paper.
Analysis of virtual passive controllers for flexible space structures
NASA Technical Reports Server (NTRS)
Williams, Trevor W.
1992-01-01
The dynamics of flexible spacecraft are not usually well known before launch. This makes it important to develop controllers for such systems that can never be destabilized by perturbations in the structural model. Virtual passive controllers, or active vibration absorbers, possess this guaranteed stability property; they mimic a fictitious flexible structure attached to the true physical one. This report analyzes the properties of such controllers, and shows that disturbance absorption behavior can be naturally described in terms of a set of virtual zeros that they introduce into the closed-loop dynamics of the system. Based on this analysis, techniques are then derived for selecting the active vibration absorber internal parameters, i.e., the gain matrices of such controllers, so as to achieve specified control objectives. Finally, the effects on closed-loop stability of small delays in the feedback loop are investigated. Such delays would typically be introduced by a digital implementation of an active vibration absorber. It is shown that these delays only affect the real parts of the eigenvalues of a lightly-damped structure. Furthermore, it is only the high-frequency modes that are destabilized by delays; low-frequency modes are actually made more heavily damped. Eigenvalue perturbation methods are used to obtain accurate predictions of the critical delay at which a given system will become unstable; these methods also determine which mode is critical.
Chemical and biological sensing using tuning forks
Tao, Nongjian; Boussaad, Salah
2012-07-10
A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
NASA Astrophysics Data System (ADS)
Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei
2018-01-01
Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.
NASA Astrophysics Data System (ADS)
Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.
2016-04-01
The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.
NASA Astrophysics Data System (ADS)
Wu, Wen-Hwa; Wang, Sheng-Wei; Chen, Chien-Chou; Lai, Gwolong
2017-05-01
Identification for the modal parameters of an instrumented office building using ambient vibration measurements is conducted in this study based on a recently developed stochastic subspace identification methodology equipped with an alternative stabilization diagram and a hierarchical sifting process. The identified results are then deliberately examined to recognize the dynamic features for quite a few dominant modes of this building structure including three pairs of closely-spaced modes. Making use of the collected three-month data including three seismic events, the analyzed results show that the root-mean-square vibration response is directly related to the wind speed and indirectly related to the air temperature under a specific condition. More importantly, it is discovered that the root-mean-square response is the dominant factor to induce the variation of modal parameters. Except for the torsional modes, all the other modal frequencies are highly correlated with the root-mean-square acceleration in a negative manner and the corresponding damping ratios also clearly display a positive correlation. Another crucial observation from this assessment is that the percentages of frequency variation in three months for most of the identified modes go beyond 10%. The effects of three nondestructive earthquakes are further traced to observe the tendencies of reducing the modal frequencies and raising the damping ratios, both with a variation level possibly increasing with the seismic intensity. But different from the effects of environmental factors, the changes in modal parameters caused by nondestructive earthquakes will vanish right after the seismic events.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Control of equipment isolation system using wavelet-based hybrid sliding mode control
NASA Astrophysics Data System (ADS)
Huang, Shieh-Kung; Loh, Chin-Hsiung
2017-04-01
Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.
Vibrational and Thermal Properties of Oxyanionic Crystals
NASA Astrophysics Data System (ADS)
Korabel'nikov, D. V.
2018-03-01
The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
NASA Astrophysics Data System (ADS)
Lyubimova, T.; Lyubimov, D.; Parshakova, Ya.
