14 CFR 155.5 - Property and releases covered by this part.
Code of Federal Regulations, 2010 CFR
2010-01-01
... such an instrument, including a release of— (1) Personal property, equipment, or structures from any... salvage purposes; (2) Land, personal property, equipment or structures from any term, condition... for nonairport use in place; (3) Land, personal property, equipment, or structures from any term...
Effect of processing on Polymer/Composite structure and properties
NASA Technical Reports Server (NTRS)
1982-01-01
Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.
Ito, Masako
Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.
A polymer dataset for accelerated property prediction and design.
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
A polymer dataset for accelerated property prediction and design
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less
The Physics and Chemistry of Materials
NASA Astrophysics Data System (ADS)
Gersten, Joel I.; Smith, Frederick W.
2001-06-01
A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.
Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk
Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.
2013-01-01
Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., repair, remodeling, improvement, or extension of buildings, structures or other property. Contract. A... 300. Operable unit. A discrete action, as described in the Cooperative Agreement or Superfund State...). Real property. Land, including land improvements, structures, and appurtenances thereto, excluding...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., repair, remodeling, improvement, or extension of buildings, structures or other property. Contract. A... 300. Operable unit. A discrete action, as described in the Cooperative Agreement or Superfund State...). Real property. Land, including land improvements, structures, and appurtenances thereto, excluding...
Property Data Summaries for Advanced Materials
National Institute of Standards and Technology Data Gateway
SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access) Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.
Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arslan, Ilke; Dixon, David A.; Gates, Bruce C.
2015-09-30
To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.« less
Luminescence and related properties of nanocrystalline porous silicon
NASA Astrophysics Data System (ADS)
Koshida, N.
This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.
Determination of HART I Blade Structural Properties by Laboratory Testing
NASA Technical Reports Server (NTRS)
Jung, Sung N.; Lau, Benton H.
2012-01-01
The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.
Structure of Soot-Containing Laminar Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Mortazavi, S.; Sunderland, P. B.; Jurng, J.; Koylu, U. O.; Faeth, G. M.
1993-01-01
The structure and soot properties of nonbuoyant and weakly-buoyant round jet diffusion flames were studied, considering ethylene, propane and acetylene burning in air at pressures of 0.125-2.0 atm. Measurements of flame structure included radiative heat loss fractions, flame shape and temperature distributions in the fuel-lean (overfire) region. These measurements were used to evaluate flame structure predictions based on the conserved-scalar formalism in conjunction with the laminar flamelet concept, finding good agreement betweem predictions and measurements. Soot property measurements included laminar smoke points, soot volume function distributions using laser extinction, and soot structure using thermophoretic sampling and analysis by transmission electron microscopy. Nonbuoyant flames were found to exhibit laminar smoke points like buoyant flames but their properties are very different; in particular, nonbuoyant flames have laminar smoke point flame lengths and residence times that are shorter and longer, respectively, than buoyant flames.
Structure-function-property-design interplay in biopolymers: spider silk.
Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L
2014-04-01
Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Prediction of Environmental Impact of High-Energy Materials with Atomistic Computer Simulations
2010-11-01
from a training set of compounds. Other methods include Quantitative Struc- ture-Activity Relationship ( QSAR ) and Quantitative Structure-Property...26 28 the development of QSPR/ QSAR models, in contrast to boiling points and critical parameters derived from empirical correlations, to improve...Quadratic Configuration Interaction Singles Doubles QSAR Quantitative Structure-Activity Relationship QSPR Quantitative Structure-Property
Structural properties of scandium inorganic salts
Sears, Jeremiah M.; Boyle, Timothy J.
2016-12-16
Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.
Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru
2015-10-27
This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.
The physics and chemistry of graphene-on-surfaces.
Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei
2017-07-31
Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.
Magnetic and electrical control of engineered materials
Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos
2016-08-16
Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.
76 FR 24437 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... applicant, a description of the applicant's organizational structure, including the names of its executives... Internet-based relay service, including documentation on loans for equipment, inventory, property... over the applicant, a description of the applicant's organizational structure, and the names of its...
NASA Astrophysics Data System (ADS)
Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna
2018-05-01
We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.
Hub and blade structural loads measurements of an SA349/2 helicopter
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel
1988-01-01
Data from 23 flight conditions, including level flights ranging from advance ratio mu = 0.14 to 0.37 and steady turning flights from advance ratio mu = 0.26 to 0.35, are presented for an Aerospatiale SA349/2 Gazelle helicopter. The data include hub loads data (for 6 of the 23 conditions), blade structural data at eleven different blade radial stations, and fuselage structural data. All dynamic data are presented as harmonic analysis coefficients (ten harmonics per rotor revolution). The data acquisition and reduction procedures are also documented. Blade structural and inertial properties are provided in addition to control system geometry and properties.
Structural integrity of materials in nuclear service: a bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heddleson, F.A.
This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.
NASA Astrophysics Data System (ADS)
Bovhyra, Rostyslav; Popovych, Dmytro; Bovgyra, Oleg; Serednytski, Andrew
2017-01-01
Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO) n ( n = 34, 60) in different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure geometry was performed, and the basic properties of the band structure were investigated. It was established that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with common quadrangle edges.
Structure for Storing Properties of Particles (PoP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N. R.; Mattoon, C. M.; Beck, B. R.
2014-06-01
Some evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. Moreover, the “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas andmore » electrons (along with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less
Structure for Storing Properties of Particles (PoP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.R., E-mail: infinidhi@llnl.gov; Mattoon, C.M.; Beck, B.R.
2014-06-15
Evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. A “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas and electrons (alongmore » with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2016-11-01
New requirements to understand geological properties in three dimensions have led to the development of PropBase, a data structure and delivery tools to deliver this. At the BGS, relational database management systems (RDBMS) has facilitated effective data management using normalised subject-based database designs with business rules in a centralised, vocabulary controlled, architecture. These have delivered effective data storage in a secure environment. However, isolated subject-oriented designs prevented efficient cross-domain querying of datasets. Additionally, the tools provided often did not enable effective data discovery as they struggled to resolve the complex underlying normalised structures providing poor data access speeds. Users developed bespoke access tools to structures they did not fully understand sometimes delivering them incorrect results. Therefore, BGS has developed PropBase, a generic denormalised data structure within an RDBMS to store property data, to facilitate rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, with associated metadata. This includes scripts to populate and synchronise the layer with its data sources through structured input and transcription standards. A core component of the architecture includes, an optimised query object, to deliver geoscience information from a structure equivalent to a data warehouse. This enables optimised query performance to deliver data in multiple standardised formats using a web discovery tool. Semantic interoperability is enforced through vocabularies combined from all data sources facilitating searching of related terms. PropBase holds 28.1 million spatially enabled property data points from 10 source databases incorporating over 50 property data types with a vocabulary set that includes 557 property terms. By enabling property data searches across multiple databases PropBase has facilitated new scientific research, previously considered impractical. PropBase is easily extended to incorporate 4D data (time series) and is providing a baseline for new "big data" monitoring projects.
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
Chemistry and Artists' Colors: Part III. Preparation and Properties of Artists' Pigments.
ERIC Educational Resources Information Center
Orna, Mary Virginia
1980-01-01
Describes laboratory methods for synthesizing chrome yellow, prussian blue, and phthalalocyanine blue; reviews chemical properties of artists' pigments including chemical structure and light-scattering properties; and explains how pigments are classified. (CS)
SAbDab: the structural antibody database
Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Baker, Terry; Fuchs, Angelika; Georges, Guy; Shi, Jiye; Deane, Charlotte M.
2014-01-01
Structural antibody database (SAbDab; http://opig.stats.ox.ac.uk/webapps/sabdab) is an online resource containing all the publicly available antibody structures annotated and presented in a consistent fashion. The data are annotated with several properties including experimental information, gene details, correct heavy and light chain pairings, antigen details and, where available, antibody–antigen binding affinity. The user can select structures, according to these attributes as well as structural properties such as complementarity determining region loop conformation and variable domain orientation. Individual structures, datasets and the complete database can be downloaded. PMID:24214988
Tenne, Reshef; Rao, C N R
2004-10-15
Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS(2), will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...
2017-07-01
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
24 CFR 904.107 - Responsibilities of homebuyer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... maintaining the common areas and property, including fixtures and equipment, in good condition and appearance... includes the work (labor and materials) of keeping the dwelling structure, grounds and equipment in good... common areas and property. (d) Inspections. A homebuyer shall agree to permit officials, employees, or...
Finite Element Estimation of Meteorite Structural Properties
NASA Technical Reports Server (NTRS)
Hart, Kenneth Arthur
2015-01-01
The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.
Wuestite (Fe/1-x/O) - A review of its defect structure and physical properties
NASA Technical Reports Server (NTRS)
Hazen, R. M.; Jeanloz, R.
1984-01-01
Such complexities of the Wustite structure as nonstoichiometry, ferric iron variable site distribution, long and short range ordering, and exsolution, yield complex physical properties. Magnesiowustite, a phase which has been suggested to occur in the earth's lower mantle, is also expected to exhibit many of these complexities. Geophysical models including the properties of (Mg, Fe)O should accordingly take into account the uncertainties associated with the synthesis and measurement of iron-rich oxides. Given the variability of the Fe(1-x)O structure, it is important that future researchers define the structural state and extent of exsolution of their samples.
Structure-function properties of anticorrosive exopolyaccharides
USDA-ARS?s Scientific Manuscript database
Nanoscale biobased exopolymer films were shown that provide protection to metal substrates under corrosive environments and that the films could be self-repairing in aqueous environments. This work describes the fundamental properties of thin exopolymer films including thermodynamic properties, film...
Ivanciuc, Ovidiu
2013-06-01
Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
The Factor Structure and Screening Utility of the Social Interaction Anxiety Scale
ERIC Educational Resources Information Center
Rodebaugh, Thomas L.; Woods, Carol M.; Heimberg, Richard G.; Liebowitz, Michael R.; Schneier, Franklin R.
2006-01-01
The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that…
New Reliability and Validity Evidence of the Emotional Intelligence Scale
ERIC Educational Resources Information Center
Zhoc, Karen C. H.; Li, Johnson C. H.; Webster, Beverley J.
2017-01-01
Emotional Intelligence Scale (EIS) is a popular EI measure. Yet, it has been criticized for an unclear factor structure, and its psychometric properties were mainly examined in the Western context. This study was to evaluate its psychometric properties based on 1,724 Hong Kong undergraduate students, including its (a) factor structure, (b)…
The effect of aspen wood characteristics and properties on utilization
Kurt H. Mackes; Dennis L. Lynch
2001-01-01
This paper reviews characteristics and properties of aspen wood, including anatomical structure and characteristics, moisture and shrinkage properties, weight and specific gravity, mechanical properties, and processing characteristics. Uses of aspen are evaluated: sawn and veneer products, composite panels, pulp, excelsior, post and poles, animal bedding, animal food...
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin
2018-01-01
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639
Materials with structural hierarchy
NASA Technical Reports Server (NTRS)
Lakes, Roderic
1993-01-01
The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.
Nickel hydroxides and related materials: a review of their structures, synthesis and properties
Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.
2015-01-01
This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812
Crystallographic Topology 2: Overview and Work in Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.K.
1999-08-01
This overview describes an application of contemporary geometric topology and stochastic process concepts to structural crystallography. In this application, crystallographic groups become orbifolds, crystal structures become Morse functions on orbifolds, and vibrating atoms in a crystal become vector valued Gaussian measures with the Radon-Nikodym property. Intended crystallographic benefits include new methods for visualization of space groups and crystal structures, analysis of the thermal motion patterns seen in ORTEP drawings, and a classification scheme for crystal structures based on their Heegaard splitting properties.
Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties
NASA Technical Reports Server (NTRS)
Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.
2012-01-01
The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.
NASA Astrophysics Data System (ADS)
Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol
2014-09-01
Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties
Surface Structure and Wetting Characteristics of Collembola Cuticles
Gundersen, Håkon; Leinaas, Hans Petter; Thaulow, Christian
2014-01-01
The cuticles of the arthropods Collembola (springtails) are known to be superhydrophobic, displaying such properties as water-repellence and plastron formation; overhanging surface structures have been suggested as the source of these properties. Superhydrophobicity is closely related to surface structuring and other surfaces with overhanging structures have been shown to possess robust superhydrophobic properties. In effort to correlate the wetting performance and surface structuring of the cuticles, from both a technical and evolutionary point of view, we investigated a selection of Collembola species including species from several families and covering habitats ranging from aquatic to very dry. The observed contact angles of wetting was in general larger than those predicted by the conventional models. Not all the studied Collembola were found to have superhydrophobic properties, indicating that superhydrophobicity is common, but not a universal trait in Collembola. Overhanging structures were found in some, but not all Collembola species with superhydrophobic cuticles; which leads to the conclusion that there is no direct link between overhanging surface structures and superhydrophobicity in Collembola. PMID:24498281
Metal carboxylates with open architectures.
Rao, C N R; Natarajan, Srinivasan; Vaidhyanathan, R
2004-03-12
The field of inorganic open-framework materials is dominated by aluminosilicates and phosphates. The metal carboxylates have emerged as an important family in the last few years. This family includes not only mono- and dicarboxylates of transition, rare-earth, and main-group metals, but also a variety of hybrid structures. Some of the carboxylates possess novel adsorption and magnetic properties. Dicarboxylates and related species provide an effective means of designing novel hybrid structures with porous and other properties. In some of these structures, the dicarboxylate acts as a linker between two inorganic units. Hybrid nanocomposites are also of particular note, for example, cadmium oxalate host lattices that can accommodate extended alkali-metal halide structures. This Review discusses the synthesis, structure, and properties of various types of open-framework metal carboxylates.
NASA Astrophysics Data System (ADS)
Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang
2018-03-01
Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.
NASA Astrophysics Data System (ADS)
Tenne, Reshef; Rao, C. N. R.
2004-10-01
Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
2017-08-21
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingreville, Remi; Aksoy, Doruk; Spearot, Douglas E.
In this study, all grain boundaries are not equal in their predisposition for fracture due to the complex coupling between lattice geometry, interfacial structure, and mechanical properties. The ability to understand these relationships is crucial to engineer materials resilient to grain boundary fracture. Here, a methodology is presented to isolate the role of grain boundary structure on interfacial fracture properties, such as the tensile strength and work of separation, using atomistic simulations. Instead of constructing sets of grain boundary models within the misorientation/structure space by simply varying the misorientation angle around a fixed misorientation axis, the proposed method creates setsmore » of grain boundary models by means of isocurves associated with important fracture-related properties of the adjoining lattices. Such properties may include anisotropic elastic moduli, the Schmid factor for primary slip, and the propensity for simultaneous slip on multiple slip systems. This approach eliminates the effect of lattice properties from the comparative analysis of interfacial fracture properties and thus enables the identification of structure-property relationships for grain boundaries. As an example, this methodology is implemented to study crack propagation along Ni grain boundaries. Segregated H is used as a means to emphasize differences in the selected grain boundary structures while keeping lattice properties fixed.« less
NASA Astrophysics Data System (ADS)
Hao, Qing-Hai; Li, Y. D.; Kong, Xiang-Shan; Liu, C. S.
2013-02-01
Ab initio molecular dynamics simulations on liquid Sb have been carried out at five different temperatures from 913 K to 1193 K. We have investigated the temperature dependence of structure properties including structural factor S(Q), pair correlation function g(r), bond-angle distribution function g3(θ), cluster properties and bond order parameter Q4 and Q6. A shoulder was reproduced in the high wave number side of the first peak in the S(Q) implying that the residual structure units of crystalline Sb remain in liquid Sb. There is a noticeable bend at around 1023 K in the temperature dependence of the first-peak height of S(Q), the cluster properties and bond order parameter Q4, respectively, indicating that an abnormal structural change may occur at 973-1023 K.
Structure and properties of clinical coralline implants measured via 3D imaging and analysis.
Knackstedt, Mark Alexander; Arns, Christoph H; Senden, Tim J; Gross, Karlis
2006-05-01
The development and design of advanced porous materials for biomedical applications requires a thorough understanding of how material structure impacts on mechanical and transport properties. This paper illustrates a 3D imaging and analysis study of two clinically proven coral bone graft samples (Porites and Goniopora). Images are obtained from X-ray micro-computed tomography (micro-CT) at a resolution of 16.8 microm. A visual comparison of the two images shows very different structure; Porites has a homogeneous structure and consistent pore size while Goniopora has a bimodal pore size and a strongly disordered structure. A number of 3D structural characteristics are measured directly on the images including pore volume-to-surface-area, pore and solid size distributions, chord length measurements and tortuosity. Computational results made directly on the digitized tomographic images are presented for the permeability, diffusivity and elastic modulus of the coral samples. The results allow one to quantify differences between the two samples. 3D digital analysis can provide a more thorough assessment of biomaterial structure including the pore wall thickness, local flow, mechanical properties and diffusion pathways. We discuss the implications of these results to the development of optimal scaffold design for tissue ingrowth.
Properties of the moon and its environment from lunar magnetometer measurements
NASA Technical Reports Server (NTRS)
Parkin, C. W.
1976-01-01
Lunar analysis of data from a total of nine lunar magnetometers is described. Results obtained concerning electromagnetic, compositional, and structural properties of the lunar interior are discussed. Specific topics covered include: lunar magnetic permeability and iron abundance; limits on a highly conducting lunar core; lunar electrical conductivity; and internal structure inferred from conductivity and permeability results.
Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu
2014-01-01
Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.
Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu
2014-01-01
Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the “wonder material” graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications. PMID:24808721
10 CFR 603.1320 - Real property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Real property. 603.1320 Section 603.1320 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1320 Real property. Land, including land improvements, structures and...
10 CFR 603.1320 - Real property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Real property. 603.1320 Section 603.1320 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1320 Real property. Land, including land improvements, structures and...
10 CFR 603.1320 - Real property.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Real property. 603.1320 Section 603.1320 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1320 Real property. Land, including land improvements, structures and...
10 CFR 603.1320 - Real property.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Real property. 603.1320 Section 603.1320 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1320 Real property. Land, including land improvements, structures and...
10 CFR 603.1320 - Real property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Real property. 603.1320 Section 603.1320 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1320 Real property. Land, including land improvements, structures and...
2010-04-14
assembly of new materials with magnetic, optical , and photonic properties, self-replicating colloidal structures, and sensors. (a) Papers published in...Nanostructures: New Properties Driving New Synthetic Opportunities” This talk explored optical properties of assemblies of structured colloids. - I...including experts on optical and photonic materials, numerical simulation, multiphase fluid flows, biomaterials, bacteriology, tribology
Predicting structural properties of fluids by thermodynamic extrapolation
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.
2018-05-01
We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.
Molecular properties of food allergens.
Breiteneder, Heimo; Mills, E N Clare
2005-01-01
Plant food allergens belong to a rather limited number of protein families and are also characterized by a number of biochemical and physicochemical properties, many of which are also shared by food allergens of animal origin. These include thermal stability and resistance to proteolysis, which are enhanced by an ability to bind ligands, such as metal ions, lipids, or steroids. Other types of lipid interaction, including membranes or other lipid structures, represent another feature that might promote the allergenic properties of certain food proteins. A structural feature clearly related to stability is intramolecular disulfide bonds alongside posttranslational modifications, such as N-glycosylation. Some plant food allergens, such as the cereal seed storage prolamins, are rheomorphic proteins with polypeptide chains that adopt an ensemble of secondary structures resembling unfolded or partially folded proteins. Other plant food allergens are characterized by the presence of repetitive structures, the ability to form oligomers, and the tendency to aggregate. A summary of our current knowledge regarding the molecular properties of food allergens is presented. Although we cannot as yet predict the allergenicity of a given food protein, understanding of the molecular properties that might predispose them to becoming allergens is an important first step and will undoubtedly contribute to the integrative allergenic risk assessment process being adopted by regulators.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
Resolving structural influences on water-retention properties of alluvial deposits
Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.
2006-01-01
With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.
Ontology for Structural Geology
NASA Astrophysics Data System (ADS)
Zhong, J.; McGuinness, D. L.; Antonellini, M.; Aydin, A.
2005-12-01
We present our comprehensive process-based ontology for Structural Geology. This ontology covers major domain concepts, especially those related to geological structure type, properties of these structures, their deformation mechanisms, and the factors that control which deformation mechanisms may operate under certain conditions. The structure class in our ontology extends the planetary structure class of the SWEET ontology by providing additional information required for use in the structural geology domain. The classification followed the architectures of structures, such as structure element, set, zone, and pattern. Our deformation mechanism class does not have a corresponding class in SWEET. In our ontology, it has two subclasses, Macro- and Micro- mechanisms. The property class and the factor class are both subclasses of the physical property class of SWEET. Relationships among those concepts are also included in our ontology. For example, the class structure element has properties associated with the deformation mechanisms, descriptive properties such as geometry and morphology, and physical properties of rocks such as strength, compressibility, seismic velocity, porosity, and permeability. The subject matter expertise was provided by domain experts. Additionally, we surveyed text books and journal articles with the goal of evaluating the completeness and correctness of the domain terms and we used logical reasoners and validators to eliminate logical problems. We propose that our ontology provides a reusable extension to the SWEET ontology that may be of value to scientists and lay people interested in structural geology issues. We have also implemented prototype services that utilize this ontology for search.
Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.
2015-01-01
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014
Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J
2015-07-16
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
scientist with a background in electronic structure calculations for semiconducting materials. He joined Program. Research Interests His research interests include prediction of band-structure, optical , electrical, and transport properties from electronic structure theory; photovoltaic and thermoelectric
NASA Astrophysics Data System (ADS)
Xie, Aming; Sun, Mengxiao; Zhang, Kun; Xia, Yilu; Wu, Fan
2018-05-01
Conducting polymers (CPs) at nano scales endow materials with special optical, electrical, and magnetic properties. The crucial factor to construct and regulate the micro-structures of CPs is the inducing reagent, particular in its chemical structure, such active sites, self-assembling properties. In this paper, we design and synthesize an amphiphile bearing tetrazole moiety on its skeleton, and use this amphiphile as an inducing reagent to prepare and regulate the micro-structures of a series of CPs including polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) and poly(p-phenylenediamine). Because of the unique electric properties of CPs and size effect, we next explored the electromagnetic absorption performances of these CPs nanostructures. A synergetic combination of electric loss and magnetic loss is used to explain the absorption mechanism of these CPs nano-structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aita, C.R.
