NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
Structural-Vibration-Response Data Analysis
NASA Technical Reports Server (NTRS)
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
Analysis of simple 2-D and 3-D metal structures subjected to fragment impact
NASA Technical Reports Server (NTRS)
Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.
1977-01-01
Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2006-01-01
Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.
The use of the Wigner Distribution to analyze structural impulse responses
NASA Technical Reports Server (NTRS)
Wahl, T. J.; Bolton, J. S.
1990-01-01
In this paper it is argued that the time-frequency analysis of structural impulse responses may be used to reveal the wave types carrying significant energy through a structure. Since each wave type is characterized by its own dispersion relation, each wave type may be associated with particular features appearing in the time-frequency domain representation of an impulse response. Here the Wigner Distribution is introduced as a means for obtaining appropriate time-frequency representations of impulse responses. Practical aspects of the calculation of the Wigner Distribution are discussed and examples of its application to the analysis of structural impulse responses are given. These examples will show that the Wigner Distribution may be conveniently used to distinguish between the contributions of various waves types to a total structural response.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Vibrational Responses Of Structures To Impulses
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1990-01-01
Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.
Seismic response analysis of an instrumented building structure
Li, H.-J.; Zhu, S.-Y.; Celebi, M.
2003-01-01
The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.
Structural-acoustic coupling in aircraft fuselage structures
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Simpson, Myles A.
1992-01-01
Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
NASA Astrophysics Data System (ADS)
Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying
2018-06-01
The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
New Tool Released for Engine-Airframe Blade-Out Structural Simulations
NASA Technical Reports Server (NTRS)
Lawrence, Charles
2004-01-01
Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code would be distributed by a commercial software vendor, it would be more readily available to engine and airframe manufacturers, as well as to nonaircraft companies that did not previously have access to this capability.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sinclair, J. H.
1977-01-01
An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.
NASA Technical Reports Server (NTRS)
Gupta, Kajal K.
1991-01-01
The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.
Analysis of structural response data using discrete modal filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.
1991-01-01
The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.
2005-05-01
CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Seismic Structural Considerations for the Stem and Base of Retaining Walls...as represented by response spectra are determined. Several modes of vibration are considered. The number of modes included in the analysis is that...response spectrum- modal analysis procedure. Especially important is the number of excursions beyond acceptable displacement. As with the response
The Researches on Damage Detection Method for Truss Structures
NASA Astrophysics Data System (ADS)
Wang, Meng Hong; Cao, Xiao Nan
2018-06-01
This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang 'Apollo', Chen
2006-07-01
For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less
A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures
Wang, Yanming; Yi, Zhenhua
2014-01-01
A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215
Structural reliability assessment capability in NESSUS
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.
1992-01-01
The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.
Structural reliability assessment capability in NESSUS
NASA Astrophysics Data System (ADS)
Millwater, H.; Wu, Y.-T.
1992-07-01
The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.
On the Performance of a Very Large All-GFRP Strut and Tie Structure
NASA Astrophysics Data System (ADS)
Boscato, G.; Mottram, J. T.; Russo, S.
2014-09-01
An analysis of the dynamic response of a fiber-reinforced-polymer (FRP) structure serving as a temporary (weather) shelter for the church of S. Maria Paganica in L'Aquila is presented. The church suffered roof collapse during a magnitude 6.3 earthquake in April, 2009. The structure is a rectilinear space frame constructed from built-up members of pultruded profiles and steel bolted FRP gusset plates. It has a maximum height of 32 m, covers an area of 1050 m2, and weighs (only) 120 kN. Foundations are free-standing blocks of reinforced concrete connected, just above the floor of the church, by steel bars 16 mm in diameter. A finite-element analysis (FEA) is used to determine the seismic response of the main section to the FRP structure. The nonlinear FE responses of the structure subjected to design response spectra (in the ultimate limit state) are presented and evaluated.
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
ERIC Educational Resources Information Center
Wu, Jason H.
2013-01-01
This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…
NASA Technical Reports Server (NTRS)
Trubert, M.; Salama, M.
1979-01-01
Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
Dynamic analysis using superelements for a large helicopter model
NASA Technical Reports Server (NTRS)
Patel, M. P.; Shah, L. C.
1978-01-01
Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Initial dynamic load estimates during configuration design
NASA Technical Reports Server (NTRS)
Schiff, Daniel
1987-01-01
This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Thermostructural analysis of a scramjet fuel-injection strut
NASA Technical Reports Server (NTRS)
Wieting, A. R.; Thornton, E. A.
1978-01-01
Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
Structural vibration passive control and economic analysis of a high-rise building in Beijing
NASA Astrophysics Data System (ADS)
Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying
2009-12-01
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
NASA Astrophysics Data System (ADS)
Abdel Raheem, Shehata E.; Ahmed, Mohamed M.; Alazrak, Tarek M. A.
2015-03-01
Soil conditions have a great deal to do with damage to structures during earthquakes. Hence the investigation on the energy transfer mechanism from soils to buildings during earthquakes is critical for the seismic design of multi-story buildings and for upgrading existing structures. Thus, the need for research into soil-structure interaction (SSI) problems is greater than ever. Moreover, recent studies show that the effects of SSI may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of the underneath soil and, consequently, the effect of foundation settlement on further redistribution of bending moment and shear force demands. Hence the SSI analysis of multi-story buildings is the main focus of this research; the effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment-resistant frame buildings: equivalent static load; response spectrum methods and nonlinear time history analysis with suit of nine time history records. Three-dimensional FE model is constructed to investigate the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using SSI model with different soil conditions are compared to those corresponding to fixed-base support modeling assumption. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed. The results of different analysis approaches are used to evaluate the advantages, limitations, and ease of application of each approach for seismic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umezu, Toyoshi, E-mail: umechan2@nies.go.jp; Shibata, Yasuyuki, E-mail: yshibata@nies.go.jp
2014-09-01
The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differencesmore » in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.« less
Direct system parameter identification of mechanical structures with application to modal analysis
NASA Technical Reports Server (NTRS)
Leuridan, J. M.; Brown, D. L.; Allemang, R. J.
1982-01-01
In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Recent developments on layerwise mechanics for the analysis of composite laminates and structures with piezoelectric actuators and sensors are reviewed. The mechanics implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite structures. The corresponding finite-element implementations for the static and dynamic analysis of smart piezoelectric composite structures are also summarized. Select application illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local dynamic response of thin and/or thick laminated piezoelectric plates.
Intelligent seismic risk mitigation system on structure building
NASA Astrophysics Data System (ADS)
Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.
2018-01-01
Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.
NASA Technical Reports Server (NTRS)
Bowman, L. M.
1984-01-01
An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar
2015-06-01
Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.
Design sensitivity analysis of rotorcraft airframe structures for vibration reduction
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta
1987-01-01
Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.
Thermal Structure Analysis of SIRCA Tile for X-34 Wing Leading Edge TPS
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Squire, Thomas H.; Rasky, Daniel J. (Technical Monitor)
1997-01-01
This paper will describe in detail thermal/structural analyses of SIRCA tiles which were performed at NASA Ames under the The Tile Analysis Task of the X-34 Program. The analyses used the COSMOS/M finite element software to simulate the material response in arc-jet tests, mechanical deflection tests, and the performance of candidate designs for the TPS system. Purposes of the analysis were to verify thermal and structural models for the SIRCA tiles, to establish failure criteria for stressed tiles, to simulate the TPS response under flight aerothermal and mechanical load, and to confirm that adequate safety margins exist for the actual TPS design.
NASA Astrophysics Data System (ADS)
Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli
2018-04-01
In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.
The matrix exponential in transient structural analysis
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1987-01-01
The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.
Characterization of Microgravity Environment on Mir
NASA Technical Reports Server (NTRS)
Kim, Hyoung; Kaouk, Mohamed
2000-01-01
This paper presents the microgravity analysis results using dynamic response data collected during the first phase of the Mir Structural Dynamics Experiment (MiSDE). Although MiSDE was designed and performed to verify structural dynamic models, it also provided information for determining microgravity characteristics of the structure. This study analyzed ambient responses acquired during orbital day-to-night and night-to-day transitions, crew treadmill and ergometer exercises, and intentional crew activities. Acceleration levels for one-third octave bands were calculated to characterize the microgravity environment of the station. Spectrograms were also used to analyze the time transient nature of the responses. Detailed theoretical background and analysis results will also be included in the final draft.
Analysis of space vehicle structures using the transfer-function concept
NASA Technical Reports Server (NTRS)
Heer, E.; Trubert, M. R.
1969-01-01
Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2011-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the response. The results instead showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists. Because the bulk of resonance problems are due to the "clean" excitations, a 10% underprediction is not necessarily a problem, especially since the average response in the transient is similar to the frequency response result, and so in a realistic finite life calculation, the life would be same. However, in the rare cases when the "messy" excitations harmonics are identified as the source of potential resonance concerns, this research does indicate that frequency response analysis is inadequate for accurate characterization of blade structural capability.
1980-01-01
standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of
Design sensitivity analysis of nonlinear structural response
NASA Technical Reports Server (NTRS)
Cardoso, J. B.; Arora, J. S.
1987-01-01
A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.
Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
NASA Astrophysics Data System (ADS)
Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark
2016-07-01
The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Buckling analysis of curved composite sandwich panels subjected to inplane loadings
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1993-01-01
Composite sandwich structures are being considered for primary structure in aircraft such as subsonic and high speed civil transports. The response of sandwich structures must be understood and predictable to use such structures effectively. Buckling is one of the most important response mechanisms of sandwich structures. A simple buckling analysis is derived for sandwich structures. This analysis is limited to flat, rectangular sandwich panels loaded by uniaxial compression (N(sub x)) and having simply supported edges. In most aerospace applications, however, the structure's geometry, boundary conditions, and loading are usually very complex. Thus, a general capability for analyzing the buckling behavior of sandwich structures is needed. The present paper describes and evaluates an improved buckling analysis for cylindrically curved composite sandwich panels. This analysis includes orthotropic facesheets and first-order transverse shearing effects. Both simple support and clamped boundary conditions are also included in the analysis. The panels can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by direct application of Galerkin's method. The accuracy of the present analysis is verified by comparing results with those obtained from finite element analysis for a variety of geometries, loads, and boundary conditions. The limitations of the present analysis are investigated, in particular those related to the shallow shell assumptions in the governing equations. Finally, the computational efficiency of the present analysis is considered.
Zheng, Chao; Huang, Haiying; He, Tianbai
2014-02-01
In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M
2005-06-01
The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.
The application of the Wigner Distribution to wave type identification in finite length beams
NASA Technical Reports Server (NTRS)
Wahl, T. J.; Bolton, J. Stuart
1994-01-01
The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
STAGS Developments for Residual Strength Analysis Methods for Metallic Fuselage Structures
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.
2014-01-01
A summary of advances in the Structural Analysis of General Shells (STAGS) finite element code for the residual strength analysis of metallic fuselage structures, that were realized through collaboration between the structures group at NASA Langley, and Dr. Charles Rankin is presented. The majority of the advancements described were made in the 1990's under the NASA Airframe Structural Integrity Program (NASIP). Example results from studies that were conducted using the STAGS code to develop improved understanding of the nonlinear response of cracked fuselage structures subjected to combined loads are presented. An integrated residual strength analysis methodology for metallic structure that models crack growth to predict the effect of cracks on structural integrity is demonstrated
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
NASA Technical Reports Server (NTRS)
Collins, T. P.; Witmer, E. A.
1973-01-01
An approximate analysis, termed the Collision Imparted Velocity Method (CIVM), was employed for predicting the transient structural responses of containment rings or deflector rings which are subjected to impact from turbojet-engine rotor burst fragments. These 2-d structural rings may be initially circular or arbitrarily curved and may have either uniform or variable thickness; elastic, strain hardening, and strain rate material properties are accommodated. This approximate analysis utilizes kinetic energy and momentum conservation relations in order to predict the after-impact velocities of the fragment and the impacted ring segment. This information is then used in conjunction with a finite element structural response computation code to predict the transient, large deflection responses of the ring. Similarly, the equations of motion for each fragment are solved in small steps in time. Also, some comparisons of predictions with experimental data for fragment-impacted free containment rings are presented.
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David; Johnson, Kenneth
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.
A generalized modal shock spectra method for spacecraft loads analysis
NASA Technical Reports Server (NTRS)
Trubert, M.; Salama, M.
1979-01-01
Unlike the traditional shock spectra approach, the generalization presented in this paper permits elastic interaction between the spacecraft and launch vehicle in order to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis - with or without a dummy spacecraft - is exploited in order to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces.
NASA Technical Reports Server (NTRS)
Giltrud, M. E.; Lucas, D. S.
1979-01-01
The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2007-01-01
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.
ERIC Educational Resources Information Center
Svetina, Dubravka
2013-01-01
The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in noncompensatory multidimensional item response models using dimensionality assessment procedures based on DETECT (dimensionality evaluation to enumerate contributing traits) and NOHARM (normal ogive harmonic analysis robust method). Five…
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.
NASA Astrophysics Data System (ADS)
Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama
2017-06-01
A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Real-time open-loop frequency response analysis of flight test data
NASA Technical Reports Server (NTRS)
Bosworth, J. T.; West, J. C.
1986-01-01
A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.
Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N
2003-03-01
The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
A Polytomous Item Response Theory Analysis of Social Physique Anxiety Scale
ERIC Educational Resources Information Center
Fletcher, Richard B.; Crocker, Peter
2014-01-01
The present study investigated the social physique anxiety scale's factor structure and item properties using confirmatory factor analysis and item response theory. An additional aim was to identify differences in response patterns between groups (gender). A large sample of high school students aged 11-15 years (N = 1,529) consisting of n =…
ERIC Educational Resources Information Center
Leventhal, Brian C.; Stone, Clement A.
2018-01-01
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
ERIC Educational Resources Information Center
Smith, Jack E.; Hakel, Milton D.
1979-01-01
Examined are questions pertinent to the use of the Position Analysis Questionnaire: Who can use the PAQ reliably and validly? Must one rely on trained job analysts? Can people having no direct contact with the job use the PAQ reliably and validly? Do response biases influence PAQ responses? (Author/KC)
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Comparative analysis of on-orbit dynamic performance of several large antenna concepts
NASA Technical Reports Server (NTRS)
Andersen, G. C.; Garrett, L. B.; Calleson, R. E.
1985-01-01
A comparative analysis of the on-orbit dynamic performance of four large anetanna concepts is presented. Among the antenna concepts evaluated are: the box truss; tetrahedral truss; warp-radial rib; and the hoop and column antenna designs. The characteristics and magnitudes of the antennas' dynamic response were evaluated in terms of structural displacements and member loads incurred during various slew-rate maneuvers. The results of the dynamic response analysis are compared to the design requirements of the Land Mobile Satellite System (LMSS) with respect to surface accuracy, decenter, defocus, and angular rocking. Comments are made on the effectiveness of structural damping and the application of active controls for vibrational response reduction. Schematic illustrations of the antenna design concepts are provided.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Thammaiah; Turner, Travis L.; Moore, James B.; Su, Ji
2014-01-01
Airframe noise is a significant part of the overall noise of transport aircraft during the approach and landing phases of flight. Airframe noise reduction is currently emphasized under the Environmentally Responsible Aviation (ERA) and Fixed Wing (FW) Project goals of NASA. A promising concept for trailing-edge-flap noise reduction is a flexible structural element or link that connects the side edges of the deployable flap to the adjacent main-wing structure. The proposed solution is distinguished by minimization of the span-wise extent of the structural link, thereby minimizing the aerodynamic load on the link structure at the expense of increased deformation requirement. Development of such a flexible structural link necessitated application of hyperelastic materials, atypical structural configurations and novel interface hardware. The resulting highly-deformable structural concept was termed the FLEXible Side Edge Link (FLEXSEL) concept. Prediction of atypical elastomeric deformation responses from detailed structural analysis was essential for evaluating feasible concepts that met the design constraints. The focus of this paper is to describe the many challenges encountered with hyperelastic finite element modeling and the nonlinear structural analysis of evolving FLEXSEL concepts. Detailed herein is the nonlinear analysis of FLEXSEL concepts that emerged during the project which include solid-section, foamcore, hollow, extended-span and pre-stressed concepts. Coupon-level analysis performed on elastomeric interface joints, which form a part of the FLEXSEL topology development, are also presented.
75 FR 36715 - Advisory Committee on Reactor Safeguards; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... Seismic Input for Site Response and Soil Structure Interaction Analyses'' (Open)--The Committee will hold... Seismic Input for Site Response and Soil Structure Interaction Analyses.'' 9:30 a.m.-10:30 a.m.: Interim Staff Guidance (ISG) DC/COL-ISG-020, ``Implementation of Seismic Margin Analysis for New Reactors Based...
A.R. Weiskittel; D.A. Maguire; R.A. Monserud
2007-01-01
Crown structure is a key variable influencing stand productivity, but its reported response to various stand factors has differed. This can be partially attributed to lack of a unified study on crown response to intensive management or stand health. In this analysis of several Douglas-fir (Pseudotsuga menziesii var. menziesii [...
Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis.
Righetti, Francesco; Nuss, Aaron M; Twittenhoff, Christian; Beele, Sascha; Urban, Kristina; Will, Sebastian; Bernhart, Stephan H; Stadler, Peter F; Dersch, Petra; Narberhaus, Franz
2016-06-28
RNA structures are fundamentally important for RNA function. Dynamic, condition-dependent structural changes are able to modulate gene expression as shown for riboswitches and RNA thermometers. By parallel analysis of RNA structures, we mapped the RNA structurome of Yersinia pseudotuberculosis at three different temperatures. This human pathogen is exquisitely responsive to host body temperature (37 °C), which induces a major metabolic transition. Our analysis profiles the structure of more than 1,750 RNAs at 25 °C, 37 °C, and 42 °C. Average mRNAs tend to be unstructured around the ribosome binding site. We searched for 5'-UTRs that are folded at low temperature and identified novel thermoresponsive RNA structures from diverse gene categories. The regulatory potential of 16 candidates was validated. In summary, we present a dynamic bacterial RNA structurome and find that the expression of virulence-relevant functions in Y. pseudotuberculosis and reprogramming of its metabolism in response to temperature is associated with a restructuring of numerous mRNAs.
ERIC Educational Resources Information Center
Araujo, Katy B.; Medic, Sanja; Yasnovsky, Jessica; Steiner, Hans
2006-01-01
This study used the Response Evaluation Measure-Youth (REM-Y-71), a self-report measure of 21 defense reactions, among school-age children. Participants were elementary and middle school students (n=290; grades 3-8; age range: 8-15; mean=11.73). Factor analysis revealed a 2-factor defense structure consistent with structure among high school and…
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)
2007-01-01
Structures often comprise smaller substructures that are connected to each other or attached to the ground by a set of finite connections. Under static loading one or more of these connections may exceed allowable limits and be deemed to fail. Of particular interest is the structural response when a connection is severed (failed) while the structure is under static load. A transient failure analysis procedure was developed by which it is possible to examine the dynamic effects that result from introducing a discrete failure while a structure is under static load. The failure is introduced by replacing a connection load history by a time-dependent load set that removes the connection load at the time of failure. The subsequent transient response is examined to determine the importance of the dynamic effects by comparing the structural response with the appropriate allowables. Additionally, this procedure utilizes a standard finite element transient analysis that is readily available in most commercial software, permitting the study of dynamic failures without the need to purchase software specifically for this purpose. The procedure is developed and explained, demonstrated on a simple cantilever box example, and finally demonstrated on a real-world example, the American Airlines Flight 587 (AA587) vertical tail plane (VTP).
