Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger
2013-04-22
For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.
Wells, Stephen A; Crennell, Susan J; Danson, Michael J
2014-10-01
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative. © 2014 Wiley Periodicals, Inc.
A probabilistic model for detecting rigid domains in protein structures.
Nguyen, Thach; Habeck, Michael
2016-09-01
Large-scale conformational changes in proteins are implicated in many important biological functions. These structural transitions can often be rationalized in terms of relative movements of rigid domains. There is a need for objective and automated methods that identify rigid domains in sets of protein structures showing alternative conformational states. We present a probabilistic model for detecting rigid-body movements in protein structures. Our model aims to approximate alternative conformational states by a few structural parts that are rigidly transformed under the action of a rotation and a translation. By using Bayesian inference and Markov chain Monte Carlo sampling, we estimate all parameters of the model, including a segmentation of the protein into rigid domains, the structures of the domains themselves, and the rigid transformations that generate the observed structures. We find that our Gibbs sampling algorithm can also estimate the optimal number of rigid domains with high efficiency and accuracy. We assess the power of our method on several thousand entries of the DynDom database and discuss applications to various complex biomolecular systems. The Python source code for protein ensemble analysis is available at: https://github.com/thachnguyen/motion_detection : mhabeck@gwdg.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
NASA Technical Reports Server (NTRS)
Chen, J. C.; Garba, J. A.; Wada, B. K.
1978-01-01
In the design/analysis process of a payload structural system, the accelerations at the payload/launch vehicle interface obtained from a system analysis using a rigid payload are often used as the input forcing function to the elastic payload to obtain structural design loads. Such an analysis is at best an approximation since the elastic coupling effects are neglected. This paper develops a method wherein the launch vehicle/rigid payload interface accelerations are modified to account for the payload elasticity. The advantage of the proposed method, which is exact to the extent that the physical system can be described by a truncated set of generalized coordinates, is that the complete design/analysis process can be performed within the organization responsible for the payload design. The method requires the updating of the system normal modes to account for payload changes, but does not require a complete transient solution using the composite system model. An application to a real complex structure, the Viking Spacecraft System, is given.
Groby, J-P; Lauriks, W; Vigran, T E
2010-05-01
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.
DOT National Transportation Integrated Search
2009-01-01
This study provides strong evidences from both numerical model analysis and in-situ test data to indicate that geofoam is an ideal elasto-plastic material to reduce vertical load on top of rigid culvert resting on a rigid foundation. The load on the ...
Analysis of Progressive Collapse of Complex Structures.
1982-12-01
tions of wing spar roots, although developed from experimental measure- ments, did not produce purely rigid body motions for reasons explained in...support structures in the same manner as the wings had been attached to aircraft fuselages. The support structures were extremely rigid compared to the...support structures and pinned into place within small tolerance; however, some motion of the wing spar roots with respect to the supports was
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
NASA Astrophysics Data System (ADS)
Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang
2018-01-01
In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.
Analysis on mechanics response of long-life asphalt pavement at moist hot heavy loading area
NASA Astrophysics Data System (ADS)
Xu, Xinquan; Li, Hao; Wu, Chuanhai; Li, Shanqiang
2018-04-01
Based on the durability of semi-rigid base asphalt pavement test road in Guangdong Yunluo expressway, by comparing the mechanics response of modified semi-rigid base, RCC base and inverted semi-rigid base with the state of continuous, using four unit five parameter model to evaluate rut depth of asphalt pavement structure, and through commonly used fatigue life prediction model to evaluate fatigue performance of three types of asphalt pavement structure. Theoretical calculation and four years tracking observation results of test road show that rut depth of modified semi-rigid base asphalt pavement is the minimum, the road performance is the best, and the fatigue performance is the optimal.
1981-05-01
represented as a Winkler foundation. The program can treat any number of slabs connected by steel bars or other load trans- fer devices at the joints...dimensional finite element method. The inherent flexibility of such an approach permits the analysis of a rigid pavement with steel bars and stabilized...layers and provides an efficient tool for analyzing stress conditions at the joint. Unfor- tunately, such a procedure would require a tremendously
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1976-01-01
The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.
Army Helicopter Crashworthiness
1983-10-01
protect the structure surrounding the occupied Cabin volume. Components. An important part of this program was to evaluate analysis methods that could...rigid (nonstroking) seats and the production BLACK HAWK helicopter crashworthy crewseat. Tests of three embalmed cadavers in the rigid seat gave mixed...CONDITIONS FOR RIGID SEAT TESTS WITH EMBALMED CADAVERS 1 CADAVER WEIGHT PEAK TEST NO. NO. AGE HEIGHT (LB) SEX ACCEL. (G) FRACTURE CONDITION SERIES #1
Ocean Engineering Studies Compiled 1991. Volume 9. External Pressure Housing - Conrete
1991-01-01
by inserts of different rigidities would thus be obtained. Table 1. Description of Concrete Sphere Models and Test...relationship between the insert’s rigidity and the strain increase in its vicinity. Planned investigation by NCEL employing photoelastic analysis of models of ... structural , in which only the load -carrying ability of the structure was checked. In the operational tests, the small-scale model habitat
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-01-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp–166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules. PMID:24918865
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
NASA Astrophysics Data System (ADS)
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-06-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
NASTRAN analysis of Tokamak vacuum vessel using interactive graphics
NASA Technical Reports Server (NTRS)
Miller, A.; Badrian, M.
1978-01-01
Isoparametric quadrilateral and triangular elements were used to represent the vacuum vessel shell structure. For toroidally symmetric loadings, MPCs were employed across model boundaries and rigid format 24 was invoked. Nonsymmetric loadings required the use of the cyclic symmetry analysis available with rigid format 49. NASTRAN served as an important analysis tool in the Tokamak design effort by providing a reliable means for assessing structural integrity. Interactive graphics were employed in the finite element model generation and in the post-processing of results. It was felt that model generation and checkout with interactive graphics reduced the modelling effort and debugging man-hours significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Q Ma; B Mao; P Cebe
2011-12-31
We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of themore » crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.« less
Composite theory applied to elastomers
NASA Technical Reports Server (NTRS)
Clark, S. K.
1986-01-01
Reinforced elastomers form the basis for most of the structural or load carrying applications of rubber products. Computer based structural analysis in the form of finite element codes was highly successful in refining structural design in both isotropic materials and rigid composites. This has lead the rubber industry to attempt to make use of such techniques in the design of structural cord-rubber composites. While such efforts appear promising, they were not easy to achieve for several reasons. Among these is a distinct lack of a clearly defined set of material property descriptors suitable for computer analysis. There are substantial differences between conventional steel, aluminum, or even rigid composites such as graphite-epoxy, and textile-cord reinforced rubber. These differences which are both conceptual and practical are discussed.
Load concentration due to missing members in planar faces of a large space truss
NASA Technical Reports Server (NTRS)
Waltz, J. E.
1979-01-01
A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for solutions of mixtures of these sugars at concentrations to 0.9m could be calculated with accuracy. Each sugar contributed independently to structure of solution and sound velocity values. At solute concentrations greater than 0.9m, there appeared to be some interaction among mixed solute molecules in solution.
Can deformation of a polymer film with a rigid coating model geophysical processes?
NASA Astrophysics Data System (ADS)
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
Dielectric elastomer bending tube actuators with rigid electrode structures
NASA Astrophysics Data System (ADS)
Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.
2010-04-01
The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.
Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)
2009-01-01
For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.
A new pre-loaded beam geometric stiffness matrix with full rigid body capabilities
NASA Astrophysics Data System (ADS)
Bosela, P. A.; Fertis, D. G.; Shaker, F. J.
1992-09-01
Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, including those which contain higher order effects. The cause of the problem was identified as the force imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used in dynamic analysis.
Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method
NASA Astrophysics Data System (ADS)
Hashim, N.; Agarwal, J.
2018-04-01
Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.
Spirocyclic systems derived from pyroglutamic acid.
Cowley, Andrew R; Hill, Thomas J; Kocis, Petr; Moloney, Mark G; Stevenson, Robert D; Thompson, Amber L
2011-10-21
The synthesis and likely conformational structure of rigid spirocyclic bislactams and lactam-lactones derived from pyroglutamic acid, and their suitability as lead structures for applications in drug development programmes using cheminformatic analysis, has been investgated.
Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Yu, Yi-Hsiang; van Rij, Jennifer A
2017-08-14
Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designingmore » wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.« less
NASA Astrophysics Data System (ADS)
Kubicka, Katarzyna; Radoń, Urszula; Szaniec, Waldemar; Pawlak, Urszula
2017-10-01
The paper concerns the reliability analysis of steel structures subjected to high temperatures of fire gases. Two types of spatial structures were analysed, namely with pinned and rigid nodes. The fire analysis was carried out according to prescriptions of Eurocode. The static-strength analysis was conducted using the finite element method (FEM). The MES3D program, developed by Szaniec (Kielce University of Technology, Poland), was used for this purpose. The results received from MES3D made it possible to carry out the reliability analysis using the Numpress Explore program that was developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences [9]. The measurement of reliability of structures is the Hasofer-Lind reliability index (β). The reliability analysis was carried out according to approximation (FORM, SORM) and simulation (Importance Sampling, Monte Carlo) methods. As the fire progresses, the value of reliability index decreases. The analysis conducted for the study made it possible to evaluate the impact of node types on those changes. In real structures, it is often difficult to define correctly types of nodes, so some simplifications are made. The presented analysis contributes to the recognition of consequences of such assumptions for the safety of structures, subjected to fire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy
2015-04-15
Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the “nanostructure problem”. Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than inmore » the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy
2015-04-15
Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au-133(SPh-tBu)(52), was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than inmore » the slightly larger Au-144(SCH2CH2Ph)(60). Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.« less
Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C
2015-04-15
Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.
Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft
NASA Astrophysics Data System (ADS)
Juhasz, Ondrej
A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various control systems are flown in a fixed-base simulator. Pilot inputs and aircraft performance are recorded and analyzed.
NASA Technical Reports Server (NTRS)
Ogawa, A.; Sofue, Y.; Isobe, T.
1979-01-01
A torsional stress analysis of hollow fans blades by the finite element method is presented. The fans are considered to be double circular arc blades, hollowed 30 percent, and twisted by a component of the centrifugal force by the rated revolution. The effects of blade hollowing on strength and rigidity are discussed. The effects of reinforcing webs, placed in the hollowed section in varying numbers and locations, on torsional rigidity and the convergence of stresses, are reported. A forecast of the 30 percent hollowing against torsional loadings is discussed.
Swimming of an assembly of rigid spheres at low Reynolds number.
Felderhof, B U
2014-11-01
A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small amplitude, swimming optimization of the swimming speed at given power leads to an eigenvalue problem. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2more » possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights: • Four new Cd{sup II} compounds with 4-Hpzpt and flexible/rigid dicarboxylate coligands. • Structural analysis of all compounds. • luminescent property of all compounds.« less
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508
Blacklock, Kristin; Verkhivker, Gennady M
2014-06-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.
Thermostability in rubredoxin and its relationship to mechanical rigidity
NASA Astrophysics Data System (ADS)
Rader, A. J.
2010-03-01
The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.
Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method
Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao
2016-01-01
This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661
Probabilistic structural analysis by extremum methods
NASA Technical Reports Server (NTRS)
Nafday, Avinash M.
1990-01-01
The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.
Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision
Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao
2015-01-01
In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863
A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.
Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang
2017-11-01
DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.
1994-01-01
When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.
Rocket/launcher structural dynamics
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1976-01-01
The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.
Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure
NASA Astrophysics Data System (ADS)
Saha, S.; Chattopadhyay, A.; Singh, A. K.
2018-02-01
The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it. Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters, initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress in context of considered problem has been carried out with detailed analysis in a comparative approach.
Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele
2013-12-23
Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.
Structural changes of homodimers in the PDB.
Koike, Ryotaro; Amemiya, Takayuki; Horii, Tatsuya; Ota, Motonori
2018-04-01
Protein complexes are involved in various biological phenomena. These complexes are intrinsically flexible, and structural changes are essential to their functions. To perform a large-scale automated analysis of the structural changes of complexes, we combined two original methods. An application, SCPC, compares two structures of protein complexes and decides the match of binding mode. Another application, Motion Tree, identifies rigid-body motions in various sizes and magnitude from the two structural complexes with the same binding mode. This approach was applied to all available homodimers in the Protein Data Bank (PDB). We defined two complex-specific motions: interface motion and subunit-spanning motion. In the former, each subunit of a complex constitutes a rigid body, and the relative movement between subunits occurs at the interface. In the latter, structural parts from distinct subunits constitute a rigid body, providing the relative movement spanning subunits. All structural changes were classified and examined. It was revealed that the complex-specific motions were common in the homodimers, detected in around 40% of families. The dimeric interfaces were likely to be small and flat for interface motion, while large and rugged for subunit-spanning motion. Interface motion was accompanied by a drastic change in contacts at the interface, while the change in the subunit-spanning motion was moderate. These results indicate that the interface properties of homodimers correlated with the type of complex-specific motion. The study demonstrates that the pipeline of SCPC and Motion Tree is useful for the massive analysis of structural change of protein complexes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Xiukun
2016-06-01
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
Matching multiple rigid domain decompositions of proteins
Flynn, Emily; Streinu, Ileana
2017-01-01
We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528
Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure
NASA Astrophysics Data System (ADS)
Nazri, N. A.; Sani, M. S. M.
2017-10-01
Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.
Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson
2013-09-11
Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Meingast, Markus; Legrand, Mathias
2015-02-01
This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
A crawling robot driven by multi-stable origami
NASA Astrophysics Data System (ADS)
Pagano, Alexander; Yan, Tongxi; Chien, Brian; Wissa, A.; Tawfick, S.
2017-09-01
Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.
Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis
NASA Astrophysics Data System (ADS)
Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei
2014-06-01
Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N^2). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal mode analysis and Gaussian network model (GNM). The accuracy of the FRI method is tested using four sets of proteins, three sets of relatively small-, medium-, and large-sized structures and an extended set of 365 proteins. A fifth set of proteins is used to compare the efficiency of the FRI, fFRI, aFRI, and GNM methods. Intensive validation and comparison indicate that the FRI, particularly the fFRI, is orders of magnitude more efficient and about 10% more accurate overall than some of the most popular methods in the field. The proposed fFRI is able to predict B-factors for α-carbons of the HIV virus capsid (313 236 residues) in less than 30 seconds on a single processor using only one core. Finally, we demonstrate the application of FRI and aFRI to protein domain analysis.
Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei, E-mail: wei@math.msu.edu
Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions,more » while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal mode analysis and Gaussian network model (GNM). The accuracy of the FRI method is tested using four sets of proteins, three sets of relatively small-, medium-, and large-sized structures and an extended set of 365 proteins. A fifth set of proteins is used to compare the efficiency of the FRI, fFRI, aFRI, and GNM methods. Intensive validation and comparison indicate that the FRI, particularly the fFRI, is orders of magnitude more efficient and about 10% more accurate overall than some of the most popular methods in the field. The proposed fFRI is able to predict B-factors for α-carbons of the HIV virus capsid (313 236 residues) in less than 30 seconds on a single processor using only one core. Finally, we demonstrate the application of FRI and aFRI to protein domain analysis.« less
Analytic analysis of auxetic metamaterials through analogy with rigid link systems
NASA Astrophysics Data System (ADS)
Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.