2017-04-01
The effect of vertical vibrations on the Rayleigh-Benard-Marangoni instability of a two-layer system of immiscible incompressible viscous fluids subjected to a constant vertical heat flux at the external boundaries is studied in the framework of the generalized Boussinesq approximation taking into account the interface deformations. The study is performed using the averaging approach under the assumption that the vibration period is small in comparison with the hydrodynamical time scales and the product of the vibration amplitude and the Boussinesq parameter is small in comparison with the layer thickness. It has been found that the long-wave instability is not affected by vibrations of small and moderate intensity. It turned out that vibrations have a stabilizing effect on the finite-wavelength perturbations in a wide range of parameters.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Evaluation of a pulse control law for flexible spacecraft
NASA Technical Reports Server (NTRS)
1985-01-01
The following analytical and experimental studies were conducted: (1) A simple algorithm was developed to suppress the structural vibrations of 3-dimensional distributed parameter systems, subjected to interface motion and/or directly applied forces. The algorithm is designed to cope with structural oscillations superposed on top of rigid-body motion: a situation identical to that encountered by the SCOLE components. A significant feature of the method is that only local measurements of the structural displacements and velocities relative to the moving frame of reference are needed. (2) A numerical simulation study was conducted on a simple linear finite element model of a cantilevered plate which was subjected to test excitations consisting of impulsive base motion and of nonstationary wide-band random excitation applied at its root. In each situation, the aim was to suppress the vibrations of the plate relative to the moving base. (3) A small mechanical model resembling an aircraft wing was designed and fabricated to investigate the control algorithm under realistic laboratory conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.W.; Eckert, J.; Barthes, M.
1995-11-02
The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
NASA Astrophysics Data System (ADS)
Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj
2018-03-01
In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.
NASA Astrophysics Data System (ADS)
Dekterev, D.; Maslennikova, A.; Abramov, A.
2017-09-01
The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.
NASA Astrophysics Data System (ADS)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
Electronic structures and magnetic/optical properties of metal phthalocyanine complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo
2016-02-01
Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less
NASA Astrophysics Data System (ADS)
Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.
2017-10-01
The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.
1996-04-01
structural factors; I is the temperature, p is the pressure; P, is the vibration parameter; Q, is the supply amount (volume); R, is the supply rate; If is...Bueiu6, Aires, Argentina, p. 4, 1994. 3. B.Bedrik, M.Yampolsky "Study and procedure of oils application in aeroengines according to the condition. Joint
NASA Astrophysics Data System (ADS)
Arjunan, V.; Marchewka, Mariusz K.; Pietraszko, A.; Kalaivani, M.
2012-11-01
The structural investigations of the molecular complex of 2-methyl-4-nitroaniline with trichloroacetic acid, namely 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid (C11H10Cl6N2O6) have been performed by means of single crystal and powder X-ray diffraction method. The complex was formed with accompanying proton transfer from trichloroacetic acid molecule to 2-methyl-4-nitroaniline. The studied crystal is built up of singly protonated 2-methyl-4-nitroanilinium cations, trichloroacetate anions and neutral trichloroacetic acid molecules. The crystals are monoclinic, space group P21/c, with a = 14.947 Å, b = 6.432 Å, c = 19.609 Å and Z = 4. The vibrational assignments and analysis of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid have also been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ, 6-31G and 6-31++G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of 2M4NATCA were also determined by the DFT methods.
Microwave spectrum, structure, dipole moment, and Coriolis coupling of 1,1-difluoroallene
NASA Technical Reports Server (NTRS)
Durig, J. R.; Li, Y. S.; Tong, C. C.; Zens, A. P.; Ellis, P. D.
1974-01-01
Microwave spectra from 12.4 to 40.0 GHz were recorded for five isotopic species of 1,1-difluoroallene. A-type transitions were observed and R-branch assignments were made for the ground state and two vibrationally excited states. Several structural parameters of the compounds were determined. The dipole moment value obtained from Stark splitting was 2.07 plus or minus 0.03 D. A Coriolis coupling was observed between the two-low-frequency C = C = C bending modes.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2014-11-01
Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
Durig, Douglas T; Durig, M S; Durig, James R
2005-05-01
The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.
The FP4026 Research Database on the fundamental period of RC infilled frame structures.
Asteris, Panagiotis G
2016-12-01
The fundamental period of vibration appears to be one of the most critical parameters for the seismic design of buildings because it strongly affects the destructive impact of the seismic forces. In this article, important research data (entitled FP4026 Research Database (Fundamental Period-4026 cases of infilled frames) based on a detailed and in-depth analytical research on the fundamental period of reinforced concrete structures is presented. In particular, the values of the fundamental period which have been analytically determined are presented, taking into account the majority of the involved parameters. This database can be extremely valuable for the development of new code proposals for the estimation of the fundamental period of reinforced concrete structures fully or partially infilled with masonry walls.