Frequency analysis for modulation-enhanced powder diffraction.
Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi
2016-07-01
Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Review of probabilistic analysis of dynamic response of systems with random parameters
NASA Technical Reports Server (NTRS)
Kozin, F.; Klosner, J. M.
1989-01-01
The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soilmore » and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE’s) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This methodology will be known as, NonLinear Soil-Structure Interaction (NLSSI). In general NLSSI analysis should provide a more accurate representation of the seismic demands on nuclear facilities their systems and components. INL, in collaboration with a Nuclear Power Plant Vender (NPP-V), will develop a generic Nuclear Power Plant (NPP) structural design to be used in development of the methodology and for comparison with SASSI. This generic NPP design has been evaluated for the INL soil site because of the ease of access and quality of the site specific data. It is now being evaluated for a second site at Vogtle which is located approximately 15 miles East-Northeast of Waynesboro, Georgia and adjacent to Savanna River. The Vogtle site consists of many soil layers spanning down to a depth of 1058 feet. The reason that two soil sites are chosen is to demonstrate the methodology across multiple soil sites. The project will drive the models (soil and structure) using successively increasing acceleration time histories with amplitudes. The models will be run in time domain codes such as ABAQUS, LS-DYNA, and/or ESSI and compared with the same models run in SASSI. The project is focused on developing and documenting a method for performing time domain, non-linear seismic soil structure interaction (SSI) analysis. Development of this method will provide the Department of Energy (DOE) and industry with another tool to perform seismic SSI analysis.« less
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Vibroacoustic Response Data of Stiffened Panels and Cylinders
NASA Technical Reports Server (NTRS)
Cabell, Randolph; Klos, Jake; Buehrle, Ralph; Schiller, Noah
2008-01-01
NASA has collected vibroacoustic response data on a variety of complex, aerospace structures to support research into numerical modeling of such structures. This data is being made available to the modeling community to promote the development and validation of analysis methods for these types of structures. Existing data from two structures is described, as well as plans for a data set from a third structure. The first structure is a 1.22 m by 1.22 m stiffened aluminum panel, typical of a commercial aircraft sidewall section. The second is an enclosed, stiffened aluminum cylinder, approximately 3.66 m long and 1.22 m in diameter, constructed to resemble a small aircraft fuselage with no windows and a periodic structure. The third structure is a filament-wound composite cylinder with composite stiffeners. Numerous combinations of excitation and response variables were measured on the structures, including: shaker excitation; diffuse acoustic field; velocity response from a laser vibrometer; intensity scans; and point acceleration.
Sensitivity Analysis in Engineering
NASA Technical Reports Server (NTRS)
Adelman, Howard M. (Compiler); Haftka, Raphael T. (Compiler)
1987-01-01
The symposium proceedings presented focused primarily on sensitivity analysis of structural response. However, the first session, entitled, General and Multidisciplinary Sensitivity, focused on areas such as physics, chemistry, controls, and aerodynamics. The other four sessions were concerned with the sensitivity of structural systems modeled by finite elements. Session 2 dealt with Static Sensitivity Analysis and Applications; Session 3 with Eigenproblem Sensitivity Methods; Session 4 with Transient Sensitivity Analysis; and Session 5 with Shape Sensitivity Analysis.
Analysis of rubber supply in Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, M.J.; Nerlove, M.; Peters, R.K. Jr.
1987-11-01
An analysis of the supply response for perennial crops is undertaken for rubber in Sir Lanka, focusing on the uprooting-replanting decision and disaggregating the typical reduced-form supply response equation into several structural relationships. This approach is compared and contrasted with Dowling's analysis of supply response for rubber in Thailand, which is based upon a sophisticated reduced-form supply function developed by Wickens and Greenfield for Brazilian coffee. Because the uprooting-replanting decision is central to understanding rubber supply response in Sri Lanka and for other perennial crops where replanting activities dominate new planting, the standard approaches do not adequately capture supply response.
FAST Mast Structural Response to Axial Loading: Modeling and Verification
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Elliott, Kenny B.; Templeton, Justin D.; Song, Kyongchan; Rayburn, Jeffery T.
2012-01-01
The International Space Station s solar array wing mast shadowing problem is the focus of this paper. A building-block approach to modeling and analysis is pursued for the primary structural components of the solar array wing mast structure. Starting with an ANSYS (Registered Trademark) finite element model, a verified MSC.Nastran (Trademark) model is established for a single longeron. This finite element model translation requires the conversion of several modeling and analysis features for the two structural analysis tools to produce comparable results for the single-longeron configuration. The model is then reconciled using test data. The resulting MSC.Nastran (Trademark) model is then extended to a single-bay configuration and verified using single-bay test data. Conversion of the MSC. Nastran (Trademark) single-bay model to Abaqus (Trademark) is also performed to simulate the elastic-plastic longeron buckling response of the single bay prior to folding.
1987-12-01
A- -- HZ LIN 3.0 . Be-I. •,% •4’ 20.. 0-p -4 -0 30a 4a j0 O0 100a 10 4140 iSo 130 20C. 2210 140 M* LIN g•" %g Figur 19. Cyli Avergin (N4,M 0 -3- 40...shows that the degree of nonlinearity of a structure varies according to the characteristics of the system. That is, welded structures will usually...exhibit a linear response; where a riveted or spot welded structure exhibits a very nonlinear response [52]. As an example of a nonlinear system
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Model for Predicting Thermomechanical Response of Large Space Structures.
1985-06-01
Field in a Thermomechanically Heated Viscoplastic ....... Space Truss Structure 6.5 Analysis of a Thermoviscoplastic Uniaxial " Bar Under Prescribed...Stress Part I - Theoretical Development . -- 6.6 Analysis of a Thermoviscoplastic Uniaxial codes Bar Under Prescribed Stress Part II - or Boundary Layer...and Asymptotic Analysis 6.7 Analysis of a Thermoviscoplastic Uniaxial Bar Under Prescribed Stress Part III - Numerical Results for a Bar with Radiative
Method for removal of random noise in eddy-current testing system
Levy, Arthur J.
1995-01-01
Eddy-current response voltages, generated during inspection of metallic structures for anomalies, are often replete with noise. Therefore, analysis of the inspection data and results is difficult or near impossible, resulting in inconsistent or unreliable evaluation of the structure. This invention processes the eddy-current response voltage, removing the effect of random noise, to allow proper identification of anomalies within and associated with the structure.
Vibration fatigue using modal decomposition
NASA Astrophysics Data System (ADS)
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.
Sensitivity analysis of a wing aeroelastic response
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.
1991-01-01
A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.
Exponential approximations in optimal design
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.
1990-01-01
One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.
NASA Technical Reports Server (NTRS)
Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.
1980-01-01
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.
A Model for Simulating the Response of Aluminum Honeycomb Structure to Transverse Loading
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Czabaj, Michael W.; Jackson, Wade C.
2012-01-01
A 1-dimensional material model was developed for simulating the transverse (thickness-direction) loading and unloading response of aluminum honeycomb structure. The model was implemented as a user-defined material subroutine (UMAT) in the commercial finite element analysis code, ABAQUS(Registered TradeMark)/Standard. The UMAT has been applied to analyses for simulating quasi-static indentation tests on aluminum honeycomb-based sandwich plates. Comparison of analysis results with data from these experiments shows overall good agreement. Specifically, analyses of quasi-static indentation tests yielded accurate global specimen responses. Predicted residual indentation was also in reasonable agreement with measured values. Overall, this simple model does not involve a significant computational burden, which makes it more tractable to simulate other damage mechanisms in the same analysis.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Application of integrated fluid-thermal-structural analysis methods
NASA Technical Reports Server (NTRS)
Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken
1988-01-01
Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.
NASA Astrophysics Data System (ADS)
Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao
2017-02-01
The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.
An analysis of penetration and ricochet phenomena in oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.
1988-01-01
An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Structures to Resist the Effects of Accidental Explosions
1969-06-01
theorems, are generally used. il to Ce e same structure. reactions of the foundatio4 must also be equal to zero . e. For the analysis of structures...3. BASIS FOR STRUCTURAL D)ESIGN Section 1. Structural Response General ----------------------------------- -c--- -13- Pressure design ranges...4-11 4-.i9 V. External Blast Loads on Structures General
A Comparison of Conjoint Analysis Response Formats
Kevin J. Boyle; Thomas P. Holmes; Mario F. Teisl; Brian Roe
2001-01-01
A split-sample design is used to evaluate the convergent validity of three response formats used in conjoint analysis experiments. WC investigate whether recoding rating data to rankings and choose-one formats, and recoding ranking data to choose one. result in structural models and welfare estimates that are statistically indistinguishable from...
Learning Responsibility and Balance of Power
ERIC Educational Resources Information Center
Çam, Sefika Sümeyye; Ünal Oruç, Eylem
2014-01-01
This qualitative study aims to determine teacher perspectives on learning responsibility and balance of power. The research design is case study which was conducted on four primary school teachers. The data were collected with semi-structured interviews and the data obtained were analyzed with categorical analysis, a type of content analysis. The…
The Responses of Tenth-Grade Students to Four Novels.
ERIC Educational Resources Information Center
Grindstaff, Faye Louise
To compare structural analysis with experiential reflective analysis as teaching techniques for literature, a study was made of the written responses of three groups of typical 10th-graders after reading four modern novels--Paul Annixter's "Swiftwater," Ray Bradbury's "Fahrenheit 451," Bel Kaufman's "Up the Down Staircase," and John…
An optimal design of wind turbine and ship structure based on neuro-response surface method
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young
2015-07-01
The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
Setoh, Yin Xiang; Prow, Natalie A; Rawle, Daniel J; Tan, Cindy Si En; Edmonds, Judith H; Hall, Roy A; Khromykh, Alexander A
2015-06-01
A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent. © 2015 The Authors.
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
Impulse Response Operators for Structural Complexes
1990-05-12
systems of the complex. The statistical energy analysis (SEA) is one such a device [ 13, 14]. The rendering of SEA from equation (21) and/or (25) lies...Propagation.] 13. L. Cremer, M. Heckl, and E.E. Ungar 1973 Structure-Borne Sound (Springer Verlag). 14. R. H. Lyon 1975 Statistical Energy Analysis of
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure.
Chai, Quan; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Chen, Yujin; Yuan, Libo; Peng, Gang-Ding
2015-05-04
We give a comprehensive theoretical analysis and simulation of a FBG in single-multi-single mode fiber structure (FBG-in-SMS), based on the coupled mode analysis and the mode interference analysis. This enables us to explain the experimental observations, its asymmetric transmission and reflection spectra with the similar temperature responses near the spectral range of Bragg wavelengths. The transmission spectrum shift during FBG written-in process is observed and discussed. The analysis results are useful in the design of the SMS structure based sensors and filters.
Analysis of shell type structures subjected to time dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1985-01-01
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model.
A study of space shuttle structural integrity test and assessment. Part 1
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Poe, R. G.
1972-01-01
The ultrasonics technique for assessing the structural integrity of the primary surface of the space shuttle vehicles is discussed and evaluated. Analysis was made of transducers, transducer coupling test structure fabrication, flaws, and ultrasonic testing. Graphs of microphone response curves from the initial noise tests, accelerometer response curves from the final noise tests, and microphone curves from the final noise tests are included along with a glossary, bibliography, and results.
Computational Methods for Structural Mechanics and Dynamics, part 1
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.
2016-01-01
The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.
Vibroacoustic Response of Pad Structures to Space Shuttle Launch Acoustic Loads
NASA Technical Reports Server (NTRS)
Margasahayam, R. N.; Caimi, Raoul E.
1995-01-01
This paper presents a deterministic theory for the random vibration problem for predicting the response of structures in the low-frequency range (0 to 20 hertz) of launch transients. Also presented are some innovative ways to characterize noise and highlights of ongoing test-analysis correlation efforts titled the Verification Test Article (VETA) project.
A computer program for cyclic plasticity and structural fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1980-01-01
A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.
Study of improved modeling and solution procedures for nonlinear analysis. [aircraft-like structures
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1979-01-01
An evaluation of the ACTION computer code on an aircraft like structure is presented. This computer program proved adequate in predicting gross response parameters in structures which undergo severe localized cross sectional deformations.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen
2007-01-01
Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are presented to show how surface wrinkle progress with increasing tension loads. Antenna reflector surface accuracies were found to be very much dependent on the type and size of the antenna, the reflector surface curvature, reflector membrane supports in terms of spacing of catenaries, as well as the amount of applied load.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions
NASA Astrophysics Data System (ADS)
Ufimtcev, E. M.
2017-11-01
The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.
Validation of a Deterministic Vibroacoustic Response Prediction Model
NASA Technical Reports Server (NTRS)
Caimi, Raoul E.; Margasahayam, Ravi
1997-01-01
This report documents the recently completed effort involving validation of a deterministic theory for the random vibration problem of predicting the response of launch pad structures in the low-frequency range (0 to 50 hertz). Use of the Statistical Energy Analysis (SEA) methods is not suitable in this range. Measurements of launch-induced acoustic loads and subsequent structural response were made on a cantilever beam structure placed in close proximity (200 feet) to the launch pad. Innovative ways of characterizing random, nonstationary, non-Gaussian acoustics are used for the development of a structure's excitation model. Extremely good correlation was obtained between analytically computed responses and those measured on the cantilever beam. Additional tests are recommended to bound the problem to account for variations in launch trajectory and inclination.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Thermal Response Modeling System for a Mars Sample Return Vehicle
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Miles, Frank S.; Arnold, Jim (Technical Monitor)
2001-01-01
A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite-element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas eneration and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.
Thermal Response Modeling System for a Mars Sample Return Vehicle
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.
2002-01-01
A multi-dimensional, coupled thermal response modeling system for analysis of hypersonic entry vehicles is presented. The system consists of a high fidelity Navier-Stokes equation solver (GIANTS), a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), and a commercial finite element thermal and mechanical analysis code (MARC). The simulations performed by this integrated system include hypersonic flowfield, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the heatshield is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of the entire vehicle can be obtained simultaneously. Representative computations for a flat-faced arc-jet test model and a proposed Mars sample return capsule are presented and discussed.
NASA Technical Reports Server (NTRS)
Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George
2000-01-01
This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.
NASA Astrophysics Data System (ADS)
Jin, Seung-Seop; Jung, Hyung-Jo
2014-03-01
It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative study with conventional methods (i.e., fixed reference scheme) demonstrates the superior performance of the proposed method for structural damage detection.
Mobility power flow analysis of an L-shaped plate structure subjected to distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Cimmerman, B.
1990-01-01
An analytical investigation based in the Mobility Power Flow (MPF) method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to distributed excitation. The principle of the MPF method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the MPF. In the considered coupled plate structure, MPF expressions are derived for distributed mechanical excitation which is independent of the structure response. However using a similar approach with some modifications excitation by an acoustic plane wave can be considered. Some modifications are required to deal with the latter case are necessary because the forces (acoustic pressure) acting on the structure are dependent on the response of the structure due to the presence of the scattered pressure.
Modal cost analysis for simple continua
NASA Technical Reports Server (NTRS)
Hu, A.; Skelton, R. E.; Yang, T. Y.
1988-01-01
The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations, it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for simple continua such as beam-like structures. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design
NASA Technical Reports Server (NTRS)
Kuguoglu, Latife; Ludwiczak, Damian
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.
2013-03-01
areas that are most frequently needed 4 in a national response” (FEMA, 2008). Finally, during emergencies, individual Unit Control Centers ( UCCs ...stand up, as a means to supporting the response. Typically, the UCCs provide information or resources as required through communication from the...EOC. Currently there is no defined staffing or organizational structure for the UCC , each unit is responsible for adequately staffing the UCCs as
Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-01-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, D.K.; Sandler, I.; Rubin, D.
This report describes a three-dimensional nonlinear TRANAL finite element analysis of a nuclear reactor subjected to ground shaking from a buried 50 kg explosive source. The analysis is a pretest simulation of a test event which was scheduled to be conducted in West Germany on 3 November 1979.
New computing systems and their impact on structural analysis and design
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
A review is given of the recent advances in computer technology that are likely to impact structural analysis and design. The computational needs for future structures technology are described. The characteristics of new and projected computing systems are summarized. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed, and a novel partitioning strategy is outlined for maximizing the degree of parallelism. The strategy is designed for computers with a shared memory and a small number of powerful processors (or a small number of clusters of medium-range processors). It is based on approximating the response of the structure by a combination of symmetric and antisymmetric response vectors, each obtained using a fraction of the degrees of freedom of the original finite element model. The strategy was implemented on the CRAY X-MP/4 and the Alliant FX/8 computers. For nonlinear dynamic problems on the CRAY X-MP with four CPUs, it resulted in an order of magnitude reduction in total analysis time, compared with the direct analysis on a single-CPU CRAY X-MP machine.
Recent literature on structural modeling, identification, and analysis
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1990-01-01
The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.
Aeroelastic response and blade loads of a composite rotor in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
Qualitative analysis of MTEM response using instantaneous attributes
NASA Astrophysics Data System (ADS)
Fayemi, Olalekan; Di, Qingyun
2017-11-01
This paper introduces new technique for qualitative analysis of multi-transient electromagnetic (MTEM) earth impulse response over complex geological structures. Instantaneous phase and frequency attributes were used in place of the conventional common offset section for improved qualitative interpretation of MTEM data by obtaining more detailed information from the earth impulse response. The instantaneous attributes were used to describe the lateral variation in subsurface resistivity and the visible geological structure with respect to given offsets. Instantaneous phase attribute was obtained by converting the impulse response into a complex form using the Hilbert transform. Conversely, the polynomial phase difference (PPD) estimator was favored over the center finite difference (CFD) approximation method in calculating the instantaneous frequency attribute because it is computationally efficient and has the ability to give a smooth variation of the instantaneous frequency over a common offset section. The observed results from the instantaneous attributes were in good agreement with both the subsurface model used and the apparent resistivity section obtained from the MTEM earth impulse response. Hence, this study confirms the capability of both instantaneous phase and frequency attributes as highly effective tools for MTEM qualitative analysis.
The Value of Analysis of Standardized Placement Exams: A Case Study of Cell Structure.
ERIC Educational Resources Information Center
Blystone, Robert V.
This study focused on potential pedagological uses of standardized placement exams. A sample of 250 exams of the May 1984 Biology Advanced Placement (AP) exam was obtained and student responses to the question on cell structure were analyzed. The frequency of particular responses to the question is listed and trends and patterns in the responses…
Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.
2015-06-01
Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less
Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads
Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.; Mayer, Theresa S.
2015-01-01
The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits. PMID:25961804
NASA Astrophysics Data System (ADS)
Ozbasaran, Hakan
Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.
Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade
NASA Technical Reports Server (NTRS)
Brown, A. M.
1998-01-01
A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage Blade Outer Gas Seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.
Efficient Analysis of Complex Structures
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.
2000-01-01
Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1988-01-01
Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.
Linking microbial community structure and microbial processes: An empirical and conceptual overview
Bier, R.L.; Bernhardt, Emily S.; Boot, Claudia M.; Graham, Emily B.; Hall, Edward K.; Lennon, Jay T.; Nemergut, Diana R.; Osborne, Brooke B.; Ruiz-Gonzalez, Clara; Schimel, Joshua P.; Waldrop, Mark P.; Wallenstein, Matthew D.