2018-02-01
In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-02-13
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures-and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body-bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body-bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains.
Numerical analysis of the cylindrical rigidity of the vertical steel tank shell
NASA Astrophysics Data System (ADS)
Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr
2017-10-01
The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.
The Energy Landscape Analysis of Cancer Mutations in Protein Kinases
Dixit, Anshuman; Verkhivker, Gennady M.
2011-01-01
The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754
Towards accurate modeling of noncovalent interactions for protein rigidity analysis.
Fox, Naomi; Streinu, Ileana
2013-01-01
Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future extensions. We have measured the gain in performance by comparing different modeling methods for noncovalent interactions. We showed that new criteria for modeling hydrogen bonds and hydrophobic interactions can significantly improve the results. The two new methods proposed here have been implemented and made publicly available in the current version of KINARI (v1.3), together with the benchmarking tools, which can be downloaded from our software's website, http://kinari.cs.umass.edu.
Towards accurate modeling of noncovalent interactions for protein rigidity analysis
2013-01-01
Background Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. Results To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. Conclusion To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future extensions. We have measured the gain in performance by comparing different modeling methods for noncovalent interactions. We showed that new criteria for modeling hydrogen bonds and hydrophobic interactions can significantly improve the results. The two new methods proposed here have been implemented and made publicly available in the current version of KINARI (v1.3), together with the benchmarking tools, which can be downloaded from our software's website, http://kinari.cs.umass.edu. PMID:24564209
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
21 CFR 890.3610 - Rigid pneumatic structure orthosis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610 Rigid...
Dynamic analysis using superelements for a large helicopter model
NASA Technical Reports Server (NTRS)
Patel, M. P.; Shah, L. C.
1978-01-01
Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE
NASA Technical Reports Server (NTRS)
Hull, R. A.
1994-01-01
The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.
Principal Effects of Axial Load on Moment-Distribution Analysis of Rigid Structures
NASA Technical Reports Server (NTRS)
James, Benjamin Wylie
1935-01-01
This thesis presents the method of moment distribution modified to include the effect of axial load upon the bending moments. This modification makes it possible to analyze accurately complex structures, such as rigid fuselage trusses, that heretofore had to be analyzed by approximate formulas and empirical rules. The method is simple enough to be practicable even for complex structures, and it gives a means of analysis for continuous beams that is simpler than the extended three-moment equation now in common use. When the effect of axial load is included, it is found that the basic principles of moment distribution remain unchanged, the only difference being that the factors used, instead of being constants for a given member, become functions of the axial load. Formulas have been developed for these factors, and curves plotted so that their applications requires no more work than moment distribution without axial load. Simple problems have been included to illustrate the use of the curves.
NASA Technical Reports Server (NTRS)
Robinson, J. C.
1979-01-01
Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.
Trajectory Control for Very Flexible Aircraft
2006-10-30
aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order
Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickels, Jonathan D.; Perticaroli, Stefania; Ehlers, Georg
Poly-L-glutamic acid (PGA) is a widely used biomaterial, with applications ranging from drug delivery and biological glues to food products and as a tissue engineering scaffold. A biodegradable material with flexible conjugation functional groups, tunable secondary structure, and mechanical properties, PGA has potential as a tunable matrix material in mechanobiology. Some recent studies in proteins connecting dynamics, nanometer length scale rigidity, and secondary structure suggest a new point of view from which to analyze and develop this promising material. Our paper characterizes the structure, topology, and rigidity properties of PGA prepared with different molecular weights and secondary structures through variousmore » techniques including scanning electron microscopy, FTIR, light, and neutron scattering spectroscopy. On the length scale of a few nanometers, rigidity is determined by hydrogen bonding interactions in the presence of neutral species and by electrostatic interactions when the polypeptide is negatively charged. Finally, when probed over hundreds of nanometers, the rigidity of these materials is modified by long range intermolecular interactions that are introduced by the supramolecular structure.« less
Experimental method to account for structural compliance in nanoindentation measurements
Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Robert J. Moon; D. S. Stone
2008-01-01
The standard Oliver–Pharr nanoindentation analysis tacitly assumes that the specimen is structurally rigid and that it is both semi-infinite and homogeneous. Many specimens violate these assumptions. We show that when the specimen flexes or possesses heterogeneities, such as free edges or interfaces between regions of different properties, artifacts arise...
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery
Liu, Jin
2016-01-01
Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535
Analysis of Cracking in Jointed Plain Concrete Pavements
DOT National Transportation Integrated Search
2017-03-01
This paper investigates the trends of longitudinal and transverse cracking in jointed concrete pavements based on Long-Term Pavement Performance (LTPP) Program Strategic Study of Structural Factors for Rigid Pavements (SPS-2) data. The impacts of sla...
Trans-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics
NASA Astrophysics Data System (ADS)
Ter Brake, J. H. M.; Mijlhoff, F. C.
1981-12-01
The molecular structure of trans-pent-2-ene has been investigated, using electron diffraction, vibrational analysis and molecular mechanics. It is possible to Fit a model, describing trans-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics shows that trans-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[-C-C] = 148.4(1), r[-CC-] = 133.4(2), r[-C-C-] = 157.6(5), r[C-H] = 108.2(1)pm; ∠[-C-CC-] = 125.4(3), ∠[C-C-C-] = 115.6(6), ∠[-C-C-H] = 12.7(6), ∠[-CC-H] = 129(2)°. Standard deviations given in parentheses refer to the last significant digit.
Tile-based rigidization surface parametric design study
NASA Astrophysics Data System (ADS)
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of variations in geometric design parameters, operating parameters, and architectural variations on the performance evaluation metrics. The results of this study bring insight into the rigidization behavior of this architecture, and provide design guidelines and expose tradeoffs to form the basis for the design of tile-based rigidization surfaces for a wide range of applications.
NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS
BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE
2013-01-01
The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643
Multiscale multiphysics and multidomain models—Flexibility and rigidity
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^2)$\\end{document}O(N2) at most, where N is the number of atoms or residues, in contrast to \\documentclass[12pt]{minimal}\\begin{document}${\\cal O}(N^3)$\\end{document}O(N3) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR. PMID:24320318
Multiscale multiphysics and multidomain models—Flexibility and rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei, E-mail: wei@math.msu.edu
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomicmore » charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O(N{sup 2}) at most, where N is the number of atoms or residues, in contrast to O(N{sup 3}) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR.« less
Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W
2011-05-01
The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.
Construction patterns of birds' nests provide insight into nest-building behaviours.
Biddle, Lucia; Goodman, Adrian M; Deeming, D Charles
2017-01-01
Previous studies have suggested that birds and mammals select materials needed for nest building based on their thermal or structural properties, although the amounts or properties of the materials used have been recorded for only a very small number of species. Some of the behaviours underlying the construction of nests can be indirectly determined by careful deconstruction of the structure and measurement of the biomechanical properties of the materials used. Here we examined this idea in an investigation of Bullfinch ( Pyrrhula pyrrhula ) nests as a model for open-nesting songbird species that construct a "twig" nest, and tested the hypothesis that materials in different parts of nests serve different functions. The quantities of materials present in the nest base, sides and cup were recorded before structural analysis. Structural analysis showed that the base of the outer nests were composed of significantly thicker, stronger and more rigid materials compared to the side walls, which in turn were significantly thicker, stronger and more rigid than materials used in the cup. These results suggest that the placement of particular materials in nests may not be random, but further work is required to determine if the final structure of a nest accurately reflects the construction process.
Electrostatic contribution to twist rigidity of DNA.
Mohammad-Rafiee, Farshid; Golestanian, Ramin
2004-06-01
The electrostatic contribution to the twist rigidity of DNA is studied, and it is shown that the Coulomb self-energy of the double-helical sugar-phosphate backbone makes a considerable contribution-the electrostatic twist rigidity of DNA is found to be C(elec) approximately 5 nm, which makes up about 7% of its total twist rigidity ( C(DNA) approximately 75 nm). The electrostatic twist rigidity is found, however, to depend only weakly on the salt concentration, because of a competition between two different screening mechanisms: (1) Debye screening by the salt ions in the bulk, and (2) structural screening by the periodic charge distribution along the backbone of the helical polyelectrolyte. It is found that, depending on the parameters, the electrostatic contribution to the twist rigidity could stabilize or destabilize the structure of a helical polyelectrolyte.
Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.
Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow
NASA Astrophysics Data System (ADS)
Moreira, N.; Dias, R.
2018-05-01
The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.
Topological classification of the Goryachev integrable case in rigid body dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaenko, S S
2016-01-31
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in othermore » words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles.« less
Rigidity of transmembrane proteins determines their cluster shape
NASA Astrophysics Data System (ADS)
Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas
2016-01-01
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
Static aeroelastic analysis and tailoring of a single-element racing car wing
NASA Astrophysics Data System (ADS)
Sadd, Christopher James
This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.
Simple models for rope substructure mechanics: application to electro-mechanical lifts
NASA Astrophysics Data System (ADS)
Herrera, I.; Kaczmarczyk, S.
2016-05-01
Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.
Enhanced enzyme kinetic stability by increasing rigidity within the active site.
Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan
2014-03-14
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Caldwell, Shane J.
2012-01-01
Aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6′)-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5′-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (RG) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage. PMID:22290965
Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-07-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Krüger, Dennis M.; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-01-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement. PMID:23609541
Rail passenger equipment collision tests : analysis of structural measurements
DOT National Transportation Integrated Search
2000-11-01
A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...
Structural Crashworthiness and Failure
1993-04-16
body motion occurs. This rigid -plastic idealization for dynamically loaded structures is based upon the fact that the plastic deformation of a...in general, for any tensor variable x, i represents the convective derivative. It should be noted that the rigid body rotation is included in the...clamped, impulsively loaded, rigid - plastic beam.’ (a) First phase of motion with stationary transverse plastic hinges at A and E and stationary plastic
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit PMID:25816325
Barradas-Bautista, Didier; Moal, Iain H; Fernández-Recio, Juan
2017-07-01
Protein-protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein-protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid-body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near-native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid-body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set-theoretic measure to test whether the scoring functions are capable of identifying near-native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287-1297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.; Bennett, R. M.
1982-01-01
Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted.
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
Formation metrology and control for large separated optics space telescopes
NASA Technical Reports Server (NTRS)
Mettler, E.; Quadrelli, M.; Breckenridge, W.
2002-01-01
In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Beltukov, Y M; Fusco, C; Parshin, D A; Tanguy, A
2016-02-01
The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-01-01
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures—and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body–bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body–bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains. PMID:24379431
Nonlinear mechanics of non-rigid origami: an efficient computational approach
NASA Astrophysics Data System (ADS)
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Liu, K; Paulino, G H
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on 'bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.
2017-01-01
Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.
Computational Analysis of Effect of Transient Fluid Force on Composite Structures
2013-12-01
as they well represent an E-glass fiber reinforced composite frequently used in research and industrial applications. The fluid domain was sized...provide unique perspectives on peak stress ratios . The two models both share increased structural rigidity. The cylinder is reinforced by... Poisson ratio of 0.3 and Young’s modulus of 20 GPa were added to the transient structural engineering data cell (Figure 69). 78 Figure 69. E-Glass
Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.
2010-01-01
The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117
24 CFR 3280.303 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Section 3280.303 Housing and Urban Development Regulations Relating to Housing and Urban Development... quality of work of the various trades. (c) Structural analysis. The strength and rigidity of the component... tests specified in paragraph (g) of this section. (f) Allowable design stress. The design stresses of...
24 CFR 3280.303 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Section 3280.303 Housing and Urban Development Regulations Relating to Housing and Urban Development... quality of work of the various trades. (c) Structural analysis. The strength and rigidity of the component... tests specified in paragraph (g) of this section. (f) Allowable design stress. The design stresses of...
24 CFR 3280.303 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Section 3280.303 Housing and Urban Development Regulations Relating to Housing and Urban Development... quality of work of the various trades. (c) Structural analysis. The strength and rigidity of the component... tests specified in paragraph (g) of this section. (f) Allowable design stress. The design stresses of...
24 CFR 3280.303 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 3280.303 Housing and Urban Development Regulations Relating to Housing and Urban Development... quality of work of the various trades. (c) Structural analysis. The strength and rigidity of the component... tests specified in paragraph (g) of this section. (f) Allowable design stress. The design stresses of...
24 CFR 3280.303 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Section 3280.303 Housing and Urban Development Regulations Relating to Housing and Urban Development... quality of work of the various trades. (c) Structural analysis. The strength and rigidity of the component... tests specified in paragraph (g) of this section. (f) Allowable design stress. The design stresses of...
Construction patterns of birds’ nests provide insight into nest-building behaviours
Goodman, Adrian M.
2017-01-01
Previous studies have suggested that birds and mammals select materials needed for nest building based on their thermal or structural properties, although the amounts or properties of the materials used have been recorded for only a very small number of species. Some of the behaviours underlying the construction of nests can be indirectly determined by careful deconstruction of the structure and measurement of the biomechanical properties of the materials used. Here we examined this idea in an investigation of Bullfinch (Pyrrhula pyrrhula) nests as a model for open-nesting songbird species that construct a “twig” nest, and tested the hypothesis that materials in different parts of nests serve different functions. The quantities of materials present in the nest base, sides and cup were recorded before structural analysis. Structural analysis showed that the base of the outer nests were composed of significantly thicker, stronger and more rigid materials compared to the side walls, which in turn were significantly thicker, stronger and more rigid than materials used in the cup. These results suggest that the placement of particular materials in nests may not be random, but further work is required to determine if the final structure of a nest accurately reflects the construction process. PMID:28265501
Pilot modeling and closed-loop analysis of flexible aircraft in the pitch tracking task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
The issue addressed in the appropriate modeling technique for pilot vehicle analysis of large flexible aircraft, when the frequency separation between the rigid-body mode and the dynamic aeroelastic modes is reduced. This situation was shown to have significant effects on pitch-tracking performance and subjective rating of the task, obtained via fixed base simulation. Further, the dynamics in these cases are not well modeled with a rigid-body-like model obtained by including only 'static elastic' effects, for example. It is shown that pilot/vehicle analysis of this data supports the hypothesis that an appropriate pilot-model structure is an optimal-control pilot model of full order. This is in contrast to the contention that a representative model is of reduced order when the subject is controlling high-order dynamics as in a flexible vehicle. The key appears to be in the correct assessment of the pilot's objective of attempting to control 'rigid-body' vehicle response, a response that must be estimated by the pilot from observations contaminated by aeroelastic dynamics. Finally, a model-based metric is shown to correlate well with the pilot's subjective ratings.
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2012-01-01
A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.
2001-01-01
Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.
NASA Astrophysics Data System (ADS)
Naritomi, Yusuke; Fuchigami, Sotaro
2011-02-01
Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.
Naritomi, Yusuke; Fuchigami, Sotaro
2011-02-14
Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.
Overhead Costs and Rates in the U.S. Defense Industrial Base. Volume 1
1980-10-01
Manager rather than to establish rigidly defined cost accounting structures. The conclusions to be own from the analysis were that overhead costs have...specific costs which make up tho overhead account ; whether management is controlling them; whether these costs are "reasonable" and the external factors... cost accounting structures, . ..... ....... .... ... ............................... , , ,’" ’ .. -17- and since there is no one accounting definition of
Complex eigenvalue analysis of rotating structures
NASA Technical Reports Server (NTRS)
Patel, J. S.; Seltzer, S. M.