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Aydelott, J. C.
1978-01-01
The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.
Effect of mechanical vibrations on the wear behavior of AZ91 Mg alloy
NASA Astrophysics Data System (ADS)
Chaturvedi, V.; Pandel, U.; Sharma, A.
2018-02-01
AZ91 Mg alloy is the most promising alloy used for structural applications. The vibration induced methods are effective and economic viable in term of mechanical properties. Sliding wear tests were performed on AZ91 Mg alloy using a pin-on- disc configuration. Wear rates were measured at 5 N and 10N at a sliding velocity of 1m/s for varied frequency within the range of 5- 25Hz and a constant amplitude of 2mm. Microstructures of worn surfaces and wear debris were characterized by field emission scanning electron microscopy (FESEM). It is observed that wear resistance of vibrated AZ91 alloy at 15Hz frequency ad 2mm amplitude was superior than cast AZ91 Mg alloy. Finer grain size and equiaxed grain shape both are important parameters for better wear resistance in vibrated AZ91 Mg alloys. FESEM analysis revealed that wear is considerably affected due to frictional heat generated by the relative motion between AZ91 Mg alloy and EN31 steel surface. No single mechanism was responsible for material loss.
NASA Astrophysics Data System (ADS)
Melentjev, Vladimir S.; Gvozdev, Alexander S.
2018-01-01
Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.
Inverse problems in the modeling of vibrations of flexible beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Powers, R. K.; Rosen, I. G.
1987-01-01
The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.
Grey-box state-space identification of nonlinear mechanical vibrations
NASA Astrophysics Data System (ADS)
Noël, J. P.; Schoukens, J.
2018-05-01
The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.
[Raman, FTIR spectra and normal mode analysis of acetanilide].
Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun
2012-10-01
The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.
Guaranteeing robustness of structural condition monitoring to environmental variability
NASA Astrophysics Data System (ADS)
Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François
2017-01-01
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)
NASA Astrophysics Data System (ADS)
Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.
2015-06-01
Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by 1H and 13C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358 K for heating and cooling, respectively.
Kanagathara, N; Marchewka, M K; Drozd, M; Gunasekaran, S; Rajakumar, P R; Anbalagan, G
2015-06-15
Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by (1)H and (13)C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358K for heating and cooling, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Aerodynamic studies of the beam bridge
NASA Astrophysics Data System (ADS)
Salenko, S. D.; Obukhovskiy, A. D.; Gosteev, Yu. A.
2017-10-01
The paper investigates the aeroelastic oscillations in the wind flow of the span structure (SS) of the beam bridge at the stage of mounting. Experiments with the SS sectional model and numerical calculations showed that at the stage of mounting the structure can be subject to two types of aeroelastic vibrations: vortex induced vibration and galloping. The main contribution to the excitation of oscillations is made by the section of the SS without cantilever plates. For this section site, the dominant frequency of the vortex shedding corresponds to the Strouhal number Sh≈0,067. In the process of wind tunnel simulation of dynamically similar model, its bending vibrations with an amplitude of about 1.5 m were observed in terms of the full-scale conditions, and the zones of wind resonance and galloping were closed. The ambiguity of the effect on the SS aeroelastic oscillations of the flow sideslip angle is found. To eliminate the aeroelastic vibrations which are a characteristic of this SS, several variants of dampers in the form of deflectors and flat step plate were investigated. As a result of optimization of the damper parameters, the amplitude of the aeroelastic oscillations of the full-scale SS has been reduced to values less than ˜ 0.1 m in the entire range of possible wind speeds up to 24 m/s at all stages of mounting.