1993-09-30
The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.
NASA Astrophysics Data System (ADS)
Hao, Qing-Hai; You, Yu-Wei; Kong, Xiang-Shan; Liu, C. S.
2013-03-01
The microscopic structure and dynamics of liquid MgxBi1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg3Bi2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.
Diamond nanowires: fabrication, structure, properties, and applications.
Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang
2014-12-22
C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
de Carvalho, E. F. V.; Lopez-Castillo, A.; Roberto-Neto, O.
2018-01-01
Graphene can be viewed as sheet of benzene rings fused together forming a variety of structures including the trioxotriangulenes (TOTs) which is a class of organic molecules with electro-active properties. In order to clarify such properties, structures and electronic properties of the graphene fragments phenalenyl, triangulene, 6-oxophenalenoxyl, and X3TOT (X = H, F, Cl) are computed. Validation of the methodologies are carried out using the density functionals B3LYP, M06-2X, B2PLYP-D, and the MP2 theory, giving equilibrium geometries of benzene, naphthalene, and anthracene with mean unsigned error (MUE) of only 0.003, 0.007, 0.004, and 0.007 Å, respectively in relation to experiment.
Characteristics of aluminum alloy microplastic deformation in different structural states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.
The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.
2011-08-01
Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell...Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates by...Unidirectional Composite Laminates Lionel R. Vargas-Gonzalez, Shawn M. Walsh, and James C. Gurganus Weapons and Materials Research Directorate, ARL
Forecasting the Environmental Impacts of New Energetic Materials
2010-11-30
Quantitative structure- activity relationships for chemical reductions of organic contaminants. Environmental Toxicology and Chemistry 22(8): 1733-1742. QSARs ...activity relationships [ QSARs ]) and the use of these properties to predict the chemical?s fate with multimedia assessment models. SERDP has recently...has several parts, including the prediction of chemical properties (e.g., with quantitative structure-activity relationships [ QSARs ]) and the use of
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the configuration and performance of a space tug. Detailed descriptions of the insulation, meteoroid protection, primary structure, and ground support equipment are presented. Technical assessments leading to the concept selection are analyzed. The tug mass properties, reliability, and safety assessments are included.
Preparation and magnetic properties of the Sr-hexaferrite with foam structure
NASA Astrophysics Data System (ADS)
Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.
2016-12-01
This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.
2016-08-01
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E
2016-08-10
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Structural, transport and elastic properties of LaTiO3
NASA Astrophysics Data System (ADS)
Choithrani, Renu; Bhat, Masroor Ahmad; Gaur, N. K.
2013-02-01
The thermophysical properties such as structural, transport and elastic properties of the orthorhombic perovskite-type titanate system, LaTiO3 have been explored in detail for the first time by applying extended rigid ion model (ERIM). LaTiO3 has been subject of recent interest because of the variety of attractive behaviors, including a metal-insulator transition, spin-charge-orbital ordering and high-temperature superconductivity. LaTiO3 has been suggested to have promising scientific and technological applications. The theoretically computed thermophysical properties of LaTiO3 compound are in good agreement with the available results.
Atomic force microscopy for two-dimensional materials: A tutorial review
NASA Astrophysics Data System (ADS)
Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle
2018-01-01
Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.
NASA Astrophysics Data System (ADS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajilar, Shahin, E-mail: shajilar@iastate.edu; Shafei, Behrouz, E-mail: shafei@iastate.edu
The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanicalmore » properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.« less
Geopolymer concrete for structural use: Recent findings and limitations
NASA Astrophysics Data System (ADS)
Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.
2016-06-01
Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1984-01-01
Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.
Guo, Zong-Ru
2008-03-01
The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are destined by molecular scaffolds and/or side chain(s) apart from pharmacophore. The features of micro-structures contributing to specific activity contain hydrogen bonding donor and acceptor, positive and negative charge centers, hydrophobic centers and centers of aromatic rings. Different combinations and spacial arrangements of these features determine the distinct activity presented. The macro-property and micro-structure are integrated into a single molecule, and are inseparable. The macro-property reflects overall contribution of atoms and groups in the micro-structure. On the other hand, structural changes aimed to adjust macroscopic property usually alter the relative position of the microscopic structure. The goal of molecular drug design is to integrate the macroscopic and microscopic factors in optimized manner. In the early stage of molecular design, both macroscopic property and microscopic structure should be considered to make pharmacodynamics, pharmacokinetics, and physico-chemical properties in optimal match. Therefore, it required the existence of structural overlapping among acceptable pharmacokinetics, visible developing potential and specific pharmacodynamics. The larger the scope of overlapping, the higher the possibility to be a drug.
NASA Astrophysics Data System (ADS)
Russo, P.; Acierno, D.; Capezzuto, F.; Buonocore, G. G.; Di Maio, L.; Lavorgna, M.
2015-12-01
Thermoplastic polyurethanes (TPUs) have been widely used for a variety of applications such as fibers, coating, adhesives, and biomedical items because of their melt processability and versatile properties essentially related to their intrinsic two-phase segmented structure. However, their low stiffness and tensile strength as well as their weak barrier properties still limit their use. Currently, improvements of functional properties of plastics are usually obtained by the inclusion of nanofillers which, in this case, should be able to modify the segregated hard/soft domains of TPU matrix. In this frame, noteworthy results have been already achieved by using carbon based fillers as carbon nanotubes, graphene, graphene oxide, carbon nanofibers and so on. In this frame, this research was focused on blown films based on TPU composites including 0.2%, 0.5% and 1% of a commercial graphene oxide (GO). These latter were obtained according to a two-step procedure: a co-solvent methodology to obtain a concentrated TPU/graphene master followed by a dilution with the neat TPU matrix by extrusion melt compounding. Film samples were analyzed in terms of thermal, structural and barrier properties. Preliminary results indicated structural modifications of the TPU matrix as a result of the GO included with consequent influences on the water vapor barrier properties.
18 CFR 367.56 - Structures and improvements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Structures and... ACT Service Company Property Instructions § 367.56 Structures and improvements. (a) The accounts for structures and improvements must include the cost of all buildings and facilities to house, support, or...
18 CFR 367.56 - Structures and improvements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Structures and... ACT Service Company Property Instructions § 367.56 Structures and improvements. (a) The accounts for structures and improvements must include the cost of all buildings and facilities to house, support, or...
18 CFR 367.56 - Structures and improvements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Structures and... ACT Service Company Property Instructions § 367.56 Structures and improvements. (a) The accounts for structures and improvements must include the cost of all buildings and facilities to house, support, or...
18 CFR 367.56 - Structures and improvements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Structures and... ACT Service Company Property Instructions § 367.56 Structures and improvements. (a) The accounts for structures and improvements must include the cost of all buildings and facilities to house, support, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... HANDICAPPED IN FEDERALLY ASSISTED PROGRAMS OPERATED BY THE DEPARTMENT OF COMMERCE General Provisions § 8b.3..., structures, equipment, roads, walks, parking lots, industrial parks, or other real or personal property or... Federal personnel; or (3) Real and personal property or any interest in or use of such property, including...
Classroom Demonstrations of Wood Properties.
ERIC Educational Resources Information Center
Foulger, A. N.
Presented in this manual are 20 activities selected to show some of the properties of wood and how these properties relate to the cellular structure of wood. Each activity includes stated objectives, indicates materials needed, and explains procedures. Illustrations related to the activities, glossary of terms, and photographs of wood structure…
Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán
2017-01-01
Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics.
Introduction to Atomic Structure: Demonstrations and Labs.
ERIC Educational Resources Information Center
Ciparick, Joseph D.
1988-01-01
Demonstrates a variety of electrical phenomena to help explain atomic structure. Topics include: establishing electrical properties, electrochemistry, and electrostatic charges. Recommends demonstration equipment needed and an explanation of each. (MVL)
NASA Astrophysics Data System (ADS)
Liu, Zuwei
Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temperature. In addition to the blackbody emission background, polarized peaks along the nanotube direction are observed in different ranges of the thermal emission spectra for metallic and semiconducting devices. These peaks are attributed to the transitions between Van Hove singularities that are thermally driven under these high applied bias voltages. A theoretical model is developed to calculate the thermal emission spectra based on this conclusion. In Chapter Six, we present some data of single crystal zinc oxide (ZnO) nanowires synthesized by the CVD method, including magneto-resistance measurements, optical-resistance measurements, and scanning-gate measurements. In Chapter Seven, we discuss some future work related to photocatalysis and carbon nanotubes.
Subtractive Structural Modification of Morpho Butterfly Wings.
Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen
2015-11-11
Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pseudopotential plane-wave calculation of the structural properties of yttrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Chou, M.Y.
1991-11-01
The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less
Developing polymer composite materials: carbon nanotubes or graphene?
Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng
2013-10-04
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pectin-modifying enzymes and pectin-derived materials: applications and impacts.
Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine
2014-01-01
Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.
Odd–even structural sensitivity on dynamics in network-forming ionic liquids
Yang, Ke; Cai, Zhikun; Tyagi, Madhusudan; ...
2016-04-13
Understanding structural sensitivity on properties of materials is an important step toward the rational design of materials. As a compelling case of sensitive structure-property relationship, an odd-even effect refers to the alternating trend of physical or chemical properties on odd/even number of repeating structural units. In crystalline or semi-crystalline materials, such odd-even variations of macroscopic properties emerge as manifestations of differences in the periodic packing patterns of molecules. Therefore, due to the lack of long-range order, such odd-even phenomenon is not expected in liquids. Herein, we report the discovery of a remarkable odd-even effect of the dynamical properties in themore » liquid phase, which challenges the traditional periodic packing explanations. In a class of network-forming ionic liquid (NIL), using incoherent quasi-elastic neutron scattering measurements, we measured the dynamical properties including the diffusion coefficient and the rotational relaxation time. These dynamical properties showed pronounced alternating trends with increased number of methylene (–CH 2– ) groups in the backbone. Meanwhile, the structure factor S(Q) showed no long-range periodic packing of molecules, while the pair distribution function g(r) revealed subtle differences in the local molecular morphology. As a result, the observed dynamical odd-even phenomenon in liquids showed that profound dynamical changes originate from subtle local structural differences.« less
NASA Astrophysics Data System (ADS)
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
Level 3 material characterization of NARC HRPF, HRHU, HRHF, and HRPU
NASA Technical Reports Server (NTRS)
Tobias, Mark E.
1993-01-01
The North American Rayon Corporation (NARC) precursor was developed, qualified, and characterized for Space Shuttle nozzle carbon-cloth phenolic ablative materials in three distinct phases. The characterization phase includes thermal and structural material property analysis and comparisons. This report documents the thermal and structural material property characterization performed by Southern Research Institute (SRI) on the two NARC baseline and two crossover materials.
Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds
NASA Astrophysics Data System (ADS)
Burzo, E.
2018-03-01
The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.
High temperature arc-track resistant aerospace insulation
NASA Technical Reports Server (NTRS)
Dorogy, William
1994-01-01
The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.
Finding and estimating chemical property data for environmental assessment.
Boethling, Robert S; Howard, Philip H; Meylan, William M
2004-10-01
The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physicochemical properties and reactivity of that substance. We focus here on properties, with the objective of providing practical guidance for finding measured values and using estimation methods when necessary. Because currently available computer software often makes it more convenient to estimate than to retrieve measured values, we try to discourage irrational exuberance for these tools by including comprehensive lists of Internet and hard-copy data resources. Guidance for assessors is presented in the form of a process to obtain data that includes establishment of chemical identity, identification of data sources, assessment of accuracy and reliability, substructure searching for analogs when experimental data are unavailable, and estimation from chemical structure. Regarding property estimation, we cover estimation from close structural analogs in addition to broadly applicable methods requiring only the chemical structure. For the latter, we list and briefly discuss the most widely used methods. Concluding thoughts are offered concerning appropriate directions for future work on estimation methods, again with an emphasis on practical applications.
Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers
NASA Astrophysics Data System (ADS)
Guo, Chengchen
Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix confirmation. In addition, the conformations of the Ala, Ser, and Tyr residues in silk fibroin of B. mori were investigated and it indicates that the Ala, Ser, and Tyr residues are all present in disordered structures in silk I (before spinning), while show different conformations in silk II (after spinning). Specifically, in silk II, the Ala and Tyr residues are present in both disordered structures and beta-sheet structures, and the Ser residues are present primarily in beta-sheet structures.
Structural basis for the slow digestion property of native cereal starches.
Zhang, Genyi; Venkatachalam, Mahesh; Hamaker, Bruce R
2006-11-01
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.
Continuum modeling of the mechanical and thermal behavior of discrete large structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1980-01-01
In the present paper we introduce a rather straightforward construction procedure in order to derive continuum equivalence of discrete truss-like repetitive structures. Once the actual structure is specified, the construction procedure can be outlined by the following three steps: (a) all sets of parallel members are identified, (b) unidirectional 'effective continuum' properties are derived for each of these sets and (c) orthogonal transformations are finally used to determine the contribution of each set to the 'overall effective continuum' properties of the structure. Here the properties includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and material densities. Once expanded descriptions of the steps (b) and (c) are done, the construction procedure will be applied to a wide variety of discrete structures and the results will be compared with those of other existing methods.
Predicting the structure of screw dislocations in nanoporous materials
NASA Astrophysics Data System (ADS)
Walker, Andrew M.; Slater, Ben; Gale, Julian D.; Wright, Kate
2004-10-01
Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O.
New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude thatmore » the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.« less
Tomographic reconstruction of layered tissue structures
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian
2001-11-01
In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.
Computational approaches for drug discovery.
Hung, Che-Lun; Chen, Chi-Chun
2014-09-01
Cellular proteins are the mediators of multiple organism functions being involved in physiological mechanisms and disease. By discovering lead compounds that affect the function of target proteins, the target diseases or physiological mechanisms can be modulated. Based on knowledge of the ligand-receptor interaction, the chemical structures of leads can be modified to improve efficacy, selectivity and reduce side effects. One rational drug design technology, which enables drug discovery based on knowledge of target structures, functional properties and mechanisms, is computer-aided drug design (CADD). The application of CADD can be cost-effective using experiments to compare predicted and actual drug activity, the results from which can used iteratively to improve compound properties. The two major CADD-based approaches are structure-based drug design, where protein structures are required, and ligand-based drug design, where ligand and ligand activities can be used to design compounds interacting with the protein structure. Approaches in structure-based drug design include docking, de novo design, fragment-based drug discovery and structure-based pharmacophore modeling. Approaches in ligand-based drug design include quantitative structure-affinity relationship and pharmacophore modeling based on ligand properties. Based on whether the structure of the receptor and its interaction with the ligand are known, different design strategies can be seed. After lead compounds are generated, the rule of five can be used to assess whether these have drug-like properties. Several quality validation methods, such as cost function analysis, Fisher's cross-validation analysis and goodness of hit test, can be used to estimate the metrics of different drug design strategies. To further improve CADD performance, multi-computers and graphics processing units may be applied to reduce costs. © 2014 Wiley Periodicals, Inc.
Fibrin mechanical properties and their structural origins.
Litvinov, Rustem I; Weisel, John W
2017-07-01
Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
Hierarchical structure and physicochemical properties of plasticized chitosan.
Meng, Qingkai; Heuzey, Marie-Claude; Carreau, Pierre J
2014-04-14
Plasticized chitosan with hierarchical structure, including multiple length scale structural units, was prepared by a "melt"-based method, that is, thermomechanical mixing, as opposed to the usual casting-evaporation procedure. Chitosan was successfully plasticized by thermomechanical mixing in the presence of concentrated lactic acid and glycerol using a batch mixer. Different plasticization formulations were compared in this study, in which concentrated lactic acid was used as protonation agent as well as plasticizer. The microstructure of thermomechanically plasticized chitosan was investigated by X-ray diffraction, scanning electron microscopy, and optical microscopy. With increasing amount of additional plasticizers (glycerol or water), the crystallinity of the plasticized chitosan decreased from 63.7% for the original chitosan powder to almost zero for the sample plasticized with additional water. Salt linkage between lactic acid molecules and amino side chains of chitosan was confirmed by FTIR spectroscopy: the lactic acid molecules expanded the space between the chitosan molecules of the crystalline phase. In the presence of other plasticizers (glycerol and water), various levels of structural units including an amorphous phase, nanofibrils, nanofibril clusters, and microfibers were produced under mechanical shear and thermal energy and identified for the first time. The thermal and thermomechanical properties of the plasticized chitosan were measured by thermogravimetric analysis, differential scanning calorimetric, and DMA. These properties were correlated with the different levels of microstructure, including multiple structural units.
NASA Technical Reports Server (NTRS)
Brennecke, M. W.
1978-01-01
The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.
Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien
2012-01-30
The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.
EHME: a new word database for research in Basque language.
Acha, Joana; Laka, Itziar; Landa, Josu; Salaburu, Pello
2014-11-14
This article presents EHME, the frequency dictionary of Basque structure, an online program that enables researchers in psycholinguistics to extract word and nonword stimuli, based on a broad range of statistics concerning the properties of Basque words. The database consists of 22.7 million tokens, and properties available include morphological structure frequency and word-similarity measures, apart from classical indexes: word frequency, orthographic structure, orthographic similarity, bigram and biphone frequency, and syllable-based measures. Measures are indexed at the lemma, morpheme and word level. We include reliability and validation analysis. The application is freely available, and enables the user to extract words based on concrete statistical criteria 1 , as well as to obtain statistical characteristics from a list of words
Mesocrystals in Biominerals and Colloidal Arrays.
Bergström, Lennart; Sturm née Rosseeva, Elena V; Salazar-Alvarez, German; Cölfen, Helmut
2015-05-19
Mesocrystals, which originally was a term to designate superstructures of nanocrystals with a common crystallographic orientation, have now evolved to a materials concept. The discovery that many biominerals are mesocrystals generated a large research interest, and it was suggested that mesocrystals result in better mechanical performance and optical properties compared to single crystalline structures. Mesocrystalline biominerals are mainly found in spines or shells, which have to be mechanically optimized for protection or as a load-bearing skeleton. Important examples include red coral and sea urchin spine as well as bones. Mesocrystals can also be formed from purely synthetic components. Biomimetic mineralization and assembly have been used to produce mesocrystals, sometimes with complex hierarchical structures. Important examples include the fluorapatite mesocrystals with gelatin as the structural matrix, and mesocrystalline calcite spicules with impressive strength and flexibility that could be synthesized using silicatein protein fibers as template for calcium carbonate deposition. Self-assembly of nanocrystals can also result in mesocrystals if the nanocrystals have a well-defined size and shape and the assembly conditions are tuned to allow the nanoparticles to align crystallographically. Mesocrystals formed by assembly of monodisperse metallic, semiconducting, and magnetic nanocrystals are a type of colloidal crystal with a well-defined structure on both the atomic and mesoscopic length scale.Mesocrystals typically are hybrid materials between crystalline nanoparticles and interspacing amorphous organic or inorganic layers. This structure allows to combine disparate materials like hard but brittle nanocrystals with a soft and ductile amorphous material, enabling a mechanically optimized structural design as realized in the sea urchin spicule. Furthermore, mesocrystals can combine the properties of individual nanocrystals like the optical quantum size effect, surface plasmon resonance, and size dependent magnetic properties with a mesostructure and morphology tailored for specific applications. Indeed, mesocrystals composed of crystallographically aligned polyhedral or rodlike nanocrystals with anisotropic properties can be materials with strongly directional properties and novel collective emergent properties. An additional advantage of mesocrystals is that they can combine the properties of nanoparticles with a structure on the micro- or macroscale allowing for much easier handling.
Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2017-01-01
Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPa
DOT National Transportation Integrated Search
2008-07-01
Often subgrade soils exhibit properties, particularly strength and/or volume change properties that limit their performance as a support element for pavements. : Typical problems include shrink-swell, settlement, collapse, erosion or simply insuffici...
Prediction of Solvent Physical Properties using the Hierarchical Clustering Method
Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.
1979-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu
2018-06-01
In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.
[Network structures in biological systems].
Oleskin, A V
2013-01-01
Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.
Structural and Thermodynamic Properties of Amyloid-β Peptides: Impact of Fragment Size
NASA Astrophysics Data System (ADS)
Kitahara, T.; Wise-Scira, O.; Coskuner, O.
2010-10-01
Alzheimer's disease is a progressive neurodegenerative disease whose physiological characteristics include the accumulation of amyloid-containing deposits in the brain and consequent synapse and neuron loss. Unfortunately, most widely used drugs for the treatment can palliate the outer symptoms but cannot cure the disease itself. Hence, developing a new drug that can cure it. Most recently, the ``early aggregation and monomer'' hypothesis has become popular and a few drugs have been developed based on this hypothesis. Detailed understanding of the amyloid-β peptide structure can better help us to determine more effective treatment strategies; indeed, the structure of Amyloid has been studied extensively employing experimental and theoretical tools. Nevertheless, those studies have employed different fragment sizes of Amyloid and characterized its conformational nature in different media. Thus, the structural properties might be different from each other and provide a reason for the existing debates in the literature. Here, we performed all-atom MD simulations and present the structural and thermodynamic properties of Aβ1-16, Aβ1-28, and Aβ1-42 in the gas phase and in aqueous solution. Our studies show that the overall structures, secondary structures, and the calculated thermodynamic properties change with increasing peptide size. In addition, we find that the structural properties of those peptides are different from each other in the gas phase and in aqueous solution.