1972-01-01
A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.
Molecular dynamics study of silicon carbide properties under external dynamic loading
NASA Astrophysics Data System (ADS)
Utkin, A. V.; Fomin, V. M.
2017-10-01
In this study, molecular dynamic simulations of high-velocity impact of a spherical 3C-SiC cluster, with a wide range of velocities (from 100 to 2600 m/s) and with a rigid wall, were performed. The analysis of the final structure shows that no structural phase transformation occurred in the material, despite the high pressure during the collision process.
Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.
Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris
2014-08-01
The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.
Nagasaka, Kei; Mizuno, Koji; Thomson, Robert
2018-03-26
For occupant protection, it is important to understand how a car's deceleration time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution to the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to 2 dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A 2-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of the 2-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear, whereas the cross-sectional force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the cross-sectional forces at the rear end of the front rails due to the deformation of the passenger compartment. For a pedestrian headform impact, the inertial and structural forces of the hood contributed to peaks of the headform deceleration in the initial and latter phases, respectively. Using the 2-dimensional energy derivative method, it is possible to analyze an oblique impact or a pedestrian headform impact with large rotations. This method has advantages compared to the conventional approach using cross-sectional forces because the contribution of each component to system deceleration can be determined.
Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk
NASA Astrophysics Data System (ADS)
Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.
2018-03-01
An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.
Potential and kinetic energetic analysis of phonon modes in varied molecular solids
NASA Astrophysics Data System (ADS)
Kraczek, Brent
2015-03-01
We calculate partitioned kinetic and potential energies of the phonon modes in molecular solids to illuminate the dynamical behavior of the constituent molecules. This enables analysis of the relationship between the characteristics of sets of phonon modes, molecular structure and chemical reactivity by partitioning the kinetic energy into the translational, rotational and vibrational motions of groups of atoms (including molecules), and the potential energy into the energy contained within interatomic interactions. We consider three solids of differing size and rigidity: naphthalene (C1 0 H6), nitromethane (CH3NO2)andα-HMX(C4H8N8O8). Naphthalene and nitromethane mostly act in the semi-rigid manner often expected in molecular solids. HMX exhibits behavior that is significantly less-rigid. While there are definite correlations between the kinetic and potential energetic analyses, there are also differences, particularly in the excitation of chemical bonds by low-frequency lattice modes. This suggests that in many cases computational and experimental methods dependent on atomic displacements may not identify phonon modes active in chemical reactivity.
14 CFR 25.473 - Landing load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... presence of systems or procedures significantly affects the lift. (c) The method of analysis of airplane... dynamic characteristics. (2) Spin-up and springback. (3) Rigid body response. (4) Structural dynamic response of the airframe, if significant. (d) The landing gear dynamic characteristics must be validated by...
Attitude output feedback control for rigid spacecraft with finite-time convergence.
Hu, Qinglei; Niu, Guanglin
2017-09-01
The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Handedness in shearing auxetics creates rigid and compliant structures
NASA Astrophysics Data System (ADS)
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
[Basis for designing a medical course curriculum].
Villarreal, R; Bojalil, L F; Mercer, H
1977-01-01
This article sets forth the reasons for the structure given to the Division of Biology and Health on the Xochimilco campus of Metropolitan Autonomous University in Mexico: to adjust the university to the process of social change going forward in the country and gear the university to the problems of the present by avoiding the rigidity of its structure. The basic aspects of curriculum design are cited against a background of an historical analysis of the socioeconomic structure of education and health. The principles underlying the curriculum and the course work are then described on the basis of that analysis.
The Seismic Design of Waterfront Retaining Structures
1993-01-01
of elastic backfill behind a rigid wall .... .......... .. 134 5.2 Pressure distributions on smooth rigid wall for l-g static horizontal body force...135 5.3 Resultant force and resultant moment on smooth rigid wall for l-g static horizontal body force...distributions on smooth rigid wall for 1-g static horizontal body force clearly showed the limitations of Woods simplified procedure when this condi- tion is not
Simpson, G; Fisher, C; Wright, D K
2001-01-01
Continuing earlier studies into the relationship between the residual limb, liner and socket in transtibial amputees, we describe a geometrically accurate non-linear model simulating the donning of a liner and then a socket. The socket is rigid and rectified and the liner is a polyurethane geltype which is accurately described using non-linear (Mooney-Rivlin) material properties. The soft tissue of the residual limb is modelled as homogeneous, non-linear and hyperelastic and the bone structure within the residual limb is taken as rigid. The work gives an indication of how the stress induced by the process of donning the rigid socket is redistributed by the liner. Ultimately we hope to understand how the liner design might be modified to reduce discomfort. The ANSYS finite element code, version 5.6 is used.
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele
2017-07-01
The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.
Thin structured rigid body for acoustic absorption
NASA Astrophysics Data System (ADS)
Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.
2017-01-01
We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.
Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.
2014-08-01
In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.
Prospective Middle School Mathematics Teachers' Preconceptions of Geometric Translations
ERIC Educational Resources Information Center
Yanik, H. Bahadir
2011-01-01
This article reports an analysis of 44 prospective middle school mathematics teachers' pre-existing knowledge of rigid geometric transformations, specifically the geometric translations. The main data source for this study was the participants' responses to the tasks that were presented during semi-structured clinical interviews. The findings of…
DOT National Transportation Integrated Search
1998-03-01
The contribution of a cement-stabilized base course to the strength of the rigid pavement structure is poorly understood. The objective of this research was to obtain data on the response of the rigid pavement slab-joint-foundation system by conducti...
Systems design and analysis of the microwave radiometer spacecraft
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.
CHEMICAL RIGIDIZATION OF EXPANDABLE STRUCTURES.
The objective of this program was to develop a chemical rigidization process that could be activated by an on-command mechanism and be capable of...and rigidized in the high vacuum facilities atWright-Patterson AFB, Ohio and were delivered to the Air Force. A fail-safe chemical rigidization system...have been varied from fifteen minutes to two hours. The chemical system, a vinyl-type monomer, has exhibited a sustained shelf-life, under ambient
ACOSS Eight (Active Control of Space Structures), Phase 2
1981-09-01
A-2 A-2 Nominal Model - Equipment Section and Solar Panels ....... A-3 A-3 Nominal Model - Upper Support .-uss ...... ............ A-4 A...sensitivity analysis technique ef selecting critical system parameters is applied tc the Diaper tetrahedral truss structure (See Section 4-2...and solar panels are omitted. The precision section is mounted on isolators to inertially r•" I fixed rigid support. The mode frequencies of this
Designing of self-deploying origami structures using geometrically misaligned crease patterns
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of ‘rigid folding’, i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by ‘holes’ such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models. PMID:26997884
Designing of self-deploying origami structures using geometrically misaligned crease patterns.
Saito, Kazuya; Tsukahara, Akira; Okabe, Yoji
2016-01-01
Usually, origami-based morphing structures are designed on the premise of 'rigid folding', i.e. the facets and fold lines of origami can be replaced with rigid panels and ideal hinges, respectively. From a structural mechanics viewpoint, some rigid-foldable origami models are overconstrained and have negative degrees of freedom (d.f.). In these cases, the singularity in crease patterns guarantees their rigid foldability. This study presents a new method for designing self-deploying origami using the geometrically misaligned creases. In this method, some facets are replaced by 'holes' such that the systems become a 1-d.f. mechanism. These perforated origami models can be folded and unfolded similar to rigid-foldable (without misalignment) models because of their d.f. focusing on the removed facets, the holes will deform according to the motion of the frame of the remaining parts. In the proposed method, these holes are filled with elastic parts and store elastic energy for self-deployment. First, a new extended rigid-folding simulation technique is proposed to estimate the deformation of the holes. Next, the proposed method is applied on arbitrary-size quadrilateral mesh origami. Finally, by using the finite-element method, the authors conduct numerical simulations and confirm the deployment capabilities of the models.
NASA Technical Reports Server (NTRS)
Savelyev, V. A.
1979-01-01
The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Quinn, R. D.; Norris, M. A.
1984-01-01
The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kure, G.; Jenssen, D.N.; Naesje, K.
1984-09-11
An offshore platform structure, particularly intended to be installed in waters where drifting iceberg frequently appear, the platform structure being intended to be founded in a sea bed and comprises a substructure, a superstructure rigidly affixed to the substructure and extending vertically up above the sea level supporting a deck superstructure at its upper end. The horizontal cross-sectional area of the substructure is substantially greater than tath of the superstructure. The substructure rigidly supports a fender structure, the fender structure comprising an outer peripherally arranged wall and an inner cylindrical wall the inner and outer wall being rigidly interconnected bymore » means of a plurality of vertical and/or horizontal partition walls, dividing the fender structure into a plurality of cells or compartlents. The fender structure is arranged in spaced relation with respect to the superstructure.« less
Noncovalent Interactions in the Asymmetric Synthesis of Rigid, Conjugated Helical Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasaka, Makoto; Pink, Maren; Rajca, Suchada
Tetrakis({beta}-trithiophene) 1 folds into a helical conformation (RRR) that facilitates double ring annelation, with high diastereoselectivity and modest enantioselectivity, to provide bis[7]helicene 2 (MRM). This rigid, helically locked structure has enhanced chiroptical properties similar to the corresponding [15]helicene.
NASA Astrophysics Data System (ADS)
Zabolotnov, Yu. M.
2016-07-01
We analyze the spatial motion of a rigid body fixed to a cable about its center of mass when the orbital cable system is unrolling. The analysis is based on the integral manifold method, which permits separating the rigid body motion into the slow and fast components. The motion of the rigid body is studied in the case of slow variations in the cable tension force and under the action of various disturbances.We estimate the influence of the static and dynamic asymmetry of the rigid body on its spatial motion about the cable fixation point. An example of the analysis of the rigid body motion when the orbital cable system is unrolling is given for a special program of variations in the cable tension force. The conditions of applicability of the integral manifold method are analyzed.
Eloy, Jean Anderson; Shukla, Pratik A; Choudhry, Osamah J; Singh, Rahul; Liu, James K
2012-12-01
The endoscopic endonasal transcribriform approach (EETA) is a viable alternative option for resection of selected anterior skull base (ASB) tumors. However, this technique results in the creation of large cribriform defects. Some have reported the use of a rigid substitute for ASB reconstruction to prevent postoperative frontal lobe sagging. We evaluate the degree of frontal lobe sagging using our triple-layer technique [fascia lata, acellular dermal allograft, and pedicled nasoseptal flap (PNSF)] without the use of rigid structural reconstruction for large cribriform defects. Retrospective analysis. Nine patients underwent an EETA for resection of large ASB tumors from August 2010 to November 2011. The degree of frontal lobe displacement after EETA, defined as the ASB position, was calculated based on the most inferior position of the frontal lobe relative to the nasion-sellar line defined on preoperative and postoperative imaging. A positive value signified upward displacement, and a negative value represented inferior displacement of the frontal lobe. The average cribriform defect size was 9.3 cm(2) (range, 5.0-13.8 cm(2) ). The average distance of postoperative frontal lobe displacement was 0.2 mm (range, -3.9 to 2.9 mm) without any cases of significant brain sagging. The mean follow-up period was 10.1 months (range, 4-19 months). There were no postoperative CSF leaks. Rigid structural repair may not be necessary for ASB defect repair after endoscopic endonasal resection of the cribriform plate. Our technique for multilayer cranial base reconstruction appears to be satisfactory in preventing delayed frontal lobe sagging. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Experimental Study on Surrogate Nuclear Fuel Rods under Reversed Cyclic Bending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
The mechanical behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending or bending fatigue must be understood to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup fuels (>45 GWd/MTU), which have the potential for increased structural damage. It has been demonstrated that the bending fatigue of SNF rods can be effectively studied using surrogate rods. In this investigation, surrogate rods made of stainless steel (SS) 304 cladding and aluminum oxide pellets were tested under load or moment control at a variety of amplitude levels at 5 Hz using the Cyclic Integrated Reversible-Bendingmore » Fatigue Tester developed at Oak Ridge National Laboratory. The behavior of the rods was further characterized using flexural rigidity and hysteresis data, and fractography was performed on the failed rods. The proposed surrogate rods captured many of the characteristics of deformation and failure mode observed in SNF, including the linear-to-nonlinear deformation transition and large residual curvature in static tests, PPI and PCMI failure mechanisms, and large variation in the initial structural condition. Rod degradation was measured and characterized by measuring the flexural rigidity; the degradation of the rigidity depended on both the moment amplitude applied and the initial structural condition of the rods. It was also shown that a cracking initiation site can be located on the internal surface or the external surface of cladding. Finally, fatigue damage to the bending rods can be described in terms of flexural rigidity, and the fatigue life of rods can be predicted once damage model parameters are properly evaluated. The developed experimental approach, test protocol, and analysis method can be used to study the vibration integrity of SNF rods in the future.« less
Structural singularities in Ge(x)Te(100-x) films.
Piarristeguy, A A; Micoulaut, M; Escalier, R; Jóvári, P; Kaban, I; van Eijk, J; Luckas, J; Ravindren, S; Boolchand, P; Pradel, A
2015-08-21
Structural and calorimetric investigation of Ge(x)Te(100-x) films over wide range of concentration 10 < x < 50 led to evidence two structural singularities at x ∼ 22 at. % and x ∼ 33-35 at. %. Analysis of bond distribution, bond variability, and glass thermal stability led to conclude to the origin of the first singularity being the flexible/rigid transition proposed in the framework of rigidity model and the origin of the second one being the disappearance of the undercooled region resulting in amorphous materials with statistical distributions of bonds. While the first singularity signs the onset of the Ge-Ge homopolar bonds, the second is related to compositions where enhanced Ge-Ge correlations at intermediate lengthscales (7.7 Å) are observed. These two threshold compositions correspond to recently reported resistance drift threshold compositions, an important support for models pointing the breaking of homopolar Ge-Ge bonds as the main phenomenon behind the ageing of phase change materials.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S; Murphy, Patrick C.
2014-01-01
Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.
LATDYN - PROGRAM FOR SIMULATION OF LARGE ANGLE TRANSIENT DYNAMICS OF FLEXIBLE AND RIGID STRUCTURES
NASA Technical Reports Server (NTRS)
Housner, J. M.