2015-01-01
A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.
Test Cases for Modeling and Validation of Structures with Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2001-01-01
A set of benchmark test articles were developed to validate techniques for modeling structures containing piezoelectric actuators using commercially available finite element analysis packages. The paper presents the development, modeling, and testing of two structures: an aluminum plate with surface mounted patch actuators and a composite box beam with surface mounted actuators. Three approaches for modeling structures containing piezoelectric actuators using the commercially available packages: MSC/NASTRAN and ANSYS are presented. The approaches, applications, and limitations are discussed. Data for both test articles are compared in terms of frequency response functions from deflection and strain data to input voltage to the actuator. Frequency response function results using the three different analysis approaches provided comparable test/analysis results. It is shown that global versus local behavior of the analytical model and test article must be considered when comparing different approaches. Also, improper bonding of actuators greatly reduces the electrical to mechanical effectiveness of the actuators producing anti-resonance errors.
Beltrán-Velasco, Ana Isabel; Bellido-Esteban, Alberto; Ruisoto-Palomera, Pablo; Clemente-Suárez, Vicente Javier
2018-01-12
The aim of the present study was to explore changes in the autonomic stress response of Psychology students in a Psychology Objective Structured Clinical Examination (OSCE) and their relationship with OSCE performance. Variables of autonomic modulation by the analysis of heart rate variability in temporal, frequency and non-linear domains, subjective perception of distress strait and academic performance were measured before and after the two different evaluations that composed the OSCE. A psychology objective structured clinical examination composed by two different evaluation scenarios produced a large anxiety anticipatory response, a habituation response in the first of the evaluation scenarios and a in the entire evaluation, and a no habituation response in the second evaluation scenario. Autonomic modulation parameters do not correlate with academic performance of students.
A comparison of methods for evaluating structure during ship collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, D.J.; Daidola, J.C.
1996-10-01
A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang
2018-01-01
In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.
Menachemi, Nir; Yeager, Valerie A; Duncan, W Jack; Katholi, Charles R; Ginter, Peter M
2012-01-01
State public health preparedness units (SPHPUs) were developed in response to federal funding to improve response to disasters: a responsibility that had not traditionally been within the purview of public health. The SPHPUs were created within the existing public health organizational structure, and their placement may have implications for how the unit functions, how communication takes place, and ultimately how well the key responsibilities are performed. This study empirically identifies a taxonomy of similarly structured SPHPUs and examines whether this structure is associated with state geographic, demographic, and threat-vulnerability characteristics. Data representing each SPHPU were extracted from publically available sources, including organizational charts and emergency preparedness plans for 2009. A cross-sectional segmentation analysis was conducted of variables representing structural attributes. Fifty state public health departments. Variables representing "span of control" and "hierarchal levels" were extracted from organizational charts. Structural "complexity" and "centralization" were extracted from state emergency preparedness documents and other secondary sources. On average, 6.6 people report to the same manager as the SPHPU director; 2.1 levels separate the SPHPU director from the state health officer; and a mean of 13.5 agencies collaborate with SPHPU during a disaster. Despite considerable variability in how SPHPUs had been structured, results of the cluster and principal component analysis identified 7 similarly structured groups. Neither the taxonomic groups nor the individual variables representing structure were found to be associated with state characteristics, including threat vulnerabilities. Our finding supports the hypothesis that SPHPUs are seemingly inadvertently (eg, not strategically) organized. This taxonomy provides the basis for which future research can examine how SPHPU structure relates to performance measures and preparedness strategies.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads are developed. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratcheting. Thus, geometric as well as material type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Carlson, R. L.; Riff, R.
1987-01-01
A general mathematical model and solution methodologies are being developed for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which were associated with these load conditions, were thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution process.
Distillation tray structural parameter study: Phase 1
NASA Technical Reports Server (NTRS)
Winter, J. Ronald
1991-01-01
The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.
ERIC Educational Resources Information Center
Laner, Stephen; And Others
Following an explanation of the Level of Responsibility/Equitable Pay Function, its applicability is demonstrated to the analysis and to the design and redesign of organizational hierarchies. It is shown how certain common dysfuntional anomalies can be avoided by structuring an organization along the principles outlined. A technique is then…
Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)
2000-01-01
The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.
Linear and nonlinear analysis of fluid slosh dampers
NASA Astrophysics Data System (ADS)
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.
1978-12-01
A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Qualitymore » Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.« less
Thermoviscoplastic response of thin plates subjected to intense local heating
NASA Technical Reports Server (NTRS)
Byrom, Ted G.; Allen, David H.; Thornton, Earl A.
1992-01-01
A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.
Management of the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, James L.; Thomas, Valerie L.; Butler, Todd F.; Peters, David J.; Sisson, Patricia L.
1990-01-01
Here, the purpose is to define the operational management structure and to delineate the responsibilities of key Space Physics Analysis Network (SPAN) individuals. The management structure must take into account the large NASA and ESA science research community by giving them a major voice in the operation of the system. Appropriate NASA and ESA interfaces must be provided so that there will be adequate communications facilities available when needed. Responsibilities are delineated for the Advisory Committee, the Steering Committee, the Project Scientist, the Project Manager, the SPAN Security Manager, the Internetwork Manager, the Network Operations Manager, the Remote Site Manager, and others.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
NASA Technical Reports Server (NTRS)
Rodal, J. J. A.; Witmer, E. A.
1979-01-01
A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.
Optical analysis of the fine crystalline structure of artificial opal films.
Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H
2009-11-17
Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.
Probabilistic structural analysis of a truss typical for space station
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.
1990-01-01
A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.
Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range
2003-02-01
frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA
Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.
Vibration-based monitoring to detect mass changes in satellites
NASA Astrophysics Data System (ADS)
Maji, Arup; Vernon, Breck
2012-04-01
Vibration-based structural health monitoring could be a useful form of determining the health and safety of space structures. A particular concern is the possibility of a foreign object that attaches itself to a satellite in orbit for adverse reasons. A frequency response analysis was used to determine the changes in mass and moment of inertia of the space structure based on a change in the natural frequencies of the structure or components of the structure. Feasibility studies were first conducted on a 7 in x 19 in aluminum plate with various boundary conditions. Effect of environmental conditions on the frequency response was determined. The baseline frequency response for the plate was then used as the basis for detection of the addition, and possibly the location, of added masses on the plate. The test results were compared to both analytical solutions and finite element models created in SAP2000. The testing was subsequently expanded to aluminum alloy satellite panels and a mock satellite with dummy payloads. Statistical analysis was conducted on variations of frequency due to added mass and thermal changes to determine the threshold of added mass that can be detected.
Unexpected Control Structure Interaction on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Platonov, Valery; Medina, Elizabeth A.; Borisenko, Alexander; Bogachev, Alexey
2017-01-01
On June 23, 2011, the International Space Station (ISS) was performing a routine 180 degree yaw maneuver in support of a Russian vehicle docking when the on board Russian Segment (RS) software unexpectedly declared two attitude thrusters failed and switched thruster configurations in response to unanticipated ISS dynamic motion. Flight data analysis after the maneuver indicated that higher than predicted structural loads had been induced at various locations on the United States (U.S.) segment of the ISS. Further analysis revealed that the attitude control system was firing thrusters in response to both structural flex and rigid body rates, which resonated the structure and caused high loads and fatigue cycles. It was later determined that the thruster themselves were healthy. The RS software logic, which was intended to react to thruster failures, had instead been heavily influenced by interaction between the control system and structural flex. This paper will discuss the technical aspects of the control structure interaction problem that led to the RS control system firing thrusters in response to structural flex, the factors that led to insufficient preflight analysis of the thruster firings, and the ramifications the event had on the ISS. An immediate consequence included limiting which thrusters could be used for attitude control. This complicated the planning of on-orbit thruster events and necessitated the use of suboptimal thruster configurations that increased propellant usage and caused thruster lifetime usage concerns. In addition to the technical aspects of the problem, the team dynamics and communication shortcomings that led to such an event happening in an environment where extensive analysis is performed in support of human space flight will also be examined. Finally, the technical solution will be presented, which required a multidisciplinary effort between the U.S. and Russian control system engineers and loads and dynamics structural engineers to develop and implement an extensive modification in the RS software logic for ISS attitude control thruster firings.
Lattice Truss Structural Response Using Energy Methods
NASA Technical Reports Server (NTRS)
Kenner, Winfred Scottson
1996-01-01
A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Seismic analysis of parallel structures coupled by lead extrusion dampers
NASA Astrophysics Data System (ADS)
Patel, C. C.
2017-06-01
In this paper, the response behaviors of two parallel structures coupled by Lead Extrusion Dampers (LED) under various earthquake ground motion excitations are investigated. The equation of motion for the two parallel, multi-degree-of-freedom (MDOF) structures connected by LEDs is formulated. To explore the viability of LED to control the responses, namely displacement, acceleration and shear force of parallel coupled structures, the numerical study is done in two parts: (1) two parallel MDOF structures connected with LEDs having same damper damping in all the dampers and (2) two parallel MDOF structures connected with LEDs having different damper damping. A parametric study is conducted to investigate the optimum damping of the dampers. Moreover, to limit the cost of the dampers, the study is conducted with only 50% of total dampers at optimal locations, instead of placing the dampers at all the floor level. Results show that LEDs connecting the parallel structures of different fundamental frequencies, the earthquake-induced responses of either structure can be effectively reduced. Further, it is not necessary to connect the two structures at all floors; however, lesser damper at appropriate locations can significantly reduce the earthquake response of the coupled system, thus reducing the cost of the dampers significantly.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
Experimental validation of a structural damage detection method based on marginal Hilbert spectrum
NASA Astrophysics Data System (ADS)
Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh
2017-04-01
Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.
A 37-mm Ceramic Gun Nozzle Stress Analysis
2006-05-01
Figures iv List of Tables iv 1 . Introduction 1 2. Ceramic Nozzle Structure and Materials 1 3. Sequentially-Coupled and Fully-Coupled Thermal Stress...FEM Analysis 1 4. Ceramic Nozzle Thermal Stress Response 4 5. Ceramic Nozzle Dynamic FEM 7 6. Ceramic Nozzle Dynamic Responses and Discussions 8 7...candidate ceramics and the test fixture model components are listed in table 1 . 3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis
NASA Technical Reports Server (NTRS)
Book, W. J.
1974-01-01
The Flexible Manipulator Analysis Program (FMAP) is a collection of FORTRAN coding to allow easy analysis of the flexible dynamics of mechanical arms. The user specifies the arm configuration and parameters and any or all of several frequency domain analyses to be performed, while the time domain impulse response is obtained by inverse Fourier transformation of the frequency response. A detailed explanation of how to use FMAP is provided.
Photodiode design study. Final report, May--December 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamorte, M.F.
1977-12-01
The purpose of this work was to apply the analytical method developed for single junction and multijunction solar cells, Contract No. F33615-76-C-1283, to photodiodes and avalanche photodiodes. It was anticipated that this analytical method will advance the state-of-the-art because of the following: (1) the analysis considers the total photodetector multilayer structure rather than just the depleted region; (2) a model of the complete band structure is analyzed; (3) application of the integral form of the continuity equation is used; (4) structures that reduce dark current and/or increase the ratio of photocurrent to dark current are obtained; and (5) structures thatmore » increase spectral response in the depleted region and reduce response in other regions of the diode are obtained. The integral form of the continuity equation developed for solar cells is the steady-state or time-independent form. The contract specified that the time-independent equation would only be employed to determine applicability to photodetectors. The GaAsSb photodiode under development at Rockwell International, Thousand Oaks, California was used to determine the applicability to photodetectors. The diode structure is composed of four layers grown on a substrate. The analysis presents calculations of spectral response. This parameter is used in this study to optimize the structure.« less
Dynamic response analysis of structure under time-variant interval process model
NASA Astrophysics Data System (ADS)
Xia, Baizhan; Qin, Yuan; Yu, Dejie; Jiang, Chao
2016-10-01
Due to the aggressiveness of the environmental factor, the variation of the dynamic load, the degeneration of the material property and the wear of the machine surface, parameters related with the structure are distinctly time-variant. Typical model for time-variant uncertainties is the random process model which is constructed on the basis of a large number of samples. In this work, we propose a time-variant interval process model which can be effectively used to deal with time-variant uncertainties with limit information. And then two methods are presented for the dynamic response analysis of the structure under the time-variant interval process model. The first one is the direct Monte Carlo method (DMCM) whose computational burden is relative high. The second one is the Monte Carlo method based on the Chebyshev polynomial expansion (MCM-CPE) whose computational efficiency is high. In MCM-CPE, the dynamic response of the structure is approximated by the Chebyshev polynomials which can be efficiently calculated, and then the variational range of the dynamic response is estimated according to the samples yielded by the Monte Carlo method. To solve the dependency phenomenon of the interval operation, the affine arithmetic is integrated into the Chebyshev polynomial expansion. The computational effectiveness and efficiency of MCM-CPE is verified by two numerical examples, including a spring-mass-damper system and a shell structure.
NASA Astrophysics Data System (ADS)
Castro Arenas, C.; Ghersi, I.; Miralles, M. T.
2016-04-01
The purpose of this work is to study the frequency response of 3D tensegrity structures. These are structures that have been used, since the 80’s, to model biological systems of different scales. This fact led to the origin of the field of biotensegrity, which includes biomechanics as a natural field of application. In this work: a) A simple method for the analysis of frequency response of different nodes in 3D tensegrity structures was set up and tuned. This method is based on a video-analysis algorithm, which was applied to the structures, as they were vibrated along their axis of symmetry, at frequencies from 1 Hz to 60 Hz. b) Frequency-response analyses were performed, for the simplest 3D structure, the Simplex module, as well as for two towers, formed by stacking two and three Simplex modules, respectively. Resonant frequencies were detected for the Simplex module at (19.2±0.1) Hz and (50.2±0.1) Hz (the latter being an average of frequencies between homologous nodes). For the towers with two and three modules, each selected node presented a characteristic frequency response, modulated by their spatial placement in each model. Resonances for the two-stage tower were found at: (12±0.1) Hz; (16.2±0.1) Hz; (29.4±0.1) Hz and (37.2±0.1) Hz. For the tower with three Simplex modules, the main resonant frequencies were found at (12.0±0.1) Hz and (21.0±0.1) Hz. Results show that the proposed method is adequate for the study (2D) of any 3D tensegrity structure, with the potential of being generalized to the study of oscillations in three dimensions. A growing complexity and variability in the frequency response of the nodes was observed, as modules were added to the structures. These findings were compared to those found in the available literature.
NASA Astrophysics Data System (ADS)
Beli, D.; Mencik, J.-M.; Silva, P. B.; Arruda, J. R. F.
2018-05-01
The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.
Concurrent Probabilistic Simulation of High Temperature Composite Structural Response
NASA Technical Reports Server (NTRS)
Abdi, Frank
1996-01-01
A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.
NASA Astrophysics Data System (ADS)
Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian
2017-11-01
Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.
NASA Astrophysics Data System (ADS)
Mortezaei, A.; Ronagh, H. R.
2013-06-01
Near-fault ground motions with long-period pulses have been identified as being critical in the design of structures. These motions, which have caused severe damage in recent disastrous earthquakes, are characterized by a short-duration impulsive motion that transmits large amounts of energy into the structures at the beginning of the earthquake. In nearly all of the past near-fault earthquakes, significant higher mode contributions have been evident in building structures near the fault rupture, resulting in the migration of dynamic demands (i.e. drifts) from the lower to the upper stories. Due to this, the static nonlinear pushover analysis (which utilizes a load pattern proportional to the shape of the fundamental mode of vibration) may not produce accurate results when used in the analysis of structures subjected to near-fault ground motions. The objective of this paper is to improve the accuracy of the pushover method in these situations by introducing a new load pattern into the common pushover procedure. Several pushover analyses are performed for six existing reinforced concrete buildings that possess a variety of natural periods. Then, a comparison is made between the pushover analyses' results (with four new load patterns) and those of FEMA (Federal Emergency Management Agency)-356 with reference to nonlinear dynamic time-history analyses. The comparison shows that, generally, the proposed pushover method yields better results than all FEMA-356 pushover analysis procedures for all investigated response quantities and is a closer match to the nonlinear time-history responses. In general, the method is able to reproduce the essential response features providing a reasonable measure of the likely contribution of higher modes in all phases of the response.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1989-01-01
A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.
Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects
NASA Technical Reports Server (NTRS)
Nagpal, V. K.
1985-01-01
A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.
NASA Astrophysics Data System (ADS)
Luczak, M. M.; Mucchi, E.; Telega, J.
2016-09-01
The goal of the research is to develop a vibration-based procedure for the identification of structural failures in a laboratory scale model of a tripod supporting structure of an offshore wind turbine. In particular, this paper presents an experimental campaign on the scale model tested in two stages. Stage one encompassed the model tripod structure tested in air. The second stage was done in water. The tripod model structure allows to investigate the propagation of a circumferential representative crack of a cylindrical upper brace. The in-water test configuration included the tower with three bladed rotor. The response of the structure to the different waves loads were measured with accelerometers. Experimental and operational modal analysis was applied to identify the dynamic properties of the investigated scale model for intact and damaged state with different excitations and wave patterns. A comprehensive test matrix allows to assess the differences in estimated modal parameters due to damage or as potentially introduced by nonlinear structural response. The presented technique proves to be effective for detecting and assessing the presence of representative cracks.
Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F
2016-10-01
Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.
Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes
NASA Astrophysics Data System (ADS)
Peter, Simon; Scheel, Maren; Krack, Malte; Leine, Remco I.
2018-02-01
Determining frequency response curves is a common task in the vibration analysis of nonlinear systems. Measuring nonlinear frequency responses is often challenging and time consuming due to, e.g., coexisting stable or unstable vibration responses and structure-exciter-interaction. The aim of the current paper is to develop a method for the synthesis of nonlinear frequency responses near an isolated resonance, based on data that can be easily and automatically obtained experimentally. The proposed purely experimental approach relies on (a) a standard linear modal analysis carried out at low vibration levels and (b) a phase-controlled tracking of the backbone curve of the considered forced resonance. From (b), the natural frequency and vibrational deflection shape are directly obtained as a function of the vibration level. Moreover, a damping measure can be extracted by power considerations or from the linear modal analysis. In accordance with the single nonlinear mode assumption, the near-resonant frequency response can then be synthesized using this data. The method is applied to a benchmark structure consisting of a cantilevered beam attached to a leaf spring undergoing large deflections. The results are compared with direct measurements of the frequency response. The proposed approach is fast, robust and provides a good estimate for the frequency response. It is also found that direct frequency response measurement is less robust due to bifurcations and using a sine sweep excitation with a conventional force controller leads to underestimation of maximum vibration response.
Response analysis of an automobile shipping container
NASA Technical Reports Server (NTRS)
Hua, L.; Lee, S. H.; Johnstone, B.
1973-01-01
The design and development of automobile shipping containers to reduce enroute damage are discussed. Vibration tests were conducted to determine the system structural integrity. A dynamic analysis was made using NASTRAN and the results of the test and the analysis are compared.
Thermal structure analyses for CSM testbed (COMET)
NASA Technical Reports Server (NTRS)
Xue, David Y.; Mei, Chuh
1994-01-01
This document is the final report for the project entitled 'Thermal Structure Analyses for CSM Testbed (COMET),' for the period of May 16, 1992 - August 15, 1994. The project was focused on the investigation and development of finite element analysis capability of the computational structural mechanics (CSM) testbed (COMET) software system in the field of thermal structural responses. The stages of this project consisted of investigating present capabilities, developing new functions, analysis demonstrations, and research topics. The appendices of this report list the detailed documents of major accomplishments and demonstration runstreams for future references.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants
NASA Technical Reports Server (NTRS)
Burroughs, J. W.