Qian, Hui; Diao, Hele; Shirshova, Natasha; Greenhalgh, Emile S; Steinke, Joachim G H; Shaffer, Milo S P; Bismarck, Alexander
2013-04-01
The feasibility of modifying conventional structural carbon fibres via activation has been studied to create fibres, which can be used simultaneously as electrode and reinforcement in structural composite supercapacitors. Both physical and chemical activation, including using steam, carbon dioxide, acid and potassium hydroxide, were conducted and the resulting fibre properties compared. It was proven that the chemical activation using potassium hydroxide is an effective method to prepare activated structural carbon fibres that possess both good electrochemical and mechanical properties. The optimal activation conditions, such as the loading of activating agent and the burn-off of carbon fibres, was identified and delivered a 100-fold increase in specific surface area and 50-fold improvement in specific electrochemical capacitance without any degradation of the fibre mechanical properties. The activation process was successfully scaled-up, showing good uniformity and reproducibility. These activated structural carbon fibres are promising candidates as reinforcement/electrodes for multifunctional structural energy storage devices. Copyright © 2012 Elsevier Inc. All rights reserved.
Intense structures of different momentum fluxes in turbulent channels
NASA Astrophysics Data System (ADS)
Osawa, Kosuke; Jiménez, Javier
2018-04-01
The effect of different definitions of the momentum flux on the properties of the coherent structures of the logarithmic region of wall-bounded turbulence is investigated by comparing the structures of intense tangential Reynolds stress with those of the alternative flux proposed in [Jimenez (2016) J. Fluid Mech. 809:585]. Despite the fairly different statistical properties of the two flux definitions, it is found that their intense structures show many similarities, such as the dominance of ‘wall-attached’ objects, and geometric self-similarity. However, the new structures are wider, although not taller, than the classical ones, and include both high- and low-momentum regions within the same object. It is concluded that they represent the same phenomenon as the classical group of a sweep, an ejection, and a roller, which should thus be considered as the fundamental coherent structure of the momentum flux. The present results suggest that the properties of these momentum structures are robust with respect to the definition of the fluxes.
Influence of lithium slag from lepidolite on the durability of concrete
NASA Astrophysics Data System (ADS)
Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen
2017-04-01
This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.
NASA Astrophysics Data System (ADS)
Zhong, Yu-Xi; Guo, Yuan-Ru; Pan, Qing-Jiang
2016-02-01
Relativistic density functional theory was used to explore the structural and redox properties of 18 prototypical actinyl silylamides including a variation of metals (U, Np and Pu), metal oxidation states (VI and V) and equatorial ligands. A theoretical approach associated with implicit solvation and spin-orbit/multiplet corrections was proved to be reliable. A marked shift of reduction potentials of actinyl silylamides caused by changes of equatorial coordination ligands and implicit solvation was elucidated by analyses of electronic structures and single-electron reduction mechanism.
Structural elements and organization of the ancestral translational machinery
NASA Technical Reports Server (NTRS)
Rein, R.; Srinivasan, S.; Mcdonald, J.; Raghunathan, G.; Shibata, M.
1987-01-01
The molecular mechanisms of the primitive translational apparatus are discussed in the framework of present-day protein biosynthesis. The structural necessities of an early adaptor and the multipoint recognition properties of such an adaptor are investigated on the basis of structure/function relationships found in a contemporary system and a molecular model of the contemporary transpeptidation complex. A model of the tRNA(Tyr)-tyrosyl tRNA synthetase complex including the positioning of the disordered region is proposed; the model is used to illustrate the required recognition properties of the ancestor aminoacyl synthetase.
TRPC Channel Structure and Properties.
Feng, Shengjie
2017-01-01
TRPC channels are the first identified members in the TRP family. They function as either homo- or heterotetramers regulating intracellular Ca 2+ concentration in response to numerous physiological or pathological stimuli. TRPC channels are nonselective cation channels permeable to Ca 2+ . The properties and the functional domains of TRPC channels have been identified by electrophysiological and biochemical methods. However, due to the large size, instability, and flexibility of their complexes, the structures of the members in TRPC family remain unrevealed. More efforts should be made on structure analysis and generating good tools, including specific antibodies, agonist, and antagonist.
Investigation of Structural Properties of Carbon-Epoxy Composites Using Fiber-Bragg Gratings
NASA Technical Reports Server (NTRS)
Grant, J.; Kaul, R.; Taylor, S.; Jackson, K.; Sharma, A.; Burdine, Robert V. (Technical Monitor)
2002-01-01
Fiber Bragg-gratings are embedded in carbon-epoxy laminates as well as bonded on the surface of cylindrical structures fabricated out of such composites. Structural properties of such composites is investigated. The measurements include stress-strain relation in laminates and Poisson's ratio in several specimens with varying orientation of the optical fiber Bragg-sensor with respect to the carbon fiber in an epoxy matrix. Additionally, Bragg gratings are bonded on the surface of cylinders fabricated out of carbon-epoxy composites and longitudinal and hoop strain on the surface is measured.
Dwivedi, Neeraj; McIntosh, Ross; Dhand, Chetna; Kumar, Sushil; Malik, Hitendra K; Bhattacharyya, Somnath
2015-09-23
We report nitrogen-induced enhanced electron tunnel transport and improved nanomechanical properties in band gap-modulated nitrogen doped DLC (N-DLC) quantum superlattice (QSL) structures. The electrical characteristics of such superlattice devices revealed negative differential resistance (NDR) behavior. The interpretation of these measurements is supported by 1D tight binding calculations of disordered superlattice structures (chains), which include bond alternation in sp(3)-hybridized regions. Tandem theoretical and experimental analysis shows improved tunnel transport, which can be ascribed to nitrogen-driven structural modification of the N-DLC QSL structures, especially the increased sp(2) clustering that provides additional conduction paths throughout the network. The introduction of nitrogen also improved the nanomechanical properties, resulting in enhanced elastic recovery, hardness, and elastic modulus, which is unusual but is most likely due to the onset of cross-linking of the network. Moreover, the materials' stress of N-DLC QSL structures was reduced with the nitrogen doping. In general, the combination of enhanced electron tunnel transport and nanomechanical properties in N-DLC QSL structures/devices can open a platform for the development of a new class of cost-effective and mechanically robust advanced electronic devices for a wide range of applications.
Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang
2017-08-15
To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dense Regions in Supersonic Isothermal Turbulence
NASA Astrophysics Data System (ADS)
Robertson, Brant; Goldreich, Peter
2018-02-01
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star-forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star-forming clouds like magnetic fields, self-gravity, or radiative properties.
Estimation of Melting Points of Organics.
Yalkowsky, Samuel H; Alantary, Doaa
2018-05-01
Unified physicochemical property estimation relationships is a system of empirical and theoretical relationships that relate 20 physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the unified physicochemical property estimation relationships scheme because it is a determinant of several other properties including vapor pressure, and solubility. This review describes the first-principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, T m , is equal to the ratio of the heat of melting, ΔH m , to the entropy of melting, ΔS m . The heat of melting is shown to be an additive constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each affect molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Third Conference on Fibrous Composites in Flight Vehicle Design, part 1
NASA Technical Reports Server (NTRS)
1976-01-01
The use of fibrous composite materials in the design of aircraft and space vehicle structures and their impact on future vehicle systems are discussed. The topics covered include: flight test work on composite components, design concepts and hardware, specialized applications, operational experience, certification and design criteria. Contributions to the design technology base include data concerning material properties, design procedures, environmental exposure effects, manufacturing procedures, and flight service reliability. By including composites as baseline design materials, significant payoffs are expected in terms of reduced structural weight fractions, longer structural life, reduced fuel consumption, reduced structural complexity, and reduced manufacturing cost.
Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system
NASA Astrophysics Data System (ADS)
Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre
2010-11-01
Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.
Comparison study of thickness swell performance of commercial oriented strandboard flooring products
Hongmei Gu; Siqun Wang; Trairat Neimsuwan; Sunguo Wang
2005-01-01
The multiple layer structure of oriented strandboard (OSB) has a significant influence on its performance, including thickness swell (TS). TS is recognized as an important performance property for OSB products. Optimization of TS through layer property ma- nipulation to achieve the lowest total TS while maintaining acceptable mechanical properties is attainable if the...
18 CFR 367.9350 - Account 935, Maintenance of structures and equipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... POWER ACT AND NATURAL GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9350 Account 935, Maintenance of structures and equipment. This account must include materials used and expenses incurred in the maintenance of property owned, the cost of which is included in accounts 390 through 399 (§§ 367.3900 through...
Self-assembly of three-dimensional open structures using patchy colloidal particles.
Rocklin, D Zeb; Mao, Xiaoming
2014-10-14
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
European Scientific Notes. Volume 34, Number 7,
1980-07-31
fatigue , the effect of patient during the fitting, but which moisture on mechanical properties, could still be bent 900 without delamin- and creep...behavior. In the fatigue ating the composite or debonding the work; different reinforcing fibers composite from the aluminum . Once (including glass-carbon... fatigue work sulting structure has better properties Sturgeon has under way includes the than steel and weighs a good deal less, effect of
Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B
2013-01-01
Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.
SATPdb: a database of structurally annotated therapeutic peptides
Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.
2016-01-01
SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728
Rheological properties in relation to molecular structure of quinoa starch.
Li, Guantian; Zhu, Fan
2018-07-15
Quinoa starch granules are small (~0.5 - 3μm) with potentials for some food and other applications. To better exploit it as a new starch resource, this study investigates the steady shear and dynamic oscillatory properties of 9 quinoa starches varying in composition and structure. Steady shear analysis shows that the flow curves could be well described by 4 selected mathematic models. Temperature sweep analysis reveals that the quinoa starch encounters a 4-stage process including 2 phase transitions. Structure-function relationship analysis showed that composition as well as unit and internal chain length distribution of amylopectin have significant impact on the rheological properties (e.g., G' at 90°C) of quinoa starch. The roles of some individual unit chains and super-long unit chains of amylopectin in determining the rheological properties of quinoa starch were revealed. This study may stimulate further interest in understanding the structural basis of starch rheology. Copyright © 2018 Elsevier B.V. All rights reserved.
Elastic nonwovens containing cotton fibers
USDA-ARS?s Scientific Manuscript database
Nonwoven products continue to grow because of their unique structure and properties and one’s ability to engineer their properties for desired applications, which include filters, absorbent products and medical nonwovens. Meltblowing is a one-step process in which high-velocity hot air blows a molte...
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
NASA Astrophysics Data System (ADS)
Sun, Xinjun; Liu, Changdong; Guo, Yongliang; Sun, Deyan; Ke, Xuezhi
2018-03-01
The structural and thermodynamic properties of titanium nitride (TiN) have been investigated by merging first-principles calculations and particle-swarm algorithm. The three phases are identified for TiN, including the B1, the P63 / mmc, and the B2 phases. A new phase of anti-TiP structure with the space group P63 / mmc has been predicted. The calculated phase transition from the B1 to the P63 / mmc occurs at 270 GPa. The vibrational, elastic, and thermodynamic properties for the three phases have been calculated and discussed.
A short review of nanographenes: structures, properties and applications
NASA Astrophysics Data System (ADS)
Dai, Yafei; Liu, Yi; Ding, Kai; Yang, Jinlong
2018-04-01
Graphene has attracted great interest in the science and technology since it was exfoliated mechanically from the graphite in 2004. Although graphene has various potential applications, its practical applications are constrained enormously by its serious drawbacks, such as zero band gap, tendency of aggregation between layers and hydrophobicity, which mainly caused by the infinite planar hexagonal structure of graphene. Considering that the structural defects in the honeycomb lattice and the edges of graphene break the infinite structure and thus change the properties, which may improve the application efficiency, nanographene (NG) is proposed and attracts extensive attention. In this work, we review the structures of multifarious well-defined NGs synthesised in recent experiments. The effects of the shape, size, edges and substituents of NGs to the properties are discussed in detail and the regulation for various properties of NG is analysed. For the well-defined NGs, including planar and non-planar ones, the challenges and perspectives of their potential applications in nonlinear optical material, gas molecular detector and gas separation material, hydrogen storage material, and hole-transporting material in perovskite solar cells are envisioned.
Intercalated graphite fiber composites as EMI shields in aerospace structures
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.
Investigation of Comfort Properties of Knitted Denim
NASA Astrophysics Data System (ADS)
Akbar, Abdul R.; Su, Siwei; Khalid, Junaid; Cai, Yingjie; Lin, Lina
2017-12-01
Knitted denim was designed by using cross terry structure on circular knitting machine. Knitted denim looks like a denim fabric which has visual appearance like woven denim. Two type of cross terry structure 2/1 and 3/1 were used which gives twill effect with 2 and 3 floats respectively. Four types of materials, cotton, polyester, flax and polypropylene were used. With four materials and two structural combinations 8 samples were produced. Comfort properties of knitted denim including moisture management, air permeability, thermal, and bursting strength were tested. For checking the inherent anti-microbial property of materials anti-microbial test was also applied. Samples containing flax and polyester were found with best results and not even a single sample was found anti-microbial.
Relationship between mechanical-property and energy-absorption trends for composite tubes
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1992-01-01
U.S. Army helicopters are designed to dissipate prescribed levels of crash impact kinetic energy without compromising the integrity of the fuselage. Because of the complexity of the energy-absorption process it is imperative for designers of energy-absorbing structures to develop an in-depth understanding of how and why composite structures absorb energy. A description of the crushing modes and mechanisms of energy absorption for composite tubes and beams is presented. Three primary crushing modes of composite structures including transverse shearing, lamina bending, and local buckling are described. The experimental data presented show that fiber and matrix mechanical properties and laminate stiffness and strength mechanical properties cannot reliably predict the energy-absorption response of composite tubes.
Emergence of Soft Communities from Geometric Preferential Attachment
Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri
2015-01-01
All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less
CASTp 3.0: computed atlas of surface topography of proteins.
Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie
2018-06-01
Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.
NASA Astrophysics Data System (ADS)
Huesca Martinez, M.; Garcia, M.; Roth, K. L.; Casas, A.; Ustin, S.
2015-12-01
There is a well-established need within the remote sensing community for improved estimation of canopy structure and understanding of its influence on the retrieval of leaf biochemical properties. The aim of this project was to evaluate the estimation of structural properties directly from hyperspectral data, with the broader goal that these might be used to constrain retrievals of canopy chemistry. We used NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types, defined in terms of biomass, canopy height and vegetation complexity, and compared them to estimates of these properties measured by LiDAR data. We tested a large number of optical metrics, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, and Principal Component Analysis components. Canopy structural types were identified and classified from different forest types by integrating structural traits measured by optical metrics using the Random Forest (RF) classifier. The classification accuracy was above 70% in most of the vegetation scenarios. The best overall accuracy was achieved for hardwood forest (>80% accuracy) and the lowest accuracy was found in mixed forest (~70% accuracy). Furthermore, similarly high accuracy was found when the RF classifier was applied to a spatially independent dataset, showing significant portability for the method used. Results show that all spectral regions played a role in canopy structure assessment, thus the whole spectrum is required. Furthermore, optical metrics derived from AVIRIS proved to be a powerful technique for structural attribute mapping. This research illustrates the potential for using optical properties to distinguish several canopy structural types in different forest types, and these may be used to constrain quantitative measurements of absorbing properties in future research.
Hybrid Mixed Media Nonwovens: An Investigation of Structure-Property Relationships
NASA Astrophysics Data System (ADS)
Hollowell, Kendall Birckhead
There have been myriad studies on utilizing bicomponent splittables produced through spunbond/spunlace processes. These production methods have proven to yield microfibers which increase the surface area of the nonwoven structures. There has been recent focus on studying the microfibers within these nonwoven structures as well as using a multiplicity of deniers of fibers within the nonwoven. There have also been studies on producing nonwovens with fibers of differing cross-sectional shapes and diameters. The purpose of this study is to examine the properties of a nonwoven structure, marrying the concepts of multi-denier fibers with multi-shaped fibers in two configurations: three-layer and alternating. The basis for this study will be US Patent 6,964,931 B2 "Method of making Continuous Filament Web with Statistical Filament Distribution" as well as US Patent 7,981,336 B2 "Process of Making Mixed Fibers and Nonwoven Fabrics". This study addresses the melt-spinning and hydroentanglement of nonwoven webs made from bicomponent fibers in three-layer and alternating configurations. The bicomponent cross-sections that will be used include 16-segmented pie and 7-islands-in-the-sea. In this study the establishment of the utility of mixed media nonwovens will take place through property and structure analysis in order to determine the inherent properties of the mixed media structures as well as the structure-property relationships of the nonwoven fabric. Property and structure analysis will also take place on mixed media structures containing poly(lactic acid) as a sacrificial component in the bicomponent fiber after optimizing the removal conditions of the poly(lactic acid) in a sodium hydroxide (NaOH) bath.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-12-01
The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.
Properties of Air Traffic Conflicts for Free and Structured Routing
NASA Technical Reports Server (NTRS)
Bilimoria, Karl D.; Lee, Hilda Q.
2001-01-01
This paper analyzes the properties of air traffic conflicts in a future free routing system against those in the current structured routing system. Simulation of en route air traffic operations (above 18,000 ft) over the contiguous United States for a 24-hour period, constructed with initial conditions from actual air traffic data, were conducted using the Future ATM Concepts Evaluation Tool (FACET). Free routes were modeled as great circle (direct) routes from origin to destination, and structured routes were derived from actual flight plans along the current system of air routes. The conflict properties analyzed in this study include: (1) Total number of conflicts; (2) Distributions of key conflict parameters; and, (3) Categorization of conflicts into independent conflicts and two types of interacting conflicts. Preliminary results (for Denver Center traffic) indicate that conflict properties in a free routing system are different from those in the current structured routing system. In particular, a free routing system has significantly fewer conflicts, involving a correspondingly smaller number of aircraft, compared to the current structured routing system. Additionally, the conflict parameter distributions indicate that free routing conflicts are less intrusive than structured routing conflicts, and would therefore require small trajectory deviations for resolution.
NASA Astrophysics Data System (ADS)
Sainju, Deepak
Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the intrinsic temperature dependence of these properties and parameters. One of the major achievements of this dissertation research is the characterization of the thickness and optical properties of the interface layer formed between the silver and zinc oxide layers in a back-reflector structure used in thin film photovoltaics. An understanding of the impact of these thin film material properties on solar cell device performance has been complemented by applying reflectance and transmittance spectroscopy as well as simulations of cell performance.
Effects of physical properties on thermo-fluids cavitating flows
NASA Astrophysics Data System (ADS)
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone).
Ortega-Toro, Rodrigo; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Cerruti, Pierfrancesco; Talens Oliag, Pau; Chiralt Boix, M Amparo; Malinconico, Mario
2016-08-20
The use of a modified poly(ε-caprolactone) (gPCL) to enhance polymer miscibility in films based on thermoplastic starch (S) and poly(ε-caprolactone) is reported. PCL was functionalized by grafting with maleic anyhdride (MA) and/or glycidyl methacrylate (GMA) by reactive blending in a batch mixer. gPCL based materials were analysed in terms of their grafting degree, structural and thermal properties. Blends based on starch and PCL (wt. ratio 80:20) with including gPCL (0, 2.5 and 5wt.%), as a compatibilizer, were obtained by extrusion and compression moulding, and their structural, thermal, mechanical and barrier properties were investigated. Blends containing gPCL evidenced better interfacial adhesion between starch and PCL domains, as deduced from both structural (XRD, FTIR, SEM) and bulk properties (DSC, TGA). Moreover, grafted PCL-based compatibilizers greatly improved functional properties of S-PCL blend films, as pointed out from mechanical performance and higher barrier properties, valuable to meet the food packaging requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.
One-dimensional ZnO nanostructures.
Jayadevan, K P; Tseng, T Y
2012-06-01
The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.
NASA Astrophysics Data System (ADS)
Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.
2012-12-01
Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.
NASA Astrophysics Data System (ADS)
Bandi, T.; Shea, H.; Neels, A.
2014-06-01
The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.
First-principles investigation of mechanical properties of silicene, germanene and stanene
NASA Astrophysics Data System (ADS)
Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon
2017-03-01
Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.
Properties of aircraft tire materials
NASA Technical Reports Server (NTRS)
Dodge, Richard N.; Clark, Samuel K.
1988-01-01
A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.
International Congress on Glass XII (in several languages)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doremus, R H; LaCourse, W C; Mackenzie, J D
1980-01-01
A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)
2015-01-01
Mn and Cu or on refractory metals such as V, Cr, Ti, Mo, Nb , Ta, W, Zr and Hf.5,6 The compound forming elements Al and Ti are often added to both...additional properties include environmental resistance , processibil- ity, appearance (for architectural uses) and low cost. Workhardening and solid...be successful, and some work already reports on the corrosion resistance , oxidation behaviour and wear properties of structural HEAs.5 High entropy
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
NASA Astrophysics Data System (ADS)
Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.
2015-06-01
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.
2015-06-21
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less
Brownmillerite CaCoO2.5: Synthesis, Re-entrant Structural Transitions and Magnetic properties
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Hong; Malliakas, Christos; Allred, Jared; Ren, Yang; Li, Qing'an; Han, Tianheng; Mitchell, John
2015-03-01
Cobalt oxides attract both fundamental and technological attention due to their physical properties including thermoelectricity, giant magnetoresistance, superconductivity and multiferroicity. Here we report the first synthesis of CaCoO2.5 single crystals using a high pressure optical-image floating zone technique. We find that it is an ordered oxygen-deficient perovskite of the brownmillerite type, and it undergoes an unprecedented re-entrant structural phase transitions (Pcmb --> P2/c11 --> P121/m1 --> Pcmb) with decreasing temperature. We describe its temperature-dependent structural, thermal, and magnetic properties, including AFM ordering near 240 K, with a weakly spin canted ferromagnet ground state below 140 K. The magnetic response of CaCoO2.5 depends markedly on the cooling rate and field history. Magnetization data also imply the potential of a distinct, field-induced phase arising uniquely from the P121/m1 structure, revealed as kinetically trapped by a rapid-cooling protocol. Work in the Materials Science Division at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering.
Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter
2016-03-01
Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali
2017-12-01
Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.
Rapid experimental measurements of physicochemical properties to inform models and testing.
Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F
2018-05-02
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data. Published by Elsevier B.V.
Highly-Parallel, Highly-Compact Computing Structures Implemented in Nanotechnology
NASA Technical Reports Server (NTRS)
Crawley, D. G.; Duff, M. J. B.; Fountain, T. J.; Moffat, C. D.; Tomlinson, C. D.
1995-01-01
In this paper, we describe work in which we are evaluating how the evolving properties of nano-electronic devices could best be utilized in highly parallel computing structures. Because of their combination of high performance, low power, and extreme compactness, such structures would have obvious applications in spaceborne environments, both for general mission control and for on-board data analysis. However, the anticipated properties of nano-devices mean that the optimum architecture for such systems is by no means certain. Candidates include single instruction multiple datastream (SIMD) arrays, neural networks, and multiple instruction multiple datastream (MIMD) assemblies.
1989-04-08
now good experimental data on the effects of impurities, including locking by non-electrical xii Preface impurities, and the effect of electrically... locks which result from the interaction of the gliding dislocations. As a matter of fact, these dislocation configurations look similar to those...loop on the go° partial. Structure of grain boundaries and dislocations 3 2.2. Lomer-Cottrell lock : a/2>. Two 60’ dislocations can react and give
SAbPred: a structure-based antibody prediction server
Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Marks, Claire; Nowak, Jaroslaw; Regep, Cristian; Georges, Guy; Kelm, Sebastian; Popovic, Bojana; Deane, Charlotte M.
2016-01-01
SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred. PMID:27131379
Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...
2014-10-29
We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.
Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.
Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming
2015-01-01
Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.
NASA Astrophysics Data System (ADS)
Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.
2017-04-01
The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.
PC board mount corrosion sensitive sensor
Robinson, Alex L.; Casias, Adrian L.; Pfeifer, Kent B.; Laguna, George R.
2016-03-22
The present invention relates to surface mount structures including a capacitive element or a resistive element, where the element has a property that is responsive to an environmental condition. In particular examples, the structure can be optionally coupled to a printed circuit board. Other apparatuses, surface mountable structures, and methods of use are described herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Composite structural materials. [aircraft structures
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1980-01-01
The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.
Structural stability and mechanical properties of technetium mononitride (TcN)
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Among the nitrides, 3d and 4d transition metal nitrides have been investigated both experimentally and theoretically due to their predominant performances and enormous applications. In the present paper, we have attempted to predict the structural stability and mechanical properties of technetium mononitride (TcN) using an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Our theoretical approach reveals the structural phase transition of the TcN B3 to B1 structure, wherein, the Gibbs' free energies of both the structures were minimized. The variations of elastic constants with pressure follow a systematic trend identical to that observed in other compounds of ZnS type structure family.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.
2018-04-01
Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.
Strong Electro‐Optic Effect and Spontaneous Domain Formation in Self‐Assembled Peptide Structures
Lafargue, Clément; Handelman, Amir; Shimon, Linda J. W.; Rosenman, Gil; Zyss, Joseph
2017-01-01
Short peptides made from repeating units of phenylalanine self‐assemble into a remarkable variety of micro‐ and nanostructures including tubes, tapes, spheres, and fibrils. These bio‐organic structures are found to possess striking mechanical, electrical, and optical properties, which are rarely seen in organic materials, and are therefore shown useful for diverse applications including regenerative medicine, targeted drug delivery, and biocompatible fluorescent probes. Consequently, finding new optical properties in these materials can significantly advance their practical use, for example, by allowing new ways to visualize, manipulate, and utilize them in new, in vivo, sensing applications. Here, by leveraging a unique electro‐optic phase microscopy technique, combined with traditional structural analysis, it is measured in di‐ and triphenylalanine peptide structures a surprisingly large electro‐optic response of the same order as the best performing inorganic crystals. In addition, spontaneous domain formation is observed in triphenylalanine tapes, and the origin of their electro‐optic activity is unveiled to be related to a porous triclinic structure, with extensive antiparallel beta‐sheet arrangement. The strong electro‐optic response of these porous peptide structures with the capability of hosting guest molecules opens the door to create new biocompatible, environmental friendly functional materials for electro‐optic applications, including biomedical imaging, sensing, and optical manipulation. PMID:28932664
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium
NASA Astrophysics Data System (ADS)
Adhikari, Rajendra; Fu, Huaxiang
2013-07-01
Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.
Measurement properties of tools measuring mental health knowledge: a systematic review.
Wei, Yifeng; McGrath, Patrick J; Hayden, Jill; Kutcher, Stan
2016-08-23
Mental health literacy has received great attention recently to improve mental health knowledge, decrease stigma and enhance help-seeking behaviors. We conducted a systematic review to critically appraise the qualities of studies evaluating the measurement properties of mental health knowledge tools and the quality of included measurement properties. We searched PubMed, PsycINFO, EMBASE, CINAHL, the Cochrane Library, and ERIC for studies addressing psychometrics of mental health knowledge tools and published in English. We applied the COSMIN checklist to assess the methodological quality of each study as "excellent", "good", "fair", or "indeterminate". We ranked the level of evidence of the overall quality of each measurement property across studies as "strong", "moderate", "limited", "conflicting", or "unknown". We identified 16 mental health knowledge tools in 17 studies, addressing reliability, validity, responsiveness or measurement errors. The methodological quality of included studies ranged from "poor" to "excellent" including 6 studies addressing the content validity, internal consistency or structural validity demonstrating "excellent" quality. We found strong evidence of the content validity or internal consistency of 6 tools; moderate evidence of the internal consistency, the content validity or the reliability of 8 tools; and limited evidence of the reliability, the structural validity, the criterion validity, or the construct validity of 12 tools. Both the methodological qualities of included studies and the overall evidence of measurement properties are mixed. Based on the current evidence, we recommend that researchers consider using tools with measurement properties of strong or moderate evidence that also reached the threshold for positive ratings according to COSMIN checklist.
Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires
2011-01-01
1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620
Magnetic ionic liquids in analytical chemistry: A review.
Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L
2016-08-31
Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural and electronic properties of double-walled boron nitride nanocones
NASA Astrophysics Data System (ADS)
Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.
2018-01-01
First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Electronic structure and optical properties of metal doped tetraphenylporphyrins
NASA Astrophysics Data System (ADS)
Shah, Esha V.; Roy, Debesh R.
2018-05-01
A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
Structure and properties of B20Si-/0/+ clusters
NASA Astrophysics Data System (ADS)
Lu, Qi Liang; Luo, Qi Quan; Li, Yi De; Huang, Shou Guo
2018-06-01
A global search for the lowest energy structure of B20Si-, B20Si0 and B20Si+ clusters is conducted. Structural transitions at different charge states are observed. B20Si- is a 2D planar configuration with no polygonal holes, and Si atom occupies a peripheral position. B20Si+ adopts a 3D tubular shape, and each Si is bonded with four B atoms. But for B20Si0, competition among quasi-planar, tubular and cage like structures is found. These structures differ greatly from that of pure B21 - cluster. The structural transition may result from changes in the framework of bonding, sp 2 hybridization, and structural mechanics. Some of the clusters' properties including frontier molecular orbital, on-site charge on Si atom, electron density, and magnetism are also discussed.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
NASA Technical Reports Server (NTRS)
Brady, V. L.; Reed, R.; Merwin, L.; Nissan, R.
1994-01-01
A new class of liquid curable elastomers with unusual strength and elasticity has been developed at the Naval Air Warfare Center Weapons Division, China Lake. Over the years, studies have been conducted on polymer structure and its influence on the mechanical properties of the ensuing composites. Different tools, including nuclear magnetic resonance, have been used. This paper presents a summary of the factors controlling the mechanical behavior of composites produced with the new liquid curable elastomers, including the effects of plasticizers. It also provides an overview of the nuclear magnetic resonance study on polymer structure, the composition and properties of some live and inert formulations produced at China Lake, and some possible peace-time applications for these new elastomeric materials.
Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
NASA Astrophysics Data System (ADS)
Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.
2018-04-01
We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.
Weck, Philippe F; Kim, Eunja
2014-12-07
The structure of dehydrated schoepite, α-UO2(OH)2, was investigated using computational approaches that go beyond standard density functional theory and include van der Waals dispersion corrections (DFT-D). Thermal properties of α-UO2(OH)2, were also obtained from phonon frequencies calculated with density functional perturbation theory (DFPT) including van der Waals dispersion corrections. While the isobaric heat capacity computed from first-principles reproduces available calorimetric data to within 5% up to 500 K, some entropy estimates based on calorimetric measurements for UO3·0.85H2O were found to overestimate by up to 23% the values computed in this study.
On galaxy structure: CO clouds, open clusters and stars between 270 and 300 deg
NASA Astrophysics Data System (ADS)
Giorgi, E. E.; Carraro, G.; Moitinho, A.; Perren, G. I.; Bronfman, L.; Vázquez, R. A.
2017-10-01
The most used open cluster databases of our Galaxy include about 240 objects located in the region to in galactic longitude and to in galactic latitude. Only 146 out of the total number of these clusters have been investigated with some detail. On this occasion we present preliminary results of a study including optical and CO radio observations sweeping the above mentioned extension of the Milky Way combined with literature data. As for optical data we have selected a total of 16 regions including potential clusters (some of them never observed before) to be surveyed in the system with the main purpose of scrutinising not only the properties of the open cluster system in that place but also to detect and characterise the properties of field hot stars that could help to reveal the far spiral structure in this place. The present study is a continuation of our sine die project aimed at describing the spiral structure in the third and fourth galactic quadrants.
Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.
Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai
2017-01-01
In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akande, Akinlolu, E-mail: akandea@tcd.ie; Bhattacharya, Sandip; Cathcart, Thomas
2014-02-21
We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate themore » charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.« less
A silk purse from a sow's ear-bioinspired materials based on α-helical coiled coils.
Quinlan, Roy A; Bromley, Elizabeth H; Pohl, Ehmke
2015-02-01
This past few years have heralded remarkable times for intermediate filaments with new revelations of their structural properties that has included the first crystallographic-based model of vimentin to build on the experimental data of intra-filament interactions determined by chemical cross-linking. Now with these and other advances on their assembly, their biomechanical and their cell biological properties outlined in this review, the exploitation of the biomechanical and structural properties of intermediate filaments, their nanocomposites and biomimetic derivatives in the biomedical and private sectors has started. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shuvaev, Sergey; Utochnikova, Valentina; Marciniak, Łukasz; Freidzon, Alexandra; Sinev, Ilya; Van Deun, Rik; Freire, Ricardo O; Zubavichus, Yan; Grünert, Wolfgang; Kuzmina, Natalia
2014-02-28
Lanthanide complexes LnL3 (Ln = Sm, Eu, Tb, Dy, Tm, Yb, Lu) with aromatic o-phosphorylated ligands (HL(1) and HL(2)) have been synthesized and identified. Their molecular structure was proposed on the basis of a new complex approach, including DFT calculations, Sparkle/PM3 modelling, EXAFS spectroscopy and luminescent probing. The photophysical properties of all of the complexes were investigated in detail to obtain a deeper insight into the energy transfer processes.
Tribological Properties of Structural Ceramics
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Miyoshi, Kazuhisa
1987-01-01
Paper discusses tribological properties of structural ceramics. Function of tribological research is to bring about reduction in adhesion, friction, and wear of mechanical components; to prevent failures; and to provide long, reliable component life, through judicious selection of materials, operating parameters, and lubricants. Paper reviews adhesion, friction, wear, and lubrication of ceramics; anisotropic friction and wear behavior; and effects of surface films and interactions between ceramics and metals. Analogies with metals are made. Both oxide and nonoxide ceramics, including ceramics used as high temperature lubricants, are dicussed.
Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites
NASA Astrophysics Data System (ADS)
Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita
2009-07-01
In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.
Evaluation of Student Outcomes in Materials Science and Technology
NASA Technical Reports Server (NTRS)
Piippo, Steven
1996-01-01
This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.
Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu
2016-02-28
Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.
Measuring the retina optical properties using a structured illumination imaging system
NASA Astrophysics Data System (ADS)
Basiri, A.; Nguyen, T. A.; Ibrahim, M.; Nguyen, Q. D.; Ramella-Roman, Jessica C.
2011-03-01
Patients with diabetic retinopathy (DR) may experience a reduction in retinal oxygen saturation (SO2). Close monitoring with a fundus ophthalmoscope can help in the prediction of the progression of disease. In this paper we present a noninvasive instrument based on structured illumination aimed at measuring the retina optical properties including oxygen saturation. The instrument uses two wavelngths one in the NIR and one visible, a fast acquisition camera, and a splitter system that allows for contemporaneous collection of images at two different wavelengths. This scheme greatly reduces eye movement artifacts. Structured illumination was achieved in two different ways, firstly several binary illumination masks fabricated using laser micro-machining were used, a near-sinusoidal projection pattern is ultimately achieved at the image plane by appropriate positioning of the binary masks. Secondarily a sinusoidal pattern printed on a thin plastic sheet was positioned at image plane of a fundus ophthalmoscope. The system was calibrated using optical phantoms of known optical properties as well as an eye phantom that included a 150μm capillary vessel containing different concentrations of oxygenated and deoxygenated hemoglobin.
NASA Astrophysics Data System (ADS)
Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu
2016-02-01
Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2001-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J.
1998-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, H.J.; Stoner, R.J.
1998-05-05
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2002-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
1999-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Strength Analysis and Reliability Evaluation for Speed Reducers
NASA Astrophysics Data System (ADS)
Tsai, Yuo-Tern; Hsu, Yung-Yuan
2017-09-01
This paper studies the structural stresses of differential drive (DD) and harmonic drive (HD) for design improvement of reducers. The designed principles of the two reducers are reported for function comparison. The critical components of the reducers are constructed for performing motion simulation and stress analysis. DD is designed based on differential displacement of the decelerated gear ring as well as HD on a flexible spline. Finite element method (FEM) is used to analyze the structural stresses including the dynamic properties of the reducers. The stresses including kinematic properties of the two reducers are compared to observe the properties of the designs. The analyzed results are applied to identify the allowable loads of the reducers in use. The reliabilities of the reducers in different loads are further calculated according to the variation of stress. The studied results are useful on engineering analysis and reliability evaluation for designing a speed reducer with high ratios.
Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Fesmire, James E.
2016-01-01
This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.
Application of atomic force microscopy as a nanotechnology tool in food science.
Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng
2007-05-01
Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.
Synthesis, structure, and optoelectronic properties of II-IV-V 2 materials
Martinez, Aaron D.; Fioretti, Angela N.; Toberer, Eric S.; ...
2017-03-07
II-IV-V 2 materials offer the promise of enhanced functionality in optoelectronic devices due to their rich ternary chemistry. In this review, we consider the potential for new optoelectronic devices based on nitride, phosphide, and arsenide II-IV-V 2 materials. As ternary analogs to the III-V materials, these compounds share many of the attractive features that have made the III-Vs the basis of modern optoelectronic devices (e.g. high mobility, strong optical absorption). Control of cation order parameter in the II-IV-V 2 materials can produce significant changes in optoelectronic properties at fixed chemical composition, including decoupling band gap from lattice parameter. Recent progressmore » has begun to resolve outstanding questions concerning the structure, dopability, and optical properties of the II-IV-V 2 materials. Furthermore, remaining research challenges include growth optimization and integration into heterostructures and devices.« less
Analysis of Synthetic Polymers.
ERIC Educational Resources Information Center
Smith, Charles G.; And Others
1989-01-01
Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)
METCAN-PC - METAL MATRIX COMPOSITE ANALYZER
NASA Technical Reports Server (NTRS)
Murthy, P. L.
1994-01-01
High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN-PC is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. An 80286 machine with an 80287 math co-processor is required for execution. The executable requires at least 640K of RAM and DOS 3.1 or higher. The package includes sample executables which were compiled under Microsoft FORTRAN v. 5.1. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. METCAN-PC was developed in 1992.
The surface properties of carbon fibers and their adhesion to organic polymers
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Drzal, L. T.
1987-01-01
The state of knowledge of the surface properties of carbon fibers is reviewed, with emphasis on fiber/matrix adhesion in carbon fiber reinforced plastics. Subjects treated include carbon fiber structure and chemistry, techniques for the study of the fiber surface, polymer/fiber bond strength and its measurement, variations in polymer properties in the interphase, and the influence of fiber matrix adhesion on composite mechanical properties. Critical issues are summarized and search recommendations are made.
Modeling hygroelastic properties of genetically modified aspen
Laszlo Horvath; Perry Peralta; Ilona Peszlen; Levente Csoka; Balazs Horvath; Joseph Jakes
2012-01-01
Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin...
USDA-ARS?s Scientific Manuscript database
A comprehensive quantum chemical study was carried out on 34 type A and type B trichothecenes, including selected derivatives and biosynthetic precursors of deoxynivalenol, nivalenol, and T-2 toxin. Quantum parameters, Natural Bond Orbital (NBO) analysis, and molecular properties were calculated on ...
Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies
NASA Astrophysics Data System (ADS)
Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh
2012-06-01
The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.
Stability and electronic properties of low-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Guan, Jie
As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and 8, novel 2D structures are predicted theoretically. In Chapter 6, I propose two new stable structural phases of layered phosphorus besides the layered alpha-P (black) and beta-P (blue) phosphorus allotropes. A metal-insulator transition caused by inlayer strain or changing the number of layers is found in the new gamma-P phase. An unforeseen benefit is the possibility to connect different structural phases at no energy cost, which further leads to a paradigm of constructing very stable, faceted phosphorus nanotube and fullerene structures by laterally joining nanoribbons or patches of different planar phosphorene phases, which is discussed in Chapter 7. In Chapter 8, I propose previously unknown allotropes of PC in the stable shape of an atomically thin layer. Different stable geometries, which result from the competition between sp2 bonding found in graphitic C and sp3 bonding found in black P, display different electronic properties including metallic, semi-metallic with an anisotropic Dirac cone, and direct-gap semiconductors with their gap tunable by in-layer strain. In Chapter 9, I propose a fast method to determine the local curvature in 2D systems with arbitrary shape. The curvature information, combined with elastic constants obtained for a planar system, provides an accurate estimate of the local stability in the framework of continuum elasticity theory. This approach can be applied to all 2D structures. Finally, I present general conclusions from the PhD Thesis work in Chapter 10.
Methods for creating ligand induced paramagnetism in nanocrystalline structures
Meulenberg, Robert W.; Lee, Jonathan R. I.; Van Buuren, Anthony W.; Terminello, Louis J.
2016-12-13
A method according to one general embodiment includes applying an organic surfactant to a nanoparticle having a d.sup.10 configuration for altering a magnetic property of the nanoparticle. A method according to another general embodiment includes applying an organic surfactant to a II-VI semiconductor nanoparticle having a d.sup.10 configuration for altering a magnetic property of the nanoparticle, wherein the nanoparticle has a mean radius of less than about 50 .ANG..
Theory of reliable systems. [systems analysis and design
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1973-01-01
The analysis and design of reliable systems are discussed. The attributes of system reliability studied are fault tolerance, diagnosability, and reconfigurability. Objectives of the study include: to determine properties of system structure that are conducive to a particular attribute; to determine methods for obtaining reliable realizations of a given system; and to determine how properties of system behavior relate to the complexity of fault tolerant realizations. A list of 34 references is included.
Management of the aging of critical safety-related concrete structures in light-water reactor plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.; Oland, C.B.; Arndt, E.G.
1990-01-01
The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniquesmore » for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.« less
Electron-hole liquid in semiconductors and low-dimensional structures
NASA Astrophysics Data System (ADS)
Sibeldin, N. N.
2017-11-01
The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.
Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W
2006-05-29
A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.
NASA Astrophysics Data System (ADS)
Wibowo, Arief Cahyo
Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination polymer ranging from 1D supramolecular structures to true 3D coordination polymers is covered in Chapter 4. The observation of a new 2D Kagome lattice and unique layered perovskite-type bismuth-based coordination polymers and their photoluminescence properties is the focus of Chapter 5. In chapters 6 and 7, a successful approach to implement our novel hybrid strategy for synthesizing enantiomerically pure single crystals consisting of Second Order Jahn Teller (SOJT)-possessing main group metal cations, specifically bismuth and tin, and homochiral ligands or unsymmetric ligands is discussed. The new MOMs with polar space groups exhibit second harmonic generation and have potential for ferroelectric properties.
NASA Technical Reports Server (NTRS)
Park, Junhong; Palumbo, Daniel L.
2004-01-01
The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.
Esue, Osigwe; Wirtz, Denis; Tseng, Yiider
2006-02-01
MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.