1994-01-01
LATDYN is a computer code for modeling the Large Angle Transient DYNamics of flexible articulating structures and mechanisms involving joints about which members rotate through large angles. LATDYN extends and brings together some of the aspects of Finite Element Structural Analysis, Multi-Body Dynamics, and Control System Analysis; three disciplines that have been historically separate. It combines significant portions of their distinct capabilities into one single analysis tool. The finite element formulation for flexible bodies in LATDYN extends the conventional finite element formulation by using a convected coordinate system for constructing the equation of motion. LATDYN's formulation allows for large displacements and rotations of finite elements subject to the restriction that deformations within each are small. Also, the finite element approach implemented in LATDYN provides a convergent path for checking solutions simply by increasing mesh density. For rigid bodies and joints LATDYN borrows extensively from methodology used in multi-body dynamics where rigid bodies may be defined and connected together through joints (hinges, ball, universal, sliders, etc.). Joints may be modeled either by constraints or by adding joint degrees of freedom. To eliminate error brought about by the separation of structural analysis and control analysis, LATDYN provides symbolic capabilities for modeling control systems which are integrated with the structural dynamic analysis itself. Its command language contains syntactical structures which perform symbolic operations which are also interfaced directly with the finite element structural model, bypassing the modal approximation. Thus, when the dynamic equations representing the structural model are integrated, the equations representing the control system are integrated along with them as a coupled system. This procedure also has the side benefit of enabling a dramatic simplification of the user interface for modeling control systems. Three FORTRAN computer programs, the LATDYN Program, the Preprocessor, and the Postprocessor, make up the collective LATDYN System. The Preprocessor translates user commands into a form which can be used while the LATDYN program provides the computational core. The Postprocessor allows the user to interactively plot and manage a database of LATDYN transient analysis results. It also includes special facilities for modeling control systems and for programming changes to the model which take place during analysis sequence. The documentation includes a Demonstration Problem Manual for the evaluation and verification of results and a Postprocessor guide. Because the program should be viewed as a byproduct of research on technology development, LATDYN's scope is limited. It does not have a wide library of finite elements, and 3-D Graphics are not available. Nevertheless, it does have a measure of "user friendliness". The LATDYN program was developed over a period of several years and was implemented on a CDC NOS/VE & Convex Unix computer. It is written in FORTRAN 77 and has a virtual memory requirement of 1.46 MB. The program was validated on a DEC MICROVAX operating under VMS 5.2.
Cheng, Shiwang; Carroll, Bobby; Bocharova, Vera; ...
2017-03-30
In recent years it has become clear that the interfacial layer formed around nanoparticles in polymer nanocomposites (PNCs) is critical for controlling their macroscopic properties. The interfacial layer occupies a significant volume fraction of the polymer matrix in PNCs and creates strong intrinsic heterogeneity in their structure and dynamics. In this paper, we focus on analysis of the structure and dynamics of the interfacial region in model PNCs with well-dispersed, spherical nanoparticles with attractive interactions. First, we discuss several experimental techniques that provide structural and dynamic information on the interfacial region in PNCs. Then, we discuss the role of variousmore » microscopic parameters in controlling structure and dynamics of the interfacial layer. The analysis presented emphasizes the importance of the polymer-nanoparticle interactions for the slowing down dynamics in the interfacial region, while the thickness of the interfacial layer appears to be dependent on chain rigidity, and has been shown to increase with cooling upon approaching the glass transition. Aside from chain rigidity and polymer-nanoparticle interactions, the interfacial layer properties are also affected by the molecular weight of the polymer and the size of the nanoparticles. Finally, in the last part of this focus article, we emphasize the important challenges in the field of polymer nanocomposites and a potential analogy with the behavior observed in thin films.« less
Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints.
König, Lars; Derksen, Alexander; Papenberg, Nils; Haas, Benjamin
2016-09-20
Deformable image registration (DIR) is a key component in many radiotherapy applications. However, often resulting deformations are not satisfying, since varying deformation properties of different anatomical regions are not considered. To improve the plausibility of DIR in adaptive radiotherapy in the male pelvic area, this work integrates a local rigidity deformation model into a DIR algorithm. A DIR framework is extended by constraints, enforcing locally rigid deformation behavior for arbitrary delineated structures. The approach restricts those structures to rigid deformations, while surrounding tissue is still allowed to deform elastically. The algorithm is tested on ten CT/CBCT male pelvis datasets with active rigidity constraints on bones and prostate and compared to the Varian SmartAdapt deformable registration (VSA) on delineations of bladder, prostate and bones. The approach with no rigid structures (REG0) obtains an average dice similarity coefficient (DSC) of 0.87 ± 0.06 and a Hausdorff-Distance (HD) of 8.74 ± 5.95 mm. The new approach with rigid bones (REG1) yields a DSC of 0.87 ± 0.07, HD 8.91 ± 5.89 mm. Rigid deformation of bones and prostate (REG2) obtains 0.87 ± 0.06, HD 8.73 ± 6.01 mm, while VSA yields a DSC of 0.86 ± 0.07, HD 10.22 ± 6.62 mm. No deformation grid foldings are observed for REG0 and REG1 in 7 of 10 cases; for REG2 in 8 of 10 cases, with no grid foldings in prostate, an average of 0.08 % in bladder (REG2: no foldings) and 0.01 % inside the body contour. VSA exhibits grid foldings in each case, with an average percentage of 1.81 % for prostate, 1.74 % for bladder and 0.12 % for the body contour. While REG1 and REG2 keep bones rigid, elastic bone deformations are observed with REG0 and VSA. An average runtime of 26.2 s was achieved with REG1; 31.1 s with REG2, compared to 10.5 s with REG0 and 10.7 s with VMS. With accuracy in the range of VSA, the new approach with constraints delivers physically more plausible deformations in the pelvic area with guaranteed rigidity of arbitrary structures. Although the algorithm uses an advanced deformation model, clinically feasible runtimes are achieved.
Structure Analysis of Jungle-Gym-Type Gels by Brownian Dynamics Simulation
NASA Astrophysics Data System (ADS)
Ohta, Noriyoshi; Ono, Kohki; Takasu, Masako; Furukawa, Hidemitsu
2008-02-01
We investigated the structure and the formation process of two kinds of gels by Brownian dynamics simulation. The effect of flexibility of main chain oligomer was studied. From our results, hard gel with rigid main chain forms more homogeneous network structure than soft gel with flexible main chain. In soft gel, many small loops are formed, and clusters tend to shrink. This heterogeneous network structure may be caused by microgels. In the low density case, soft gel shows more heterogeneity than the high density case.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
NASA Technical Reports Server (NTRS)
Housner, J. M.; Mcgowan, P. E.; Abrahamson, A. L.; Powell, M. G.
1986-01-01
The LATDYN User's Manual presents the capabilities and instructions for the LATDYN (Large Angle Transient DYNamics) computer program. The LATDYN program is a tool for analyzing the controlled or uncontrolled dynamic transient behavior of interconnected deformable multi-body systems which can undergo large angular motions of each body relative other bodies. The program accommodates large structural deformation as well as large rigid body rotations and is applicable, but not limited to, the following areas: (1) development of large flexible space structures; (2) slewing of large space structure components; (3) mechanisms with rigid or elastic components; and (4) robotic manipulations of beam members. Presently the program is limited to two dimensional problems, but in many cases, three dimensional problems can be exactly or approximately reduced to two dimensions. The program uses convected finite elements to affect the large angular motions involved in the analysis. General geometry is permitted. Detailed user input and output specifications are provided and discussed with example runstreams. To date, LATDYN has been configured for CDC/NOS and DEC VAX/VMS machines. All coding is in ANSII-77 FORTRAN. Detailed instructions regarding interfaces with particular computer operating systems and file structures are provided.
DOT National Transportation Integrated Search
2004-11-13
As a part of ongoing passenger rail equipment safety research, a full-scale impact test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test, two coupled cars impacted a rigid barrier at 29 mph. Similar ...
BEAM: A Finite Element Program for the Collapse Analysis of Vehicle Structures
1994-06-01
deflects a latera: d&stance 8, its bending stresses are increased. Nor can BEAM account for the reduction of plastic moment capacity due to axial loads...Figure 9: The load -displacement curve for Frame 4, comparing elastic-, rigid plastuc and Sttq’ BI-Step analyses with experimental results. The
NASA Astrophysics Data System (ADS)
Ferreira, G. G.; Borges, E.; Braga, J. P.; Belchior, J. C.
Cluster structures are discussed in a nonrigid analysis, using a modified minima search method based on stochastic processes and classical dynamics simulations. The relaxation process is taken into account considering the internal motion of the Cl2 molecule. Cluster structures are compared with previous works in which the Cl2 molecule is assumed to be rigid. The interactions are modeled using pair potentials: the Aziz and Lennard-Jones potentials for the Ar==Ar interaction, a Morse potential for the Cl==Cl interaction, and a fully spherical/anisotropic Morse-Spline-van der Waals (MSV) potential for the Ar==Cl interaction. As expected, all calculated energies are lower than those obtained in a rigid approximation; one reason may be attributed to the nonrigid contributions of the internal motion of the Cl2 molecule. Finally, the growing processes in molecular clusters are discussed, and it is pointed out that the growing mechanism can be affected due to the nonrigid initial conditions of smaller clusters such as ArnCl2 (n ? 4 or 5), which are seeds for higher-order clusters.
Cis-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics
NASA Astrophysics Data System (ADS)
Ter Brake, J. H. M.
1984-08-01
The molecular structure of cis-pent-2-ene has been investigated by using electron diffraction, vibrational analysis and molecular mechanics. It is possible to fit a model, describing cis-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics, ab initio self-consistent field molecular orbital calculations and microwave spectroscopy show that cis-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[CC] = 149.0(1), r[CC] = 133.8(2), r[CC] = 156.1(2), r[CH] = 109.2(2), r[CH] = 105.8(5) pm, ∠[CCC] = 127.4(2), ∠[CCC] = 112.4(4), ∠[CCH] = 124(2), ∠[CCH] = 114.2(3)° (standard deviations given in parentheses refer to the last significant digit).
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Jung-Hyun; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792; Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760
2016-08-19
Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examinedmore » using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.« less
Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm
NASA Astrophysics Data System (ADS)
Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.
2012-07-01
Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations affecting steady state responses due to numerical roundoffs coming from the coupled mode shape extraction method and from the associated non numerical zeros frequencies. Geometric rigid body modes are usually the preferred solution for dynamic transient analysis but are not retained by NASTRAN when the chosen eigensolver is Lanczos, even using a SUPORT card. The SWARM microvibration problem described above has been considered as a benchmark case for various codes (NASTRAN, PERMAS, DCAP - multi-body software) and methods (direct or modal transients). A specific DMAP in NASTRAN has been written to overcome the limitation imposed by the Lanczos method and considerations on the conditioning of the FEM are discussed. An assessment on the accuracy of the different rigid body modes calculation methods is finally proposed.
NASA Astrophysics Data System (ADS)
Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng
2016-10-01
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Shaft flexibility effects on the forced response of a bladed-disk assembly
NASA Technical Reports Server (NTRS)
Khader, N.; Loewy, R. G.
1990-01-01
A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, W. L.
1982-01-01
Mathematical models to be used in the control system design were developed. A computer program, which takes aerodynamic and structural data for the ARW-2 aircraft and converts these data into state space models suitable for use in modern control synthesis procedures, was developed. Reduced order models of inboard and outboard control surface actuator dynamics and a second order vertical wind gust model were developed. An analysis of the rigid body motion of the ARW-2 was conducted. The deletion of the aerodynamic lag states in the rigid body modes resulted in more accurate values for the eigenvalues associated with the plunge and pitch modes than were obtainable if the lag states were retained.
NASA Technical Reports Server (NTRS)
Bodley, C. S.; Devers, A. D.; Park, A. C.; Frisch, H. P.
1978-01-01
A theoretical development and associated digital computer program system for the dynamic simulation and stability analysis of passive and actively controlled spacecraft are presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system is used to investigate total system dynamic characteristics, including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. In addition, the program system is used for designing attitude control systems and for evaluating total dynamic system performance, including time domain response and frequency domain stability analyses.
Flexibility Considerations on the Hydrodynamic Loading on a Vertical Wedge Drop
NASA Astrophysics Data System (ADS)
Ren, Zhongshu; Wang, Zhaoyuan; Judge, Carolyn; Stern, Fred; Ikeda, Christine
2017-11-01
High-speed craft operating at in waves frequently become airborne and slam into the water surface. This fluid-structure interaction problem is important to understand in order to increase the operating envelope of these craft. The goals of the current work are to investigate both the hydrodynamic loads and the resulting structural response on a planing hull. A V-shaped wedge is dropped vertically into calm water. The hydrodynamic pressure is measured using pressure sensors at discrete points on the hull. Two hulls are studied: one is rigid and one is flexible. Predictions of the hydrodynamic loading are made using Wagner's theory, Vorus's theory, and simulations in CFDShip Iowa. These predictions assume the structure is completely rigid. These predictions of the pressure coefficient match well with the rigid hull, as expected. The spray root is tracked in the rigid experimental set and compared with the theoretical and computational models. The pressure coefficient measured on the flexible hull shows discrepancies with the predictions due to the fluid-structure interaction. These discrepancies are quantified and interpreted in light of the structural flexibility. Funding for this work is from the Office of Naval Research Grant Number N00014-16-1-3188.
LTA structures and materials technology
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1975-01-01
The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts.
Supramolecular structure formation of Langmuir-Blodgett films of comblike precursor and polyimide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goloudina, S. I., E-mail: goloudina@mail.ru; Luchinin, V. V.; Rozanov, V. V.
2013-03-15
The surface structure of Langmuir-Blodgett films of a comblike polyimide precursor-a rigid-chain polyamic acid alkylamine salt bearing multichains of tertiary amine-and films of the corresponding polyimide were studied by atomic force microscopy (AFM). An analysis of the images of the surface of three-layer films revealed a domain structure. It was found that the Langmuir-Blodgett film formation of the precursor occurs as a result of the layer-by-layer deposition of two-dimensional domains (composed of polyamic acid salt molecules on the water surface) onto a substrate. The formation of domains in a monolayer is associated with the chemical structure of the precursor, tomore » be more precise, with the rigidity of the main chain and the presence of closely spaced aliphatic side chains in the polymer chain, whose total cross-section area is close to the surface area of the projection onto the plane of the repeating unit of the main chain. Polyimide films inherit the domain structure of the precursor films; the inhomogeneity of the film thickness substantially decreases, whereas the domain size and character of their distribution in the film remain unchanged.« less
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Leigh, Larry, Jr.
2002-01-01
Inflated cylindrical struts constructed of kapton polyimide film and rigidized with foam have considerable practical application and potential for use as components of inflatable concentrator assemblies, antenna structures and space power systems, Because of their importance, it is of great interest to characterize the dynamic behavior of these components and structures both experimentally and analytically. It is very helpful to take a building-block approach to modeling and understanding inflatable assemblies by first investigating in detail the behavior of the components such as the struts. The foam material used for rigidization of such cylinders has varying modulus, which is a function of different factors, such as density of the foam. Thus, the primary motivation of the tests and analytical modeling efforts was to determine and understand the response of foam-rigidized cylinders for different densities, sizes, and construction methods, In recent years, inflatable structures have been the subject of renewed interest for space applications such as communications antennae, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is that they are extremely lightweight. This makes inflatables a perfect match for solar thermal propulsion because of the low thrust levels available. An obvious second advantage is on-orbit deployability and subsequent space savings in launch configuration. It can be seen that inflatable cylindrical struts and torus are critical components of structural assemblies. In view of this importance, structural dynamic and static behaviors of typical rigidized polyimide struts are investigated in this paper. The paper will focus on the finite element models that were used to model the behavior of the complete solar collector structure, and the results that they provided, as compared to test data.