1980-01-01
New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.
ERIC Educational Resources Information Center
Edwards, Jeffrey R.; O'Neill, Regina M.
1998-01-01
Confirmatory factor analysis was used to evaluate alternative factor structures, based on previous exploratory factor analyses and coping dimensions derived from the theory of R. Lazarus, for the Ways of Coping Questionnaire (S. Folkman and R. Lazarus, 1988). Results from responses of 654 college graduates provide little support for the factor…
Kalkan, Erol; Chopra, Anil K.
2010-01-01
Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.
Sensitivity analysis of discrete structural systems: A survey
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.
1984-01-01
Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications addressed to structural analysis, but also includes a number of methods developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure
NASA Technical Reports Server (NTRS)
Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.
2010-01-01
A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.
Wind turbine design codes: A comparison of the structural response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, M.L. Jr.; Wright, A.D.; Pierce, K.G.
2000-03-01
The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory is continuing a comparison of several computer codes used in the design and analysis of wind turbines. The second part of this comparison determined how well the programs predict the structural response of wind turbines. In this paper, the authors compare the structural response for four programs: ADAMS, BLADED, FAST{_}AD, and YawDyn. ADAMS is a commercial, multibody-dynamics code from Mechanical Dynamics, Inc. BLADED is a commercial, performance and structural-response code from Garrad Hassan and Partners Limited. FAST{_}AD is a structural-response code developed by Oregon State University and themore » University of Utah for the NWTC. YawDyn is a structural-response code developed by the University of Utah for the NWTC. ADAMS, FAST{_}AD, and YawDyn use the University of Utah's AeroDyn subroutine package for calculating aerodynamic forces. Although errors were found in all the codes during this study, once they were fixed, the codes agreed surprisingly well for most of the cases and configurations that were evaluated. One unresolved discrepancy between BLADED and the AeroDyn-based codes was when there was blade and/or teeter motion in addition to a large yaw error.« less
NASA Technical Reports Server (NTRS)
Brown, A. M.
1998-01-01
Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of magnitude less computational effort. Both free- and forced-response analyses have been performed, and the results indicate that, while there is considerable room for improvement, the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.
NASA Astrophysics Data System (ADS)
Su, Chin-Kuo; Sung, Yu-Chi; Chang, Shuenn-Yih; Huang, Chao-Hsun
2007-09-01
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity-wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load-deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.
Modeling and control of beam-like structures
NASA Technical Reports Server (NTRS)
Hu, A.; Skelton, R. E.; Yang, T. Y.
1987-01-01
The most popular finite element codes are based upon appealing theories of convergence of modal frequencies. For example, the popularity of cubic elements for beam-like structures is due to the rapid convergence of modal frequencies and stiffness properties. However, for those problems in which the primary consideration is the accuracy of response of the structure at specified locations it is more important to obtain accuracy in the modal costs than in the modal frequencies. The modal cost represents the contribution of a mode in the norm of the response vector. This paper provides a complete modal cost analysis for beam-like continua. Upper bounds are developed for mode truncation errors in the model reduction process and modal cost analysis dictates which modes to retain in order to reduce the model for control design purposes.
A Coupled Layerwise Analysis of the Thermopiezoelectric Response of Smart Composite Beams Beams
NASA Technical Reports Server (NTRS)
Lee, H.-J.; Saravanos, D. A.
1995-01-01
Thermal effects are incorporated into previously developed discrete layer mechanics for piezoelectric composite beam structures. The updated mechanics explicitly account for the complete coupled thermoelectromechanical response of smart composite beams. This unified representation leads to an inherent capability to model both the sensory and actuator responses of piezoelectric composite beams in a thermal environment. Finite element equations are developed and numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of both sensory and active smart structures under thermal loadings.
2017-01-30
dynamic structural time- history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC...research (Ebeling et al. 2012) has developed simplified analysis procedures for flexible approach wall systems founded on clustered groups of vertical...history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC/ITL TR-16-X. Vicksburg, MS
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
This research is performed to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and ratcheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.
1989-01-01
The objective is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic, or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling, and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Analysis of shell-type structures subjected to time-dependent mechanical and thermal loading
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Riff, R.
1988-01-01
The objective of this research is to develop a general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and racheting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model. Furthermore, this must also be accommodated in the solution procedures.
Broadband multiple responses of surface modes in quasicrystalline plasmonic structure
Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong
2016-01-01
We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782
STARS: A general-purpose finite element computer program for analysis of engineering structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1984-01-01
STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
NASA Technical Reports Server (NTRS)
Powers, Bruce G.
1996-01-01
The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.
1990-01-01
An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.
NASA Astrophysics Data System (ADS)
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
ERIC Educational Resources Information Center
Podlesnik, Christopher A.; Jimenez-Gomez, Corina; Ward, Ryan D.; Shahan, Timothy A.
2006-01-01
Previous experiments have shown that unsignaled delayed reinforcement decreases response rates and resistance to change. However, the effects of different delays to reinforcement on underlying response structure have not been investigated in conjunction with tests of resistance to change. In the present experiment, pigeons responded on a…
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mardechay
1992-01-01
The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.
Packham, Tara; MacDermid, Joy C
2013-01-01
The Patient-Rated Wrist and Hand Evaluation (PRWHE) is a self-reported assessment of pain and disability to evaluate outcome after hand injuries. Rasch analysis is an alternative strategy for examining the psychometric properties of a measurement scale based in item response theory, rather than classical test theory. This study used Rasch analysis to examine the content, scoring and measurement properties of the PRWHE. PRWHE scores (n = 264) from persons with a traumatic injury or reconstructive surgery to one hand were collected from an outpatient hand rehabilitation facility. Rasch analysis was conducted to assess how the PRWHE fit the Rasch model, confirms the scaling structure of the pain and disability subscales, and identifies any areas of bias from differential item functioning. Rasch analysis of the PRWHE supports internal consistency of the scale (α = 0.96) and reliability (as measured by the person separation index) of 0.95. While gender, age, diagnosis, and duration since injury all systematically influenced how people scored the PRWHE, hand dominance and affected side did not. Rasch analysis supported a 3 subscale structure (pain, specific activities and usual activities) rather than the current divisions of pain and disability. Initial examination of the PRWHE indicates the psychometric properties of consistency, reliability and responsiveness previously tested by classical methods are further supported by Rasch analysis. It also suggests the scale structure may be best considered as 3 subscales rather than simply pain and disability. Copyright © 2013 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
NASA Astrophysics Data System (ADS)
Ghosh, Rahul; Debbarma, Rama
2017-06-01
Setback structures are highly vulnerable during earthquakes due to its vertical geometrical and mass irregularity, but the vulnerability becomes higher if the structures also have stiffness irregularity in elevation. The risk factor of such structure may increase, if the structure rests on sloping ground. In this paper, an attempt has been made to evaluate the seismic performance of setback structures resting on plain ground as well as in the slope of a hill, with soft storey configuration. The analysis has been performed in three individual methods, equivalent static force method, response spectrum method and time history method and extreme responses have been recorded for open ground storeyed setback building. To mitigate this soft storey effect and the extreme responses, three individual mitigation techniques have been adopted and the best solution among these three techniques is presented.
Test-retest reliability of the underlying latent factor structure of alcohol subjective response.
Lutz, Joseph A; Childs, Emma
2017-04-01
Alcohol subjective experiences are multi-dimensional and demonstrate wide inter-individual variability. Recent efforts have sought to establish a clearer understanding of subjective alcohol responses by identifying core constructs derived from multiple measurement instruments. The aim of this study was to evaluate the temporal stability of this approach to conceptualizing alcohol subjective experiences across successive alcohol administrations in the same individuals. Healthy moderate alcohol drinkers (n = 104) completed six experimental sessions each, three with alcohol (0.8 g/kg), and three with a non-alcoholic control beverage. Participants reported subjective mood and drug effects using standardized questionnaires before and at repeated times after beverage consumption. We explored the underlying latent structure of subjective responses for all alcohol administrations using exploratory factor analysis and then tested measurement invariance over the three successive administrations using multi-group confirmatory factor analyses. Exploratory factor analyses on responses to alcohol across all administrations yielded four factors representing "Positive mood," "Sedation," "Stimulation/Euphoria," and "Drug effects and Urges." A confirmatory factor analysis on the separate administrations indicated acceptable configural and metric invariance and moderate scalar invariance. In this study, we demonstrate temporal stability of the underlying constructs of subjective alcohol responses derived from factor analysis. These findings strengthen the utility of this approach to conceptualizing subjective alcohol responses especially for use in prospective and longitudinal alcohol challenge studies relating subjective response to alcohol use disorder risk.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, Raymond A.
2011-04-01
Wind turbine systems are attracting considerable attention due to concerns regarding global energy consumption as well as sustainability. Advances in wind turbine technology promote the tendency to improve efficiency in the structure that support and produce this renewable power source, tending toward more slender and larger towers, larger gear boxes, and larger, lighter blades. The structural design optimization process must account for uncertainties and nonlinear effects (such as wind-induced vibrations, unmeasured disturbances, and material and geometric variabilities). In this study, a probabilistic monitoring approach is developed that measures the response of the turbine tower to stochastic loading, estimates peak demand, and structural resistance (in terms of serviceability). The proposed monitoring system can provide a real-time estimate of the probability of exceedance of design serviceability conditions based on data collected in-situ. Special attention is paid to wind and aerodynamic characteristics that are intrinsically present (although sometimes neglected in health monitoring analysis) and derived from observations or experiments. In particular, little attention has been devoted to buffeting, usually non-catastrophic but directly impacting the serviceability of the operating wind turbine. As a result, modal-based analysis methods for the study and derivation of flutter instability, and buffeting response, have been successfully applied to the assessment of the susceptibility of high-rise slender structures, including wind turbine towers. A detailed finite element model has been developed to generate data (calibrated to published experimental and analytical results). Risk assessment is performed for the effects of along wind forces in a framework of quantitative risk analysis. Both structural resistance and wind load demands were considered probabilistic with the latter assessed by dynamic analyses.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael
2013-01-01
During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two
Application of Lanczos vectors to control design of flexible structures
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1990-01-01
This report covers research conducted during the first year of the two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to obtain reduced-order mathematical models for use in dynamic response analyses and in control design studies. This report summarizes research described in several reports and papers that were written under this contract. Extended abstracts are presented for technical papers covering the following topics: controller reduction by preserving impulse response energy; substructuring decomposition and controller synthesis; model reduction methods for structural control design; and recent literature on structural modeling, identification, and analysis.
A Probabilistic Approach to Model Update
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Voracek, David F.
2001-01-01
Finite element models are often developed for load validation, structural certification, response predictions, and to study alternate design concepts. In rare occasions, models developed with a nominal set of parameters agree with experimental data without the need to update parameter values. Today, model updating is generally heuristic and often performed by a skilled analyst with in-depth understanding of the model assumptions. Parameter uncertainties play a key role in understanding the model update problem and therefore probabilistic analysis tools, developed for reliability and risk analysis, may be used to incorporate uncertainty in the analysis. In this work, probability analysis (PA) tools are used to aid the parameter update task using experimental data and some basic knowledge of potential error sources. Discussed here is the first application of PA tools to update parameters of a finite element model for a composite wing structure. Static deflection data at six locations are used to update five parameters. It is shown that while prediction of individual response values may not be matched identically, the system response is significantly improved with moderate changes in parameter values.
Jim Starnes' Contributions to Residual Strength Analysis Methods for Metallic Structures
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Harris, Charles E.
2005-01-01
A summary of advances in residual strength analyses methods for metallic structures that were realized under the leadership of Dr. James H. Starnes, Jr., is presented. The majority of research led by Dr. Starnes in this area was conducted in the 1990's under the NASA Airframe Structural Integrity Program (NASIP). Dr. Starnes, respectfully referred to herein as Jim, had a passion for studying complex response phenomena and dedicated a significant amount of research effort toward advancing damage tolerance and residual strength analysis methods for metallic structures. Jim's efforts were focused on understanding damage propagation in built-up fuselage structure with widespread fatigue damage, with the goal of ensuring safety in the aging international commercial transport fleet. Jim's major contributions in this research area were in identifying the effects of combined internal pressure and mechanical loads, and geometric nonlinearity, on the response of built-up structures with damage. Analytical and experimental technical results are presented to demonstrate the breadth and rigor of the research conducted in this technical area. Technical results presented herein are drawn exclusively from papers where Jim was a co-author.
Multivariate analysis of scale-dependent associations between bats and landscape structure
Gorresen, P.M.; Willig, M.R.; Strauss, R.E.
2005-01-01
The assessment of biotic responses to habitat disturbance and fragmentation generally has been limited to analyses at a single spatial scale. Furthermore, methods to compare responses between scales have lacked the ability to discriminate among patterns related to the identity, strength, or direction of associations of biotic variables with landscape attributes. We present an examination of the relationship of population- and community-level characteristics of phyllostomid bats with habitat features that were measured at multiple spatial scales in Atlantic rain forest of eastern Paraguay. We used a matrix of partial correlations between each biotic response variable (i.e., species abundance, species richness, and evenness) and a suite of landscape characteristics to represent the multifaceted associations of bats with spatial structure. Correlation matrices can correspond based on either the strength (i.e., magnitude) or direction (i.e., sign) of association. Therefore, a simulation model independently evaluated correspondence in the magnitude and sign of correlations among scales, and results were combined via a meta-analysis to provide an overall test of significance. Our approach detected both species-specific differences in response to landscape structure and scale dependence in those responses. This matrix-simulation approach has broad applicability to ecological situations in which multiple intercorrelated factors contribute to patterns in space or time. ?? 2005 by the Ecological Society of America.
Khan, Mohd M; Ernst, Orna; Sun, Jing; Fraser, Iain D C; Ernst, Robert K; Goodlett, David R; Nita-Lazar, Aleksandra
2018-06-24
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4 (TLR4)/myeloid differentiation factor-2 (MD2) complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress, and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry (MS)-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, MS-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications (PTMs). Copyright © 2018. Published by Elsevier Ltd.
New applications of a model of electromechanical impedance for SHM
NASA Astrophysics Data System (ADS)
Pavelko, Vitalijs
2014-03-01
The paper focuses on the further development of the model of the electromechanical impedance (EMI) of the piezoceramics transducer (PZT) and its application for aircraft structural health monitoring (SHM). There was obtained an expression of the electromechanical impedance common to any dimension of models (1D, 2D, 3D), and directly independent from imposed constraints. Determination of the dynamic response of the system "host structure - PZT", which is crucial for the practical application supposes the use of modal analysis. This allows to get a general tool to determine EMI regardless of the specific features of a particular application. Earlier there was considered the technology of separate determination of the dynamic response for the PZT and the structural element". Here another version that involves the joint modal analysis of the entire system "host structure - PZT" is presented. As a result, the dynamic response is obtained in the form of modal decomposition of transducer mechanical strains. The use of models for the free and constrained transducer, analysis of the impact of the adhesive layer to the EMI is demonstrated. In all cases there was analyzed the influence of the dimension of the model (2D and 3D). The validity of the model is confirmed by experimental studies. Correlation between the fatigue crack length in a thin-walled Al plate and EMI of embedded PZT was simulated and compared with test result.
Adaptation of the Practice Environment Scale for military nurses: a psychometric analysis.
Swiger, Pauline A; Raju, Dheeraj; Breckenridge-Sproat, Sara; Patrician, Patricia A
2017-09-01
The aim of this study was to confirm the psychometric properties of Practice Environment Scale of the Nursing Work Index in a military population. This study also demonstrates association rule analysis, a contemporary exploratory technique. One of the instruments most commonly used to evaluate the nursing practice environment is the Practice Environment Scale of the Nursing Work Index. Although the instrument has been widely used, the reliability, validity and individual item function are not commonly evaluated. Gaps exist with regard to confirmatory evaluation of the subscale factors, individual item analysis and evaluation in the outpatient setting and with non-registered nursing staff. This was a secondary data analysis of existing survey data. Multiple psychometric methods were used for this analysis using survey data collected in 2014. First, descriptive analyses were conducted, including exploration using association rules. Next, internal consistency was tested and confirmatory factor analysis was performed to test the factor structure. The specified factor structure did not hold; therefore, exploratory factor analysis was performed. Finally, item analysis was executed using item response theory. The differential item functioning technique allowed the comparison of responses by care setting and nurse type. The results of this study indicate that responses differ between groups and that several individual items could be removed without altering the psychometric properties of the instrument. The instrument functions moderately well in a military population; however, researchers may want to consider nurse type and care setting during analysis to identify any meaningful variation in responses. © 2017 John Wiley & Sons Ltd.
Basu, Aniruddha; Chadda, Rakesh; Sood, Mamta; Rizwan, S A
2017-08-01
Major Depressive Disorder (MDD) is a broad heterogeneous construct resolving into several symptom-clusters by factor analysis. The aim was to find the factor structures of MDD as per Montgomery and Asberg Depression Rating Scale (MADRS) and whether they predict escitalopram response. In a longitudinal study at a tertiary institute in north India, 116 adult out-patients with non-psychotic unipolar MDD were assessed with MADRS before and after treatment with escitalopram (10-20mg) over 6-8 weeks for drug response. For total 116 patients pre-treatment four factor structures of MADRS extracted by principal component analysis with varimax rotation altogether explained a variance of 57%: first factor 'detachment' (concentration difficulty, lassitude, inability to feel); second factor 'psychic anxiety' (suicidal thoughts and inner tension); third 'mood-pessimism' (apparent sadness, reported sadness, pessimistic thoughts) and fourth 'vegetative' (decreased sleep, appetite). Eighty patients (68.9%) who completed the study had mean age 35.37±10.9 yrs, majority were male (57.5%), with mean pre-treatment MADRS score 28.77±5.18 and majority (65%) having moderate severity (MADRS <30). Among them 56 (70%) responded to escitalopram. At the end of the treatment there were significant changes in all the 4 factor structures (p<0.01). Vegetative function was an important predictor of response (p<0.01, odd's ratio: 1.3 [1.1-1.6] 95% CI). Melancholia significantly predicted non-response (p=0.04). Non-psychotic unipolar major depression having moderate severity in north Indian patients as per MADRS resolved into four factor-structures all significantly improved with adequate escitalopram treatment. Understanding the factor structure is important as they can be important predictor of escitalopram response. Copyright © 2017 Elsevier B.V. All rights reserved.
MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS
Abstract
One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...
Simultaneous analysis and design
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1984-01-01
Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
Bird impact analysis package for turbine engine fan blades
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.
1982-01-01
A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.
Guaranteeing robustness of structural condition monitoring to environmental variability
NASA Astrophysics Data System (ADS)
Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François
2017-01-01
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)
Development of Design Analysis Methods for C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.