Annibal, Andrea; Riemer, Thomas; Jovanovic, Olga; Westphal, Dennis; Griesser, Eva; Pohl, Elena E.; Schiller, Jürgen; Hoffmann, Ralf; Fedorova, Maria
2018-01-01
Glycation and glycoxidation of proteins and peptides have been intensively studied and are considered as reliable diagnostic biomarkers of hyperglycemia and early stages of type II diabetes. However, glucose can also react with primary amino groups present in other cellular components, such as aminophospholipids (aminoPLs). Although it is proposed that glycated aminoPLs can induce many cellular responses and contribute to the development and progression of diabetes, the routes of their formation and their biological roles are only partially revealed. The same is true for the influence of glucose-derived modifications on the biophysical properties of PLs. Here we studied structural, signaling, and biophysical properties of glycated and glycoxidized phosphatidylethanolamines (PEs). By combining high resolution mass spectrometry and nuclear magnetic resonance spectroscopy it was possible to deduce the structures of several intermediates indicating an oxidative cleavage of the Amadori product yielding glycoxidized PEs including advanced glycation end products, such as carboxyethyl- and carboxymethyl-ethanolamines. The pro-oxidative role of glycated PEs was demonstrated and further associated with several cellular responses including activation of NFκB signaling pathways. Label free proteomics indicated significant alterations in proteins regulating cellular metabolisms. Finally, the biophysical properties of PL membranes changed significantly upon PE glycation, such as melting temperature (Tm), membrane surface charge, and ion transport across the phospholipid bilayer. PMID:27012418
NASA Astrophysics Data System (ADS)
Barraza-Lopez, Salvador; Rivero, Pablo; Yan, Jia-An; Garcia-Suarez, Victor Manuel; Ferrer, Jaime
2015-03-01
Tin fluoride has a vast literature. This material is stable in bulk form at room temperature and has commercial applications that include fluorinated toothpaste. Bulk tin fluoride has a pair of fluorine atoms bridging two tin atoms. In the recent past the electronic properties of 2D tin with honeycomb structure have been discussed thus generating a wealth of literature that emphasizes its non-topologically-trivial electronic properties due to the combination of a Dirac-like dispersion and a strong spin-orbit coupling given its large atomic mass. Nevertheless the stability of such freestanding structures has been contested recently. As it turns out, the most stable form of fluorinated tin does not possess a graphane-like structure either. In the most stable phase to be discussed here, fluorine atoms tilt away from (graphane-like) positions over/below tin atoms; in an atomistic arrangement similar to the one seen on their parent bulk structure. Electronic properties depend on atomistic coordination, and the most stable form of fluorinated tin does not possess non-trivial topological properties. Nevertheless it represents a new paradigm for valleytronics in 2D.
Relationships between physical properties and sequence in silkworm silks
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-01-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149
NASA Astrophysics Data System (ADS)
Dadashi, S.; Poursalehi, R.; Delavari, H.
2018-06-01
Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.
Li, Yingchun; Jia, Shuai; Du, Shuanli; Wang, Yafei; Lv, Lida; Zhang, Jianbin
2018-06-01
An approach originated from preparing long chain branched polypropylene (PP) was applied to modify the properties of recycled PP that involved reactive extrusion to introduce a branched chain structure onto recycled PP under the assistance of chemical reaction between maleic anhydride (MAH) monomer and glycidyl methacrylate (GMA) grafts. The results from Fourier transformed infrared spectroscopy (FTIR) indicated the reaction took place during melt mixing, and the intensity of ester increased with increasing amount of MAH. Several rheological plots including complex viscosity, storage modulus, loss modulus, loss tangent and Cole-Cole plot were used to investigate the rheological properties of recycled PP and modified PP with MAH, which indicated an additional longer relaxation time that was not shown in recycled PP. The effects of branched structure on melting and crystallization behaviors were also investigated, demonstrating the branched chains acted as nucleating agent. Moreover, the branched structure of modified samples gave rise to enhance mechanical properties, especially, the higher impact strength compared with recycled PP. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-12-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Relationships between physical properties and sequence in silkworm silks
NASA Astrophysics Data System (ADS)
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-06-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.
Options for NDE Assessment of Heat and Fire Damaged Wood
Robert H. White; Brian Kukay; James P. Wacker
2013-01-01
Depending on the duration and temperature, heat can adversely affect structural properties of wood. While severe temperatures will result in damage that is visually obvious, damage to wood in terms of structural performance extends to wood that visually appears to be unaffected or only mildly affected. The loss in structural capacity includes both reductions for the...
The Properties of Confined Water and Fluid Flow at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegler, E; Reed, J; Lau, E
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membranemore » flow, materials properties in confined media and nanofluidic devices.« less
Slavic in Head-Driven Phrase Structure Grammar.
ERIC Educational Resources Information Center
Borsley, Robert D., Ed.; Przepiorkowski, Adam, Ed.
The collection of essays on the properties of Slavic languages in the context of the theory of head-driven phrase structure grammar (HPSG) includes: "Typological Similarities in HPSG" (Tania Avgustinova, Wojciech Skut, Hans Uszkoreit); "Auxiliaries, Verbs and Complementizers in Polish" (Robert D. Borsley); "An Architecture…
Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties
NASA Astrophysics Data System (ADS)
Stampfl, J.; Pettermann, H. E.; Liska, R.
Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.
Yang, Zhi-Yong; Zhang, Hui-Min; Yan, Cun-Ji; Li, Shan-Shan; Yan, Hui-Juan; Song, Wei-Guo; Wan, Li-Jun
2007-03-06
Two alkyl-substituted dual oligothiophenes, quarterthiophene (4T)-trimethylene (tm)-octithiophene (8T) and 4T-tm-4T, were used to fabricate molecular structures on highly oriented pyrolytic graphite and Au(111) surfaces. The resulted structures were investigated by scanning tunneling microscopy. The 4T-tm-8T and 4T-tm-4T molecules self-organize into long-range ordered structures with linear and/or quasi-hexagonal patterns on highly oriented pyrolytic graphite at ambient temperature. Thermal annealing induced a phase transformation from quasi-hexagonal to linear in 4T-tm-8T adlayer. The molecules adsorbed on Au(111) surface in randomly folded and linear conformation. Based on scanning tunneling microscopy results, the structural models for different self-organizations were proposed. Scanning tunneling spectroscopy measurement showed the electronic property of individual molecules in the patterns. These results are significant in understanding the chemistry of molecular structure, including its formation, transformation, and electronic properties. They also help to fabricate oligothiophene assemblies with desired structures for future molecular devices.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
30 CFR 285.1006 - How will MMS decide whether to issue an Alternate Use RUE?
Code of Federal Regulations, 2010 CFR
2010-07-01
... minimizes adverse effects to the coastal and marine environments, including their physical, atmospheric, and... (including OCS mineral deposits and oil, gas, and sulphur resources in areas leased or not leased), any life (including fish and other aquatic life), or property (including sites, structures, or objects of historical...
Measurement properties of depression questionnaires in patients with diabetes: a systematic review.
van Dijk, Susan E M; Adriaanse, Marcel C; van der Zwaan, Lennart; Bosmans, Judith E; van Marwijk, Harm W J; van Tulder, Maurits W; Terwee, Caroline B
2018-06-01
To conduct a systematic review on measurement properties of questionnaires measuring depressive symptoms in adult patients with type 1 or type 2 diabetes. A systematic review of the literature in MEDLINE, EMbase and PsycINFO was performed. Full text, original articles, published in any language up to October 2016 were included. Eligibility for inclusion was independently assessed by three reviewers who worked in pairs. Methodological quality of the studies was evaluated by two independent reviewers using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the questionnaires was rated per measurement property, based on the number and quality of the included studies and the reported results. Of 6286 unique hits, 21 studies met our criteria evaluating nine different questionnaires in multiple settings and languages. The methodological quality of the included studies was variable for the different measurement properties: 9/15 studies scored 'good' or 'excellent' on internal consistency, 2/5 on reliability, 0/1 on content validity, 10/10 on structural validity, 8/11 on hypothesis testing, 1/5 on cross-cultural validity, and 4/9 on criterion validity. For the CES-D, there was strong evidence for good internal consistency, structural validity, and construct validity; moderate evidence for good criterion validity; and limited evidence for good cross-cultural validity. The PHQ-9 and WHO-5 also performed well on several measurement properties. However, the evidence for structural validity of the PHQ-9 was inconclusive. The WHO-5 was less extensively researched and originally not developed to measure depression. Currently, the CES-D is best supported for measuring depressive symptoms in diabetes patients.
Beyond lognormal inequality: The Lorenz Flow Structure
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-11-01
Observed from a socioeconomic perspective, the intrinsic inequality of the lognormal law happens to manifest a flow generated by an underlying ordinary differential equation. In this paper we extend this feature of the lognormal law to a general ;Lorenz Flow Structure; of Lorenz curves-objects that quantify socioeconomic inequality. The Lorenz Flow Structure establishes a general framework of size distributions that span continuous spectra of socioeconomic states ranging from the pure-communism extreme to the absolute-monarchy extreme. This study introduces and explores the Lorenz Flow Structure, analyzes its statistical properties and its inequality properties, unveils the unique role of the lognormal law within this general structure, and presents various examples of this general structure. Beyond the lognormal law, the examples include the inverse-Pareto and Pareto laws-which often govern the tails of composite size distributions.
NASA Astrophysics Data System (ADS)
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming
2007-06-15
This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.
Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study
NASA Astrophysics Data System (ADS)
Xiao, Lingping; Li, Xiaobin; Yang, Xue
2018-05-01
We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.
Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle
2016-09-01
Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
Cataldo, Sebastiano; Pignataro, Bruno
2013-01-01
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
Karataş, Tuğba; Özen, Şükrü; Kutlutürkan, Sevinç
2017-01-01
Objective: The main aim of this study was to investigate the factor structure and psychometric properties of the Brief Illness Perception Questionnaire (BIPQ) in Turkish cancer patients. Methods: This methodological study involved 135 cancer patients. Statistical methods included confirmatory or exploratory factor analysis and Cronbach alpha coefficients for internal consistency. Results: The values of fit indices are within the acceptable range. The alpha coefficients for emotional illness representations, cognitive illness representations, and total scale are 0.83, 0.80, and 0.85, respectively. Conclusions: The results confirm the two-factor structure of the Turkish BIPQ and demonstrate its reliability and validity. PMID:28217734
Acquired pellicle as a modulator for dental erosion.
Vukosavljevic, Dusa; Custodio, William; Buzalaf, Marilia A R; Hara, Anderson T; Siqueira, Walter L
2014-06-01
Dental erosion is a multifactorial condition that can result in the loss of tooth structure and function, potentially increasing tooth sensitivity. The exposure of enamel to acids from non-bacterial sources is responsible for the progression of erosion. These erosive challenges are counteracted by the anti-erosive properties of the acquired pellicle (AP), an integument formed in vivo as a result of selective adsorption of salivary proteins on the tooth surface, containing also lipids and glycoproteins. This review provides an in-depth discussion regarding how the physical structure of the AP, along with its composition, contributes to AP anti-erosive properties. The physical properties that contribute to AP protective nature include pellicle thickness, maturation time, and site of development. The pellicle contains salivary proteins embedded within its structure that demonstrate anti-erosive properties; however, rather than individual proteins, protein-protein interactions play a fundamental role in the protective nature of the AP. In addition, dietary and synthetic proteins can modify the pellicle, enhancing its protective efficiency against dental erosion. The salivary composition of the AP and its corresponding protein-profile may be employed as a diagnostic tool, since it likely contains salivary biomarkers for oral diseases that initiate at the enamel surface, including dental erosion. Finally, by modifying the composition and structure of the AP, this protein integument has the potential to be used as a target-specific treatment option for oral diseases related to tooth demineralization. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelikowsky, James R.
2014-04-14
We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plusmore » Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.« less
Levy, Michael A; Cumming, Jonathan R
2014-11-01
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure-including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition-on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.
Electro-mechanical characterization of structural supercapacitors
NASA Astrophysics Data System (ADS)
Gallagher, T.; LaMaster, D.; Ciocanel, C.; Browder, C.
2012-04-01
The paper presents electrical and mechanical properties of structural supercapacitors and discusses limitations associated with the approach taken for the electrical properties evaluation. The structural supercapacitors characterized in this work had the electrodes made of carbon fiber weave, separator made of several cellulose based products, and the solid electrolyte made as PEGDGE based polymer blend. The reported electrical properties include capacitance and leakage resistance; the former was measured using cyclic voltammetry. Mechanical properties have been evaluated thorough tensile and three point bending tests performed on structural supercapacitor coupons. The results indicate that the separator material plays an important role on the electrical as well as mechanical properties of the structural capacitor, and that Celgard 3501 used as separator leads to most benefits for both mechanical and electrical properties. Specific capacitance and leakage resistance as high as 1.4kF/m3 and 380kΩ, respectively, were achieved. Two types of solid polymer electrolytes were used in fabrication, with one leading to higher and more consistent leakage resistance values at the expense of a slight decrease in specific capacitance when compared to the other SPE formulation. The ultimate tensile strength and modulus of elasticity of the developed power storage composite were evaluated at 466MPa and 18.9MPa, respectively. These values are 58% and 69% of the tensile strength and modulus of elasticity values measured for a single layer composite material made with the same type of carbon fiber and with a West System 105 epoxy instead of solid polymer electrolyte.
Pierce, H.A.; Murray, J.B.
2009-01-01
The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.
Electronic structure of alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrenreich, H.; Schwartz, L.M.
1976-01-01
The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references. (GHT)
Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.
Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M
2009-11-12
A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.
Structural properties of medium-range order in CuNiZr alloy
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Hu, Xuechen; Xie, Quan; Li, Yidan; Ren, Lei
2017-10-01
The evolution characteristics of icosahedral clusters during the rapid solidification of Cu50Ni10Zr40 alloy at cooling rate of 1011 K s-1 are investigated based on molecular dynamics simulations. The structural properties of the short-range order and medium-range order of Cu50Ni10Zr40 alloy are analyzed by several structural characterization methods. The results reveal that the icosahedral clusters are the dominant short-range order structure, and that they assemble themselves into medium-range order by interpenetrating connections. The different morphologies of medium-range order are found in the system and include chain, triangle, tetrahedral, and their combination structures. The tetrahedral morphologies of medium-range order have excellent structural stability with decreasing temperature. The Zr atoms are favorable to form longer chains, while the Cu atoms are favorable to form shorter chains in the system. Those chains interlocked with each other to improve the structural stability.
Simulated Data for High Temperature Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2006-01-01
The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.
Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems
NASA Astrophysics Data System (ADS)
Cole, D. R.
2016-12-01
Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the narrow pores can produce a shift in the equilibrium distribution of mixed volatiles present in adjoining fractures (aka the bulk portion of the system).
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Adams, Thomas; Ciesielski, Bethany; David, Bieke; Sarawgi, Shivali; Broman-Fulks, Joshua
2012-01-01
This investigation examined the measurement properties of the Three Domains of Disgust Scale (TDDS). Principal components analysis in Study 1 (n = 206) revealed three factors of Pathogen, Sexual, and Moral Disgust that demonstrated excellent reliability, including test-retest over 12 weeks. Confirmatory factor analyses in Study 2 (n = 406)…
Cherepanov, Pavel V; Andreeva, Daria V
2017-03-01
High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.
We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-02-01
A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.
Scarafoni, Alessio; Gualtieri, Elisa; Barbiroli, Alberto; Carpen, Aristodemo; Negri, Armando; Duranti, Marcello
2011-09-14
The present paper reports the purification and biochemical characterization of an albumin identified in mature lentil seeds with high sequence similarity to pea PA2. These proteins are found in many edible seeds and are considered potentially detrimental for human health due to the potential allergenicity and lectin-like activity. Thus, the description of their possible presence in food and the assessment of the molecular properties are relevant. The M(r), pI, and N-terminal sequence of this protein have been determined. The work included the study of (i) the binding properties to hemine to assess the presence of hemopexin structural domains and (ii) the binding properties of the protein to thiamin. In addition, the structural changes induced by heating have been evaluated by means of spectroscopic techniques. Denaturation temperature has also been determined. The present work provides new insights about the structural molecular features and the ligand-binding properties and dynamics of this kind of seed albumin.
Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Chunsheng; Wang, Jiazhao
2017-12-01
Electrolytes, which are a key component in electrochemical devices, transport ions between the sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The performance of a LSB mostly depends on the electrolyte due to the dissolution of polysulfides into the electrolyte, along with the formation of a solid-electrolyte interphase. The selection of the electrolyte and its functionality during charging and discharging is intricate and involves multiple reactions and processes. The selection of the proper electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties, which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the molecular structure and the properties of common organic electrolytes, along with their effects on the LSB performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...
2017-02-01
We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury
The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti 3C 2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. Furthermore, the availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenesmore » allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. Here, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.« less
2D metal carbides and nitrides (MXenes) for energy storage
Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury
2017-01-17
The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti 3C 2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. Furthermore, the availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenesmore » allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. Here, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.« less
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan
2017-04-01
Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.
NASA Astrophysics Data System (ADS)
Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng
2017-10-01
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Rheological and volumetric properties of TiO2-ethylene glycol nanofluids
2013-01-01
Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850
Dworkin, Shari L.; Lu, Tiffany; Grabe, Shelly; Kwena, Zachary; Mwaura-Muiru, Esther; Bukusi, Elizabeth
2014-01-01
Despite the recognized need for structural-level HIV prevention interventions that focus on economic empowerment to reduce women’s HIV risks, few science-based programs have focused on securing women’s land ownership as a primary or secondary HIV risk reduction strategy. The current study focused on a community-led land and property rights model that was implemented in two rural areas of western Kenya where HIV prevalence was high (24–30%) and property rights violations were common. The program was designed to reduce women’s HIV risk at the community level by protecting and enhancing women’s access to and ownership of land. Through in-depth interviews with 50 program leaders and implementers of this program we sought to identify the strategies that were used to prevent, mediate, and resolve property rights violations. Results included four strategies: (1) rights-based education of both women and men individually and at the community level, (2) funeral committees that intervene to prevent property grabbing and disinheritance, (3) paralegal training of traditional leaders and community members and local adjudication of cases of property rights violations, and (4) referring property rights violations to the formal justice system when these are not resolved at the community level. Study participants underscored that local mediation of cases resulted in a higher success rate than women experienced in the formal court system, underscoring the importance of community-level solutions to property rights violations. The current study assists researchers in understanding the steps needed to prevent and resolve women’s property rights violations so as to bolster the literature on potential structural HIV prevention interventions. Future research should rigorously test property rights programs as a structural HIV prevention intervention. PMID:24116828
Dworkin, Shari L; Lu, Tiffany; Grabe, Shelly; Kwena, Zachary; Mwaura-Muiru, Esther; Bukusi, Elizabeth
2014-01-01
Despite the recognized need for structural-level HIV prevention interventions that focus on economic empowerment to reduce women's HIV risks, few science-based programs have focused on securing women's land ownership as a primary or secondary HIV risk reduction strategy. The current study focused on a community-led land and property rights model that was implemented in two rural areas of western Kenya where HIV prevalence was high (24-30%) and property rights violations were common. The program was designed to reduce women's HIV risk at the community level by protecting and enhancing women's access to and ownership of land. Through in-depth interviews with 50 program leaders and implementers of this program we sought to identify the strategies that were used to prevent, mediate, and resolve property rights violations. Results included four strategies: (1) rights-based education of both women and men individually and at the community level, (2) funeral committees that intervene to prevent property grabbing and disinheritance, (3) paralegal training of traditional leaders and community members and local adjudication of cases of property rights violations, and (4) referring property rights violations to the formal justice system when these are not resolved at the community level. Study participants underscored that local mediation of cases resulted in a higher success rate than women experienced in the formal court system, underscoring the importance of community-level solutions to property rights violations. The current study assists researchers in understanding the steps needed to prevent and resolve women's property rights violations so as to bolster the literature on potential structural HIV prevention interventions. Future research should rigorously test property rights programs as a structural HIV prevention intervention.
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong
2018-06-01
The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
Resin selection criteria for tough composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Smith, G. T.
1983-01-01
Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.
Topological characteristics of helical repeat proteins.
Groves, M R; Barford, D
1999-06-01
The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem repeats of an alpha-helical structural unit, creating extended superhelical structures that are ideally suited to create a protein recognition interface.
NASA Astrophysics Data System (ADS)
Wicaksono, Sigit T.; Ardhyananta, Hosta; Rasyida, Amaliya; Hidayat, Mas Irfan P.
2018-04-01
Rapid Prototyping (RP) technologies, the manufacturing technology with less time consuming including high precission and complicated structure of products, are now become high demanding technologies. Those technologies can be base on top-down or bottom-up approaches. One of the bottom-up approach of RP technology is 3D printing machine. In this research, we have succeed to apply the droplet-based 3D printer to make the structured PLA (Polylactic Acid) materials with different internal geometry structures. The internal geometry used are triangle and honeycomb structure with different size of each symmetry axis of 4.5 mm and 9 mm and the thickness varied of 1 mm and 2 mm as well. The mechanical properties of those structures including tensile and bending stregth are evaluated by using tensile and flexural test respectively. Test results show that the best performance obtained by measuring its tensile and flexural strength is the sampel with triangle geometry of 9 mm geometrical size and 2 mm of thickness. The tensile strength and flexural strength values of the specimens are 59.2996 MPa and 123 MPa respectively.
Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids
NASA Astrophysics Data System (ADS)
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-03-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-01-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245
Lou, Yan; Han, Xiaochun; Kuglstatter, Andreas; Kondru, Rama K; Sweeney, Zachary K; Soth, Michael; McIntosh, Joel; Litman, Renee; Suh, Judy; Kocer, Buelent; Davis, Dana; Park, Jaehyeon; Frauchiger, Sandra; Dewdney, Nolan; Zecic, Hasim; Taygerly, Joshua P; Sarma, Keshab; Hong, Junbae; Hill, Ronald J; Gabriel, Tobias; Goldstein, David M; Owens, Timothy D
2015-01-08
Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.
Chemical properties and biological activity of a polysaccharide from Melocactus depressus.
da Silva, Bernadete P; Parente, José P
2002-01-01
An arabinogalactan with mean Mr of 6.85 x 10(4), was isolated from the pulps of Melocactus depressus Hook by fractionation on Sephacryl S-300 HR. Chemical and spectroscopic studies indicated that it has a branched arabinogalactan type structure composed of beta-(1-->4) linked D-galactopyranose residues with beta-(1-->3) and beta-(1-->6) branching points. Its structural features include also alpha-(1-->2), alpha-(1-->3) and alpha-(1-->5) linked L-arabinofuranose residues. The polysaccharide demonstrated a phagocytosis stimulating property.