A study on technology development strategy and collaborative relationships using patent information
NASA Astrophysics Data System (ADS)
Nakaoka, Iori; Fujino, Hayato; Chen, Yunju; Park, Yousin; Matsuno, Seigo
2017-10-01
Japanese economy has fallen into a long downturn called "The Lost Two Decades" after the collapse of bubble economy in early 1990s. Many companies could not gain competitive advantages although they conducted various management reforms to restore their competitiveness. The companies that have played the main role of the Japanese economy growth until then have lost the sustained competitive advantage. Moreover, they have struggled in the global market even now. On the other hand, Japanese automobile companies have high competitiveness and market share due to their advanced technology development. It is considered that personnel groups engaged in research and development of their companies cannot turn into core rigidity and the structure also hinders new core capabilities. In addition, there is a hypothesis that the close relationships with many suppliers contribute to acquisition of competitive advantage. Therefore, this paper focuses on the collaboration relationships with suppliers and core rigidity of human resources related to research and development as the analysis factors. First, we analyze the composition and core rigidity degree of human resources involved in technology development by social network analysis using patent information, which represents the research and development capability. Second, we analyze the degree of collaboration among companies based on the hypothesis that advanced technology development can be executed by joint research and developments with many kinds of suppliers. As a result, features of close collaboration with suppliers and high core rigidity rate in the Japanese automobile industry are clarified.
The effects of rigid motions on elastic network model force constants
Lezon, Timothy R.
2012-01-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562
Extracting a Purely Non-rigid Deformation Field of a Single Structure
NASA Astrophysics Data System (ADS)
Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir
During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Steady state solutions to dynamically loaded periodic structures
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1980-01-01
The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.
Morgan, Elise F.; Mason, Zachary D.; Chien, Karen B.; Pfeiffer, Anthony J.; Barnes, George L.; Einhorn, Thomas A.; Gerstenfeld, Louis C.
2009-01-01
Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (μCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (σTMD), effective polar moment of inertia (Jeff), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the μCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and σTMD explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and σTMD explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several μCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing. PMID:19013264
Wang, Nelson; Phan, Steven; Tian, David H; Yan, Tristan D; Phan, Kevin
2017-05-01
Up to 20% of patients have pre-discharge residual moderate to severe tricuspid regurgitation (TR) after tricuspid repair. Reoperations for recurrent TR carry high mortality rates, which emphasizes the importance of identifying the optimal technique for the surgical management of TR. The present study is a systematic review and meta-analysis that aims to compare short and long term survival and freedom from TR of flexible band ring versus rigid ring for annuloplasty of TR. We conducted a systematic review and meta-analysis of comparative studies to evaluate these procedures. A systematic search of the literature was performed from six electronic databases. Pooled meta-analysis was conducted using odds ratio (OR) and weighted mean difference (WMD). The rates of in-hospital mortality were not different between the two groups, with cumulative rates of 6.9% for flexible band and 7.3% for rigid ring (OR: 0.92; 95% CI: 0.49-1.71). Rates of stroke were also similar with 1.7% of flexible band and 1.3% of rigid rings suffering a perioperative stroke (OR: 1.29; 95% CI: 0.74-2.23). Rigid ring had significantly better freedom from grade ≥2 TR at 5 years (OR: 0.44; 95% CI: 0.20-0.99) and overall (P=0.005). There was no significant difference in overall rates of reoperation (P=0.232) and survival (P=0.086) between flexible band and rigid ring. Both rigid ring and flexible band offer acceptable outcomes for the treatment of TR. Compared to flexible band, rates of TR are stable after rigid ring annuloplasty and long term freedom from TR are superior for rigid ring devices. Large prospective randomized trials are required in order to validate these findings and assess for improvements in patient survival.
A Sensitivity Analysis of the Rigid Pavement Life-Cycle Cost Analysis Program
DOT National Transportation Integrated Search
2000-12-01
Original Report Date: September 1999. This report describes the sensitivity analysis performed on the Rigid Pavement Life-Cycle Cost Analysis program, a computer program developed by the Center for Transportation Research for the Texas Department of ...
Fluid-Structure interaction analysis and performance evaluation of a membrane blade
NASA Astrophysics Data System (ADS)
Saeedi, M.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
Examining the potential of a membrane blade concept is the goal of the current work. In the sailwing concept the surface of the wing, or the blade in this case, is made from pre-tensioned membranes which meet at the pre-tensioned edge cable at the trailing edge. Because of the dependency between membrane deformation and applied aerodynamic load, two-way coupled fluid-structure interaction analysis is necessary for evaluation of the aerodynamic performance of such a configuration. The in-house finite element based structural solver, CARAT++, is coupled with OpenFOAM in order to tackle the multi-physics problem. The main aerodynamic characteristics of the membrane blade including lift coefficient, drag coefficient and lift to drag ratio are compared with its rigid counterpart. A single non-rotating NREL phase VI blade is studied here as a first step towards analyzing the concept for the rotating case. Compared with the rigid blade, the membrane blade has a higher slope of the lift curve. For higher angles of attack, lift and drag coefficients as well as the lift to drag ratio is higher for the membrane blade. A single non-rotating blade is studied here as a first step towards analyzing the concept for the rotating case.
Childress, Emily M; Kleinstreuer, Clement
2014-03-01
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval.
Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations
NASA Astrophysics Data System (ADS)
Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng
2017-04-01
VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.
Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations
Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng
2017-01-01
VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states. PMID:28425502
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2002-01-01
Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.
Control-structure interaction/mirror motion compensation
NASA Technical Reports Server (NTRS)
Mclaren, Mark; Chu, Peter; Price, Xen
1992-01-01
Space Systems/Loral (formerly Ford Aerospace, Space Systems Division) has implemented a rigid-body Mirror Motion Compensation (MMC) scheme for the GOES-I/M spacecraft currently being built for NASA and NOAA. This has resulted in a factor of 15 reduction in pointing error due to rigid-body spacecraft motion induced by the periodic black-body calibration maneuvers required for the instruments. For GOES the spacecraft and the payload mirrors are considered as rigid bodies. The structural flexibility effects are small and are included in the total pointing budget as a separate item. This paper extends the MMC technique to include structural flexibility. For large multi-payload platforms, the structural flexibility effects can be more important in sensor pointing jitter as the result of payload motion. Sensitivity results are included to show the importance of the dynamic model fidelity.
Vision-based stress estimation model for steel frame structures with rigid links
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator
NASA Astrophysics Data System (ADS)
Smith, B.; Venkatapathy, E.; Wercinski, P.; Yount, B.; Prabhu, D.; Gage, P.; Glaze, L.; Baker, C.
The Venus In Situ Explorer (VISE) Mission addresses the highest priority science questions within the Venus community outlined in the National Research Council's Decadal Survey. The heritage Venus atmospheric entry system architecture, a 45° sphere-cone rigid aeroshell with a carbon phenolic thermal protection system, may no longer be the preferred entry system architecture compared to other viable alternatives being explored at NASA. A mechanically-deployed aerodynamic decelerator, known as the Adaptive Deployable Entry and Placement Technology (ADEPT), is an entry system alternative that can provide key operational benefits and risk reduction compared to a rigid aeroshell. This paper describes a mission feasibility study performed with the objectives of identifying potential adverse interactions with other mission elements and establishing requirements on decelerator performance. Feasibility is assessed through a launch-to-landing mission design study where the Venus Intrepid Tessera Lander (VITaL), a VISE science payload designed to inform the Decadal Survey results, is repackaged from a rigid aeroshell into the ADEPT decelerator. It is shown that ADEPT reduces the deceleration load on VITaL by an order of magnitude relative to a rigid aeroshell. The more benign entry environment opens up the VISE mission design environment for increased science return, reduced risk, and reduced cost. The ADEPT-VITAL mission concept of operations is presented and details of the entry vehicle structures and mechanisms are given. Finally, entry aerothermal analysis is presented that defines the operational requirements for a revolutionary structural-TPS material employed by ADEPT: three-dimensionally woven carbon cloth. Ongoing work to mitigate key risks identified in this feasibility study is presented.
Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...
2014-03-28
Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less
NASA Astrophysics Data System (ADS)
Ballarin, Cristina; Bagnoli, Paola; Peruffo, Antonella; Cozzi, Bruno
2018-04-01
The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth.
Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2013-01-01
Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443
NASA Astrophysics Data System (ADS)
Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.
2017-08-01
Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.
Multiscale weighted colored graphs for protein flexibility and rigidity analysis
NASA Astrophysics Data System (ADS)
Bramer, David; Wei, Guo-Wei
2018-02-01
Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.
NASA Astrophysics Data System (ADS)
Meng, Lingkun; Liu, Kang; Liang, Chen; Guo, Xiaolei; Han, Xu; Ren, Siyuan; Ma, Dingxuan; Li, Guanghua; Shi, Zhan; Feng, Shouhua
2018-02-01
By using a triazol-functionalized tricarboxylate, three novel metal coordination polymers, namely, [Zn2L(OH)]·0.5H2O (1), [Co2L(OH)(H2O)]·5.5H2O (2), [Cu2(HL)] (3) L = [5-(3-(4-carboxyphenyl)-5-methyl-4H-1,2,4-triazol-4-yl)isophthalate] were synthesized under hydrothermal reactions. All the compounds were characterized by element analysis, IR spectroscopy, thermogravimetric analysis, power X-ray diffrcation and single-crystal X-ray diffrcation. Structural analysis reveals that compounds 1 and 2 have 3D networks with flu topologies where rigid trizaol-functionalized ligands as 4-connected nodes and Zn4(COO)6 or Co4(COO)6 clusters serves as 8-connected secondary building units. Compound 3 has 3D network with pcu topology where Cu4(COO)4 clusters serve as 6-connected secondary building units. Gas adsorption studies reveal that desolvated compoud 1 exhibits high H2 absorption capacity at 77 K and highly selective separation abilities of CO2 and C3H8 over CH4 at room temperature. The results suggest that 1 has potential application in gas storage and separation. In addition, the magnetic properties of compound 2 were also investigated.
Maguinness, Corrina; Newell, Fiona N
2015-04-01
There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Active vibration control techniques for flexible space structures
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Jayasuriya, Suhada
1990-01-01
Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.
Self-Deployable Membrane Structures
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.
2010-01-01
Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget
Method of assembling an electric power
Rinehart, Lawrence E [Lake Oswego, OR; Romero, Guillermo L [Phoenix, AZ
2007-05-03
A method of assembling and providing an electric power apparatus. The method uses a heat resistant housing having a structure adapted to accommodate and retain a power circuit card and also including a bracket adapted to accommodate and constrain a rigid conductive member. A power circuit card having an electrical terminal is placed into the housing and a rigid conductive member into the bracket. The rigid conductive member is flow soldered to the electrical terminal, thereby exposing the heat resistant housing to heat and creating a solder bond. Finally, the rigid conductive member is affirmatively connected to the housing. The bracket constrains the rigid conductive member so that the act of affirmatively connecting does not weaken the solder bond.
A structural dynamics study of a wing-pylon-tiltrotor system
NASA Astrophysics Data System (ADS)
Khader, N.; Abu-Mallouh, R.
1992-12-01
A simple structural model for a three-bladed tiltrotor-pylon-wing assembly is presented, which accounts for chordwise, transverse, and torsional wing deformations, rigid pylon pitching motion with respect to the wing tip cross-section in its deformed position, lead-lag, flap, and torsional deformations of rotor blades. The model considers equivalent viscous damping associated with blade and wing elastic deformations and with rigid pylon pitching motion. It is established that blade-to wing bending rigidity ratio, pylon pitching frequency, equivalent viscous damping associated with blade elastic deformations, and rotational speed, are the most important design parameters, whose effect on system frequencies and stability boundaries is evaluated.
Grilo, C M
2004-01-01
To examine the factor structure of DSM-IV criteria for obsessive compulsive personality disorder (OCPD) in patients with binge eating disorder (BED). Two hundred and eleven consecutive out-patients with axis I diagnoses of BED were reliably assessed with semi-structured diagnostic interviews. The eight criteria for the OCPD diagnosis were examined with reliability and correlational analyses. Exploratory factor analysis was performed to identify potential components. Cronbach's coefficient alpha for the OCPD criteria was 0.77. Principal components factor analysis with varimax rotation revealed a three-factor solution (rigidity, perfectionism, and miserliness), which accounted for 65% of variance. The DSM-IV criteria for OCPD showed good internal consistency. Exploratory factor analysis, however, revealed three components that may reflect distinct interpersonal, intrapersonal (cognitive), and behavioral features.
Flow dynamics in pediatric rigid bronchoscopes using computer-aided design modeling software.
Barneck, Mitchell D; Webb, J Taylor; Robinson, Ryan E; Grimmer, J Fredrik
2016-08-01
Observed complications during rigid bronchoscopy, including hypercarbia and hypoxemia, prompted us to assess how well rigid bronchoscopes serve as an airway device. We performed computer-aided design flow analysis of pediatric rigid bronchoscopes to gain insight into flow dynamics. We made accurate three-dimensional computer models of pediatric rigid bronchoscopes and endotracheal tubes. SOLIDWORKS (Dassault Systemes, Vélizy-Villacoublay, France) flow analysis software was used to analyze fluid dynamics during pressure-controlled and volume-controlled ventilation. Flow analysis was performed on rigid bronchoscopes and similar outer diameter endotracheal tubes comparing resistance, flow, and turbulence during two ventilation modalities and in common surgical scenarios. Increased turbulent flow was observed in bronchoscopes compared to more laminar flow in endotracheal tubes of similar outer diameter. Flow analysis displayed higher resistances in all pediatric bronchoscope sizes except one (3.0 bronchoscope) compared to similar-sized endotracheal tubes. Loss of adequate ventilation was observed if the bronchoscope was not assembled correctly or if increased peak inspiratory pressures were needed. Anesthesia flow to the patient was reduced by 63% during telescope insertion. Flow analysis illustrates increased turbulent flow and increased airflow resistance in all but one size of pediatric bronchoscopes compared to endotracheal tubes. This increased turbulence and resistance, along with the unanticipated gas distal exit pattern, may contribute to the documented hypercarbia and hypoxemia during procedures. These findings may explain why hypoxemia and hypercarbia are commonly observed during rigid bronchoscopy, especially when positive pressure ventilation is needed. NA Laryngoscope, 126:1940-1945, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
High Resolution Quantification of Cellular Forces for Rigidity Sensing
NASA Astrophysics Data System (ADS)
Liu, Shuaimin
This thesis describes a comprehensive study of understanding the mechanism of rigidity sensing by quantitative analysis using submicron pillar array substrates. From mechanobiology perspective, we explore and study molecular pathways involved in rigidity and force sensing at cell-matrix adhesions with regard to cancer, regeneration, and development by quantification methods. In Chapter 2 and 3, we developed fabrication and imaging techniques to enhance the performance of a submicron pillar device in terms of spatial and temporal measurement ability, and we discovered a correlation of rigidity sensing forces and corresponding proteins involved in the early rigidity sensing events. In Chapter 2, we introduced optical effect arising from submicron structure imaging, and we described a technique to identify the correct focal plane of pillar tip by fabricating a substrate with designed-offset pillars. From calibration result, we identified the correct focal plane that was previously overlooked, and verified our findings by other imaging techniques. In Chapter 3, we described several techniques to selectively functionalize elastomeric pillars top and compared these techniques in terms of purposes and fabrication complexity. Techniques introduced in this chapter included direct labeling, such as stamping of fluorescent substances (organic dye, nano-diamond, q-dot) to pillars top, as well as indirect labeling that selectively modify the surface of molds with either metal or fluorescent substances. In Chapter 4, we examined the characteristics of local contractility forces and identified the components formed a sarcomere like contractile unit (CU) that cells use to sense rigidity. CUs were found to be assembled at cell edge, contain myosin II, alpha-actinin, tropomodulin and tropomyosin (Tm), and resemble sarcomeres in size (˜2 mum) and function. Then we performed quantitative analysis of CUs to evaluate rigidity sensing activity over ˜8 hours time course and found that density of CUs decrease with time after spreading on stiff substrate. However addition of EGF dramatically increased local contraction activity such that about 30% of the total contractility was in the contraction units. This stimulatory effect was only observed on stiff substrate not on soft. Moreover, we find that in the early interactions of cells with rigid substrates that EGFR activity is needed for normal spreading and the assembly of local contraction units in media lacking serum and any soluble EGF. In Chapter 5, we performed high temporal- and spatial-resolution tracking of contractile forces exerted by cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like CUs simultaneously moved opposing pillars in net steps of ˜2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of alpha-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.