Structure and vibrational spectra of pyridine betaine hydrochloride
NASA Astrophysics Data System (ADS)
Szafran, Mirosław; Koput, Jacek; Baran, Jan; Głowiak, Tadeusz
1997-12-01
The crystal structure of pyridine betaine hydrochloride (PBET·HCl) was determined by X-ray diffraction to be monoclinic, space group {P2 1}/{c} with a = 8.533(2) Å, b = 9.548(2) Å, c = 10.781(2) Å, β = 107.228(3)° and Z = 4. Betaine is protonated and the carboxyl group forms a hydrogen bond with the chloride ion: O·Cl - distance is 2.928(3) Å. The interaction of pyridine betaine (PBET) with HCl was examined by ab initio self-consistent field (SCF), second-order Møller-Plesset (MP2) and density functional theory (DFT) methods using the 6-31G(d,p) basis set. Two minima are located in the potential surface at the SCF level (PBETH +·Cl - and PBET·HCl, with the latter being 1.2 kcal mol -1 lower in energy) and only one minimum (PBET·HCl) at the MP2 and DFT levels. The molecular parameters of PBETH +·Cl -, computed by the SCF method, reproduce the corresponding experimental data. The computed vibrational frequencies of PBETH +·Cl - resemble correctly the experimental vibrational spectrum in the solid state. The root-mean-square (r.m.s.) deviations between the experimental and calculated SCF frequencies are 65 cm -1 for all bands and 15 cm -1 without the νClH band. All measured IR bands were interpreted in terms of the calculated vibrational models.
Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.
2017-08-01
Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
2011-01-01
based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an
A modal parameter extraction procedure applicable to linear time-invariant dynamic systems
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Craig, R. R., Jr.
1985-01-01
Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.
Vibrational Responses Of Structures To Impulses
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1990-01-01
Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.
Insight into structural phase transitions from the decoupled anharmonic mode approximation
NASA Astrophysics Data System (ADS)
Adams, Donat J.; Passerone, Daniele
2016-08-01
We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T = 0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.
Insight into structural phase transitions from the decoupled anharmonic mode approximation.
Adams, Donat J; Passerone, Daniele
2016-08-03
We develop a formalism (decoupled anharmonic mode approximation, DAMA) that allows calculation of the vibrational free energy using density functional theory even for materials which exhibit negative curvature of the potential energy surface with respect to atomic displacements. We investigate vibrational modes beyond the harmonic approximation and approximate the potential energy surface with the superposition of the accurate potential along each normal mode. We show that the free energy can stabilize crystal structures at finite temperatures which appear dynamically unstable at T = 0. The DAMA formalism is computationally fast because it avoids statistical sampling through molecular dynamics calculations, and is in principle completely ab initio. It is free of statistical uncertainties and independent of model parameters, but can give insight into the mechanism of a structural phase transition. We apply the formalism to the perovskite cryolite, and investigate the temperature-driven phase transition from the P21/n to the Immm space group. We calculate a phase transition temperature between 710 and 950 K, in fair agreement with the experimental value of 885 K. This can be related to the underestimation of the interaction of the vibrational states. We also calculate the main axes of the thermal ellipsoid and can explain the experimentally observed increase of its volume for the fluorine by 200-300% throughout the phase transition. Our calculations suggest the appearance of tunneling states in the high temperature phase. The convergence of the vibrational DOS and of the critical temperature with respect of reciprocal space sampling is investigated using the polarizable-ion model.
Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C
2015-11-14
In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations.
NASA Astrophysics Data System (ADS)
Issaoui, N.; Ghalla, H.; Bardak, F.; Karabacak, M.; Aouled Dlala, N.; Flakus, H. T.; Oujia, B.
2017-02-01
In this work, the molecular structures and vibrational spectral analyses of 3-(2-Theinyl)acrylic acid (3-2TAA) monomer and dimer structures have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. The complete assignments of the fundamental vibrational modes were obtained using potential energy distribution. Intermolecular interactions were analyzed by orbital NBO and topological AIM approaches. The electronic properties have been carried out using TD-DFT approach. Great agreements between experimental and theoretical values were achieved throughout the analysis of structural parameters and spectroscopic features. Inhibitor characteristics on human monoamine oxidase B (MAOB) enzyme of two determined stable conformers of 3-2TAA (β and γ) along with four selective inhibitors, namely safinamide, a coumarin analogue, farnesol, and phenyethylhydrazine were investigated via molecular docking. Moreover, molecular electrostatic potential (MEP) and temperature dependency of thermodynamic functions have been reported.