LASERS IN MEDICINE: Laser diagnostics of biofractals
NASA Astrophysics Data System (ADS)
Ushenko, A. G.
1999-12-01
An optical approach to the problem of modelling and diagnostics of the structures of biofractal formations was considered in relation to human bone tissue. A model was proposed for the optical properties of this tissue, including three levels of fractal organisation: microcrystalline, macrocrystalline, and architectural. The studies were based on laser coherent polarimetry ensuring the retrieval of the fullest information about the optical and polarisation properties of bone tissue. A method was developed for contactless noninvasive diagnostics of the orientational and mineralogical structure of bone tissue considered as a biofractal.
Moiseeva, Natalia S; Kunin, Anatoly A
2018-03-01
Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...
2017-03-28
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
ERIC Educational Resources Information Center
Rzepa, Henry S.
2016-01-01
Three new examples are presented illustrating three-dimensional chemical information searches of the Cambridge structure database (CSD) from which basic core concepts in organic and inorganic chemistry emerge. These include connecting the regiochemistry of aromatic electrophilic substitution with the geometrical properties of hydrogen bonding…
ERIC Educational Resources Information Center
No, Yongkyoon, Ed.; Libucha, Mark, Ed.
Papers include: "Length and Structure Effects in Syntactic Processing"; Nantong Tone Sandhi and Tonal Feature Geometry"; "Event Reference and Property Theory"; "Function-Argument Structure, Category Raising and Bracketing Paradoxes"; "At the Phonetics-Phonology Interface: (Re)Syllabification and English Stop…
Investigation of the Enzymes Involved in Lantibiotic Biosynthesis: Lacticin 481 and Haloduracin
ERIC Educational Resources Information Center
Ihnken, Leigh Anne Furgerson
2009-01-01
Lantibiotics are cyclic peptides that exhibit a range of biological properties, including antimicrobial activity. They are ribosomally-synthesized as linear precursor peptides that consist of two regions, an N-terminal leader peptide and a C-terminal propeptide (or structural) region. The structural region undergoes extensive enzyme-catalyzed…
Wickham, Shelley; Large, Maryanne C.J; Poladian, Leon; Jermiin, Lars S
2005-01-01
Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused. PMID:16849221
NASA Astrophysics Data System (ADS)
Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.
2018-04-01
We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.
NASA Astrophysics Data System (ADS)
Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.
2018-06-01
We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.
Jaggessar, Alka; Shahali, Hesam; Mathew, Asha; Yarlagadda, Prasad K D V
2017-10-02
Orthopaedic and dental implants have become a staple of the medical industry and with an ageing population and growing culture for active lifestyles, this trend is forecast to continue. In accordance with the increased demand for implants, failure rates, particularly those caused by bacterial infection, need to be reduced. The past two decades have led to developments in antibiotics and antibacterial coatings to reduce revision surgery and death rates caused by infection. The limited effectiveness of these approaches has spurred research into nano-textured surfaces, designed to mimic the bactericidal properties of some animal, plant and insect species, and their topographical features. This review discusses the surface structures of cicada, dragonfly and butterfly wings, shark skin, gecko feet, taro and lotus leaves, emphasising the relationship between nano-structures and high surface contact angles on self-cleaning and bactericidal properties. Comparison of these surfaces shows large variations in structure dimension and configuration, indicating that there is no one particular surface structure that exhibits bactericidal behaviour against all types of microorganisms. Recent bio-mimicking fabrication methods are explored, finding hydrothermal synthesis to be the most commonly used technique, due to its environmentally friendly nature and relative simplicity compared to other methods. In addition, current proposed bactericidal mechanisms between bacteria cells and nano-textured surfaces are presented and discussed. These models could be improved by including additional parameters such as biological cell membrane properties, adhesion forces, bacteria dynamics and nano-structure mechanical properties. This paper lastly reviews the mechanical stability and cytotoxicity of micro and nano-structures and materials. While the future of nano-biomaterials is promising, long-term effects of micro and nano-structures in the body must be established before nano-textures can be used on orthopaedic implant surfaces as way of inhibiting bacterial adhesion.
Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings
NASA Astrophysics Data System (ADS)
Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang
2018-06-01
CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.
Modeling process-structure-property relationships for additive manufacturing
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-02-01
This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen
2018-04-01
The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.
Marciante, Mathieu; Murillo, Michael Sean
2017-01-10
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marciante, Mathieu; Murillo, Michael Sean
Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less
Machine learning of molecular electronic properties in chemical compound space
NASA Astrophysics Data System (ADS)
Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.
2013-09-01
The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.
Lu, Tiffany; Zwicker, Lindsey; Kwena, Zachary; Bukusi, Elizabeth; Mwaura-Muiru, Esther; Dworkin, Shari L.
2013-01-01
Despite the recognized need for structural HIV prevention interventions, few scientific programs have integrated women’s property and inheritance rights with HIV prevention and treatment. The current study focused on a community-led land and property rights intervention that was implemented in two rural areas of Western Kenya with high HIV prevalence rates (24–30%). The program was designed to respond to women’s property rights violations in order to reduce HIV risk at the local level. Through in-depth interviews with twenty program leaders, we identified several facilitators to program implementation, including the leadership of home-based HIV caregivers and involvement of traditional leaders in mediating property rights disputes. We also identified the voluntary basis of the intervention and its lack of integration with the formal justice system as implementation barriers. Our findings can guide future research and design of structural HIV prevention strategies that integrate women’s economic empowerment through property and inheritance rights. PMID:23514082
Lu, Tiffany; Zwicker, Lindsey; Kwena, Zachary; Bukusi, Elizabeth; Mwaura-Muiru, Esther; Dworkin, Shari L
2013-04-01
Despite the recognized need for structural HIV prevention interventions, few scientific programs have integrated women's property and inheritance rights with HIV prevention and treatment. The current study focused on a community-led land and property rights intervention that was implemented in two rural areas of Western Kenya with high HIV prevalence rates (24-30%). The program was designed to respond to women's property rights violations in order to reduce HIV risk at the local level. Through in-depth interviews with twenty program leaders, we identified several facilitators to program implementation, including the leadership of home-based HIV caregivers and involvement of traditional leaders in mediating property rights disputes. We also identified the voluntary basis of the intervention and its lack of integration with the formal justice system as implementation barriers. Our findings can guide future research and design of structural HIV prevention strategies that integrate women's economic empowerment through property and inheritance rights.
Physical properties of organic fullerene cocrystals
NASA Astrophysics Data System (ADS)
Macovez, Roberto
2017-12-01
The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.
Unexpected Ground-State Structure and Mechanical Properties of Ir₂Zr Intermetallic Compound.
Zhang, Meiguang; Cao, Rui; Zhao, Meijie; Du, Juan; Cheng, Ke
2018-01-10
Using an unbiased structure searching method, a new orthorhombic Cmmm structure consisting of ZrIr 12 polyhedron building blocks is predicted to be the thermodynamic ground-state of stoichiometric intermetallic Ir₂Zr in Ir-Zr systems. The formation enthalpy of the Cmmm structure is considerably lower than that of the previously synthesized Cu₂Mg-type phase, by ~107 meV/atom, as demonstrated by the calculation of formation enthalpy. Meanwhile, the phonon dispersion calculations further confirmed the dynamical stability of Cmmm phase under ambient conditions. The mechanical properties, including elastic stability, rigidity, and incompressibility, as well as the elastic anisotropy of Cmmm -Ir₂Zr intermetallic, have thus been fully determined. It is found that the predicted Cmmm phase exhibits nearly elastic isotropic and great resistance to shear deformations within the (100) crystal plane. Evidence of atomic bonding related to the structural stability for Ir₂Zr were manifested by calculations of the electronic structures.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy.
Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun
2015-09-23
The conversion, storage, and utilization of renewable energy have all become more important than ever before as a response to ever-growing energy and environment concerns. The performance of energy-related technologies strongly relies on the structure and property of the material used. The earth-abundant family of tungsten oxides (WOx ≤3 ) receives considerable attention in photocatalysis, electrochemistry, and phototherapy due to their highly tunable structures and unique physicochemical properties. Great breakthroughs have been made in enhancing the optical absorption, charge separation, redox capability, and electrical conductivity of WOx ≤3 through control of the composition, crystal structure, morphology, and construction of composite structures with other materials, which significantly promotes the efficiency of processes and devices based on this material. Herein, the properties and synthesis of WOx ≤3 family are reviewed, and then their energy-related applications are highlighted, including solar-light-driven water splitting, CO2 reduction, and pollutant removal, electrochromism, supercapacitors, lithium batteries, solar and fuel cells, non-volatile memory devices, gas sensors, and cancer therapy, from the aspect of function-oriented structure design and control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spin Polarized Transport in Multilayer Structures with Complex Magnetic Configurations
NASA Astrophysics Data System (ADS)
Sahakyan, Avag; Poghosyan, Anahit; Movsesyan, Ruzan; Kocharian, Armen
The spin transport and spin polarization in a new class of multilayer structures are investigated for non-collinear and noncoplanar magnetic configurations containing repetitive magnetic layers. The magnetic configuration of the structure dictates the existence of certain degrees of freedom that determines magnetic transport and polarization properties. We consider magnetic structures in magnetic multilayers with canted spin configurations separated by non-magnetic quantum well so that the exchange interaction between the neighbor barriers can be ignored. Configurations of magnetizations in barriers include some structures consisting of two ''ferromagnetic'' or ''antiferromagnetic'' domains twisted relative to each other by a certain angle (angle noncollinearity). The similar system, formed from two noncollinear domains separated by canted ''magnetic defect'' is also considered. The above mentioned properties of these systems depend strongly on the type of magnetic configuration and variation of certain degrees of freedom. Simple theoretical approach with the transfer matrix method is carried out to understand and predict the magnetic properties of the multilayer systems. The work at California University Los Angeles was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.
Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, S. Ali; Monticone, Francesco
2018-03-01
We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.
ZnSe based semiconductor core-shell structures: From preparation to application
NASA Astrophysics Data System (ADS)
Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan
2018-07-01
Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.
NASA Technical Reports Server (NTRS)
Glass, David E.; Robinson, James C.
1990-01-01
A procedure is presented to allow the use of temperature dependent mechanical properties in the Engineering Analysis Language (EAL) System for solid structural elements. This is accomplished by including a modular runstream in the main EAL runstream. The procedure is applicable for models with multiple materials and with anisotropic properties, and can easily be incorporated into an existing EAL runstream. The procedure (which is applicable for EAL elastic solid elements) is described in detail, followed by a description of the validation of the routine. A listing of the EAL runstream used to validate the procedure is included in the Appendix.
Nuclear Computational Low Energy Initiative (NUCLEI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Sanjay K.
This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less
Yoshida, Takashi; Amakura, Yoshiaki; Yoshimura, Morio
2010-01-01
Plant tannins, including hydrolysable and condensed varieties, are well known antioxidants in medicinal plants, foods, and edible fruits. Their diverse biological properties and potential for disease prevention have been demonstrated by various in vitro and in vivo assays. A number of ellagitannins, the largest group of hydrolysable tannins, have been isolated from dicotyledoneous angiosperms and characterized. This diverse class of tannins is sub-grouped into simple ellagitannins, C-glycosidic ellagitannins, complex tannins (condensates of C-glycosidic tannins with flavan-3-ol), and oligomers up to pentamers. This review outlines and describes the chemotaxonomic significance of structural features in various types of ellagitannins found in plants belonging to the Myrtaceae, Onagraceae, and Melastomataceae families, which are all included in the order Myrtales. Any biological activities that have been reported, including antitumor and antibacterial effects as well as enzyme inhibition, are also reviewed. PMID:20162003
Accurate force field for molybdenum by machine learning large materials data
NASA Astrophysics Data System (ADS)
Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping
2017-09-01
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.
Computational screening of organic polymer dielectrics for novel accelerator technologies
Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...
2018-06-18
The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less
Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory
NASA Astrophysics Data System (ADS)
Lanir, Yoram
2017-10-01
Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…
NASA Astrophysics Data System (ADS)
Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar
2018-02-01
Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.
Salvage of failed protein targets by reductive alkylation.
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
Salvage of Failed Protein Targets by Reductive Alkylation
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719
Preparation and properties on hollow nano-structured smoke material
NASA Astrophysics Data System (ADS)
Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong
2013-09-01
In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were contrasted in detail with graphite powder smoke agent. The results showed that HNSM smoke possesses better obscuration capability compared with the smoke performance of conventional materials (such as HC, RP, oil, carbon black, and graphite powder). Therefore, they are new smoke obscurant materials which can effectively interfere with broadband electromagnetic radiation, including 1.06 μm and 10.6 μm laser, 3-5 μm and 8-14 μm IR waveband.
Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.
Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F
2015-11-14
In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.
TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Leontsev, Serhiy O.; Eitel, Richard E.
2010-08-01
Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.
Progress in engineering high strain lead-free piezoelectric ceramics
Leontsev, Serhiy O; Eitel, Richard E
2010-01-01
Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343
Lee, Yeji; Phat, Chanvorleak; Hong, Soon-Cheol
2017-09-01
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Yufang; Wu, Yanzhao; Feng, Min; Wang, Hui; Jin, Qinghua; Ding, Datong; Cao, Xuewei
2008-12-01
With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.
Computational characterization of ordered nanostructured surfaces
NASA Astrophysics Data System (ADS)
Mohieddin Abukhdeir, Nasser
2016-08-01
A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.
Site preferences of actinide cations in [NZP] compounds
NASA Astrophysics Data System (ADS)
Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.
2000-07-01
Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.
Theoretical prediction of the structural properties of uranium chalcogenides under high pressure
NASA Astrophysics Data System (ADS)
Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna
2018-05-01
Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.
Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C
2015-01-01
In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.
Manner, Virginia W.; Cawkwell, Marc; Kober, Edward M.; ...
2018-03-09
The sensitivity of explosives is controlled by factors that span from intrinsic chemical reactivity and chemical intramolecular effects to mesoscale structure and defects, and has been a topic of extensive study for over 50 years. Due to these complex competing chemical and physical elements, a unifying relationship between molecular framework, crystal structure, and sensitivity has yet to be developed. In order to move towards this goal, ideally experimental studies should be performed on systems with small, systematic structural modifications, with modeling utilized to interpret experimental results. Pentaerythritol tetranitrate (PETN) is a common nitrate ester explosive that has been widely studiedmore » due to its use in military and commercial explosives. We have synthesized PETN derivatives with modified sensitivity characteristics by substituting the CCH 2ONO 2 moiety with other substituents, including CH, CNH 2, CNH3X, CCH 3, and PO. We relate the handling sensitivity properties of each PETN derivative to its structural properties, and discuss the potential roles of thermodynamic properties such as heat capacity and heat of formation, thermal stability, crystal structure, compressibility, and inter- and intramolecular hydrogen bonding on impact sensitivity. Reactive molecular dynamics (MD) simulations of the C/H/N/O-based PETN-derivatives have been performed under cook-off conditions that mimic those accessed in impact tests. These simulations infer how changes in chemistry affect the subsequent decomposition pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manner, Virginia W.; Cawkwell, Marc; Kober, Edward M.
The sensitivity of explosives is controlled by factors that span from intrinsic chemical reactivity and chemical intramolecular effects to mesoscale structure and defects, and has been a topic of extensive study for over 50 years. Due to these complex competing chemical and physical elements, a unifying relationship between molecular framework, crystal structure, and sensitivity has yet to be developed. In order to move towards this goal, ideally experimental studies should be performed on systems with small, systematic structural modifications, with modeling utilized to interpret experimental results. Pentaerythritol tetranitrate (PETN) is a common nitrate ester explosive that has been widely studiedmore » due to its use in military and commercial explosives. We have synthesized PETN derivatives with modified sensitivity characteristics by substituting the CCH 2ONO 2 moiety with other substituents, including CH, CNH 2, CNH3X, CCH 3, and PO. We relate the handling sensitivity properties of each PETN derivative to its structural properties, and discuss the potential roles of thermodynamic properties such as heat capacity and heat of formation, thermal stability, crystal structure, compressibility, and inter- and intramolecular hydrogen bonding on impact sensitivity. Reactive molecular dynamics (MD) simulations of the C/H/N/O-based PETN-derivatives have been performed under cook-off conditions that mimic those accessed in impact tests. These simulations infer how changes in chemistry affect the subsequent decomposition pathways.« less
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-01-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K
2015-06-04
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
ACToR Chemical Structure processing using Open Source ...
ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
NASA Astrophysics Data System (ADS)
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-06-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Electrical transport across grain boundaries in graphene monolayers on SiC(0 0 0 \\bar{1} )
NASA Astrophysics Data System (ADS)
Zhou, Xiaodong; Ji, Shuai-Hua; Chockalingam, S. P.; Hannon, J. B.; Tromp, R. M.; Heinz, T. F.; Pasupathy, A. N.; Ross, F. M.
2018-07-01
We measure the role of structural defects, including grain boundaries and step edges, in determining the electrical transport characteristics of polycrystalline graphene monolayers synthesized on C-face SiC(0 0 0 ) by thermal decomposition. A combination of multi-probe scanning tunneling microscopy/potentiometry and low-energy electron microscopy allows the transport properties of individual grain boundaries to be correlated with their misorientation and atomic-level structure, without any device fabrication. We find that different types of grain boundary show dramatically different transport properties, and that boundaries can change structure and resistivity along their length. Boundary regions made up of dislocation superlattices separated by continuous graphene exhibit relatively low resistivity which is comparable to the resistivity of the graphene sheet itself. Other grain boundaries display trench structures with a resistivity 1–2 orders of magnitude greater and sufficient to dominate transport through the polycrystalline sheet. We also measure the transport properties of step edges and monolayer-bilayer boundaries on C-face graphene and compare them to Si-face graphene. Such measurements offer a guideline for optimizing graphene growth on SiC to improve its electronic properties.
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Chapter 19: Catalysis by Metal Carbides and Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M
Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments.
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert; Bradforth, Stephen E; Schwegler, Eric; Galli, Giulia
2017-06-01
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecular dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.
Electronic structure of aqueous solutions: Bridging the gap between theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Tuan Anh; Govoni, Marco; Seidel, Robert
Predicting the electronic properties of aqueous liquids has been a long-standing challenge for quantum mechanical methods. However, it is a crucial step in understanding and predicting the key role played by aqueous solutions and electrolytes in a wide variety of emerging energy and environmental technologies, including battery and photoelectrochemical cell design. We propose an efficient and accurate approach to predict the electronic properties of aqueous solutions, on the basis of the combination of first-principles methods and experimental validation using state-of-the-art spectroscopic measurements. We present results of the photoelectron spectra of a broad range of solvated ions, showing that first-principles molecularmore » dynamics simulations and electronic structure calculations using dielectric hybrid functionals provide a quantitative description of the electronic properties of the solvent and solutes, including excitation energies. The proposed computational framework is general and applicable to other liquids, thereby offering great promise in understanding and engineering solutions and liquid electrolytes for a variety of important energy technologies.« less
Fibrin Formation, Structure and Properties
Weisel, John W.; Litvinov, Rustem I.
2017-01-01
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869
Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab.
Liu, Jennifer; Eris, Tamer; Li, Cynthia; Cao, Shawn; Kuhns, Scott
2016-08-01
ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
NASA Astrophysics Data System (ADS)
Li, Jie; Yu, Ying; Zhang, Lizhi
2014-07-01
In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.
A semi-empirical model relating micro structure to acoustic properties of bimodal porous material
NASA Astrophysics Data System (ADS)
Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine
2015-01-01
Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.
Mendes, Lucas William; Tsai, Siu Mui
2018-01-01
Soil microorganisms play crucial roles in ecosystem functioning, and the central goal in microbial ecology studies is to elucidate which factors shape community structure. A better understanding of the relationship between microbial diversity, functions and environmental parameters would increase our ability to set conservation priorities. Here, the bacterial and archaeal community structure in Atlantic Forest, restinga and mangrove soils was described and compared based on shotgun metagenomics. We hypothesized that each distinct site would harbor a distinct taxonomic and functional soil community, which is influenced by environmental parameters. Our data showed that the microbiome is shaped by soil properties, with pH, base saturation, boron and iron content significantly correlated to overall community structure. When data of specific phyla were correlated to specific soil properties, we demonstrated that parameters such as boron, copper, sulfur, potassium and aluminum presented significant correlation with the most number of bacterial groups. Mangrove soil was the most distinct site and presented the highest taxonomic and functional diversity in comparison with forest and restinga soils. From the total 34 microbial phyla identified, 14 were overrepresented in mangrove soils, including several archaeal groups. Mangrove soils hosted a high abundance of sequences related to replication, survival and adaptation; forest soils included high numbers of sequences related to the metabolism of nutrients and other composts; while restinga soils included abundant genes related to the metabolism of carbohydrates. Overall, our finds show that the microbial community structure and functional potential were clearly different across the environmental gradient, followed by functional adaptation and both were related to the soil properties.
Development of an Evolutionary Algorithm for the ab Initio Discovery of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Revard, Benjamin Charles
Crystal structure prediction is an important first step on the path toward computational materials design. Increasingly robust methods have become available in recent years for computing many materials properties, but because properties are largely a function of crystal structure, the structure must be known before these methods can be brought to bear. In addition, structure prediction is particularly useful for identifying low-energy structures of subperiodic materials, such as two-dimensional (2D) materials, which may adopt unexpected structures that differ from those of the corresponding bulk phases. Evolutionary algorithms, which are heuristics for global optimization inspired by biological evolution, have proven to be a fruitful approach for tackling the problem of crystal structure prediction. This thesis describes the development of an improved evolutionary algorithm for structure prediction and several applications of the algorithm to predict the structures of novel low-energy 2D materials. The first part of this thesis contains an overview of evolutionary algorithms for crystal structure prediction and presents our implementation, including details of extending the algorithm to search for clusters, wires, and 2D materials, improvements to efficiency when running in parallel, improved composition space sampling, and the ability to search for partial phase diagrams. We then present several applications of the evolutionary algorithm to 2D systems, including InP, the C-Si and Sn-S phase diagrams, and several group-IV dioxides. This thesis makes use of the Cornell graduate school's "papers" option. Chapters 1 and 3 correspond to the first-author publications of Refs. [131] and [132], respectively, and chapter 2 will soon be submitted as a first-author publication. The material in chapter 4 is taken from Ref. [144], in which I share joint first-authorship. In this case I have included only my own contributions.