CT-derived indices of canine osteosarcoma-affected antebrachial strength.
Garcia, Tanya C; Steffey, Michele A; Zwingenberger, Allison L; Daniel, Leticia; Stover, Susan M
2017-05-01
To improve the prediction of fractures in dogs with bone tumors of the distal radius by identifying computed tomography (CT) indices that correlate with antebrachial bone strength and fracture location. Prospective experimental study. Dogs with antebrachial osteosarcoma (n = 10), and normal cadaver bones (n=9). Antebrachia were imaged with quantitative CT prior to biomechanical testing to failure. CT indices of structural properties were compared to yield force and maximum force using Pearson correlation tests. Straight beam failure (Fs), axial rigidity, curved beam failure (Fc), and craniocaudal bending moment of inertia (MOICrCd) CT indices most highly correlated (0.77 > R > 0.57) with yield and maximum forces when iOSA-affected and control bones were included in the analysis. Considering only OSA-affected bones, Fs, Fc, and axial rigidity correlated highly (0.85 > R > 0.80) with maximum force. In affected bones, the location of minimum axial rigidity and maximum MOICrCd correlated highly (R > 0.85) with the actual fracture location. CT-derived axial rigidity, Fs, and MOICrCd have strong linear relationships with yield and maximum force. These indices should be further evaluated prospectively in OSA-affected dogs that do, and do not, experience pathologic fracture. © 2017 The American College of Veterinary Surgeons.
Hydrodynamics of a flexible plate between pitching rigid plates
NASA Astrophysics Data System (ADS)
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
The effects of rigid motions on elastic network model force constants.
Lezon, Timothy R
2012-04-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. Copyright © 2011 Wiley Periodicals, Inc.
1981-11-01
34Structural Analysis of Concrete Pavement Systems," Journal, ASCE, Vol. 106, No. TE5, September 1980. 6. Barenberg, E. J., and Arntzen , D. M., "Design of...International Airport," Unpublished Report, Consultant Brandley to SEA-TAC Airport Authority, December 1971. 8. Personal Observation by Author. 9. Arntzen , D
Aspects concerning verification methods and rigidity increment of complex technological systems
NASA Astrophysics Data System (ADS)
Casian, M.
2016-11-01
Any technological process and technology aims a quality and precise product, something almost impossible without high rigidity machine tools, equipment and components. Therefore, from the design phase, it is very important to create structures and machines with high stiffness characteristics. At the same time, increasing the stiffness should not raise the material costs. Searching this midpoint between high rigidity and minimum expenses leads to investigations and checks in structural components through various methods and techniques and sometimes quite advanced methods. In order to highlight some aspects concerning the significance of the mechanical equipment rigidity, the finite element method and an analytical method based on the use Mathcad software were used, by taking into consideration a subassembly of a grinding machine. Graphical representations were elaborated, offering a more complete image about the stresses and deformations able to affect the considered mechanical subassembly.
Robust Flutter Analysis for Aeroservoelastic Systems
NASA Astrophysics Data System (ADS)
Kotikalpudi, Aditya
The dynamics of a flexible air vehicle are typically described using an aeroservoelastic model which accounts for interaction between aerodynamics, structural dynamics, rigid body dynamics and control laws. These subsystems can be individually modeled using a theoretical approach and experimental data from various ground tests can be combined into them. For instance, a combination of linear finite element modeling and data from ground vibration tests may be used to obtain a validated structural model. Similarly, an aerodynamic model can be obtained using computational fluid dynamics or simple panel methods and partially updated using limited data from wind tunnel tests. In all cases, the models obtained for these subsystems have a degree of uncertainty owing to inherent assumptions in the theory and errors in experimental data. Suitable uncertain models that account for these uncertainties can be built to study the impact of these modeling errors on the ability to predict dynamic instabilities known as flutter. This thesis addresses the methods used for modeling rigid body dynamics, structural dynamics and unsteady aerodynamics of a blended wing design called the Body Freedom Flutter vehicle. It discusses the procedure used to incorporate data from a wide range of ground based experiments in the form of model uncertainties within these subsystems. Finally, it provides the mathematical tools for carrying out flutter analysis and sensitivity analysis which account for these model uncertainties. These analyses are carried out for both open loop and controller in the loop (closed loop) cases.
Investigation of Liquid Sloshing in Spin-Stabilized Satellites.
1993-01-31
deformation of the spinning structure in addition to the rigid body motion . A Lagrangian approach was used to develop the equations of motion which include...nonlinear relationships for the unknown rigid body motions and linear terms for the relatively small elastic deformations of the members. Appendix F...the rigid body motion of the test assembly. A pendulum analogy was used to model the sloshing liquid in that early program. Several numerical
A geometrically controlled rigidity transition in a model for confluent 3D tissues
NASA Astrophysics Data System (ADS)
Merkel, Matthias; Manning, M. Lisa
2018-02-01
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.
1990-12-01
was determined from the difference between the 24-state matrix product, HtP (t’)HT, and the six-state matrix product, HfPf (tT)HT’. For this...The true position for node 7, which represents the rigid body position of the structure, is not damped and can be interpreted as a rigid body...application, considering the same issues as explored in this research. Continue with a physical interpretation of the structure positions for determining the
2014-01-01
Background Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. In this paper, we propose a new re-ranking technique using a new energy-based scoring function, namely IFACEwat - a combined Interface Atomic Contact Energy (IFACE) and water effect. The IFACEwat aims to further improve the discrimination of the near-native structures of the initial rigid docking algorithm ZDOCK3.0.2. Unlike other re-ranking techniques, the IFACEwat explicitly implements interfacial water into the protein interfaces to account for the water-mediated contacts during the protein interactions. Results Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. Conclusions With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms. PMID:25521441
NASA Technical Reports Server (NTRS)
1983-01-01
All information directly associated with problem solving using the NASTRAN program is presented. This structural analysis program uses the finite element approach to structural modeling wherein the distributed finite properties of a structure are represented by a finite element of structural elements which are interconnected at a finite number of grid points, to which loads are applied and for which displacements are calculated. Procedures are described for defining and loading a structural model. Functional references for every card used for structural modeling, the NASTRAN data deck and control cards, problem solution sequences (rigid formats), using the plotting capability, writing a direct matrix abstraction program, and diagnostic messages are explained. A dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included.
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
NASA Technical Reports Server (NTRS)
Lowery, Anthony R.; Smith, Robert B.
1994-01-01
Stochastic inversion for flexural loads and flexural rigidity of the continental elastic layer can be accomplished most effectively by using the coherence of gravity and topography. However, the spatial resolution of coherence analysis has been limited by use of two-dimensional periodogram spectra from very large (greater than 10(exp 5)sq km) windows that generally include multiple tectonic features. Using a two-dimensional spectral estimator based on the maximum entropy method, the spatial resolution of flexural proerties can be enhanced by a factor of 4 or more, enabling more detailed analysis at the scale of individual tectonic features. This new approach is used to map the spatial variation of flexural rigidity along the Basin and Range transition to the Colorado Plateau and Middle Rocky Mountains physiographic provinces. Large variations in flexural isostatic responses are found, with rigidities ranging from as low as 8.7 x 10(exp 20) N m (elastic thickness (T(sub e) = 4.6 km) in the Basin and Range to as high as 4.1 x 10(exp 24) N m T(sub e) = 77 km) in the Middle Rocky Mountains. These results compare favorably woith independent determinations of flexural rigidity in the region. Areas of low flexural rigidity correlate strongly with areas of high surface heat flow, as is expected from the contingence of flexural rigidity on a temperature-dependent flow law. Also, late Cenozoic normal faults with large displacements are found primarily in area of low flexural rigidity region. The highest flexural rigidity is found within the Archean Wyoming craton, where evidence suggests that deeply rooted cratonic lithosphere may play a role in determining the distribution of tectonism at the surface.
Schmaderer, Harald; Bhuyan, Mouchumi
2009-01-01
Summary Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp’s acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels–Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance. PMID:19590745
Schmaderer, Harald; Bhuyan, Mouchumi; König, Burkhard
2009-05-28
Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp's acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels-Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance.
Associative memory through rigid origami
NASA Astrophysics Data System (ADS)
Murugan, Arvind; Brenner, Michael
2015-03-01
Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.
Li, Jiling; Xu, Xiaoyong; Shao, Xusheng; Li, Zhong
2015-12-01
A novel semi-rigid latent chromophore E1, containing an amide subunit activated by an adjacent semi-rigid intramolecular hydrogen-bonding (IHB) unit, was designed for the detection of fluoride ion by the 'naked-eye' in CH3CN. Comparative studies on structural analogs (E2, E3, and E4) provided significant insight into the structural and functional role of the amide N-H and IHB segment in the selective recognition of fluoride ions. The deprotonation of the amide N-H followed by the enhancement of intramolecular charge transfer (ICT) induced the colorimetric detection of E1 for fluoride ion. Copyright © 2015 John Wiley & Sons, Ltd.
Flexural torsional buckling of uniformly compressed beam-like structures
NASA Astrophysics Data System (ADS)
Ferretti, M.
2018-02-01
A Timoshenko beam model embedded in a 3D space is introduced for buckling analysis of multi-store buildings, made by rigid floors connected by elastic columns. The beam model is developed via a direct approach, and the constitutive law, accounting for prestress forces, is deduced via a suitable homogenization procedure. The bifurcation analysis for the case of uniformly compressed buildings is then addressed, and numerical results concerning the Timoshenko model are compared with 3D finite element analyses. Finally, some conclusions and perspectives are drawn.
Hierarchical Structure in Polymeric Solids and Its Influence on Properties
1989-05-01
consequences for the systematic design of phase behaviour. Also it is one of the several illustrations that the ’rigid’ group in itself need not...identified the factors controlling mesogen (or in general, rigid group ) packing in segmented LCP forming polymers and its influence on layer formation at...molecules in solution and controlled preparation of model systems" in Rigid Rod Polymers, Materials Research Publication, Ed. W. Adams, in the press
Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana
2016-02-01
The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness.
Performance determination of precast concrete slabs used for the repair of rigid pavements.
DOT National Transportation Integrated Search
2014-10-01
The safety of civilians is of paramount importance during the construction and repair of concrete pavements. : A complete understanding of the pavement distresses that compromise the structural stability and performance : of rigid pavements are requi...
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-03-06
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Choi, Wuyong; Lee, Slgirim; Kim, Seung-Hyun; Jang, Jae-Hyung
2016-06-01
Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rhythmic crowd bobbing on a grandstand simulator
NASA Astrophysics Data System (ADS)
Comer, A. J.; Blakeborough, A.; Williams, M. S.
2013-01-01
It is widely accepted that concerted human activity such as bouncing or bobbing can excite cantilever grandstands. Crowd coordination can be unwitting and may be exacerbated by structural motion caused by resonant structural response. This is an area of uncertainty in the design and analysis of modern grandstands. This paper presents experimental measurement and analysis of rhythmic crowd bobbing loads obtained from tests on a grandstand simulator with two distinct support conditions; (a) rigid, and; (b) flexible. It was found that significant structural vibration at the bobbing frequency did not increase the effective bobbing load. Structural motion at the bobbing frequency caused a reduction in the dynamic load factor (DLF) at the frequency of the second harmonic while those at the first and third harmonics were unaffected. Two plausible reasons for this are: (a) the bobbing group were unable to supply significant energy to the system at the frequency of the second harmonic; (b) the bobbing group altered their bobbing style to reduce the response of the grandstand simulator. It was deduced that the bobbing group did not absorb energy from the dynamic system. Furthermore, dynamic load factors for groups of test subjects bobbing on a rigid structure were typically greater than those of synthesised groups derived from individuals bobbing alone, possibly due to group effects such as audio and visual stimuli from neighbouring test subjects. Last, the vibration levels experienced by the test subjects appear to be below levels likely to cause discomfort. This is to be expected as the test subjects were themselves controlling the magnitude and duration of vibration for the bobbing tests considered.
Finite Rotation Analysis of Highly Thin and Flexible Structures
NASA Technical Reports Server (NTRS)
Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)
2001-01-01
Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.
NASA Astrophysics Data System (ADS)
Henclik, Sławomir
2018-03-01
The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
A Life Cycle Cost Analysis of Rigid Pavements
DOT National Transportation Integrated Search
1999-09-01
The Texas Department of Transportation (TxDOT)commissioned a research project in 1996, summarized here, to promote life cycle cost analysis of rigid pavements throughout the TxDOT districts by developing a uniform methodology for performing life cycl...
Wright, David A; Nam, Diane; Whyne, Cari M
2012-08-31
In attempting to develop non-invasive image based measures for the determination of the biomechanical integrity of healing fractures, traditional μCT based measurements have been limited. This study presents the development and evaluation of a tool for assessment of fracture callus mechanical properties through determination of the geometric characteristics of the fracture callus, specifically along the surface of failure identified during destructive mechanical testing. Fractures were created in tibias of ten male mice and subjected to μCT imaging and biomechanical torsion testing. Failure surface analysis, along with previously described image based measures was calculated using the μCT image data, and correlated with mechanical strength and stiffness. Three-dimensional measures along the surface of failure, specifically the surface area and torsional rigidity of bone, were shown to be significantly correlating with mechanical strength and stiffness. It was also shown that surface area of bone along the failure surface exhibits stronger correlations with both strength and stiffness than measures of average and minimum torsional rigidity of the entire callus. Failure surfaces observed in this study were generally oriented at 45° to the long axis of the bone, and were not contained exclusively within the callus. This work represents a proof of concept study, and shows the potential utility of failure surface analysis in the assessment of fracture callus stability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong
2014-01-01
Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms.
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1993-01-01
There is a constant need to be able to solve for enforced motion of structures. Spacecraft need to be qualified for acceleration inputs. Truck cargoes need to be safeguarded from road mishaps. Office buildings need to withstand earthquake shocks. Marine machinery needs to be able to withstand hull shocks. All of these kinds of enforced motions are being grouped together under the heading of seismic inputs. Attempts have been made to cope with this problem over the years and they usually have ended up with some limiting or compromise conditions. The crudest approach was to limit the problem to acceleration occurring only at a base of a structure, constrained to be rigid. The analyst would assign arbitrarily outsized masses to base points. He would then calculate the magnitude of force to apply to the base mass (or masses) in order to produce the specified acceleration. He would of necessity have to sacrifice the determination of stresses in the vicinity of the base, because of the artificial nature of the input forces. The author followed the lead of John M. Biggs by using relative coordinates for a rigid base in a 1975 paper, and again in a 1981 paper . This method of relative coordinates was extended and made operational as DMAP ALTER packets to rigid formats 9, 10, 11, and 12 under contract N60921-82-C-0128. This method was presented at the twelfth NASTRAN Colloquium. Another analyst in the field developed a method that computed the forces from enforced motion then applied them as a forcing to the remaining unknowns after the knowns were partitioned off. The method was translated into DMAP ALTER's but was never made operational. All of this activity jelled into the current effort. Much thought was invested in working out ways to unshakle the analysis of enforced motions from the limitations that persisted.