DFT calculations on spectroscopic and structural properties of a NLO chromophore
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf
2016-03-01
The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.
The analysis of cable forces based on natural frequency
NASA Astrophysics Data System (ADS)
Suangga, Made; Hidayat, Irpan; Juliastuti; Bontan, Darwin Julius
2017-12-01
A cable is a flexible structural member that is effective at resisting tensile forces. Cables are used in a variety of structures that employ their unique characteristics to create efficient design tension members. The condition of the cable forces in the cable supported structure is an important indication of judging whether the structure is in good condition. Several methods have been developed to measure on site cable forces. Vibration technique using correlation between natural frequency and cable forces is a simple method to determine in situ cable forces, however the method need accurate information on the boundary condition, cable mass, and cable length. The natural frequency of the cable is determined using FFT (Fast Fourier Transform) Technique to the acceleration record of the cable. Based on the natural frequency obtained, the cable forces then can be determine by analytical or by finite element program. This research is focus on the vibration techniques to determine the cable forces, to understand the physical parameter effect of the cable and also modelling techniques to the natural frequency and cable forces.
NASA Astrophysics Data System (ADS)
Hu, K. M.; Li, Hua
2018-07-01
A novel technique for the multi-parameter optimization of distributed piezoelectric actuators is presented in this paper. The proposed method is designed to improve the performance of multi-mode vibration control in cylindrical shells. The optimization parameters of actuator patch configuration include position, size, and tilt angle. The modal control force of tilted orthotropic piezoelectric actuators is derived and the multi-parameter cylindrical shell optimization model is established. The linear quadratic energy index is employed as the optimization criterion. A geometric constraint is proposed to prevent overlap between tilted actuators, which is plugged into a genetic algorithm to search the optimal configuration parameters. A simply-supported closed cylindrical shell with two actuators serves as a case study. The vibration control efficiencies of various parameter sets are evaluated via frequency response and transient response simulations. The results show that the linear quadratic energy indexes of position and size optimization decreased by 14.0% compared to position optimization; those of position and tilt angle optimization decreased by 16.8%; and those of position, size, and tilt angle optimization decreased by 25.9%. It indicates that, adding configuration optimization parameters is an efficient approach to improving the vibration control performance of piezoelectric actuators on shells.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.
Uma Maheswari, J; Muthu, S; Sundius, Tom
2014-04-05
A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.
Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Musiol, Robert; Jampilek, Josef; Van Alsenoy, Christian; War, Javeed Ahmad; Srivastava, S K
2015-01-01
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of the normal modes of vibrations was done using GAR2PED program. (1)H NMR chemical shifts calculations were carried out by using B3LYP functional with SDD basis set. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. The calculated geometrical parameters are in agreement with that of similar derivatives. The title compound forms a stable complex with PknB as is evident from the binding affinity values and the molecular docking results suggest that the compound might exhibit inhibitory activity against PknB and this may result in development of new anti-tuberculostic agents. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.
2017-04-01
The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.