2006-01-01
The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
NASA Technical Reports Server (NTRS)
Houbolt, John C; Kordes, Eldon E
1954-01-01
An analysis is made of the structural response to gusts of an airplane having the degrees of freedom of vertical motion and wing bending flexibility and basic parameters are established. A convenient and accurate numerical solution of the response equations is developed for the case of discrete-gust encounter, an exact solution is made for the simpler case of continuous-sinusoidal-gust encounter, and the procedure is outlined for treating the more realistic condition of continuous random atmospheric turbulence, based on the methods of generalized harmonic analysis. Correlation studies between flight and calculated results are then given to evaluate the influence of wing bending flexibility on the structural response to gusts of two twin-engine transports and one four-engine bomber. It is shown that calculated results obtained by means of a discrete-gust approach reveal the general nature of the flexibility effects and lead to qualitative correlation with flight results. In contrast, calculations by means of the continuous-turbulence approach show good quantitative correlation with flight results and indicate a much greater degree of resolution of the flexibility effects.
Ryu, Stephen I.; Shenoy, Krishna V.; Cunningham, John P.; Churchland, Mark M.
2016-01-01
Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models. PMID:27814353
Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos
2015-01-28
The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.
NASA Technical Reports Server (NTRS)
Starnes, James H.; Rose, Cheryl A.
1998-01-01
The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.
A multi-agent safety response model in the construction industry.
Meliá, José L
2015-01-01
The construction industry is one of the sectors with the highest accident rates and the most serious accidents. A multi-agent safety response approach allows a useful diagnostic tool in order to understand factors affecting risk and accidents. The special features of the construction sector can influence the relationships among safety responses along the model of safety influences. The purpose of this paper is to test a model explaining risk and work-related accidents in the construction industry as a result of the safety responses of the organization, the supervisors, the co-workers and the worker. 374 construction employees belonging to 64 small Spanish construction companies working for two main companies participated in the study. Safety responses were measured using a 45-item Likert-type questionnaire. The structure of the measure was analyzed using factor analysis and the model of effects was tested using a structural equation model. Factor analysis clearly identifies the multi-agent safety dimensions hypothesized. The proposed safety response model of work-related accidents, involving construction specific results, showed a good fit. The multi-agent safety response approach to safety climate is a useful framework for the assessment of organizational and behavioral risks in construction.
Probabilistic structural analysis of space propulsion system LOX post
NASA Technical Reports Server (NTRS)
Newell, J. F.; Rajagopal, K. R.; Ho, H. W.; Cunniff, J. M.
1990-01-01
The probabilistic structural analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is applied to characterize the dynamic loading and response of the Space Shuttle main engine (SSME) LOX post. The design and operation of the SSME are reviewed; the LOX post structure is described; and particular attention is given to the generation of composite load spectra, the finite-element model of the LOX post, and the steps in the NESSUS structural analysis. The results are presented in extensive tables and graphs, and it is shown that NESSUS correctly predicts the structural effects of changes in the temperature loading. The probabilistic approach also facilitates (1) damage assessments for a given failure model (based on gas temperature, heat-shield gap, and material properties) and (2) correlation of the gas temperature with operational parameters such as engine thrust.
NASA Astrophysics Data System (ADS)
Camacho-Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Moreno-Beltrán, Gustavo; Quiroga, Jabid
2017-05-01
Continuous monitoring for damage detection in structural assessment comprises implementation of low cost equipment and efficient algorithms. This work describes the stages involved in the design of a methodology with high feasibility to be used in continuous damage assessment. Specifically, an algorithm based on a data-driven approach by using principal component analysis and pre-processing acquired signals by means of cross-correlation functions, is discussed. A carbon steel pipe section and a laboratory tower were used as test structures in order to demonstrate the feasibility of the methodology to detect abrupt changes in the structural response when damages occur. Two types of damage cases are studied: crack and leak for each structure, respectively. Experimental results show that the methodology is promising in the continuous monitoring of real structures.
1985-03-01
economically justified. For main lines, access tracks, heavy traffic tracks, and tracks where the de- sign train speed is greater than 40 mph, TM 5... analysis 35. The beam-on-elastic-foundation model is the key to the AREA design procedure. Kerr in "Problems and Needs in Track Structure Design and... Analysis " (Kerr 1977) presents an outline of the development of this model for analysis of track structures. The fundamental differential equation which
STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.
1997-01-01
The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crashworthy airframe structure, and an important measure of merit for a crashworthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crashworthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for a textile composite, circumferential fuselage frame subjected to a quasi-static, crash-type load. The test data for the frame are reported, and these data are used to develop and to validate methods for the progressive failure response.
NASA Astrophysics Data System (ADS)
Badry, Pallavi; Satyam, Neelima
2017-01-01
Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.
Commercialization of NESSUS: Status
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Millwater, Harry R.
1991-01-01
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.
Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing
2017-10-01
Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.
For operation of the Computer Software Management and Information Center (COSMIC)
NASA Technical Reports Server (NTRS)
Carmon, J. L.
1983-01-01
Computer programs for large systems of normal equations, an interactive digital signal process, structural analysis of cylindrical thrust chambers, swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometrics, computation of three dimensional combustor performance, a thermal radiation analysis system, transient response analysis, and a software design analysis are summarized.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Space astrophysics - Science operations
NASA Technical Reports Server (NTRS)
Kutter, G. S.; Riegler, G. R.
1990-01-01
Science Operations in the Astrophysics Division of NASA Headquarters are the responsibility of the Science Operations Branch. The goals of Science Operations are to encourage multimission, panchromatic research in astrophysics and to foster coordination and cooperation among all mission operations and data analysis efforts. To meet these goals, the Branch is structured into four areas of responsibility. The paper describes these responsibilities.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Preparation and drug release behavior of temperature-responsive mesoporous carbons
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Liu, Ping; Tian, Yong
2011-06-01
A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.; Goodpaster, Benjamin A.
2018-01-01
Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Lumped mass model of a 1D metastructure for vibration suppression with no additional mass
NASA Astrophysics Data System (ADS)
Reichl, Katherine K.; Inman, Daniel J.
2017-09-01
The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.
Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2001-01-01
This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.
NASA Technical Reports Server (NTRS)
Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.
1991-01-01
A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite material.
Dynamic Analyses Including Joints Of Truss Structures
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1991-01-01
Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.
Using resolvent analysis for the design of separation control on a NACA 0012 airfoil
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Taira, Kunihiko
2017-11-01
A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
Noel, Melanie; Palermo, Tonya M.; Essner, Bonnie; Zhou, Chuan; Levy, Rona L.; Langer, Shelby L.; Sherman, Amanda L.; Walker, Lynn S.
2015-01-01
The widely used Adult Responses to Children’s Symptoms measures parental responses to child symptom complaints among youth aged 7 to 18 years with recurrent/chronic pain. Given developmental differences between children and adolescents and the impact of developmental stage on parenting, the factorial validity of the parent-report version of the Adult Responses to Children’s Symptoms with a pain-specific stem was examined separately in 743 parents of 281 children (7–11 years) and 462 adolescents (12–18 years) with chronic pain or pain-related chronic illness. Factor structures of the Adult Responses to Children’s Symptoms beyond the original 3-factor model were also examined. Exploratory factor analysis with oblique rotation was conducted on a randomly chosen half of the sample of children and adolescents as well as the 2 groups combined to assess underlying factor structure. Confirmatory factor analysis was conducted on the other randomly chosen half of the sample to cross-validate factor structure revealed by exploratory factor analyses and compare it to other model variants. Poor loading and high cross loading items were removed. A 4-factor model (Protect, Minimize, Monitor, and Distract) for children and the combined (child and adolescent) sample and a 5-factor model (Protect, Minimize, Monitor, Distract, and Solicitousness) for adolescents was superior to the 3-factor model proposed in previous literature. Future research should examine the validity of derived subscales and developmental differences in their relationships with parent and child functioning. PMID:25451623
Preliminary shuttle structural dynamics modeling design study
NASA Technical Reports Server (NTRS)
1972-01-01
The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong
2011-02-01
In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose. 2010 Elsevier Ltd. All rights reserved.
Improved dynamic analysis method using load-dependent Ritz vectors
NASA Technical Reports Server (NTRS)
Escobedo-Torres, J.; Ricles, J. M.
1993-01-01
The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.
Scaled accelerographs for design of structures in Quetta, Baluchistan, Pakistan
NASA Astrophysics Data System (ADS)
Bhatti, Abdul Qadir
2016-12-01
Structural design for seismic excitation is usually based on peak values of forces and deformations over the duration of earthquake. In determining these peak values dynamic analysis is done which requires either response history analysis (RHA), also called time history analysis, or response spectrum analysis (RSA), both of which depend upon ground motion severity. In the past, PGA has been used to describe ground motion severity, because seismic force on a rigid body is proportional to the ground acceleration. However, it has been pointed out that single highest peak on accelerograms is a very unreliable description of the accelerograms as a whole. In this study, we are considering 0.2- and 1-s spectral acceleration. Seismic loading has been defined in terms of design spectrum and time history which will lead us to two methods of dynamic analysis. Design spectrum for Quetta will be constructed incorporating the parameters of ASCE 7-05/IBC 2006/2009, which is being used by modern codes and regulation of the world like IBC 2006/2009, ASCE 7-05, ATC-40, FEMA-356 and others. A suite of time history representing design earthquake will also be prepared, this will be a helpful tool to carryout time history dynamic analysis of structures in Quetta.
Wind-induced structural response of a large telescope
NASA Astrophysics Data System (ADS)
Smith, David R.; Avitabile, Peter; Gwaltney, Geoff; Cho, Myung; Sheehan, Michael
2004-09-01
In May of 2000, the construction progress of the Gemini South 8m telescope at Cerro Pachon in Chile was such that the telescope and dome were installed and able to move, but the primary mirror had not been installed. This provided a unique opportunity to make extensive tests of the structure in its nearly-completed state, including a modal impact test and simultaneous measurements of wind pressure and structural response. The testing was even more comprehensive because the Gemini dome design allows for a wide range of wind flow configurations, from nearly enclosed to almost fully exposed. In these tests, the operating response of 24 surface pressures on the primary mirror cell, 5 wind velocity channels (each with direction vector information), and more than 70 channels of accelerometers on the telescope structure were measured. The data were taken in a variety of wind loading configurations. While previous analysis efforts have focused on the wind velocity and pressure measurement, this paper investigates the dynamic behavior of the telescope structure itself. Specifically, the discussion includes the participation of the modes measured in the modal impact test as a function of wind loading configuration. Data that indicate the most important frequency ranges in the operating response of the telescope are also presented. Finally, the importance of the response of the enclosure on the structural vibration of the telescope structure is discussed.
Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel
2016-06-01
Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Parrish, C R; Coia, G; Hill, A; Müllbacher, A; Westaway, E G; Blanden, R V
1991-07-01
A series of recombinant vaccinia viruses expressing various parts of the entire Kunjin virus (KUN) coding region was used to analyse the cytotoxic T (Tc) cell responses to KUN. CBA/H mice inoculated with KUN or West Nile virus were shown to develop responses to KUN or various vaccinia virus expression constructs in either primary cytotoxic assays, or after secondary stimulation of the Tc cells in vitro with KUN antigens. Tc cells from CBA mice showed the strongest response to target cells infected with recombinant vaccinia viruses expressing parts of the KUN NS3 and NS4A proteins, and only a weak response to the other structural or non-structural proteins. Further analysis of deleted versions of the NS3-NS4A region showed that the main epitope recognized was derived from a sequence of 99 amino acids spanning parts of NS3 and NS4A. No other major epitopes were detected by Tc cells from CBA mice in the remaining 3333 amino acids of the KUN polypeptide.
Integrated Thermal Response Tool for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)
2001-01-01
A system is presented for multi-dimensional, fully-coupled thermal response modeling of hypersonic entry vehicles. The system consists of a two-dimensional implicit thermal response, pyrolysis and ablation program (TITAN), a commercial finite-element thermal and mechanical analysis code (MARC), and a high fidelity Navier-Stokes equation solver (GIANTS). The simulations performed by this integrated system include hypersonic flow-field, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal response of heatshield and structure. The thermal response of the ablating and charring heatshield material is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal response of both the heatshield and the structure can be obtained simultaneously. Representative computations for a proposed blunt body earth entry vehicle are presented and discussed in detail.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
LANDSAT-D MSS/TM tuned orbital jitter analysis model LDS900
NASA Technical Reports Server (NTRS)
Pollak, T. E.
1981-01-01
The final LANDSAT-D orbital dynamic math model (LSD900), comprised of all test validated substructures, was used to evaluate the jitter response of the MSS/TM experiments. A dynamic forced response analysis was performed at both the MSS and TM locations on all structural modes considered (thru 200 Hz). The analysis determined the roll angular response of the MSS/TM experiments to improve excitation generated by component operation. Cross axis and cross experiment responses were also calculated. The excitations were analytically represented by seven and nine term Fourier series approximations, for the MSS and TM experiment respectively, which enabled linear harmonic solution techniques to be applied to response calculations. Single worst case jitter was estimated by variations of the eigenvalue spectrum of model LSD 900. The probability of any worst case mode occurrence was investigated.
Structural positioning of nurse leaders and empowerment.
Hughes, Kerri-Ann; Carryer, Jennifer Barbara; White, Jill
2015-08-01
To analyse the reporting structures of nursing leaders of publicly funded hospitals and seek both the views of nurse leaders and Chief Executive Officers/Chief Operating Officers on the structural positioning of nurse leaders in the organisation. Concern that the continuing restructuring within hospital structures and focus on economic outputs in health services is diminishing the value of nursing leadership. Qualitative surveys with Nursing leaders and Chief Executive Officers of public hospitals. Seventeen Directors of Nursing and 10 Chief Executive Officer/Chief Operating Officers' responses were received using two semi-structured questionnaires. Themes were developed from data coded and analysed by hand. Four broad themes emerged from analysis of the data: (1) variable positional reporting between Director of Nursing and Chief Executive Officers occurred; (2) variable levels of inclusion and influence at the executive decision-making level; (3) ambiguous financial responsibilities and accountabilities held by Director of Nursing; and (4) blurred lines existed between operational and professional reporting lines. Findings unique to the research indicate that the varying levels of visibility and inclusion impact on the structural positioning of nurse leaders which influences authority and empowerment. Responses from the data analysis indicate that the structural power of nurse leaders defined by the factors of opportunity, power and proportion were hindered by dual accountability reporting lines and a lack of financial control. The structural positioning of nurse leaders is vital to ensure that they are empowered and able to meet the adaptations required in a changing environment that supports the delivery of effective, quality healthcare. © 2015 John Wiley & Sons Ltd.
Eusébio, Ana; Tacão, Marta; Chaves, Sandra; Tenreiro, Rogério; Almeida-Vara, Elsa
2011-07-01
The major parcel of the degradation occurring along wastewater biotreatments is performed either by the native microbiota or by added microbial inocula. The main aim of this study was to apply two fingerprinting methods, temperature gradient gel electrophoresis (TGGE) and length heterogeneity-PCR (LH-PCR) analysis of 16S rRNA gene fragments, in order to assess the microbiota structure and dynamics during mixed olive oil and winery wastewaters aerobic biotreatment performed in a jet-loop reactor (JLR). Sequence homology analysis showed the presence of bacterial genera Gluconacetobacter, Klebsiella, Lactobacillus, Novosphingobium, Pseudomonas, Prevotella, Ralstonia, Sphingobium and Sphingomonas affiliated with five main phylogenetic groups: alpha-, beta- and gamma-Proteobacteria, Firmicutes and Bacteroidetes. LH-PCR analysis distinguished eight predominant DNA fragments correlated with the samples showing highest performance (COD removal rates of 67 up to 75%). Cluster analysis of both TGGE and LH-PCR fingerprinting profiles established five main clusters, with similarity coefficients higher than 79% (TGGE) and 62% (LH-PCR), and related with hydraulic retention time, indicating that this was the main factor responsible for the shifts in the microbiota structure. Canonical correspondence analysis revealed that changes observed on temperature and O(2) level were also responsible for shifts in microbiota composition. Community level metabolic profile analysis was used to test metabolic activities in samples. Integrated data revealed that the microbiota structure corresponds to bacterial groups with high degradative potential and good suitability for this type of effluents biotreatments.
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
Seismic performance for vertical geometric irregularity frame structures
NASA Astrophysics Data System (ADS)
Ismail, R.; Mahmud, N. A.; Ishak, I. S.
2018-04-01
This research highlights the result of vertical geometric irregularity frame structures. The aid of finite element analysis software, LUSAS was used to analyse seismic performance by focusing particularly on type of irregular frame on the differences in height floors and continued in the middle of the building. Malaysia’s building structures were affected once the earthquake took place in the neighbouring country such as Indonesia (Sumatera Island). In Malaysia, concrete is widely used in building construction and limited tension resistance to prevent it. Analysing structural behavior with horizontal and vertical static load is commonly analyses by using the Plane Frame Analysis. The case study of this research is to determine the stress and displacement in the seismic response under this type of irregular frame structures. This study is based on seven-storey building of Clinical Training Centre located in Sungai Buloh, Selayang, Selangor. Since the largest earthquake occurs in Acheh, Indonesia on December 26, 2004, the data was recorded and used in conducting this research. The result of stress and displacement using IMPlus seismic analysis in LUSAS Modeller Software under the seismic response of a formwork frame system states that the building is safe to withstand the ground and in good condition under the variation of seismic performance.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1982-01-01
The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1983-01-01
The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
SHARD - a SeisComP3 module for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.
2016-12-01
Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.
NASA Astrophysics Data System (ADS)
Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar
2017-02-01
Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.
An Efficient Analysis Methodology for Fluted-Core Composite Structures
NASA Technical Reports Server (NTRS)
Oremont, Leonard; Schultz, Marc R.
2012-01-01
The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.
The effect of time synchronization of wireless sensors on the modal analysis of structures
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.; Fowler, K.; Sazonov, E.
2008-10-01
Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
NASA Astrophysics Data System (ADS)
Hirave, Vivek; Kalyanshetti, Mahesh
2018-02-01
Conventional fixed-base analysis ignoring the effect of soil-flexibility may result in unsafe design. Therefore, to evaluate the realistic behavior of structure the soil structure interaction (SSI) effect shall be incorporated in the analysis. In seismic analysis, provision of bracing system is one of the important option for the structure to have sufficient strength with adequate stiffness to resist lateral forces. The different configuration of these bracing systems alters the response of buildings, and therefore, it is important to evaluate the most effective bracing systems in view point of stability against SSI effect. In present study, three RC building frames, G+3, G+5 and G+7 and their respective scaled down steel model with two types of steel bracing system incorporating the effect of soil flexibility is considered for experimental and analytical study. The analytical study is carried out using Elastic continuum approach and the experimental study is carried out using Shake Table. The influence of SSI on various seismic parameters is presented. The study reveals that, steel bracing system is beneficial to control SSI effect and it is observed that V bracing is more effective, in resisting seismic load considering SSI.
Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.
Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis
NASA Technical Reports Server (NTRS)
Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.
2004-01-01
This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.