NASA Astrophysics Data System (ADS)
Butler, Thomas G.
1993-09-01
There is a constant need to be able to solve for enforced motion of structures. Spacecraft need to be qualified for acceleration inputs. Truck cargoes need to be safeguarded from road mishaps. Office buildings need to withstand earthquake shocks. Marine machinery needs to be able to withstand hull shocks. All of these kinds of enforced motions are being grouped together under the heading of seismic inputs. Attempts have been made to cope with this problem over the years and they usually have ended up with some limiting or compromise conditions. The crudest approach was to limit the problem to acceleration occurring only at a base of a structure, constrained to be rigid. The analyst would assign arbitrarily outsized masses to base points. He would then calculate the magnitude of force to apply to the base mass (or masses) in order to produce the specified acceleration. He would of necessity have to sacrifice the determination of stresses in the vicinity of the base, because of the artificial nature of the input forces. The author followed the lead of John M. Biggs by using relative coordinates for a rigid base in a 1975 paper, and again in a 1981 paper . This method of relative coordinates was extended and made operational as DMAP ALTER packets to rigid formats 9, 10, 11, and 12 under contract N60921-82-C-0128. This method was presented at the twelfth NASTRAN Colloquium. Another analyst in the field developed a method that computed the forces from enforced motion then applied them as a forcing to the remaining unknowns after the knowns were partitioned off. The method was translated into DMAP ALTER's but was never made operational. All of this activity jelled into the current effort. Much thought was invested in working out ways to unshakle the analysis of enforced motions from the limitations that persisted.
Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Lim, Teik C.
2010-08-01
A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.
Seismic Analysis Capability in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.
1984-01-01
Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.
NASA Astrophysics Data System (ADS)
Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.
2017-10-01
The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.
Everri, Marina; Mancini, Tiziana; Fruggeri, Laura
Previous studies using Olson's Circumplex Model and FACES IV, the self-report assessing family functioning, did not clarify the role of rigidity, a dimension of this model. Rigidity emerged as ambiguous: it was considered either as a functional or as a dysfunctional dimension. Building upon the results of previous studies, we provided a contribution intended to disambiguate the role of rigidity considering adolescents' perceptions and using a non-a priori classification analysis. 320 Italian adolescents (13-21 years) participated in this study and responded to a questionnaire containing scales of the study variables. A latent class analysis was performed to identify the association of rigidity with the other dimensions of Olson's model and with indicators of adaptive family functioning in adolescence: parental monitoring and family satisfaction. We found six clusters corresponding to family typologies and having different levels of functioning. Rigidity emerged as adaptive in the typologies named rigidly balanced and flexibly oscillating; it was associated with positive dimensions of family functioning, i.e. flexibility, cohesion, parental monitoring, and high levels of family satisfaction. Differently, when rigidity was associated with disengagement, low cohesion and flexibility, and lack of parental supervision, emerged as maladaptive. This was the case of two typologies: the rigidly disengaged and the chaotically disengaged. Adolescents of these families reported the lowest levels of satisfaction. In the two last typologies, the flexibly chaotic and the cohesively disorganized, rigidity indicated a mid-range functionality as these families were characterized by emotional connectedness but lack of containment. Clinical implications are discussed.
How the morphology of dusts influences packing density in small solar system bodies
NASA Astrophysics Data System (ADS)
Zangmeister, C.; Radney, J. G.; Zachariah, M. R.
2014-12-01
Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.
Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus
NASA Astrophysics Data System (ADS)
Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.
2004-11-01
The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.
Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y
1989-01-01
Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.
Development of a model of space station solar array
NASA Technical Reports Server (NTRS)
Bosela, Paul A.
1990-01-01
Space structures, such as the space station solar arrays, must be extremely lightweight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a control system. The tension preload in the blanket of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomena known as grounding, or false stiffening, of the stiffness matrix occurs during rigid body rotation. The grounding phenomena is examined in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. Various techniques are used for developing new stiffness matrices from the rigorous solutions of the differential equations, including the solution of the directed force problem. A new directed force stiffness matrix developed by the author provides all the rigid body capabilities for the beam in space.
A rigid and thermally stable all ceramic optical support bench assembly for the LSST Camera
NASA Astrophysics Data System (ADS)
Kroedel, Matthias; Langton, J. Brian; Wahl, Bill
2017-09-01
This paper will present the ceramic design, fabrication and metrology results and assembly plan of the LSST camera optical bench structure which is using the unique manufacturing features of the HB-Cesic technology. The optical bench assembly consists of a rigid "Grid" fabrication supporting individual raft plates mounting sensor assemblies by way of a rigid kinematic support system to meet extreme stringent requirements for focal plane planarity and stability.
Mechanical Properties for the Grasp of a Robotic Hand
1984-09-01
qf. The object is treated as a rigid body and consequently, a small motion , db, of the object in the (x.yz) system produces a displacement of the...several fingers, Asada addresses the problem of choosing a suitable finger configuration, He treats the held object as a rigid body and models the...modcled as elastic structures and the object as a rigid body . This is usually a good approximation for robots assembling parts or holding tools since
Finite element analysis of thrust angle contact ball slewing bearing
NASA Astrophysics Data System (ADS)
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
NASA Technical Reports Server (NTRS)
Peretti, L. F.; Dowell, E. H.
1992-01-01
An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.
Sampled control stability of the ESA instrument pointing system
NASA Astrophysics Data System (ADS)
Thieme, G.; Rogers, P.; Sciacovelli, D.
Stability analysis and simulation results are presented for the ESA Instrument Pointing System (IPS) that is to be used in Spacelab's second launch. Of the two IPS plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and plant dynamic models used in the ESA and NASA activities, one is based on six interconnected rigid bodies that represent the IPS and its payload, while the other follows the NASA practice of defining an IPS-Spacelab 2 plant configuration through a structural finite element model, which is then used to generate modal data for various pointing directions. In both cases, the IPS dynamic plant model is truncated, then discretized at the sampling frequency and interfaces to a PID-based control law. A stability analysis has been carried out in discrete domain for various instrument pointing directions, taking into account suitable parameter variation ranges. A number of time simulations are presented.
Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics
NASA Astrophysics Data System (ADS)
Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng
2017-04-01
The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.
Control of large space structures
NASA Technical Reports Server (NTRS)
Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.
1979-01-01
The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.
Stability analysis of shallow wake flows
NASA Astrophysics Data System (ADS)
Kolyshkin, A. A.; Ghidaoui, M. S.
2003-11-01
Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi[sbreve]ic et al. (1995). Such consistency provides further evidence that experimentally observed structures in shallow wake flows may be described by the nonlinear Ginzburg Landau equation. Previous works have found similar consistency between the Ginzburg Landau model and experimental data for the case of deep (i.e. unbounded) wake flows. However, it must be emphasized that much more information is required to confirm the appropriateness of the Ginzburg Landau equation in describing shallow wake flows.
Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft
NASA Astrophysics Data System (ADS)
Patil, Mayuresh Jayawant
The focus of this research was to analyze a high-aspect-ratio wing aircraft flying at low subsonic speeds. Such aircraft are designed for high-altitude, long-endurance missions. Due to the high flexibility and associated wing deformation, accurate prediction of aircraft response requires use of nonlinear theories. Also strong interactions between flight dynamics and aeroelasticity are expected. To analyze such aircraft one needs to have an analysis tool which includes the various couplings and interactions. A theoretical basis has been established for a consistent analysis which takes into account, (i) material anisotropy, (ii) geometrical nonlinearities of the structure, (iii) rigid-body motions, (iv) unsteady flow behavior, and (v) dynamic stall. The airplane structure is modeled as a set of rigidly attached beams. Each of the beams is modeled using the geometrically exact mixed variational formulation, thus taking into account geometrical nonlinearities arising due to large displacements and rotations. The cross-sectional stiffnesses are obtained using an asymptotically exact analysis, which can model arbitrary cross sections and material properties. An aerodynamic model, consisting of a unified lift model, a consistent combination of finite-state inflow model and a modified ONERA dynamic stall model, is coupled to the structural system to determine the equations of motion. The results obtained indicate the necessity of including nonlinear effects in aeroelastic analysis. Structural geometric nonlinearities result in drastic changes in aeroelastic characteristics, especially in case of high-aspect-ratio wings. The nonlinear stall effect is the dominant factor in limiting the amplitude of oscillation for most wings. The limit cycle oscillation (LCO) phenomenon is also investigated. Post-flutter and pre-flutter LCOs are possible depending on the disturbance mode and amplitude. Finally, static output feedback (SOF) controllers are designed for flutter suppression and gust alleviation. SOF controllers are very simple and thus easy to implement. For the case considered, SOF controllers with proper choice of sensors give results comparable to full state feedback (linear quadratic regulator) designs.
Analysis of zinc binding sites in protein crystal structures.
Alberts, I L; Nadassy, K; Wodak, S J
1998-08-01
The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.
Structural, Functional, and Genetic Analysis of Sorangicin Inhibition of Bacterial RNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell,E.; Pavlova, O.; Zenkin, N.
2005-01-01
A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP {beta} subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive tomore » mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.« less
Flexibility and rigidity of cross-linked Straight Fibrils under axial motion constraints.
Nagy Kem, Gyula
2016-09-01
The Straight Fibrils are stiff rod-like filaments and play a significant role in cellular processes as structural stability and intracellular transport. Introducing a 3D mechanical model for the motion of braced cylindrical fibrils under axial motion constraint; we provide some mechanism and a graph theoretical model for fibril structures and give the characterization of the flexibility and the rigidity of this bar-and-joint spatial framework. The connectedness and the circuit of the bracing graph characterize the flexibility of these structures. In this paper, we focus on the kinematical properties of hierarchical levels of fibrils and evaluate the number of the bracing elements for the rigidity and its computational complexity. The presented model is a good characterization of the frameworks of bio-fibrils such as microtubules, cellulose, which inspired this work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott
2018-05-01
The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.
NASA Astrophysics Data System (ADS)
Jonk, R.; Biermann, C.
2002-05-01
Detailed structural analyses are presented of the Neogene Sorbas Basin adjacent to the E-W striking Gafarillos fault zone and the Vera Basin adjacent to the 020° striking Palomares fault zone in southeastern Spain. A stress regime with an E-W oriented subhorizontal maximum principal stress ( σ1) existed in pre-Tortonian (>11.3 Ma) time. A strike-slip regime with NW-SE oriented compression during Tortonian and earliest Messinian time caused dextral displacement along the E-W trending Gafarillos fault of approximately 10 km. Structural analysis indicates that most displacement took place in the Early Tortonian. Deformational patterns within the adjacent pull-apart basin reflect a dextral simple shear-zone of at least 500 m width. Kinematical analysis of folds in the Sorbas Basin suggests, however, that rotational effects are largely caused by rigid-body rotation without much internal deformation. Sinistral strike-slip displacements occurred along the Palomares fault zone under the influence of the same stress-regime. An abrupt change in the orientation of the stress field to N-S directed compression in earliest Messinian time (6.5 Ma) caused the termination of displacements along the Gafarillos fault zone, whereas the 020° trending Palomares fault zone continued to accumulate sinistral strike-slip displacements of about 25 km. Volcanism occurred along splays of the fault zone. A wider shear-zone of a few kilometers width evolved, in which considerable anti-clockwise rotation of folds occurred. Kinematic analysis of these folds shows that these rotational effects are again dominantly rigid-body rotations. Assuming rotations are merely caused by simple-shear deformation overestimates the amounts of strain. A better way to deal with simple-shear deformation is to compare observed shortening caused by folding with the magnitude of rotation of fold-hinges.
NASA Astrophysics Data System (ADS)
Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard
2013-08-01
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; ...
2015-06-11
Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z),more » mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[n i(t,z)•n i(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.« less
Niu, Chengtuo; Zhu, Linjiang; Zhu, Pei; Li, Qi
2015-06-03
1,3-1,4-β-Glucanase is widely applied in the food industry, while its low thermostability often reduces its performance. In a previous study, chemical modification of surface lysine residues was proved to increase the thermostability of β-glucanase. To improve the thermostability, the mesophilic β-glucanase from Bacillus terquilensis was rationally engineered through site-directed mutagenesis of the 12 lysines into serines. The results showed that the K20S, K117S, and K165S mutants could both enhance the specific activities and thermostability of β-glucanase. The triple mutant (K20S/K117S/K165S) could increase the optimal temperature and T50 value by 15 and 14 °C, respectively. Five percent more structured residues were observed in the mutant, which formed new β-sheet structures in the concave side. Molecular dynamics simulation analysis showed that the flexibility in the mutation regions was decreased, which resulted in the overall rigidity of the β-glucanase. Therefore, the lysine-based site-directed mutagenesis is a simple and effective method for improving the thermostability of β-glucanase.
Khan, Sara; Farooq, Umar; Kurnikova, Maria
2016-11-28
In the present studies, we analyzed the influence of temperature on the stability and dynamics of the α subunit of tryptophan synthase (TRPS) from hyperthermophilic, mesophilic, and psychrophilic homologues at different temperatures by molecular dynamics simulations. Employing different indicators such as root-mean-square deviations, root-mean-square fluctuations, principal component analysis, and free energy landscapes, this study manifests the diverse behavior of these homologues with changes in temperature. Especially, an enhancement in the collective motions, classified as representative motions, is observed at high temperature. Similarly, the criterion for the selection of electrostatic interactions in terms of their life span (duty cycle) has indeed helped in identifying the short- and long-lived electrostatic interactions and how they affect the protein's overall stability at different temperatures. Rigidity and flexibility patterns of the homologous proteins are examined using FIRST software along with the calculation of duty cycles with various threshold limits at different temperatures. Rigid cluster decomposition in TRPS of psychrophilic, mesophilic, and hyperthermophilic origin identifies the flexible and rigid regions in the protein. Early loss of rigidity is observed in mesophilic TRPS via loss of contact between the major fragments of the protein compared with the other homologues. In spite of the high similarity of their three-dimensional structures, the overall responses of the three proteins to varying temperatures are significantly different.
Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification.