Macholl, Sven; Mäder, Heinrich; Harder, Hauke; Margulès, Laurent; Dréan, Pascal; Cosléou, Jean; Demaison, Jean; Pracna, Petr
2009-01-29
The rotational spectrum of NSF3 in the ground and v5 = 1 vibrational states has been investigated in the centimeter- and millimeter-wave ranges. R-branch (J + 1 <-- J) transitions for J = 0, 1 and Q-branch rotational transitions for the v5 = 1 vibrational state have been measured by waveguide Fourier transform microwave spectroscopy in the range 8-26.5 GHz. The Q-branch transitions include 28 direct l-type doubling transitions (kl = +1, A1) <--> (kl = +1, A2) with J < or = 62, and 108 direct l-type resonance transitions following the selection rule delta k = delta l = +/-2 with J < or = 60 and G = |k - l| < or = 3. A process called "regional resonance" was observed in which a cluster of levels interacted strongly over a large range in J. This process led to the observation of 55 perturbation-allowed transitions following the selection rules delta(k - l) = +/-3, +/-6. In particular, (kl = +1, A+) <--> (kl = -2, A-), (kl = +4, A+) <--> (kl = +1, A-), (kl = +2) <--> (kl = -1), (kl = +3) <--> (kl = 0), (kl = +2) <--> (kl = -3), and (kl = +3) <--> (kl = -3). The various aspects of the regional resonances are discussed in detail. An accidental near-degeneracy of the kl = 0 and kl = -4 levels at J = 26/27 led to the observation of perturbation-allowed transitions following the selection rule delta(k-l) = +/-6 with (kl = +2) <--> (kl = -4). A corresponding near-degeneracy between kl = -1 and kl = -3 levels at J = 30/31 led to the detection of similar transitions, but with (kl = +3) <--> (kl = -3). In the range 230-480 GHz, R-branch rotational transitions have been measured by absorption spectroscopy up to J = 49 in the ground-state and up to J = 50 in the v5 = 1 vibrational state. The transition frequencies have been analyzed using various reduced forms of the effective Hamiltonians. The data for the v5 = 1 vibrational state have been fitted successfully using two models up to seventh order with delta k = +/-3 interaction parameters constrained (dt constrained to zero, and epsilon to zero or to the ground-state value). On the other hand, reductions with the (delta k = +/-1, deltal = -/+2) interaction parameter q12 fixed to zero failed to reproduce the experimental data since the parameters defining the reduction transformation do not arise in the correct order of magnitude. The ground-state data have been analyzed including parameters up to fourth order constraining either parameters of the delta k = +/-3 interactions to zero (reduction A), or of the delta k = +/-6 interactions to zero (reduction B). The unitary equivalence of the different parameter sets obtained is demonstrated for both vibrational states.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.
2014-06-01
Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
2013-01-01
Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578
Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis
NASA Astrophysics Data System (ADS)
MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul
2018-03-01
Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-01-01
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-02-06
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Health monitoring of pipeline girth weld using empirical mode decomposition
NASA Astrophysics Data System (ADS)
Rezaei, Davood; Taheri, Farid
2010-05-01
In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.
NASA Astrophysics Data System (ADS)
Sert, Y.; Ucun, F.
2013-08-01
In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2018-06-01
The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.
Durig, James R; Zheng, Chao
2007-11-01
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.
NASA Astrophysics Data System (ADS)
Ramesh, Gaddam; Reddy, Byru Venkatram
2018-05-01
In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The 13C and 1H NMR chemical shifts of the molecules are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible (UV-Vis) spectra of the compounds are also recorded in the region 200-400 nm. Thermodynamic parameters and rotational constants are also determined and found that they are comparable with experimental literature values for these molecules.
NASA Astrophysics Data System (ADS)
Vatsal, Manu; Devi, Vandna; Awasthi, Pamita
2018-04-01
The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.
Bond compressibility and bond Grüneisen parameters of CdTe
NASA Astrophysics Data System (ADS)
Fornasini, P.; Grisenti, R.; Irifune, T.; Shinmei, T.; Mathon, O.; Pascarelli, S.; Rosa, A. D.
2018-06-01
Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases—zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)—are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd–Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.
Rashev, Svetoslav; Moule, David C
2012-02-15
We perform large scale converged variational vibrational calculations on S(0) formaldehyde up to very high excess vibrational energies (E(v)), E(v)∼17,000cm(-1), using our vibrational method, consisting of a specific search/selection/Lanczos iteration procedure. Using the same method we investigate the vibrational level structure and intramolecular vibrational redistribution (IVR) characteristics for various vibrational levels in this energy range in order to assess the onset of IVR. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2013-01-01
Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.
Gearbox vibration diagnostic analyzer
NASA Technical Reports Server (NTRS)
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
NASA Astrophysics Data System (ADS)
Attar, M.; Karrech, A.; Regenauer-Lieb, K.
2014-05-01
The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.