Test and Analysis of an Inflatable Parabolic Dish Antenna
NASA Technical Reports Server (NTRS)
Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James
2006-01-01
NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Hong, Chae Moon; Lee, Won Kee; Jeong, Shin Young; Lee, Sang-Woo; Ahn, Byeong-Cheol; Lee, Jaetae
2014-11-01
The aim of this study was to validate the effectiveness of delayed risk stratification (DRS) in predicting structural progression and compare the predictive value of American Thyroid Association (ATA) risk stratification with that of DRS in patients with differentiated thyroid cancer (DTC). A total of 398 patients with DTC who underwent surgery followed by radioactive iodine ablation were enrolled. Patients were categorized as having excellent response, acceptable response, biochemical incomplete response, or structural incomplete response at 8-15 months' evaluation after radioactive iodine ablation for DRS. Effectiveness of DRS was evaluated according to structural progression-free survival (PFS; median follow-up, 10.7 years). A total of 229 patients (57.5%) were classified as having excellent response, 78 (19.6%) as having acceptable response, 62 (15.6%) as having biochemical incomplete response, and 29 patients (7.3%) as having structural incomplete response. After DRS, 60.2% of intermediate-risk patients and 20.5% of high-risk patients were shifted to the excellent response category. Sixty-nine patients (17.3%) showed structural progression. DRS showed statistical difference in PFS (hazard ratio, 4.268; 95% confidence interval, 3.258-5.477; P<0.001). In multivariate analysis of ATA risk stratification and DRS, DRS was significantly associated with PFS (hazard ratio, 4.383; 95% confidence interval, 3.250-5.912; P<0.001), but ATA risk stratification was not. There was no significant difference in deviances between the use of DRS alone and the use of both DRS and ATA risk stratification (χ=0.103, d.f.=1, P=0.748). DRS is superior to ATA risk stratification in predicting structural disease progression for DTC patients.
Dynamic response of a viscoelastic Timoshenko beam
NASA Technical Reports Server (NTRS)
Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.
1987-01-01
The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.
14 CFR 25.473 - Landing load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... presence of systems or procedures significantly affects the lift. (c) The method of analysis of airplane... dynamic characteristics. (2) Spin-up and springback. (3) Rigid body response. (4) Structural dynamic response of the airframe, if significant. (d) The landing gear dynamic characteristics must be validated by...
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
Structural testing and analysis of a braided, inflatable fabric torus structure
NASA Astrophysics Data System (ADS)
Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.
2017-10-01
Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Integrated support structure for GASCAN 2
NASA Technical Reports Server (NTRS)
1990-01-01
The focus of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program was the preliminary design of the Integrated Support Structure for GASCAN II, a Get Away Special canister donated by the MITRE Corporation. Two teams of three students each worked on the support structure. There was a structural design team and a thermal design team. The structure will carry three experiments also undergoing preliminary design this year, the mu-gravity Ignition Experiment, the Rotational Flow in Low Gravity Experiment, and the Ionospheric Properties and Propagation Experiment. The structural design team was responsible for the layout of the GASCAN and the preliminary design of the structure itself. They produced the physical interface specifications defining the baseline weights and volumes for the equipment and produced layout drawings of the system. The team produced static and modal finite element analysis of the structure using ANSYS. The thermal design team was responsible for the power and timing requirements of the payload and for the identification and preliminary analysis of potential thermal problems. The team produced the power, timing, and energy interface specifications and assisted in the development of the specification of the battery pack. The thermal parameters of each experiment were cataloged and the experiments were subjected to worst case heat transfer scenarios.
Structural tailoring of advanced turboprops
NASA Technical Reports Server (NTRS)
Brown, K. W.; Hopkins, Dale A.
1988-01-01
The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimization on highly swept propfan blades. The optimization procedure seeks to minimize an objective function defined as either: (1) direct operating cost of full scale blade or, (2) aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analysis system includes an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution forced response life prediction capability. STAT includes all relevant propfan design constraints.
Influence of Thunderstorms on the Structure of the Ionosphere using Composite Analysis
NASA Astrophysics Data System (ADS)
Nava, O.; Sutherland, E.
2017-12-01
It is well known in the amateur (ham) radio community that thunderstorms have a significant influence on local and long-distance high-frequency (HF) communications. This study aims to characterize the structure of the ionosphere in response to strong convective activity and cloud electrification. Superposed Epoch Analysis is applied to surface weather observations and ionosonde data at Eglin Air Force Base, Florida from August 2014 to July 2017. Preliminary results indicate that thunderstorms significantly modify the structure of the ionosphere, generating statistically different measurements of several key parameters (e.g., foEs, hmF2, ITEC) compared to clear-sky observations. Seasonal and diurnal influences between the thunderstorm and clear sky cases are also explored. Accurate characterization of the ionosphere in response to thunderstorms has important implications for the effective use of HF communications in civilian and military operations, to include emergency services, aviation, amateur radio, and over-the-horizon radar.
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Szafran, J.; Kamiński, M.
2017-02-01
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crash worthy airframe structure, and an important measure of merit for a crash worthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crash worthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for textile composite. circumferential fuselage frames subjected to a quasi-static, crash-type load. The test data for these frames are reported, and these data, along with stub column test data, are to be used to develop and to validate methods for the progressive failure response.
Pressure Testing of a Minimum Gauge PRSEUS Panel
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew J.; Rouse, Marshall; Linton, Kim A.; Li, Victor P.
2011-01-01
Advanced aircraft configurations that have been developed to increase fuel efficiency require advanced, novel structural concepts capable of handling the unique load conditions that arise. One such concept is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) developed by the Boeing Company. The PRSEUS concept is being investigated by NASA s Environmentally Responsible Aviation (ERA) Program for use in a hybrid-wing body (HWB) aircraft. This paper summarizes the analysis and test of a PRSEUS panel subjected to internal pressure, the first such pressure test for this structural concept. The pressure panel used minimum gauge skin, with stringer and frame configurations consistent with previous PRSEUS tests. Analysis indicated that for the minimum gauge skin panel, the stringer locations exhibit fairly linear response, but the skin bays between the stringers exhibit nonlinear response. Excellent agreement was seen between nonlinear analysis and test results in the critical portion at the center of the panel. The pristine panel was capable of withstanding the required 18.4 psi pressure load condition without exhibiting any damage. The impacted panel was capable of withstanding a pressure load in excess of 28 psi before initial failure occurred at the center stringer, and the panel was capable of sustaining increased pressure load after the initial failure. This successful PRSEUS panel pressure panel test was a critical step in the building block approach for enabling the use of this advanced structural concept on future aircraft, such as the HWB.
Estimation of the auto frequency response function at unexcited points using dummy masses
NASA Astrophysics Data System (ADS)
Hosoya, Naoki; Yaginuma, Shinji; Onodera, Hiroshi; Yoshimura, Takuya
2015-02-01
If structures with complex shapes have space limitations, vibration tests using an exciter or impact hammer for the excitation are difficult. Although measuring the auto frequency response function at an unexcited point may not be practical via a vibration test, it can be obtained by assuming that the inertia acting on a dummy mass is an external force on the target structure upon exciting a different excitation point. We propose a method to estimate the auto frequency response functions at unexcited points by attaching a small mass (dummy mass), which is comparable to the accelerometer mass. The validity of the proposed method is demonstrated by comparing the auto frequency response functions estimated at unexcited points in a beam structure to those obtained from numerical simulations. We also consider random measurement errors by finite element analysis and vibration tests, but not bias errors. Additionally, the applicability of the proposed method is demonstrated by applying it to estimate the auto frequency response function of the lower arm in a car suspension.
NASA Astrophysics Data System (ADS)
Inamdar, Kirti; Kosta, Y. P.; Patnaik, S.
2014-10-01
In this paper, we present the design of a metamaterial-based microstrip patch antenna, optimized for bandwidth and multiple frequency operations. A criss-cross structure has been proposed, this shape has been inspired from the famous Jerusalem cross. The theory and design formulas to calculate various parameters of the proposed antenna have been presented. Design starts with the analysis of the proposed unit cell structure, and validating the response using software- HFSS Version 13, to obtain negative response of ε and μ- metamaterial. Following this, a metamaterial-based-microstrip-patch-antenna is designed. A detailed comparative study is conducted exploring the response of the designed patch made of metamaterial and that of the conventional patch. Finally, antenna parameters such as gain, bandwidth, radiation pattern, and multiple frequency responses are investigated and optimised for the same and present in table and response graphs. It is also observed that the physical dimension of the metamaterial-based patch antenna is smaller compared to its conventional counterpart operating at the same fundamental frequency. The challenging part was to develop metamaterial based on some signature structures and techniques that would offer advantage in terms of BW and multiple frequency operation, which is demonstrated in this paper. The unique shape proposed in this paper gives improvement in bandwidth without reducing the gain of the antenna.
Dynamic test/analysis correlation using reduced analytical models
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad
1992-01-01
Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.
Analysis of high speed flow, thermal and structural interactions
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1994-01-01
Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.
Trajectory Control for Very Flexible Aircraft
2006-10-30
aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hodge, A. J.; Jackson, J. R.
2011-01-01
For any structure composed of laminated composite materials, impact damage is one of the greatest risks and therefore most widely tested responses. Typically, impact damage testing and analysis assumes that a solid object comes into contact with the bare surface of the laminate (the outer ply). However, most launch vehicle structures will have a thermal protection system (TPS) covering the structure for the majority of its life. Thus, the impact response of the material with the TPS covering is the impact scenario of interest. In this study, laminates representative of the composite interstage structure for the Ares I launch vehicle were impact tested with and without the planned TPS covering, which consists of polyurethane foam. Response variables examined include maximum load of impact, damage size as detected by nondestructive evaluation techniques, and damage morphology and compression after impact strength. Results show that there is little difference between TPS covered and bare specimens, except the residual strength data is higher for TPS covered specimens.
Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes
NASA Astrophysics Data System (ADS)
Moniri, Hassan
2017-03-01
Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.
The Use of Non-Standard Devices in Finite Element Analysis
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Broduer, Steve (Technical Monitor)
2001-01-01
A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.
Biomaterial-host interactions: consequences, determined by implant retrieval analysis.
Kaplan, S S
1994-01-01
Prosthetic biomaterials have had a profound impact on reconstructive surgery but complete biocompatability remains illusive. This review considers the retrieval analysis of four common prosthetic structures: the hip, the knee, heart valves, and blood vessels. We show that despite a fine record of early success, deterioration due to mechanical failure or deleterious host responses to the implant may compromise long term function. The eventual retrieval and detailed analysis of implanted structures provides an invaluable opportunity to determine the characteristics of implant success or failure and to provoke the development of still better materials.
Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III
2004-01-01
The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.
Behavior sensitivities for control augmented structures
NASA Technical Reports Server (NTRS)
Manning, R. A.; Lust, R. V.; Schmit, L. A.
1987-01-01
During the past few years it has been recognized that combining passive structural design methods with active control techniques offers the prospect of being able to find substantially improved designs. These developments have stimulated interest in augmenting structural synthesis by adding active control system design variables to those usually considered in structural optimization. An essential step in extending the approximation concepts approach to control augmented structural synthesis is the development of a behavior sensitivity analysis capability for determining rates of change of dynamic response quantities with respect to changes in structural and control system design variables. Behavior sensitivity information is also useful for man-machine interactive design as well as in the context of system identification studies. Behavior sensitivity formulations for both steady state and transient response are presented and the quality of the resulting derivative information is evaluated.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
NASA Astrophysics Data System (ADS)
Lonberg, Franklin; Fraden, Seth; Hurd, Alan J.; Meyer, Robert E.
1984-05-01
Field-induced reorientations of liquid crystals, far from equilibrium, produce spatially periodic responses. The wavelength selected maximizes response speed. A detailed analysis of the effect in a novel geometry is presented, along with a discussion of its general importance in polymerlike liquid crystals.
Assessing Underreporting Response Bias on the MMPI-2
ERIC Educational Resources Information Center
Bagby, R. Michael; Marshall, Margarita B.
2004-01-01
The authors assess the replicability of the two-factor model of underreporting response style. They then examine the relative performance of scales measuring these styles in analog (ARD) and differential prevalence group (DPG) designs. Principal components analysis produced a two-factor structure corresponding to self-deceptive (SD) and impression…
Environmental Structures: Semantic and Experiential Components.
ERIC Educational Resources Information Center
Lowenthal, David; Riel, Marquita
A project undertaken to advance the systematic analysis of public responses, attitudes, opinions, preferences, and values relating to the environment is discussed in this report, the eighth in a series of eight. The reports fall into two general categories: five describe and compare responses to representative milieus in New York, Boston,…
Structures of Environmental Associations.
ERIC Educational Resources Information Center
Lowenthal, David; Riel, Marquita
A project undertaken to advance the systematic analysis of public response, attitudes, opinions, preferences, and values relating to the environment is discussed in this report, the sixth in a series of eight. The reports fall into two general categories: five describe and compare responses to representative milieus in New York, Boston, Cambridge…
Causal Loop Analysis of coastal geomorphological systems
NASA Astrophysics Data System (ADS)
Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.
2016-03-01
As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.
Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis
Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil
2015-01-01
Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428
Son, Byungjik; Jeon, Seunggon
2018-01-01
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven. PMID:29747403
Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong
2018-05-09
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.
Statistical analysis of modeling error in structural dynamic systems
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.
1990-01-01
The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.
Dewhurst, Henry M.; Choudhury, Shilpa; Torres, Matthew P.
2015-01-01
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. PMID:26070665
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe
2016-08-01
The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.
Monitoring and evaluating civil structures using measured vibration
NASA Astrophysics Data System (ADS)
Straser, Erik G.; Kiremidjian, Anne S.
1996-04-01
The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.
Analysis and Characterization of the Mechanical Structure for the I-Tracker of the Mu2e Experiment
NASA Astrophysics Data System (ADS)
De Lorenzis, L.; Grancagnolo, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Zavarise, G.
2014-03-01
The design of a tracking detector for electrons in a magnetic field consisting of a drift chamber is discussed. The chosen materials for its construction must be light to minimize the effects of the subatomic particles interactions with the chamber walls. Low-density materials and very thin wall thicknesses are therefore needed. From a mechanical engineering point of view, it is important to analyse the drift chamber structure and define the conditions to which it is subject in terms of both mechanical loads and geometric constraints. The analysis of the structural response of the drift chamber has been performed through the Finite Element Method (FEM) as implemented in the commercial software ANSYS and its interface for the analysis for composite structures ACP (Ansys Composite Pre/Post).
Thermal response of Space Shuttle wing during reentry heating
NASA Technical Reports Server (NTRS)
Gong, L.; Ko, W. L.; Quinn, R. D.
1984-01-01
A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown.
Noise elimination algorithm for modal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn; Li, C. L.; Xiong, C. B.
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides amore » fundamental mechanism of noise elimination using structured low rank approximation in physical fields.« less
Controlled impact demonstration airframe bending bridges
NASA Technical Reports Server (NTRS)
Soltis, S. J.
1986-01-01
The calibration of the KRASH and DYCAST models for transport aircraft is discussed. The FAA uses computer analysis techniques to predict the response of controlled impact demonstration (CID) during impact. The moment bridges can provide a direct correlation between the predictive loads or moments that the models will predict and what was experienced during the actual impact. Another goal is to examine structural failure mechanisms and correlate with analytical predictions. The bending bridges did achieve their goals and objectives. The data traces do provide some insight with respect to airframe loads and structural response. They demonstrate quite clearly what's happening to the airframe. A direct quantification of metal airframe loads was measured by the moment bridges. The measured moments can be correlated with the KRASH and DYCAST computer models. The bending bridge data support airframe failure mechanisms analysis and provide residual airframe strength estimation. It did not appear as if any of the bending bridges on the airframe exceeded limit loads. (The observed airframe fracture was due to the fuselage encounter with the tomahawk which tore out the keel beam.) The airframe bridges can be used to estimate the impact conditions and those estimates are correlating with some of the other data measurements. Structural response, frequency and structural damping are readily measured by the moment bridges.
Pol, Sreymom; Fox-Lewis, Shivani; Neou, Leakhena; Parker, Michael; Kingori, Patricia; Turner, Claudia
2018-01-01
To explore Cambodian community members' understanding of and attitudes towards healthcare research. This qualitative study generated data from semi-structured interviews and focus group discussions. This study was conducted at a non-governmental paediatric hospital and in nearby villages in Siem Reap province, Cambodia. A total of ten semi-structured interviews and four focus group discussions were conducted, involving 27 participants. Iterative data collection and analysis were performed concurrently. Data were analysed by thematic content analysis and the coding structure was developed using relevant literature. Participants did not have a clear understanding of what activities related to research compared with those for routine healthcare. Key attitudes towards research were responsibility and trust: personal (trust of the researcher directly) and institutional (trust of the institution as a whole). Villagers believe the village headman holds responsibility for community activities, while the village headman believes that this responsibility should be shared across all levels of the government system. It is essential for researchers to understand the structure and relationship within the community they wish to work with in order to develop trust among community participants. This aids effective communication and understanding among all parties, enabling high quality ethical research to be conducted.
Factors Affecting Teenager Cyber Delinquency
ERIC Educational Resources Information Center
Joo, Young Ju; Lim, Kyu Yon; Cho, Sun Yoo; Jung, Bo Kyung; Choi, Se Bin
2013-01-01
The study aims to investigate structural relationships among teenagers' peer attachment, self-control, academic stress, internet usage time, and cyber delinquency. The data source was the Korea Youth Panel Survey, and the responses from 920 teenagers in the 12th grade provided the study data. Structural equation modeling was used for the analysis.…
ERIC Educational Resources Information Center
Axelrod, Saul
1987-01-01
Emerging approaches for dealing with inappropriate behaviors of the disabled involve conducting a functional or structural behavior analysis to isolate the factors responsible for the aberrant behavior and implementing corrective procedures (often alternatives to punishment) relevant to the function of the inappropriate behavior. (Author/DB)
NASA Langley developments in response calculations needed for failure and life prediction
NASA Technical Reports Server (NTRS)
Housner, Jerrold M.
1993-01-01
NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.
NASA Astrophysics Data System (ADS)
Teruna, D. R.
2017-03-01
Pushover analysis or also known as nonlinear static procedures (NSP) have been recognized in recent years for practical evaluation of seismic demands and for structural design by estimating a structural building capacities and deformation demands. By comparing these demands and capacities at the performance level interest, the seismic performance of a building can be evaluated. However, the accuracy of NSP for assessment irregular building is not yet a fully satisfactory solution, since irregularities of a building influence the dynamic responses of the building. The objective of the study presented herein is to understand the nonlinear behaviour of six story RC building with mass irregularities at different floors and stiffness irregularity at first story (soft story) using NSP. For the purpose of comparison on the performance level obtained with NSP, nonlinear time history analysis (THA) were also performed under ground motion excitation with compatible to response spectra design. Finally, formation plastic hinges and their progressive development from elastic level to collapse prevention are presented and discussed.
NASA Technical Reports Server (NTRS)
Simitses, George J.; Carlson, Robert L.; Riff, Richard
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strain is clearly demonstrated, through the chosen applications.
Dynamics of Rotating Multi-component Turbomachinery Systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1993-01-01
The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.
Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements
NASA Astrophysics Data System (ADS)
Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.
2004-05-01
Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
ERIC Educational Resources Information Center
Welton, Anjale
2011-01-01
This response to ""Buscando la Libertad": Latino Youths in Search of Freedom in School" by Jason G. Irizarry demonstrates how youth participatory action research (YPAR) as an instrument of subverting oppressive school policies and structures is a form of critical policy analysis (CPA). As an evolving method, CPA acknowledges the absent voices in…
Stability assessment of structures under earthquake hazard through GRID technology
NASA Astrophysics Data System (ADS)
Prieto Castrillo, F.; Boton Fernandez, M.