Mineral resource of the month: beryllium
Shedd, Kim B.
2006-01-01
Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.
Kim, Hak Jun; Lee, Jun Hyuck; Hur, Young Baek; Lee, Chang Woo; Park, Sun-Ha; Koo, Bon-Won
2017-01-01
Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type. PMID:28134801
The factor structure and screening utility of the Social Interaction Anxiety Scale.
Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G; Liebowitz, Michael R; Schneier, Franklin R
2006-06-01
The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that accounted for differences due to item wording (i.e., reverse scoring) provided superior fit. It was further found that clients and undergraduates approached some items differently, and the SIAS may be somewhat overly conservative in selecting analogue participants from an undergraduate sample. Overall, this study provides support for the excellent properties of the SIAS's straightforwardly worded items, although questions remain regarding its reverse-scored items. Copyright 2006 APA, all rights reserved.
Influence of the local structure in phase-change materials on their dielectric permittivity.
Shportko, Kostiantyn V; Venger, Eugen F
2015-01-01
Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.
Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.
Xu, Lirong; Yang, Liu; Lei, Shengbin
2012-08-07
In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of conjugated oligomers and polymers. The information obtained could benefit the understanding of the elements affecting the film morphology and helps the optimization of device performance.
Materials research at Stanford University. [composite materials, crystal structure, acoustics
NASA Technical Reports Server (NTRS)
1975-01-01
Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.
Structural Science Laboratory Supplement. High-Technology Training Module.
ERIC Educational Resources Information Center
Luthens, Roger
This module, a laboratory supplement on the theory of bending and properties of sections, is part of a first-year, postsecondary structural science technical support course for architectural drafting and design. The first part of this two-part supplement is directed at the instructor and includes the following sections: program objectives; course…
Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces
Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...
2016-07-26
Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less
NASA Astrophysics Data System (ADS)
Levy, Michael A.; Cumming, Jonathan R.
2014-11-01
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure—including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition—on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.
2012-06-27
of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE
NASA Astrophysics Data System (ADS)
Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi
2017-11-01
The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.
Tailoring structure and technological properties of plant proteins using high hydrostatic pressure.
Queirós, Rui P; Saraiva, Jorge A; da Silva, José A Lopes
2018-06-13
The demand for proteins is rising and alternatives to meat proteins are necessary since animal husbandry is expensive and intensive to the environment. Plant proteins appear as an alternative; however, their techno-functional properties need improvement. High-pressure processing (HPP) is a non-thermal technology that has several applications including the modification of proteins. The application of pressure allows modifying proteins' structure hence allowing to change several of their properties, such as hydration, hydrophobicity, and hydrophilicity. These properties may influence the solubility of proteins and their ability to stabilize emulsions or foams, create aggregates or gels, and their general role in stability and texture of food commodities. Commonly HPP decreases the proteins' solubility yet increasing their surface hydrophobicity exposing sulfhydryl groups, which promotes aggregation or gelation or enhance their ability to stabilize emulsions/foams. However, these effects are not verifiable for all the proteins and are immensely dependent on the type and concentration of the protein, environmental conditions (pH, ionic strength, and co-solutes), and HPP conditions. This review collects and critically discusses the available information on how HPP affects the structure of plant proteins and how their techno-functional properties can be tailored using this approach.
Acoustic wave propagation in heterogeneous structures including experimental validation
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Dahl, Milo D.
1989-01-01
A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.
Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study
NASA Astrophysics Data System (ADS)
Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao
2005-05-01
The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .
Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies
NASA Astrophysics Data System (ADS)
Kouchaki, Alireza; Gülseren, Oğuz; Hadipour, Nasser; Mirzaei, Mahmoud
2016-06-01
Decorations of silicon carbide (SiC) fullerene-like nanoparticles by fluorouracil (FU) and its tautomers are investigated through density functional theory (DFT) calculations. Two models of fullerene-like particles including Si12C8 and Si8C12 are constructed to be counterparts of decorated hybrid structures, FU@Si12C8 and FU@Si8C12, respectively. The initial models including original FU and tautomeric structures and SiC nanoparticles are individually optimized and then combined for further optimizations in the hybrid forms. Covalent bonds are observed for FU@Si12C8 hybrids, whereas non-covalent interactions are seen for FU@Si8C12 ones. The obtained properties indicated that Si12C8 model could be considered as a better counterpart for interactions with FU structures than Si8C12 model. The results also showed significant effects of interactions on the properties of atoms close to the interacting regions in nanoparticles. Finally, the tautomeric structures show different behaviors in interactions with SiC nanoparticles, in which the SiC nanoparticles could be employed to detect the situations of tautomeric processes for FU structures.
Development of Processible Electroactive Oligomers and Polymers
1991-10-01
of structure and electroactive properties. Electroactive molecules including fused ring (ladder oligomers) dyes , squarylium -heterocyclic moieties...Electroactive molecules including fused ring (ladder oligomers) dyes , squarylium -heterocyclic moieties, phenylpolyenes, thienylpolyenes, carbocyanine dyes ...phenylpolyenes, thienylpolyenes, carbocyanine dyes , and tetraazaannulenes have also been synthetically incorporated into a variety of traditional
Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform
Chen, Liaohai
2004-05-18
The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.
Reusing recycled aggregates in structural concrete
NASA Astrophysics Data System (ADS)
Kou, Shicong
The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental results, a number of recommendations were made on how to optimize the use of recycled aggregates for structural concrete production. The results demonstrate that one of the practical ways to utilize a higher percentage of recycled aggregates in concrete is "precasting" with the use of fly ash and an initial steam curing stage immediately after casting.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
2008-01-01
special needs should enhance their awareness of risk and threats, develop household emergency plans that include care for pets and service animals , and...including persons, property, and structures. – Individuals with special needs, including those with service animals . – Individuals with household pets...supplies for household pets and service animals . See the recommended disaster supplies list at http://www.ready.gov. • Monitoring emergency
Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations
NASA Astrophysics Data System (ADS)
Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon
Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
NASA Astrophysics Data System (ADS)
Pattabhiraman, Harini; Dijkstra, Marjolein
2017-09-01
Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.
Global Dynamics of Proteins: Bridging Between Structure and Function
Bahar, Ivet; Lezon, Timothy R.; Yang, Lee-Wei; Eyal, Eran
2010-01-01
Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold. PMID:20192781
Global dynamics of proteins: bridging between structure and function.
Bahar, Ivet; Lezon, Timothy R; Yang, Lee-Wei; Eyal, Eran
2010-01-01
Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold.
Social inheritance can explain the structure of animal social networks
Ilany, Amiyaal; Akçay, Erol
2016-01-01
The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101
Michael Kilgore; Paul Ellefson; Travis Funk; Gregory E. Frey
2018-01-01
Financial incentives offered by state property tax programs are a means of promoting goods and services from private forestland. Identified by a 50-state review in 2014â2015, these incentives often require adherence to several conditions including valid ownership and use of forestland, correct size of parcel and suitable forest...
Targeted Nanoparticles for Kidney Cancer Therapy
2014-12-01
non modes in MWCNTs indicates that these structures also are exceptional heat conductors . The thermal conductivity of a single MWCNT along its...properties including extraordinary strength, unique electrical properties, and a specific heat and thermal conductivity that are among the highest...nanostructures, focusing on exposure to NIR. SWCNTs. Measurements of bulk samples of SWNTs indi- cate a room-temperature thermal conductivity over
33 CFR Appendix C to Part 325 - Procedures for the Protection of Historic Properties
Code of Federal Regulations, 2014 CFR
2014-07-01
... a property which has historical importance to any person or group. This term includes the types of... authorizing the work or structures. The following three tests must all be satisfied for an activity undertaken... three tests are satisfied for the dredged material disposal site and it too is in the “permit area” even...
Stansbury, Jeffrey W.
2011-01-01
Objectives This overview is intended to highlight connections between monomer structure and the development of highly crosslinked photopolymer networks including the conversion dependent properties of shrinkage, modulus and stress. Methods A review is provided that combines the polymer science and dental materials literature along with examples of relevant experimental results, which include measurements of reaction kinetics, photorheology as well as polymerization shrinkage and stress. Results While new monomers are continually under development for dental materials applications, mixtures of dimethacrylate monomers persist as the most common form of dental resins used on composite restorative materials. Monomer viscosity and reaction potential is derived from molecular structure and by employing real-time near-infrared spectroscopic techniques, the development of macromolecular networks is linked to the evolution of polymerization shrinkage (measured by linometer), modulus (measured by photorheometer), and stress (measured by tensometer). Relationships between the respective polymer properties are examined. Significance Through a better understanding of the polymer network formation and property development processes using conventional dimethacrylate monomer formulations, the rational design of improved materials is facilitated with the ultimate goal of achieving dental polymers that deliver enhanced clinical outcomes. PMID:22192248
Development of a composite geodetic structure for space construction, phase 2
NASA Technical Reports Server (NTRS)
1981-01-01
Primary physical and mechanical properties were defined for pultruded hybrid HMS/E-glass P1700 rod material used for the fabrication of geodetic beams. Key properties established were used in the analysis, design, fabrication, instrumentation, and testing of a geodetic parameter cylinder and a lattice cone closeout joined to a short cylindrical geodetic beam segment. Requirements of structural techniques were accomplished. Analytical procedures were refined and extended to include the effect of rod dimensions for the helical and longitudinal members on local buckling, and the effect of different flexural and extensional moduli on general instability buckling.
Photonic crystals, amorphous materials, and quasicrystals
Edagawa, Keiichi
2014-01-01
Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676
Photonic crystals, amorphous materials, and quasicrystals.
Edagawa, Keiichi
2014-06-01
Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.
NASA Technical Reports Server (NTRS)
King, James D.
2004-01-01
Using high resolution transmission electron images of carbon nanotubes and carbon particles, we are able to use image analysis program to determine several carbon fringe properties, including length, separation, curvature and orientation. Results are shown in the form of histograms for each of those quantities. The combination of those measurements can give a better indication of the graphic structure within nanotubes and particles of carbon and can distinguish carbons based upon fringe properties. Carbon with longer, straighter and closer spaced fringes are considered graphite, while amorphous carbon contain shorter, less structured fringes.
Determinants of the mechanical properties of bones
NASA Technical Reports Server (NTRS)
Martin, R. B.
1991-01-01
The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.
Keeping the ball rolling: fullerene-like molecular clusters.
Kong, Xiang-Jian; Long, La-Sheng; Zheng, Zhiping; Huang, Rong-Bin; Zheng, Lan-Sun
2010-02-16
The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the cluster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxide-based pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.
Automated predesign of aircraft
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.
1978-01-01
Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.
Determinants of Market Structure and the Airline Industry
NASA Technical Reports Server (NTRS)
Raduchel, W.
1972-01-01
The general economic determinants of market structure are outlined with special reference to the airline industry. Included are the following facets: absolute size of firms; distributions of firms by size; concentration; entry barriers; product and service differentiation; diversification; degrees of competition; vertical integration; market boundaries; and economies of scale. Also examined are the static and dynamic properties of market structure in terms of mergers, government policies, and economic growth conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Weimin; Niu, Haitao; Lin, Tong
2014-01-28
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less
Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
2011-01-01
Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.
Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.
Monajjemi, Majid
2014-11-01
A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene.
Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2000-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure
NASA Technical Reports Server (NTRS)
Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.
2014-01-01
This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, Alessandro; Quadrelli, Paolo; Amoroso, Giuseppe
2016-08-15
In this paper we report the synthesis, the crystal structure and the optical response of APbX{sub 3} (A=MA, DMA, and TMA; X=I, Br) hybrid organic-inorganic materials including some new phases. We observe that as the cation group increases in size, the optical absorption edge shifts to higher energies with energy steps which are systematic and independent on the anion. A linear correlation between the optical bad gap and the tolerance factor has been shown for the series of samples investigated. - Graphical abstract: The crystal structure and the optical response of the two series of hybrid organic-inorganic materials APbX{sub 3}more » (A=MA, DMA, and TMA; X=I, Br), which include some new phases, are reported. A dependence of crystal structure and band-gap with tolerance factor is shown. Display Omitted - Highlights: • DMAPbI{sub 3}, TMAPbI{sub 3} and TMAPbBr{sub 3} are reported as new hybrid organic-inorganic compounds. • Crystal structure and optical properties as a function of the number of methyl groups are provided. • Correlation between structure and optical properties are given as a function of tolerance factor.« less
Materials Degradation & Failure: Assessment of Structure and Properties. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
This module provides information on materials destruction (through corrosion, oxidation, and degradation) and failure. A design brief includes objective, student challenge, resources, student outcomes, and quiz. (SK)
NASA Astrophysics Data System (ADS)
Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.
2018-04-01
We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.
Dynamically hot galaxies. I - Structural properties
NASA Technical Reports Server (NTRS)
Bender, Ralf; Burstein, David; Faber, S. M.
1992-01-01
Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.
The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior
NASA Astrophysics Data System (ADS)
Kucukgok, Bahadir; Wu, Xuewang; Wang, Xiaojia; Liu, Zhiqiang; Ferguson, Ian T.; Lu, Na
2016-02-01
The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown InxGa1-xN were investigated for x = 0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K-1 and 21.84 × 10-4 Wm-1K-1 were observed, respectively for In0.07Ga0.93N at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for In0.20Ga0.80N alloy at room temperature.
Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement
Richardson, John G.
2005-11-15
An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.
Medranda, D.; Borowiec, J.; Zhang, Xiao; Wang, S.; Yan, K.; Zhang, J.; He, Y.; Ivaturi, S.
2018-01-01
A key challenge in the fabrication of ferromagnetically filled carbon nano-onions (CNOs) is the control of their thickness, dimensions and electric properties. Up to now literature works have mainly focused on the encapsulation of different types of ferromagnetic materials including α-Fe, Fe3C, Co, FeCo, FePd3 and others within CNOs. However, no report has yet shown a suitable method for controlling both the number of shells, diameter and electric properties of the produced CNOs. Here, we demonstrate an advanced chemical vapour deposition approach in which the use of small quantities of sulfur during the pyrolysis of ferrocene allows for the control of (i) the diameter of the CNOs, (ii) the number of shells and (iii) the electric properties. We demonstrate the morphological, structural, electric and magnetic properties of these new types of CNOs by using SEM, XRD, TEM, HRTEM, EIS and VSM techniques. PMID:29410810
Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.
LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald
2014-11-11
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.
Thermoelectric Properties of Complex Oxide Heterostructures
NASA Astrophysics Data System (ADS)
Cain, Tyler Andrew
Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.
NASA Astrophysics Data System (ADS)
Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.
2016-05-01
Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.
The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials.
Hever, Alon; Oses, Corey; Curtarolo, Stefano; Levy, Ohad; Natan, Amir
2018-01-16
The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of nonoverlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.
Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters
NASA Astrophysics Data System (ADS)
Zhu, Min; Zhou, Zhou, Shiming; Yao, Chuanhao; Liao, Lingwen; Wu, Zhikun
2014-11-01
In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters.In this work, an attempt to synthesize zero-valent Ni nanoclusters using the Brust method resulted in an unexpected material, Ni6(SCH2CH2Ph)12, which is a nanoscale Ni(ii)-phenylethanethiolate complex and a hexameric, double-crown-like structure, as determined by a series of characterizations, including mass spectrometry (MS), thermal gravimetric analysis (TGA), single-crystal X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS). An interesting finding is that this complex is resistant to aqueous BH4-. Investigations into other metal-phenylethanethiolate and Ni-thiolate complexes reveal that this property is not universal and appears only in complexes with a double-crown-like structure, indicating the correlation between this interesting property and the complexes' special structure. Another interesting finding is that the reduction-resistant Ni6(SCH2CH2Ph)12 exhibits remarkably higher catalytic activity than a well-known catalyst, Au25(SCH2CH2Ph)18, toward the reduction of 4-nitrophenol at low temperature (e.g., 0 °C). This work will help stimulate more research on the properties and applications of less noble metal nanoclusters. Electronic supplementary information (ESI) available: Experimental section, detailed structural data, MS analyses of M-SCH2CH2Ph complexes, stability study of Ni6 and TGA analysis of Au25(SCH2CH2Ph)18. See DOI: 10.1039/c4nr04981k
Filament Winding Multifunctional Carbon Nanotube Composites of Various Dimensionality
NASA Astrophysics Data System (ADS)
Wells, Brian David
Carbon nanotubes (CNT) have been long considered an optimal material for composites due to their high strength, high modulus, and electrical/thermal conductivity. These composite materials have the potential to be used in the aerospace, computer, automotive, medical industry as well as many others. The nano dimensions of these structures make controlled alignment and distribution difficult using many production techniques. An area that shows promise for controlled alignment is the formation of CNT yarns. Different approaches have been used to create yarns with various winding angles and diameters. CNTs resemble traditional textile fiber structures due to their one-dimensional dimensions, axial strength and radial flexibility. One difference is, depending on the length, CNTs can have aspect ratios that far exceed those of traditional textile fibers. This can complicate processing techniques and cause agglomeration which prevents optimal structures from being created. However, with specific aspect ratios and spatial distributions a specific type of CNT, vertically aligned spinnable carbon nanotubes (VASCNTs), have interesting properties that allow carbon nanotubes to be drawn from an array in a continuous aligned web. This dissertation examines the feasibility of combining VASCNTs with another textile manufacturing process, filament winding, to create structures with various levels of dimensionality. While yarn formation with CNTs has been largely studied, there has not been significant work studying the use of VASCNTs to create composite materials. The studies that have been produces revolve around mixing CNTs into epoxy or creating uni-directional wound structures. In this dissertation VASCNTs are used to create filament wound materials with various degrees of alignment. These structures include 1 dimensional coatings applied to non-conductive polymer monofilaments, two dimensional multifunctional adhesive films, and three dimensional hybrid-nano composites. The angle of alignment between the individual CNTs relative to the overall structure was used to affect the electrical properties in all of these structures and the mechanical properties of the adhesive films and hybrid-nano composites. Varying the concentration of CNT was also found to have a significant effect on the electrical and mechanical properties. The variable properties that can be created with these production techniques allow users to engineer the structure to match the desired property.
Investigation of the electronic, magnetic and optical properties of newest carbon allotrope
NASA Astrophysics Data System (ADS)
Kazemi, Samira; Moradian, Rostam
2018-05-01
We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.
Amelogenin and Enamel Biomimetics.
Ruan, Qichao; Moradian-Oldak, Janet
Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro , and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel.
Amelogenin and Enamel Biomimetics
Ruan, Qichao; Moradian-Oldak, Janet
2015-01-01
Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
NASA Technical Reports Server (NTRS)
Reed, R. P.
1972-01-01
The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
Charge delocalization characteristics of regioregular high mobility polymers
Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...
2017-01-01
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less
Identification of a potential superhard compound ReCN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Xiaofeng; Li, M. M.; Singh, David J.
2015-01-24
Here, we identify a new ternary compound, ReCN and characterize its properties including structural stability and indicators of hardness using first principles calculations. Furthermore, we find that there are two stable structures with space groups P63mc (HI) and P3m1 (HII), in which there are no C–C and N–N bonds. Both structures, H1 and III are elastically and dynamically stable. The electronic structures show that ReCN is a semiconductor, although the parent compounds, ReC 2 and ReN 2 are both metallic. ReCN is found to possess the outstanding mechanical properties with the large bulk modulus, shear modulus and excellent ideal strengths.more » Additionally, ReCN may perhaps be synthesized relatively easily because it becomes thermodynamic stable with respect to decomposition at very low pressures.« less
NASA Astrophysics Data System (ADS)
Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman
2018-06-01
Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Sumohan
The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE 5Tt 4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd 5Si 2Ge 2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs andmore » the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE 5T 4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.« less
Tsai, Shiou-Chuan Sheryl
2018-06-20
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby
2003-01-01
Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.
Coach simplified structure modeling and optimization study based on the PBM method
NASA Astrophysics Data System (ADS)
Zhang, Miaoli; Ren, Jindong; Yin, Ying; Du, Jian
2016-09-01
For the coach industry, rapid modeling and efficient optimization methods are desirable for structure modeling and optimization based on simplified structures, especially for use early in the concept phase and with capabilities of accurately expressing the mechanical properties of structure and with flexible section forms. However, the present dimension-based methods cannot easily meet these requirements. To achieve these goals, the property-based modeling (PBM) beam modeling method is studied based on the PBM theory and in conjunction with the characteristics of coach structure of taking beam as the main component. For a beam component of concrete length, its mechanical characteristics are primarily affected by the section properties. Four section parameters are adopted to describe the mechanical properties of a beam, including the section area, the principal moments of inertia about the two principal axles, and the torsion constant of the section. Based on the equivalent stiffness strategy, expressions for the above section parameters are derived, and the PBM beam element is implemented in HyperMesh software. A case is realized using this method, in which the structure of a passenger coach is simplified. The model precision is validated by comparing the basic performance of the total structure with that of the original structure, including the bending and torsion stiffness and the first-order bending and torsional modal frequencies. Sensitivity analysis is conducted to choose design variables. The optimal Latin hypercube experiment design is adopted to sample the test points, and polynomial response surfaces are used to fit these points. To improve the bending and torsion stiffness and the first-order torsional frequency and taking the allowable maximum stresses of the braking and left turning conditions as constraints, the multi-objective optimization of the structure is conducted using the NSGA-II genetic algorithm on the ISIGHT platform. The result of the Pareto solution set is acquired, and the selection strategy of the final solution is discussed. The case study demonstrates that the mechanical performances of the structure can be well-modeled and simulated by PBM beam. Because of the merits of fewer parameters and convenience of use, this method is suitable to be applied in the concept stage. Another merit is that the optimization results are the requirements for the mechanical performance of the beam section instead of those of the shape and dimensions, bringing flexibility to the succeeding design.