2009-04-01
This work presents a GRID framework to estimate the vulnerability of structures under earthquake hazard. The tool has been designed to cover the needs of a typical earthquake engineering stability analysis; preparation of input data (pre-processing), response computation and stability analysis (post-processing). In order to validate the application over GRID, a simplified model of structure under artificially generated earthquake records has been implemented. To achieve this goal, the proposed scheme exploits the GRID technology and its main advantages (parallel intensive computing, huge storage capacity and collaboration analysis among institutions) through intensive interaction among the GRID elements (Computing Element, Storage Element, LHC File Catalogue, federated database etc.) The dynamical model is described by a set of ordinary differential equations (ODE's) and by a set of parameters. Both elements, along with the integration engine, are encapsulated into Java classes. With this high level design, subsequent improvements/changes of the model can be addressed with little effort. In the procedure, an earthquake record database is prepared and stored (pre-processing) in the GRID Storage Element (SE). The Metadata of these records is also stored in the GRID federated database. This Metadata contains both relevant information about the earthquake (as it is usual in a seismic repository) and also the Logical File Name (LFN) of the record for its later retrieval. Then, from the available set of accelerograms in the SE, the user can specify a range of earthquake parameters to carry out a dynamic analysis. This way, a GRID job is created for each selected accelerogram in the database. At the GRID Computing Element (CE), displacements are then obtained by numerical integration of the ODE's over time. The resulting response for that configuration is stored in the GRID Storage Element (SE) and the maximum structure displacement is computed. Then, the corresponding Metadata containing the response LFN, earthquake magnitude and maximum structure displacement is also stored. Finally, the displacements are post-processed through a statistically-based algorithm from the available Metadata to obtain the probability of collapse of the structure for different earthquake magnitudes. From this study, it is possible to build a vulnerability report for the structure type and seismic data. The proposed methodology can be combined with the on-going initiatives to build a European earthquake record database. In this context, Grid enables collaboration analysis over shared seismic data and results among different institutions.
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Analysis of Army Transformation and the Effects on Customer Ordering Behavior
2007-03-01
operational scenarios ( Caldera and Shinseki, 2000:3). A responsive and agile force requires a responsive and agile logistics structure. The Army...assistance, disaster relief, peace-keeping, peace-making, and major theater wars ( Caldera and Shinseki, 2000:3). In fact, since 1995, the U.S. Army has...must be responsive, deployable, agile, versatile, lethal, survivable, and sustainable ( Caldera and Shinseki, 2000:4-5). Logistics Transformation
CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION
NASA Astrophysics Data System (ADS)
Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji
It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2016-01-01
Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Structural Evaluation of the RSRM Nozzle Replacement Adhesive
NASA Technical Reports Server (NTRS)
Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.
1999-01-01
This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.
Development of an integrated aeroservoelastic analysis program and correlation with test data
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Brenner, M. J.; Voelker, L. S.
1991-01-01
The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.
Integrative Analysis of “-Omics” Data Using Penalty Functions
Zhao, Qing; Shi, Xingjie; Huang, Jian; Liu, Jin; Li, Yang; Ma, Shuangge
2014-01-01
In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single-dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond “standard” penalized selection, we also review contrasted penalization and Laplacian penalization which accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. PMID:25691921
Fan, Sheng; Zhang, Dong; Xing, Libo; Qi, Siyan; Du, Lisha; Wu, Haiqin; Shao, Hongxia; Li, Youmei; Ma, Juanjuan; Han, Mingyu
2017-08-01
Although INDETERMINATE DOMAIN (IDD) genes encoding specific plant transcription factors have important roles in plant growth and development, little is known about apple IDD (MdIDD) genes and their potential functions in the flower induction. In this study, we identified 20 putative IDD genes in apple and named them according to their chromosomal locations. All identified MdIDD genes shared a conserved IDD domain. A phylogenetic analysis separated MdIDDs and other plant IDD genes into four groups. Bioinformatic analysis of chemical characteristics, gene structure, and prediction of protein-protein interactions demonstrated the functional and structural diversity of MdIDD genes. To further uncover their potential functions, we performed analysis of tandem, synteny, and gene duplications, which indicated several paired homologs of IDD genes between apple and Arabidopsis. Additionally, genome duplications also promoted the expansion and evolution of the MdIDD genes. Quantitative real-time PCR revealed that all the MdIDD genes showed distinct expression levels in five different tissues (stems, leaves, buds, flowers, and fruits). Furthermore, the expression levels of candidate MdIDD genes were also investigated in response to various circumstances, including GA treatment (decreased the flowering rate), sugar treatment (increased the flowering rate), alternate-bearing conditions, and two varieties with different-flowering intensities. Parts of them were affected by exogenous treatments and showed different expression patterns. Additionally, changes in response to alternate-bearing and different-flowering varieties of apple trees indicated that they were also responsive to flower induction. Taken together, our comprehensive analysis provided valuable information for further analysis of IDD genes aiming at flower induction.
Non-normality and classification of amplification mechanisms in stability and resolvent analysis
NASA Astrophysics Data System (ADS)
Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.
2018-05-01
Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.
The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less
Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)
2001-01-01
The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.
Turbine Engine Hot Section Technology, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1986-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Probabilistic structural analysis methods and applications
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.
1988-01-01
An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
NASA Technical Reports Server (NTRS)
Camp, George H.; Fallon, Dennis J.
1987-01-01
The Underwater Explosions Research Division (UERD) of the David Taylor Naval Ship Research and Development Center makes extensive use of NASTRAN/COSMIC on a CDC 176 to evaluate the structural response of ship structures subjected to underwater explosion shock loadings in the time domain. As relatively new users, UERD engineers have experienced difficulties with the checkpoint/restart feature because of the vague instructions in the user manual. Working procedures for the application of the checkpoint/restart feature to the transient analysis using NASTRAN/COSMIC are illustrated.
Redlich, Ronny; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Zaremba, Dario; Bürger, Christian; Münker, Sandra; Mühlmann, Lisa; Wahl, Patricia; Heindel, Walter; Arolt, Volker; Alferink, Judith; Zwanzger, Peter; Zavorotnyy, Maxim; Kugel, Harald; Dannlowski, Udo
2016-06-01
Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, biomarkers that accurately predict a response to ECT remain unidentified. To investigate whether certain factors identified by structural magnetic resonance imaging (MRI) techniques are able to predict ECT response. In this nonrandomized prospective study, gray matter structure was assessed twice at approximately 6 weeks apart using 3-T MRI and voxel-based morphometry. Patients were recruited through the inpatient service of the Department of Psychiatry, University of Muenster, from March 11, 2010, to March 27, 2015. Two patient groups with acute major depressive disorder were included. One group received an ECT series in addition to antidepressants (n = 24); a comparison sample was treated solely with antidepressants (n = 23). Both groups were compared with a sample of healthy control participants (n = 21). Binary pattern classification was used to predict ECT response by structural MRI that was performed before treatment. In addition, univariate analysis was conducted to predict reduction of the Hamilton Depression Rating Scale score by pretreatment gray matter volumes and to investigate ECT-related structural changes. One participant in the ECT sample was excluded from the analysis, leaving 67 participants (27 men and 40 women; mean [SD] age, 43.7 [10.6] years). The binary pattern classification yielded a successful prediction of ECT response, with accuracy rates of 78.3% (18 of 23 patients in the ECT sample) and sensitivity rates of 100% (13 of 13 who responded to ECT). Furthermore, a support vector regression yielded a significant prediction of relative reduction in the Hamilton Depression Rating Scale score. The principal findings of the univariate model indicated a positive association between pretreatment subgenual cingulate volume and individual ECT response (Montreal Neurological Institute [MNI] coordinates x = 8, y = 21, z = -18; Z score, 4.00; P < .001; peak voxel r = 0.73). Furthermore, the analysis of treatment effects revealed a increase in hippocampal volume in the ECT sample (MNI coordinates x = -28, y = -9, z = -18; Z score, 7.81; P < .001) that was missing in the medication-only sample. A relatively small degree of structural impairment in the subgenual cingulate cortex before therapy seems to be associated with successful treatment with ECT. In the future, neuroimaging techniques could prove to be promising tools for predicting the individual therapeutic effectiveness of ECT.
Mining concepts of health responsibility using text mining and exploratory graph analysis.
Kjellström, Sofia; Golino, Hudson
2018-05-24
Occupational therapists need to know about people's beliefs about personal responsibility for health to help them pursue everyday activities. The study aims to employ state-of-the-art quantitative approaches to understand people's views of health and responsibility at different ages. A mixed method approach was adopted, using text mining to extract information from 233 interviews with participants aged 5 to 96 years, and then exploratory graph analysis to estimate the number of latent variables. The fit of the structure estimated via the exploratory graph analysis was verified using confirmatory factor analysis. Exploratory graph analysis estimated three dimensions of health responsibility: (1) creating good health habits and feeling good; (2) thinking about one's own health and wanting to improve it; and 3) adopting explicitly normative attitudes to take care of one's health. The comparison between the three dimensions among age groups showed, in general, that children and adolescents, as well as the old elderly (>73 years old) expressed ideas about personal responsibility for health less than young adults, adults and young elderly. Occupational therapists' knowledge of the concepts of health responsibility is of value when working with a patient's health, but an identified challenge is how to engage children and older persons.
Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2006-01-01
Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.
NASA Technical Reports Server (NTRS)
Hopkins, D. A.
1984-01-01
A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.
Reversible Self-Actuated Thermo-Responsive Pore Membrane
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-01-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control. PMID:27991563
Reversible Self-Actuated Thermo-Responsive Pore Membrane
NASA Astrophysics Data System (ADS)
Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.
2016-12-01
Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Gross
2004-09-01
The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less
Comparison between a typical and a simplified model for blast load-induced structural response
NASA Astrophysics Data System (ADS)
Abd-Elhamed, A.; Mahmoud, S.
2017-02-01
As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.
Meeting Report: Structural Determination of Environmentally Responsive Proteins
Reinlib, Leslie
2005-01-01
The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
Numerical simulation of the fluid-structure interaction between air blast waves and soil structure
NASA Astrophysics Data System (ADS)
Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad
2014-03-01
Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.
NASA Astrophysics Data System (ADS)
Sun, Chuang; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Qu, Jinxiu; Zhang, Chenxuan; Cheng, Wei; Li, Bing
2014-06-01
Viscoelastic sandwich structures (VSS) are widely used in mechanical equipment; their state assessment is necessary to detect structural states and to keep equipment running with high reliability. This paper proposes a novel manifold-manifold distance-based assessment (M2DBA) method for assessing the looseness state in VSSs. In the M2DBA method, a manifold-manifold distance is viewed as a health index. To design the index, response signals from the structure are firstly acquired by condition monitoring technology and a Hankel matrix is constructed by using the response signals to describe state patterns of the VSS. Thereafter, a subspace analysis method, that is, principal component analysis (PCA), is performed to extract the condition subspace hidden in the Hankel matrix. From the subspace, pattern changes in dynamic structural properties are characterized. Further, a Grassmann manifold (GM) is formed by organizing a set of subspaces. The manifold is mapped to a reproducing kernel Hilbert space (RKHS), where support vector data description (SVDD) is used to model the manifold as a hypersphere. Finally, a health index is defined as the cosine of the angle between the hypersphere centers corresponding to the structural baseline state and the looseness state. The defined health index contains similarity information existing in the two structural states, so structural looseness states can be effectively identified. Moreover, the health index is derived by analysis of the global properties of subspace sets, which is different from traditional subspace analysis methods. The effectiveness of the health index for state assessment is validated by test data collected from a VSS subjected to different degrees of looseness. The results show that the health index is a very effective metric for detecting the occurrence and extension of structural looseness. Comparison results indicate that the defined index outperforms some existing state-of-the-art ones.
High Temperature Composite Analyzer (HITCAN) demonstration manual, version 1.0
NASA Technical Reports Server (NTRS)
Singhal, S. N; Lackney, J. J.; Murthy, P. L. N.
1993-01-01
This manual comprises a variety of demonstration cases for the HITCAN (HIgh Temperature Composite ANalyzer) code. HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. HITCAN is written in FORTRAN 77 computer language and has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. Detailed description of all program variables and terms used in this manual may be found in the User's Manual. The demonstration includes various cases to illustrate the features and analysis capabilities of the HITCAN computer code. These cases include: (1) static analysis, (2) nonlinear quasi-static (incremental) analysis, (3) modal analysis, (4) buckling analysis, (5) fiber degradation effects, (6) fabrication-induced stresses for a variety of structures; namely, beam, plate, ring, shell, and built-up structures. A brief discussion of each demonstration case with the associated input data file is provided. Sample results taken from the actual computer output are also included.
Structural dynamics of shroudless, hollow fan blades with composite in-lays
NASA Technical Reports Server (NTRS)
Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.
1982-01-01
Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.
Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2006-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.
2005-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.
Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling
NASA Astrophysics Data System (ADS)
Wada, Yoshihisa; Tsuji, Hiroshi
In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.
ERIC Educational Resources Information Center
McCabe, Declan J.; Knight, Evelyn J.
2016-01-01
Since being introduced by Connor and Simberloff in response to Diamond's assembly rules, null model analysis has been a controversial tool in community ecology. Despite being commonly used in the primary literature, null model analysis has not featured prominently in general textbooks. Complexity of approaches along with difficulty in interpreting…
A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
ERIC Educational Resources Information Center
Edwards, Michael C.
2010-01-01
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
DOE Office of Scientific and Technical Information (OSTI.GOV)
MACKEY, T.C.
M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less
ERIC Educational Resources Information Center
Siwatu, Kamau Oginga; Putman, S. Michael; Starker-Glass, Tehia V.; Lewis, Chance W.
2017-01-01
This article reports on the development and initial validation of the Culturally Responsive Classroom Management Self-Efficacy Scale. Data from 380 preservice and inservice teachers were used to examine the psychometric properties of the instrument. Exploratory factor analysis results suggested a one-factor structure consisting of 35 items and the…
Development and Initial Validation of the Intimate Violence Responsibility Scale (IVRS)
ERIC Educational Resources Information Center
Yun, Sung Hyun; Vonk, M. Elizabeth
2011-01-01
The present study demonstrates the development and initial examination of psychometric properties of the Intimate Violence Responsibility Scale (IVRS) in a community-based sample (N = 527). The underlying factor structure of the IVRS was tested by the exploratory factor analysis (Principal Axis Factoring), which identifies the four factors:…
Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.
2011-09-01
The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel, representing a section of a typical aeronautical structure, manufactured and tested in the lab and, as a second step, on a scaled up space oriented structure, which is a composite honeycomb plate, used as a deployment base for antenna arrays. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on both structures and different excitation positions and boundary conditions were used. The analysis of operational dynamic responses was employed to identify both the damage and its position. The system that was designed and tested initially on the thin composite panel, was successfully validated on the larger honeycomb structure. Numerical simulation of both structures was used as a support tool at all the steps of the work providing among others the location of the optical sensors used. The proposed work will be the base for the whole system qualification and validation on an antenna reflector in future work.
Ares I-X In-Flight Modal Identification
NASA Technical Reports Server (NTRS)
Bartkowicz, Theodore J.; James, George H., III
2011-01-01
Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.
Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser
2012-08-27
ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H
2016-03-11
Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.
Pushkin, Richard; Barriere, Steven L.; Corey, G. Ralph; Stryjewski, Martin E.
2015-01-01
Two phase 3 ATLAS trials demonstrated noninferiority of telavancin compared with vancomycin for complicated skin and skin structure infections. Data from these trials were retrospectively evaluated according to 2013 U.S. Food and Drug Administration (FDA) guidance on acute bacterial skin and skin structure infections. This post hoc analysis included patients with lesion sizes of ≥75 cm2 and excluded patients with ulcers or burns (updated all-treated population; n = 1,127). Updated day 3 (early) clinical response was defined as a ≥20% reduction in lesion size from baseline and no rescue antibiotic. Updated test-of-cure (TOC) clinical response was defined as a ≥90% reduction in lesion size, no increase in lesion size since day 3, and no requirement for additional antibiotics or significant surgical procedures. Day 3 (early) clinical responses were achieved in 62.6% and 61.0% of patients receiving telavancin and vancomycin, respectively (difference, 1.7%, with a 95% confidence interval [CI] of −4.0% to 7.4%). Updated TOC visit cure rates were similar for telavancin (68.0%) and vancomycin (63.3%), with a difference of 4.8% (95% CI, −0.7% to 10.3%). Adopting current FDA guidance, this analysis corroborates previous noninferiority findings of the ATLAS trials of telavancin compared with vancomycin. PMID:26248356
Tools for Designing and Analyzing Structures
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Structural Design and Analysis Toolset is a collection of approximately 26 Microsoft Excel spreadsheet programs, each of which performs calculations within a different subdiscipline of structural design and analysis. These programs present input and output data in user-friendly, menu-driven formats. Although these programs cannot solve complex cases like those treated by larger finite element codes, these programs do yield quick solutions to numerous common problems more rapidly than the finite element codes, thereby making it possible to quickly perform multiple preliminary analyses - e.g., to establish approximate limits prior to detailed analyses by the larger finite element codes. These programs perform different types of calculations, as follows: 1. determination of geometric properties for a variety of standard structural components; 2. analysis of static, vibrational, and thermal- gradient loads and deflections in certain structures (mostly beams and, in the case of thermal-gradients, mirrors); 3. kinetic energies of fans; 4. detailed analysis of stress and buckling in beams, plates, columns, and a variety of shell structures; and 5. temperature dependent properties of materials, including figures of merit that characterize strength, stiffness, and deformation response to thermal gradients
Turbine Engine Hot Section Technology, 1987
NASA Technical Reports Server (NTRS)
1987-01-01
Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.
Aeroelastic Stability and Response of Rotating Structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Reddy, Tondapu
2004-01-01
A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.
First-passage problems: A probabilistic dynamic analysis for degraded structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1990-01-01
Structures subjected to random excitations with uncertain system parameters degraded by surrounding environments (a random time history) are studied. Methods are developed to determine the statistics of dynamic responses, such as the time-varying mean, the standard deviation, the autocorrelation functions, and the joint probability density function of any response and its derivative. Moreover, the first-passage problems with deterministic and stationary/evolutionary random barriers are evaluated. The time-varying (joint) mean crossing rate and the probability density function of the first-passage time for various random barriers are derived.
Time domain modal identification/estimation of the mini-mast testbed
NASA Technical Reports Server (NTRS)
Roemer, Michael J.; Mook, D. Joseph
1991-01-01
The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
Structural behavior of composites with progressive fracture
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Murthy, P. L. N.; Chamis, C. C.
1989-01-01
The objective of the study is to unify several computational tools developed for the prediction of progressive damage and fracture with efforts for the prediction of the overall response of damaged composite structures. In particular, a computational finite element model for the damaged structure is developed using a computer program as a byproduct of the analysis of progressive damage and fracture. Thus, a single computational investigation can predict progressive fracture and the resulting variation in structural properties of angleplied composites.
Vibro-Acoustic FE Analyses of the Saab 2000 Aircraft
NASA Technical Reports Server (NTRS)
Green, Inge S.
1992-01-01
A finite element model of the Saab 2000 fuselage structure and interior cavity has been created in order to compute the noise level in the passenger cabin due to propeller noise. Areas covered in viewgraph format include the following: coupled acoustic/structural noise; data base creation; frequency response analysis; model validation; and planned analyses.
Factor Structure of the Children's Behavior Questionnaire in Children with Williams Syndrome
ERIC Educational Resources Information Center
Leyfer, Ovsanna; John, Angela E.; Woodruff-Borden, Janet; Mervis, Carolyn B.
2012-01-01
To examine the factor structure of temperament in 5-10-year-olds with Williams syndrome, an exploratory factor analysis was conducted on the responses of parents of 192 children on the children's behavior questionnaire. Four factors were identified. Two corresponded to factors reported for typically developing children: effortful control and…
The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under condition...