NASA Astrophysics Data System (ADS)
Fukuichi, Masayuki; Momida, Hiroyoshi; Geshi, Masaaki; Michiuchi, Masato; Sogabe, Koichi; Oguchi, Tamio
2018-04-01
Much is not systematically known about the origin of mechanical properties among 5d transition metal carbides including tungsten carbide. In order to understand the microscopic origin of hardness, the mechanical properties and electronic structures of 5d transition metal monocarbides MC (M = Hf, Ta, W, Re, Os, Ir, and Pt) in five different structures (NaCl, WC, ZnS, CsCl, and NiAs type) are analyzed using first-principles calculations based on the density functional theory. Our results would indicate that WC-type WC and NiAs-type ReC have the highest and second highest hardness among all of the MC, respectively, in terms of the Debye temperature. By examining the Debye temperature in the series, it is found that MC in the range of less and more than half filled 5d shells are brittle and ductile, respectively. Our results would indicate that filling in the bonding and anti-bonding states contributes to brittleness and ductility. The Debye temperature could be a key to understanding hardness in terms of bulk and shear moduli. In addition, we evaluate some other structural properties such as equilibrium volume, formation enthalpy, and elastic constant to investigate structural stability. Based on the theoretical findings, the microscopic mechanisms of hardness and brittleness in the transition metal carbides are discussed.
Raising the Reliability of Forming Rolls by Alloying Their Core with Copper
NASA Astrophysics Data System (ADS)
Zhizhkina, N. A.
2016-11-01
The mechanical properties and the structure of forming rolls from cast irons of different compositions are studied. A novel iron including a copper additive that lowers its chilling and raises the homogeneity of the structure is suggested for the roll cores. The use of such iron should raise the reliability of the rolls in operation.
Adhesive in the buckling failure of corrugated fiberboard : a finite element investigation
Adeeb A. Rahman; Said M. Abubakr
1998-01-01
This research study proposed to include the glue material in a finite element model that represents the actual geometry and material properties of a corrugated fiberboard. The model is a detailed representation of the different components of the structure (adhesive, linerboard, medium) to perform buckling analysis of corrugated structures under compressive loads. The...
Engineering analyses of large precision cathode strip chambers for GEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horvath, J.A.; Belser, F.C.; Pratuch, S.M.
Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.
Electrically Reconfigurable Liquid Crystalline Mirrors (Postprint)
2018-04-24
preparation of a structurally chiral polymer stabilizing network that enforces anchoring of a low-molar- mass liquid crystalline media with positive...crystals (LCs). The distinctive responses detailed here are enabled by the preparation of a structurally chiral polymer stabilizing network that enforces ...aerospace systems . Dynamic changes to optical material properties including absorption, diffraction, reflection, and scatter have been the subject to
Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo
2007-05-20
The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang
2016-12-01
To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Controlling interferometric properties of nanoporous anodic aluminium oxide
2012-01-01
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884
DFT calculations on spectroscopic and structural properties of a NLO chromophore
NASA Astrophysics Data System (ADS)
Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf
2016-03-01
The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.
Burn, D M; Hase, T P A; Atkinson, D
2014-06-11
Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.
NASA Astrophysics Data System (ADS)
Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin
2018-03-01
Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen
2017-11-30
In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.
The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arikan, Nihat; Özduran, Mustafa
2014-10-06
The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comesmore » from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.« less
3D bioprinting of structural proteins.
Włodarczyk-Biegun, Małgorzata K; Del Campo, Aránzazu
2017-07-01
3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electronic and structural properties of B i2S e3:Cu
NASA Astrophysics Data System (ADS)
Sobczak, Kamil; Strak, Pawel; Kempisty, Pawel; Wolos, Agnieszka; Hruban, Andrzej; Materna, Andrzej; Borysiuk, Jolanta
2018-04-01
Electronic and structural properties of B i2S e3 and its extension to copper doped B i2S e3:Cu were studied using combined ab initio simulations and transmission electron microscopy based techniques, including electron energy loss spectroscopy, energy filtered transmission electron microscopy, and energy dispersive x-ray spectroscopy. The stability of the mixed phases was investigated for substitutional and intercalation changes of basic B i2S e3 structure. Four systems were compared: B i2S e3 , structures obtaining by Cu intercalation of the van der Waals gap, by substitution of Bi by Cu in quintuple layers, and C u2Se . The structures were identified and their electronic properties were obtained. Transmission electron microscopy measurements of B i2S e3 and the B i2S e3:Cu system identified the first structure as uniform and the second as composite, consisting of a nonuniform lower-Cu-content matrix and randomly distributed high-Cu-concentration precipitates. Critical comparison of the ab initio and experimental data identified the matrix as having a B i2S e3 dominant part with randomly distributed Cu-intercalated regions having 1Cu-B i2S e3 structure. The precipitates were determined to have 3Cu-B i2S e3 structure.
Sawyer, Andrew J; Kyriakides, Themis R
2016-02-01
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Scribner, Elizabeth; Fathallah-Shaykh, Hassan M
2017-01-01
Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.
Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.
Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie
2009-01-01
The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.
NASA Astrophysics Data System (ADS)
Grosshans, Holger; Cao, Le; Fuchs, Laszlo; Szász, Robert-Zoltán
2017-04-01
A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel-air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz-Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced.
Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line
NASA Astrophysics Data System (ADS)
Dickhoff, Willem
2012-10-01
The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.
Silk Fibroin-Based Nanoparticles for Drug Delivery
Zhao, Zheng; Li, Yi; Xie, Mao-Bin
2015-01-01
Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470
Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications
Zuo, Lizeng; Zhang, Youfang; Zhang, Longsheng; Miao, Yue-E; Fan, Wei; Liu, Tianxi
2015-01-01
Aerogels are synthetic porous materials derived from sol-gel materials in which the liquid component has been replaced with gas to leave intact solid nanostructures without pore collapse. Recently, aerogels based on natural or synthetic polymers, called polymer or organic aerogels, have been widely explored due to their porous structures and unique properties, such as high specific surface area, low density, low thermal conductivity and dielectric constant. This paper gives a comprehensive review about the most recent progresses in preparation, structures and properties of polymer and their derived carbon-based aerogels, as well as their potential applications in various fields including energy storage, adsorption, thermal insulation and flame retardancy. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this review. PMID:28793602
Perovskite Materials: Solar Cell and Optoelectronic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Geohegan, David B; Xiao, Kai
2017-01-01
Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less
Jung, Young-Kwang; Lee, Ji-Hwan; Walsh, Aron; Soon, Aloysius
2017-04-11
CsSnI 3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI 3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin-orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells.
NASA Astrophysics Data System (ADS)
Liu, K.; Ostadhassan, M.
2016-12-01
Due to the fast development of hydraulic fracturing and horizontal drilling, shale formations now are one important resource of energy in North America. Characterizing the pore structure of these shale formations is of critical importance in understanding the original oil/gas in place and also the flow properties of the rock matrix. Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties including strength, elastic modulus, permeability and conductivity. Nowadays, image analysis has been a robust method to quantify the pore information from the porous medium.SEM has been one of the most useful tools to study the pore microstructures due to its high depth of focus which can provide detailed topographical information about the surface. The suitable difference between solid matrix and pores due to the different gray level pixels can be used to study the pore structures.In this paper, we characterized and quantified the pore structures of rock samples from Middle Bakken Formation which is a typical unconventional reservoir in North America. High resolution SEM images of five samples we chose based on the gamma logs were derived after sample preparation. After determining the threshold of the images, we extracted the pore spaces. Then we analyzed the pore structures properties such as pore size distributions and pore shape distributions of the five samples and compared based on their mineral compositions. After that, we analyzed their heterogeneity and isotropy properties which have been identified as an important factor affecting reservoir productivity. Finally, we studied the impact of scale effect on the pore structures characterization.
Wesolowski, David J.; Wang, Hsiu -Wen; Page, Katharine L.; ...
2015-12-08
MXenes are a recently discovered family of two-dimensional (2D) early transition metal carbides and carbonitrides, which have already shown many attractive properties and great promise in energy storage and many other applications. But, a complex surface chemistry and small coherence length have been obstacles in some applications of MXenes, also limiting the accuracy of predictions of their properties. In this study, we describe and benchmark a novel way of modeling layered materials with real interfaces (diverse surface functional groups and stacking order between the adjacent monolayers) against experimental data. The structures of three kinds of Ti 3C 2T x MXenesmore » (T stands for surface terminating species, including O, OH, and F) produced under different synthesis conditions were resolved for the first time using atomic pair distribution function obtained by high-quality neutron total scattering. We present the true nature of the material can be easily captured with the sensitivity of neutron scattering to the surface species of interest and the detailed “third-generation” structure model. The modeling approach leads to new understanding of MXene structural properties and can replace the currently used idealized models in predictions of a variety of physical, chemical, and functional properties of Ti 3C 2-based MXenes. Moreover, the developed models can be employed to guide the design of new MXene materials with selected surface termination and controlled contact angle, catalytic, optical, electrochemical, and other properties. Finally, we suggest that the multilevel structural modeling should form the basis for a generalized methodology on modeling diffraction and pair distribution function data for 2D and layered materials.« less
Inorganic pyrophosphatases: structural diversity serving the function
NASA Astrophysics Data System (ADS)
Samygina, V. R.
2016-05-01
The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
Masuda, Taro; Zhao, Guanghua; Mikami, Bunzo
2015-01-01
Chitinase hydrolyzes the β-1,4-glycosidic bond in chitin. In higher plants, this enzyme has been regarded as a pathogenesis-related protein. Recently, we identified a class III chitinase, which functions as a calcium storage protein in pomegranate (Punica granatum) seed (PSC, pomegranate seed chitinase). Here, we solved a crystal structure of PSC at 1.6 Å resolution. Although its overall structure, including the structure of catalytic site and non-proline cis-peptides, was closely similar to those of other class III chitinases, PSC had some unique structural characteristics. First, there were some metal-binding sites with coordinated water molecules on the surface of PSC. Second, many unconserved aspartate residues were present in the PSC sequence which rendered the surface of PSC negatively charged. This acidic electrostatic property is in contrast to that of hevamine, well-characterized plant class III chitinase, which has rather a positively charged surface. Thus, the crystal structure provides a clue for metal association property of PSC.
Adaptive wing static aeroelastic roll control
NASA Astrophysics Data System (ADS)
Ehlers, Steven M.; Weisshaar, Terrence A.
1993-09-01
Control of the static aeroelastic characteristics of a swept uniform wing in roll using an adaptive structure is examined. The wing structure is modeled as a uniform beam with bending and torsional deformation freedom. Aerodynamic loads are obtained from strip theory. The structure model includes coefficients representing torsional and bending actuation provided by embedded piezoelectric material layers. The wing is made adaptive by requiring the electric field applied to the piezoelectric material layers to be proportional to the wing root loads. The proportionality factor, or feedback gain, is used to control static aeroelastic rolling properties. Example wing configurations are used to illustrate the capabilities of the adaptive structure. The results show that rolling power, damping-in-roll and aileron effectiveness can be controlled by adjusting the feedback gain. And that dynamic pressure affects the gain required. Gain scheduling can be used to set and maintain rolling properties over a range of dynamic pressures. An adaptive wing provides a method for active aeroelastic tailoring of structural response to meet changing structural performance requirements during a roll maneuver.
Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia
NASA Astrophysics Data System (ADS)
Götsch, Thomas; Bertel, Erminald; Menzel, Alexander; Stöger-Pollach, Michael; Penner, Simon
2018-03-01
The electronic structure and optical properties of yttria-stabilized zirconia are investigated as a function of the yttria content using multiple experimental and theoretical methods, including electron energy-loss spectroscopy, Kramers-Kronig analysis to obtain the optical parameters, photoelectron spectroscopy, and density functional theory. It is shown that many properties, including the band gaps, the crystal field splitting, the so-called defect gap between acceptor (YZr') and donor (VO••) states, as well as the index of refraction in the visible range exhibit the same "zig-zag-like" trend as the unit cell height does, showing the influence of an increased yttria content as well as of the tetragonal-cubic phase transition between 8 mol % and 20 mol %Y2O3 . Also, with Čerenkov spectroscopy (CS), a new technique is presented, providing information complementary to electron energy-loss spectroscopy. In CS, the Čerenkov radiation emitted inside the TEM is used to measure the onset of optical absorption. The apparent absorption edges in the Čerenkov spectra correspond to the energetic difference between the disorder states close to the valence band and the oxygen-vacancy-related electronic states within the band gap. Theoretical computations corroborate this assignment: they find both, the acceptor states and the donor states, at the expected energies in the band structures for diverse yttria concentrations. In the end, a schematic electronic structure diagram of the area around the band gap is constructed, including the chemical potential of the electrons obtained from photoelectron spectroscopy. The latter reveal that tetragonal YSZ corresponds to a p -type semiconductor, whereas the cubic samples exhibit n -type semiconductor properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, S.P.
1977-08-18
The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties. (JSR)
[HEALTH-IMPROVING REMEDIES ON THE BASIS OF SMECTITE®].
Shirobokov, V; Yankovskii, D; Dyment, G
2015-01-01
The review is devoted to the issues of using smectites in medicine. Modern information concerning smectite composition, structure, physico-chemical properties and reasonability of using them with health-improving purposes is presented. Special attention is given to smectite sorbtional and ionic properties and their unique mineral composition. Characterization is given to modern preparation based on smectites, including developed in Ukraine dietary additives of the series Smectovit®.
Review on antibacterial biocomposites of structural laminated veneer lumber
Chen, Zi-xiang; Lei, Qiong; He, Rui-lin; Zhang, Zhong-feng; Chowdhury, Ahmed Jalal Khan
2015-01-01
In this review, the characteristics and applications of structural laminated veneer lumber made from planted forest wood is introduced, and its preparation is explained, including various tree species and slab qualities, treatments for multiple effects and reinforced composites. The relevant factors in the bonding technology and pressing processes as well as the mechanical properties, research direction and application prospects of structural laminated veneer lumber made from planted forest wood are discussed. PMID:26858559
Steel skin - SMC laminate structures for lightweight automotive manufacturing
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo
2017-09-01
In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.
NASA Astrophysics Data System (ADS)
Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.
2018-06-01
In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.
Alsaddique, Jihad A; Pabari, Ritesh M; Ramtoola, Zebunnissa
The influence of thermal and shear stressors on the stability of the anti-TNF-α monoclonal antibody (mAb), Infliximab® (INF) was investigated. INF at concentrations of 1, 4 and 10 mg/ml was subjected to thermal stress at temperatures of 25-65°C and to shear force by sonication for 1 and 3 minutes. The stressed samples were analysed for physical properties by particle size, zeta potential, for structural integrity by gel electrophoresis (SDS-PAGE) and circular dichroism, INF content by UV spectroscopy and for biological activity by ELISA. Results show no change in physical properties or structural integrity of INF at any concentration tested, when subjected to a temperature of up to 50°C. At 65°C, aggregation and precipitation of INF was observed. When subjected to shear stress, higher concentrations of INF at 4 and 10mg/ml maintained their physical properties and structural integrity. However, the biological activity of INF was found to decrease with increasing temperature and sonication time, and was concentration dependent (ANOVA; p<0.05). Interestingly, lyophilisation of INF at 1mg/ml did not affect its physical properties, structural integrity or its biological activity. These findings have important implications with respect to pharmaceutical processing of INF and mAbs including formulation as polymeric micro and nanoparticle systems for sustained or targeted delivery. These findings also have important implications with respect to the handling and storage of INF and mAbs for clinical use.
Thermal, electronic and ductile properties of lead-chalcogenides under pressure.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-09-01
Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.
NASA Astrophysics Data System (ADS)
Ray, Nadja; Rupp, Andreas; Prechtel, Alexander
2017-09-01
Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.
Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1998-01-01
New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.
Electrical, Thermal, and Magnetic Properties of Single Crystal CaMn2O4 Marokite
NASA Astrophysics Data System (ADS)
White, B. D.; Neumeier, J. J.; Souza, J. A.; Chiorescu, C.; Cohn, J. L.
2008-03-01
CaMn2O4 was first described [1] in 1963 as a natural mineral called Marokite. Since its discovery, it has been studied as a minor structural impurity phase in CMR- related CaMnO3 and for its structural similarities to high-pressure phases of spinel-oxide compounds. However, little attention has previously been paid to physical properties beyond its temperature-dependent magnetization. We will present a detailed physical properties study of CaMn2O4 single crystals grown by the optical floating zone method. [2] These measurements, several of which display anisotropy as a result of an orthorhombic crystal structure, include electrical transport, thermal transport, thermal expansion, heat capacity, and magnetization. [1] C. Gaudefroy, G. Jouravsky, F. Permingeat, Bull. Soc. Franc. Min'er. Crist. 86 (1963) 359. [2] B. D. White, C. A. M. dos Santos, J. A. Souza, K. J. McClellan, J. J. Neumeier submitted to J. Cryst. Growth.
Theory of Magnetic Edge States in Chiral Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven
2011-03-01
Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.
A comparison of thermoelectric phenomena in diverse alloy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Bruce
1999-01-01
The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antropov, Vladimir P; Antonov, Victor N
We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li 2(Li 1-xM x)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropymore » of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L 2,3 spectra in LiFeN are also predicted.« less
NASA Astrophysics Data System (ADS)
Wang, B. B.; Zhu, M. K.; Levchenko, I.; Zheng, K.; Gao, B.; Xu, S.; Ostrikov, K.
2017-10-01
The role of reactive environment and hydrogen specifically in growth and structure of molybdenum selenide (MoSe2) nanomaterials is presently debated, and it is not clear whether hydrogen can promote the growth of MoSe2 sheets and alter their electronic properties. To find efficient, convenient methods for controlling the nucleation, growth and resultant properties of MoSe2 nanomaterials, MoSe2 nanoflakes were synthesized on silicon substrates by hot filament chemical vapor deposition using molybdenum trioxide and selenium powders in pure hydrogen, nitrogen gases and hydrogen-nitrogen mixtures. The structures and composition of synthesized MoSe2 nanoflakes were studied using the advanced characterization instruments including field emission scanning electron microscopy, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectrometry. The analysis of the growth process indicates that hydrogen can improve the formation of MoSe2 nanoflakes and significantly alter their properties due to the high reduction capacity of hydrogen and the creation of more nucleation centers of MoSe2 nanoflakes on the silicon surface. The study of photoluminescent (PL) properties reveals that the MoSe2 nanoflakes can generate a strong PL band at about 631 nm, differently from the plain MoSe2 nanoflakes. The major difference in the PL properties may be related to the edges of MoSe2 nanoflakes. These results can be used to control the growth and structure of MoSe2-based nanomaterials and contribute to the development of advanced MoSe2-based optoelectronic devices.
First principles calculation of material properties of group IV elements and III-V compounds
NASA Astrophysics Data System (ADS)
Malone, Brad Dean
This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present first principles calculations of the quasiparticle and optical excitation spectra of recently predicted silicon and germanium polytypes in the body-centered-tetragonal (bct) structure. The quasiparticle spectra calculated within the GW approximation predict that both silicon and germanium in the bct structure are small band gap materials. The optical spectra are then evaluated by solving the Bethe-Salpeter equation taking into account. • We examine the low-pressure phases of Ge in Chapter 6 by performing first principles calculations of the electronic structure and lattice dynamics of the R8, BC8, ST12, and hexagonal diamond structures of Ge. To aid future experimental investigation, we include predictions of the Raman-active frequencies of these phases as well as present the full phonon dispersion throughout the zone. • In Chapter 7 we demonstrate how first principles calculations can be used to predict new structures. In a study aimed at finding new useful forms of silicon, we use an ab initio random structure searching (AIRSS) method to identify a new phase of silicon in the Ibamstructure. The Ibam phase is found to be semimetallic within density functional theory with a small band overlap, and it is expected that quasiparticle corrections using the GW approximation would yield a semiconducting state with a small band gap. • We present a first-principles study of boron and phosphorus substitutional defects in Si-XII in Chapter 8. Recent result from nanoindentation experiments reveal that the Si-XII phase is semiconducting and has the interesting property that it can be doped n- and p-type at room temperature without an annealing step. Using the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE), we examine the formation energies of the B and P defects at the two distinct atomic sites in Si-XII to find on which site the substitutional defects are more easily accommodated. We also estimate the thermodynamic transition levels of each defect in its relevant charge states. (Abstract shortened by UMI.).
Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.
2015-01-01
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037
Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A
2015-04-21
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
Electromagnetic structure of light nuclei
Pastore, Saori
2016-03-25
Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.
Electromagnetic structure of light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, Saori
Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Freeze Casting for Assembling Bioinspired Structural Materials.
Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P
2017-12-01
Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
First year progress report on the development of the Texas flexible pavement database.
DOT National Transportation Integrated Search
2008-01-01
Comprehensive and reliable databases are essential for the development, validation, and calibration of any pavement : design and rehabilitation system. These databases should include material properties, pavement structural : characteristics, highway...
ENVIRONMENTALLY FRIENDLY LEATHER TANNING USING ENZYMES
The effectiveness of the leather tanning will be evaluated by measuring shrinkage temperature, and analyzing leather structure using Scan Electron Microscope (SEM). The team will also measure leather physical/mechanical properties, including softness, tensile strength, elon...