Calibration of Response Data Using MIRT Models with Simple and Mixed Structures
ERIC Educational Resources Information Center
Zhang, Jinming
2012-01-01
It is common to assume during a statistical analysis of a multiscale assessment that the assessment is composed of several unidimensional subtests or that it has simple structure. Under this assumption, the unidimensional and multidimensional approaches can be used to estimate item parameters. These two approaches are equivalent in parameter…
ERIC Educational Resources Information Center
Frazier, Thomas W.; Ratliff, Kristin R.; Gruber, Chris; Zhang, Yi; Law, Paul A.; Constantino, John N.
2014-01-01
Understanding the factor structure of autistic symptomatology is critical to the discovery and interpretation of causal mechanisms in autism spectrum disorder. We applied confirmatory factor analysis and assessment of measurement invariance to a large ("N" = 9635) accumulated collection of reports on quantitative autistic traits using…
Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel
2013-12-01
Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Daniels, Lia M.; Radil, Amanda I.; Goegan, Lauren D.
2017-01-01
Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service (n = 130) and practicing (n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters. PMID:28620332
Daniels, Lia M; Radil, Amanda I; Goegan, Lauren D
2017-01-01
Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service ( n = 130) and practicing ( n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters.
Jimenez-Lopez, J C; Robles-Bolivar, P; Lopez-Valverde, F J; Lima-Cabello, E; Kotchoni, S O; Alché, J D
2016-05-01
Thaumatin-like proteins (TLPs) are enzymes with important functions in pathogens defense and in the response to biotic and abiotic stresses. Last identified olive allergen (Ole e 13) is a TLP, which may also importantly contribute to food allergy and cross-allergenicity to pollen allergen proteins. The goals of this study are the characterization of the structural-functionality of Ole e 13 with a focus in its catalytic mechanism, and its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering a) functional-regulatory motifs, b) comparative study of linear sequence, 2-D and 3D structural homology modeling, c) molecular docking with two different β-D-glucans, d) conservational and evolutionary analysis, e) catalytic mechanism modeling, and f) IgE-binding, B- and T-cell epitopes identification and comparison to other allergenic TLPs. Sequence comparison, structure-based features, and phylogenetic analysis identified Ole e 13 as a thaumatin-like protein. 3D structural characterization revealed a conserved overall folding among plants TLPs, with mayor differences in the acidic (catalytic) cleft. Molecular docking analysis using two β-(1,3)-glucans allowed to identify fundamental residues involved in the endo-1,3-β-glucanase activity, and defining E84 as one of the conserved residues of the TLPs responsible of the nucleophilic attack to initiate the enzymatic reaction and D107 as proton donor, thus proposing a catalytic mechanism for Ole e 13. Identification of IgE-binding, B- and T-cell epitopes may help designing strategies to improve diagnosis and immunotherapy to food allergy and cross-allergenic pollen TLPs. Copyright © 2016 Elsevier Inc. All rights reserved.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures
NASA Technical Reports Server (NTRS)
Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1994-01-01
A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Design of a flexure mount for optics in dynamic and cryogenic environments
NASA Technical Reports Server (NTRS)
Pollard, Lloyd Wayne
1989-01-01
The design of a flexure mount for a mirror operating in a cryogenic environment is presented. This structure represents a design effort recently submitted to NASA Ames for the support of the primary mirror of the Space Infrared Telescope Facility (SIRTF). The support structure must passively accommodate the differential thermal contraction between the glass mirror and the aluminium structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit without exceeding the micro-yield of the material anywhere in the flexure mount. Procedures used to establish the maximum allowable radial stiffness of the flexural mount, based on the finite element program NASTRAN and the optical program FRINGE, are discussed. Early design concepts were evaluated using a parametric design program, and the development of that program is presented. Dynamic loading analyses performed with NASTRAN are discussed. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, modified root of sum of squares, is presented. Model combination schemes using MRSS, SRSS, and ABS are compared to the results of the modal frequency response analysis performed with NASTRAN.
Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.
Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca
2015-03-01
Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jones, R.; Molent, L.; Paul, J.; Saunders, T.; Chiu, W. K.
1994-01-01
This paper presents an overview of the structural aspects of the design and development of a local reinforcement designed to lower the stresses in a region of the F-111C wing fitting which is prone to cracking. The stress analysis, with particular emphasis on the use of a unified constitutive model for the cyclic inelastic response of the structure, representative specimen testing, thermal analysis and full scale static testing of this design are summarized.
Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel
NASA Technical Reports Server (NTRS)
Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.
2015-01-01
A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.
Shock transmission in coupled beams and rib stiffened structures
NASA Technical Reports Server (NTRS)
Pope, L. D.; Manning, J. E.; Scharton, T. D.
1971-01-01
Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral
2002-01-01
An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.
Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2013-01-01
The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Averill, Robert D.
1992-01-01
The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.
NASA Astrophysics Data System (ADS)
Fatemi, Javad
2011-05-01
The thermal protection system of the EXPERT re-entry vehicle is subjected to accelerations, vibrations, acoustic and shock loads during launch and aero-heating loads and aerodynamic forces during re-entry. To fully understand the structural and thermomechanical performances of the TPS, heat transfer analysis, thermal stress analysis, and thermal buckling analysis must be performed. This requires complex three-dimensional thermal and structural models of the entire TPS including the insulation and sensors. Finite element (FE) methods are employed to assess the thermal and structural response of the TPS to the mechanical and aerothermal loads. The FE analyses results are used for the design verification and design improvement of the EXPERT thermal protection system.
Dynamic tests on the NASA Langley CSI evolutionary model
NASA Technical Reports Server (NTRS)
Troidl, H.; Elliott, K. B.
1993-01-01
A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.
Equivalent linearization for fatigue life estimates of a nonlinear structure
NASA Technical Reports Server (NTRS)
Miles, R. N.
1989-01-01
An analysis is presented of the suitability of the method of equivalent linearization for estimating the fatigue life of a nonlinear structure. Comparisons are made of the fatigue life of a nonlinear plate as predicted using conventional equivalent linearization and three other more accurate methods. The excitation of the plate is assumed to be Gaussian white noise and the plate response is modeled using a single resonant mode. The methods used for comparison consist of numerical simulation, a probabalistic formulation, and a modification of equivalent linearization which avoids the usual assumption that the response process is Gaussian. Remarkably close agreement is obtained between all four methods, even for cases where the response is significantly linear.
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
Structural analysis of two different stent configurations.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M
2017-06-01
Two different stent configurations (i.e. the well known Palmaz-Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.
Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1989-01-01
An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.
Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell
2017-09-01
Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2015-02-01
Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via stochastic subspace identification (SSI) and linear parameter time-varying (LPTV) techniques. Structural response is assumed to be stationary ambient excitation produced by a Gaussian (white) noise within the operative range bandwidth of the machinery or structure in study. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to identify frequencies and complex-valued mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment. A numerical example is carried out based a spinning finite element (SFE) model, and verified using ANSYS® Ver. 12. Finally, comments and observations are provided on how this subspace realization technique can be extended to the problem of modal-parameter identification using only ambient vibration data.
Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen
2016-01-01
The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
METCAN: The metal matrix composite analyzer
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Murthy, Pappu L. N.
1988-01-01
Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.
Scribbling on the blank sheet: Eddington's structuralist conception of objects
NASA Astrophysics Data System (ADS)
French, Steven
Although Eddington's philosophy of physics has been subjected to critical re-evaluation in recent years, neither the exact nature of his structuralist views nor his response to criticism by the likes of Braithwaite have been made clear. In this paper I trace, in particular, the incorporation into Eddington's structuralism of the non-classical indistinguishability of quantum objects. His metaphysical view of such objects as the product of group-theoretical analysis is crucial for understanding his response to Braithwaite's criticisms of the whole structuralist endeavor. These criticisms closely resemble more recent attacks on structural realism in the philosophy of science. I conclude with a brief comparison between these more modern forms of structuralism and Eddington's.
Negotiating Reassurance: Parents' Narratives on Follow-Up after Cochlear Implantation
ERIC Educational Resources Information Center
Bruin, Marieke; Ohna, Stein Erik
2015-01-01
This study presents an analysis of parental experiences on follow-up after cochlear implantation. Data were constructed in semi-structured, individual interviews with the parents of 14 children who use cochlear implants. Drawing on narrative analysis, the study explores parental responses to insecurity concerning children's learning and…
Using Data Analysis Problems in a Large General Microbiology Course.
ERIC Educational Resources Information Center
Deutch, Charles E.
1997-01-01
Argues that data analysis problems can be used successfully in large introductory microbiology courses, even when exams consist entirely of multiple-choice questions and out-of-class contact with the instructor is limited. Discusses course organization, problem structure, student performance and response, advantages of using data analysis…
A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.
ERIC Educational Resources Information Center
Mayberry, Paul W.
A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…
The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis
ERIC Educational Resources Information Center
Friedman, Naomi P.; Miyake, Akira
2004-01-01
This study used data from 220 adults to examine the relations among 3 inhibition-related functions. Confirmatory factor analysis suggested that Prepotent Response Inhibition and Resistance to Distractor Interference were closely related, but both were unrelated to Resistance to Proactive Interference. Structural equation modeling, which combined…
Performing Resource Usage Analysis for a NOTIS System.
ERIC Educational Resources Information Center
Hinnebusch, Mark
1991-01-01
Outlines methods that the Florida Center for Library Automation (FCLA) has developed to estimate transaction costs and overall demand for NOTIS services. Transaction resource usage analysis is discussed, record structures are explained, institution collection size is considered, and usage and response time by hour of day is described. (six…
Current and historic impacts of nitrogen on water quality were evaluated and relationships between nutrients and ecosystem structure and function were developed for Narragansett Bay, RI. Land use land cover change analysis from 1985 thru 2005 resulted in a 7% increase in urban la...
Psychometric Properties of the Revised Mathematics Anxiety Rating Scale
ERIC Educational Resources Information Center
Baloglu, Mustafa; Zelhart, Paul F.
2007-01-01
An exploratory factor analysis and several confirmatory analyses were performed to evaluate the factorial structure of the Revised Mathematics Anxiety Rating Scale (RMARS) through the responses of 805 college students. On 559 students' scores, the instrument's construct validity was tested through a confirmatory factor analysis (CFA) and was found…
Guidelines for dynamic data acquisition and analysis
NASA Technical Reports Server (NTRS)
Piersol, Allan G.
1992-01-01
The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.
Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan
2017-01-01
Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174
Spider-web inspired multi-resolution graphene tactile sensor.
Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin
2018-05-08
Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Kyougoku, Makoto
2015-01-01
Purpose. The purpose of this study is to demonstrate the hypothetical model based on structural relationship with the occupational dysfunction on psychological problems (stress response, burnout syndrome, and depression) in healthcare workers. Method. Three cross sectional studies were conducted to assess the following relations: (1) occupational dysfunction on stress response (n = 468), (2) occupational dysfunction on burnout syndrome (n = 1,142), and (3) occupational dysfunction on depression (n = 687). Personal characteristics were collected through a questionnaire (such as age, gender, and job category, opportunities for refreshment, time spent on leisure activities, and work relationships) as well as the Classification and Assessment of Occupational Dysfunction (CAOD). Furthermore, study 1 included the Stress Response Scale-18 (SRS-18), study 2 used the Japanese Burnout Scale (JBS), and study 3 employed the Center for Epidemiological Studies Depression Scale (CES-D). The Kolmogorov–Smirnov test, confirmatory factor analysis (CFA), exploratory factor analysis (EFA), and path analysis of structural equation modeling (SEM) analysis were used in all of the studies. EFA and CFA were used to measure structural validity of four assessments; CAOD, SRS-18, JBS, and CES-D. For examination of a potential covariate, we assessed the correlation of the total and factor score of CAOD and personal factors in all studies. Moreover, direct and indirect effects of occupational dysfunction on stress response (Study 1), burnout syndrome (Study 2), and depression (Study 3) were also analyzed. Results. In study 1, CAOD had 16 items and 4 factors. In Study 2 and 3, CAOD had 16 items and 5 factors. SRS-18 had 18 items and 3 factors, JBS had 17 items and 3 factors, and CES-D had 20 items and 4 factors. All studies found that there were significant correlations between the CAOD total score and the personal factor that included opportunities for refreshment, time spent on leisure activities, and work relationships (p < 0.01). The hypothesis model results suggest that the classification of occupational dysfunction had good fit on the stress response (RMSEA = 0.061, CFI = 0.947, and TLI = 0.943), burnout syndrome (RMSEA = 0.076, CFI = 0.919, and TLI = 0.913), and depression (RMSEA = 0.060, CFI = 0.922, TLI = 0.917). Moreover, the detected covariates include opportunities for refreshment, time spent on leisure activities, and work relationships on occupational dysfunction. Conclusion. Our findings indicate that psychological problems are associated with occupational dysfunction in healthcare workers. Reduction of occupational dysfunction might be a strategy of better preventive occupational therapies for healthcare workers with psychological problems. However, longitudinal studies will be needed to determine a causal relationship. PMID:26618078
Teraoka, Mutsumi; Kyougoku, Makoto
2015-01-01
Purpose. The purpose of this study is to demonstrate the hypothetical model based on structural relationship with the occupational dysfunction on psychological problems (stress response, burnout syndrome, and depression) in healthcare workers. Method. Three cross sectional studies were conducted to assess the following relations: (1) occupational dysfunction on stress response (n = 468), (2) occupational dysfunction on burnout syndrome (n = 1,142), and (3) occupational dysfunction on depression (n = 687). Personal characteristics were collected through a questionnaire (such as age, gender, and job category, opportunities for refreshment, time spent on leisure activities, and work relationships) as well as the Classification and Assessment of Occupational Dysfunction (CAOD). Furthermore, study 1 included the Stress Response Scale-18 (SRS-18), study 2 used the Japanese Burnout Scale (JBS), and study 3 employed the Center for Epidemiological Studies Depression Scale (CES-D). The Kolmogorov-Smirnov test, confirmatory factor analysis (CFA), exploratory factor analysis (EFA), and path analysis of structural equation modeling (SEM) analysis were used in all of the studies. EFA and CFA were used to measure structural validity of four assessments; CAOD, SRS-18, JBS, and CES-D. For examination of a potential covariate, we assessed the correlation of the total and factor score of CAOD and personal factors in all studies. Moreover, direct and indirect effects of occupational dysfunction on stress response (Study 1), burnout syndrome (Study 2), and depression (Study 3) were also analyzed. Results. In study 1, CAOD had 16 items and 4 factors. In Study 2 and 3, CAOD had 16 items and 5 factors. SRS-18 had 18 items and 3 factors, JBS had 17 items and 3 factors, and CES-D had 20 items and 4 factors. All studies found that there were significant correlations between the CAOD total score and the personal factor that included opportunities for refreshment, time spent on leisure activities, and work relationships (p < 0.01). The hypothesis model results suggest that the classification of occupational dysfunction had good fit on the stress response (RMSEA = 0.061, CFI = 0.947, and TLI = 0.943), burnout syndrome (RMSEA = 0.076, CFI = 0.919, and TLI = 0.913), and depression (RMSEA = 0.060, CFI = 0.922, TLI = 0.917). Moreover, the detected covariates include opportunities for refreshment, time spent on leisure activities, and work relationships on occupational dysfunction. Conclusion. Our findings indicate that psychological problems are associated with occupational dysfunction in healthcare workers. Reduction of occupational dysfunction might be a strategy of better preventive occupational therapies for healthcare workers with psychological problems. However, longitudinal studies will be needed to determine a causal relationship.
Genetics of PCOS: A systematic bioinformatics approach to unveil the proteins responsible for PCOS.
Panda, Pritam Kumar; Rane, Riya; Ravichandran, Rahul; Singh, Shrinkhla; Panchal, Hetalkumar
2016-06-01
Polycystic ovary syndrome (PCOS) is a hormonal imbalance in women, which causes problems during menstrual cycle and in pregnancy that sometimes results in fatality. Though the genetics of PCOS is not fully understood, early diagnosis and treatment can prevent long-term effects. In this study, we have studied the proteins involved in PCOS and the structural aspects of the proteins that are taken into consideration using computational tools. The proteins involved are modeled using Modeller 9v14 and Ab-initio programs. All the 43 proteins responsible for PCOS were subjected to phylogenetic analysis to identify the relatedness of the proteins. Further, microarray data analysis of PCOS datasets was analyzed that was downloaded from GEO datasets to find the significant protein-coding genes responsible for PCOS, which is an addition to the reported protein-coding genes. Various statistical analyses were done using R programming to get an insight into the structural aspects of PCOS that can be used as drug targets to treat PCOS and other related reproductive diseases.
NASA Technical Reports Server (NTRS)
Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.
2016-01-01
Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf
2018-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf
2017-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977
Hatsis, Panos; Waters, Nigel J; Argikar, Upendra A
2017-05-01
Quantification of metabolites by mass spectrometry in the absence of authentic reference standards or without a radiolabel is often called "semiquantitative," which acknowledges that mass spectrometric responses are not truly quantitative. For many researchers, it is tempting to pursue this practice of semiquantification in early drug discovery and even preclinical development, when radiolabeled absorption, distribution, metabolism, and excretion studies are being deferred to later stages of drug development. The caveats of quantifying metabolites based on parent drug response are explored in this investigation. A set of 71 clinically relevant drugs/metabolites encompassing common biotransformation pathways was subjected to flow injection analysis coupled with electrospray ionization (ESI) mass spectrometry. The results revealed a large variation in ESI response even for structurally similar parent drug/metabolite pairs. The ESI response of each metabolite was normalized to that of the parent drug to generate an ESI relative response factor. Overall, relative response factors ranged from 0.014 (>70-fold lower response than parent) to 8.6 (8.6-fold higher response than parent). Various two-dimensional molecular descriptors were calculated that describe physicochemical, topological, and structural properties for each drug/metabolite. The molecular descriptors, along with the ESI response factors, were used in univariate analyses as well as a principal components analysis to ascertain which molecular descriptors best account for the observed discrepancies in drug/metabolite ESI response. This investigation has shown that the practice of using parent drug response to quantify metabolites should be used with caution. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Rizzi, Stephen A.
1995-01-01
Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.
Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2012-01-01
A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings
Kalkan, Erol; Chopra, Anil K.
2012-01-01
Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.
Integrated analysis of drug-induced gene expression profiles predicts novel hERG inhibitors.
Babcock, Joseph J; Du, Fang; Xu, Kaiping; Wheelan, Sarah J; Li, Min
2013-01-01
Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays.
NASA Astrophysics Data System (ADS)
Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj
2018-03-01
In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.
Integrated Analysis of Drug-Induced Gene Expression Profiles Predicts Novel hERG Inhibitors
Babcock, Joseph J.; Du, Fang; Xu, Kaiping; Wheelan, Sarah J.; Li, Min
2013-01-01
Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays. PMID:23936032
Recent development in modeling and analysis of functionally graded materials and structures
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Talha, Mohammad
2015-11-01
In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.
Evaluation of RCAS Inflow Models for Wind Turbine Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangler, J.; Bir, G.
The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.
Aeroelastic stability and response of rotating structures
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.
1993-01-01
A summary of the work performed during the progress period is presented. Analysis methods for predicting loads and instabilities of wind turbines were developed. Three new areas of research to aid the Advanced Turboprop Project (ATP) were initiated and developed. These three areas of research are aeroelastic analysis methods for cascades including blade and disk flexibility; stall flutter analysis; and computational aeroelasticity.