Li, Fan; Liu, Xiaoguo; Zhao, Bin; Yan, Juan; Li, Qian; Aldalbahi, Ali; Shi, Jiye; Song, Shiping; Fan, Chunhai; Wang, Lihua
2017-05-10
Isothermal amplification is an efficient way to amplify DNA with high accuracy; however, the real-time monitoring for quantification analysis mostly relied on expensive and precisely designed probes. In the present study, a graphene oxide (GO)-based nanoprobe was used to real-time monitor the isothermal amplification process. The interaction between GO and different DNA structures was systematically investigated, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), DNA 3-helix, and long rolling circle amplification (RCA) and hybridization chain reaction (HCR) products, which existed in one-, two-, and three-dimensional structures. It was found that the high rigid structures exhibited much lower affinity with GO than soft ssDNA, and generally the rigidity was dependent on the length of targets and the hybridization position with probe DNA. On the basis of these results, we successfully monitored HCR amplification process, RCA process, and the enzyme restriction of RCA products with GO nanoprobe; other applications including the detection of the assembly/disassembly of DNA 3-helix structures were also performed. Compared to the widely used end-point detection methods, the GO-based sensing platform is simple, sensitive, cost-effective, and especially in a real-time monitoring mode. We believe such studies can provide comprehensive understandings and evocation on design of GO-based biosensors for broad application in various fields.
Dittmer, Neal T; Hiromasa, Yasuaki; Tomich, John M; Lu, Nanyan; Beeman, Richard W; Kramer, Karl J; Kanost, Michael R
2012-01-01
The insect cuticle is a composite biomaterial made up primarily of chitin and proteins. The physical properties of the cuticle can vary greatly from hard and rigid to soft and flexible. Understanding how different cuticle types are assembled can aid in the development of novel biomimetic materials for use in medicine and technology. Toward this goal, we have taken a combined proteomics and transcriptomics approach with the red flour beetle, Tribolium castaneum, to examine the protein and gene expression profiles of the elytra and hindwings, appendages that contain rigid and soft cuticles, respectively. Two-dimensional gel electrophoresis analysis revealed distinct differences in the protein profiles between elytra and hindwings, with four highly abundant proteins dominating the elytral cuticle extract. MALDI/TOF mass spectrometry identified 19 proteins homologous to known or hypothesized cuticular proteins (CPs), including a novel low complexity protein enriched in charged residues. Microarray analysis identified 372 genes with a 10-fold or greater difference in transcript levels between elytra and hindwings. CP genes with higher expression in the elytra belonged to the Rebers and Riddiford family (CPR) type 2, or cuticular proteins of low complexity (CPLC) enriched in glycine or proline. In contrast, a majority of the CP genes with higher expression in hindwings were classified as CPR type 1, cuticular proteins analogous to peritrophins (CPAP), or members of the Tweedle family. This research shows that the elyra and hindwings, representatives of rigid and soft cuticles, have different protein and gene expression profiles for structural proteins that may influence the mechanical properties of these cuticles.
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Generation of 3D templates of active sites of proteins with rigid prosthetic groups.
Nebel, Jean-Christophe
2006-05-15
With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html
Stresses in Circular Plates with Rigid Elements
NASA Astrophysics Data System (ADS)
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
Control of Low Reynolds Number Flows with Fluid Structure Interactions
2014-02-02
remote sensing and mineral exploration. MAVs have similar dimensions to birds and insects, and similar Reynolds numbers. Mini Unmanned Air Vehicles...that we are interested in are very different from biologically inspired flows, we note that the flexibility of the wings in insects and birds has...the rigid wing can be taken as: λ = 639.7. For sAR = 1.5, one rigid (t = 1.5 mm) and four flexible (t = 1 mm) wings are considered. The rigid wind
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-01-01
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622
Steady Motions of Rigid Body Satellites in a Central Gravitational Field
1993-12-01
been explored for several centuries. Orbiting bodies investigated include point masses, spheres, cylinders, rods, ball-and-socket connected objects...of the satellite model relative to its orbit radius could lead to 5 its treatment as a point mass, doing so would prevent analysis of satellite...8217 librational ’ motion ... and internal elastic forces in the structure balance the orbital dynamic accelerations tending to separate masses orbiting at
2011-06-17
structure through quantitative assessment of stiffness and modal parameter changes resulting from modifications to the beam geometries and positions...power transmission assembly. If the power limit at a wheel exceeds the traction limit, then depending on the type of differential placed on the axle ...components with appropriate model connectivity instead to determine the free modal response of powertrain type components, without abstraction
2011-01-01
refinement of the vehicle body structure through quantitative assessment of stiffness and modal parameter changes resulting from modifications to the beam...differential placed on the axle , adjustment of the torque output to the opposite wheel may be required to obtain the correct solution. Thus...represented by simple inertial components with appropriate model connectivity instead to determine the free modal response of powertrain type
New Finite Element/Multibody System Algorithm for Modeling Flexible Tracked Vehicles
2011-08-01
U.S. Army RDECOM-TARDEC & 2 University of Illinois at Chicago ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a...bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the...multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket
Orientation domains: A mobile grid clustering algorithm with spherical corrections
NASA Astrophysics Data System (ADS)
Mencos, Joana; Gratacós, Oscar; Farré, Mercè; Escalante, Joan; Arbués, Pau; Muñoz, Josep Anton
2012-12-01
An algorithm has been designed and tested which was devised as a tool assisting the analysis of geological structures solely from orientation data. More specifically, the algorithm was intended for the analysis of geological structures that can be approached as planar and piecewise features, like many folded strata. Input orientation data is expressed as pairs of angles (azimuth and dip). The algorithm starts by considering the data in Cartesian coordinates. This is followed by a search for an initial clustering solution, which is achieved by comparing the results output from the systematic shift of a regular rigid grid over the data. This initial solution is optimal (achieves minimum square error) once the grid size and the shift increment are fixed. Finally, the algorithm corrects for the variable spread that is generally expected from the data type using a reshaped non-rigid grid. The algorithm is size-oriented, which implies the application of conditions over cluster size through all the process in contrast to density-oriented algorithms, also widely used when dealing with spatial data. Results are derived in few seconds and, when tested over synthetic examples, they were found to be consistent and reliable. This makes the algorithm a valuable alternative to the time-consuming traditional approaches available to geologists.
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
NASA Astrophysics Data System (ADS)
Di Lorenzo, Maria Laura; Righetti, Maria Cristina; Gazzano, Massimo
2012-07-01
Semicrystalline polymers have a metastable nanophase structure, where the various nanophases can be crystal, liquid, glass, or mesophase. This multi-level structure is determined by a competition among self-organization, crystallization, and vitrification of the amorphous segments and is established during material processing. The kinetics of such competition is here determined for poly(3-hydroxybutyrate) (PHB), as vitrification/devitrification of the rigid amorphous fraction strongly affects crystallization kinetics of PHB.
Williams, D S Blaise; Tierney, Robin N; Butler, Robert J
2014-01-01
Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the impact of arch mobility on running-related injuries.
Static friction between rigid fractal surfaces
NASA Astrophysics Data System (ADS)
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
NASA Technical Reports Server (NTRS)
Likins, P. W.
1974-01-01
Equations of motion are derived for use in simulating a spacecraft or other complex electromechanical system amenable to idealization as a set of hinge-connected rigid bodies of tree topology, with rigid axisymmetric rotors and nonrigid appendages attached to each rigid body in the set. In conjunction with a previously published report on finite-element appendage vibration equations, this report provides a complete minimum-dimension formulation suitable for generic programming for digital computer numerical integration.
Ramírez-González, Pedro E; Ren, Gan; Saielli, Giacomo; Wang, Yanting
2016-06-30
In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations. [VIO(2+)][BF4(-)]2 and [VIO(2+)][Tf2N(-)]2 have similar dynamics much slower than [EMI(+)][BF4(-)], and [VIO(2+)][Tf2N(-)]2 shows a more isotropic molecular distribution than [VIO(2+)][BF4(-)]2 and [EMI(+)][BF4(-)]. Additionally, we have simulated two modified viologen-based ILs to reinforce our interpretations. We conclude from the above simulation results that the rigidity of anions influences the alignment of cations and that the rigidity of cations shows a large obstacle to their rotational capacity. Moreover, we have observed a slower diffusion of [VIO(2+)][BF4(-)]2 due to the electrostatic correlations, which stabilizes the ion-cage effect.
Nonlinear vibration of an axially loaded beam carrying rigid bodies
NASA Astrophysics Data System (ADS)
Barry, O.
2016-12-01
This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.
NASA Technical Reports Server (NTRS)
Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)
2005-01-01
A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.
Pre-lithification tectonic foliation development in a clastic sedimentary sequence
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John
2016-04-01
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-08-01
Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.
Yuan, Chunxue; Saito, Shohei; Camacho, Cristopher; Irle, Stephan; Hisaki, Ichiro; Yamaguchi, Shigehiro
2013-06-19
We have designed and synthesized a π-conjugated system that consists of a flexible and nonplanar π joint and two emissive rigid and planar wings. This molecular system exhibits respectively red, green, and blue (RGB) emission from a single-component luminophore in different environments, namely in polymer matrix, in solution, and in crystals. The flexible unit gives rise to a dynamic conformational change in the excited state from a nonplanar V-shaped structure to a planar structure, leading to a dual fluorescence of blue and green colors. The rigid and planar moieties favor the formation of a two-fold π-stacked array of the V-shaped molecules in the crystalline state, which produces a red excimer-like emission. These RGB emissions are attained without changing the excitation energy.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Impact analysis of natural fiber and synthetic fiber reinforced polymer composite
NASA Astrophysics Data System (ADS)
Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.
2018-05-01
Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toby, Brian H.; Von Dreele, Robert B.
The General Structure and Analysis Software II (GSAS-II) package is an all-new crystallographic analysis package written to replace and extend the capabilities of the universal and widely used GSAS and EXPGUI packages. GSAS-II was described in a 2013 article, but considerable work has been completed since then. This paper describes the advances, which include: rigid body fitting and structure solution modules; improved treatment for parametric refinements and equation of state fitting; and small-angle scattering data reduction and analysis. GSAS-II offers versatile and extensible modules for import and export of data and results. Capabilities are provided for users to select anymore » version of the code. Code documentation has reached 150 pages and 17 web-tutorials are offered. © 2014 International Centre for Diffraction Data.« less
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
Park, So Hyun; Hwang, Min Seob; Park, Hye Jin; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae
2018-03-27
Dongeuibogam (DongYiBaoGian), one of the most important books in Korean medicine, comprises a comprehensive summary of all traditional medicines of North-East Asia before the 17th century. This medicinal literature was mined to establish a list of candidate herbs to treat Parkinson-related rigidity. A systematic search for terms describing Parkinson-related rigidity and candidate prescriptions for the treatment of Parkinson-related rigidity in the Dongeuibogam was performed. A high-frequency medicinal herb combination group and candidates for the treatment of Parkinson-related rigidity were also selected through an analysis of medicinal herb combination frequencies. The existing literature pertaining to the potential effects of candidate herbs for Parkinson-related rigidity was reviewed. Ten medicinal herb candidates for the treatment of Parkinson-related rigidity were selected, and their respective precedent studies were analyzed.
Calculating ensemble averaged descriptions of protein rigidity without sampling.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2012-01-01
Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian
2018-06-01
The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.
NASA Astrophysics Data System (ADS)
Prasanna Kumar, S. S.; Patnaik, B. S. V.; Ramamurthi, K.
2018-04-01
The mitigation of blast waves propagating in air and interacting with rigid barriers and obstacles is numerically investigated using the mesh-free smoothed particle hydrodynamics method. A novel virtual boundary particle procedure with a skewed gradient wall boundary treatment is applied at the interfaces between air and rigid bodies. This procedure is validated with closed-form solutions for strong and weak shock reflection from rigid surfaces, supersonic flows over a wedge, formation of reflected, transverse, and Mach stem shocks, and also earlier experiments on interaction of a blast wave with concrete blocks. The mitigation of the overpressure and impulse transmitted to the protected structure due to an array of rigid obstacles of different shapes placed in the path of the blast wave is thereafter determined and discussed in the context of the existing experimental and numerical studies. It is shown that blockages having the shape of a right facing triangle or square placed in tandem or staggered provide better mitigation. The influence of the distance between the blockage array and protected structure is assessed, and the incorporation of a gap in the blockages is shown to improve the mitigation. The mechanisms responsible for the attenuation of air blast are identified through the simulations.
Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella
2015-12-01
To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state in +30° and -30° models, higher rigidity restoring materials exhibits lower interfacial stress with respect to low rigidity materials. Fracture planes inclined palatal-buccally in apical-coronal direction (+30°) reduce the interfacial stress intensity and natural tissues stress intensity with respect to the other tested configurations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Overview of the Space Launch System Transonic Buffet Environment Test Program
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.
2015-01-01
Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Floros, Matthew W.
2004-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Huang, Wenxi; Liu, Wanting; Jin, Jingjie; Xiao, Qilan; Lu, Ruibin; Chen, Wei; Xiong, Sheng; Zhang, Gong
2018-03-25
Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation. Copyright © 2017. Published by Elsevier Inc.
Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong
2015-01-01
The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity.
Qi, Yujun; Xiong, Wei; Liu, Weiqing; Fang, Hai; Lu, Weidong
2015-01-01
The plate of a pultruded fiber-reinforced polymer or fiber-reinforced plastic (FRP) profile produced via a pultrusion process is likely to undergo local buckling and cracking along the fiber direction under an external load. In this study, we constructed a pultruded glass-fiber-reinforced polymer-light wood composite (PGWC) profile to explore its mechanical performance. A rectangular cross-sectional PGWC profile was fabricated with a paulownia wood core, alkali-free glass fiber filaments, and unsaturated phthalate resin. Three-point bending and short column axial compression tests were conducted. Then, the stress calculation for the PGWC profile in the bending and axial compression tests was performed using the Timoshenko beam theory and the composite component analysis method to derive the flexural and axial compression rigidity of the profile during the elastic stress stage. The flexural capacity for this type of PGWC profile is 3.3-fold the sum of the flexural capacities of the wood core and the glass-fiber-reinforced polymer (GFRP) shell. The equivalent flexural rigidity is 1.5-fold the summed flexural rigidity of the wood core and GFRP shell. The maximum axial compressive bearing capacity for this type of PGWC profile can reach 1.79-fold the sum of those of the wood core and GFRP shell, and its elastic flexural rigidity is 1.2-fold the sum of their rigidities. These results indicate that in PGWC profiles, GFRP and wood materials have a positive combined effect. This study produced a pultruded composite material product with excellent mechanical performance for application in structures that require a large bearing capacity. PMID:26485431
Kyle, Leah M.; John, Theodore R.; Schätzl, Hermann M.; Lewis, Randolph V.
2013-01-01
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids. PMID:23825561
Ground level enhancements of cosmic rays in solar cycle 24
NASA Astrophysics Data System (ADS)
Kravtsova, M. V.; Sdobnov, V. E.
2017-07-01
Using data from ground-based observations of cosmic rays (CRs) on the worldwide network of stations and spacecraft, we have investigated the proton spectra and the CR anisotropy during the ground level enhancements of CRs on May 17, 2012 (GLE71) and January 6, 2014 (GLE72) occurred in solar cycle 24 by the spectrographic global survey method. We provide the CR rigidity spectra and the relative changes in the intensity of CRs with a rigidity of 2 GV in the solar-ecliptic geocentric coordinate system in specific periods of these events. We show that the proton acceleration during GLE71 and GLE72 occurred up to rigidities R 2.3-2.5 GV, while the differential rigidity spectra of solar CRs are described neither by a power nor by an exponential function of particle rigidity. At the times of the events considered the Earth was in a loop-like structure of the interplanetary magnetic field.
Three-dimensional water impact at normal incidence to a blunt structure
Cooker, M. J.; Korobkin, A. A.
2016-01-01
The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912
Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim
2012-01-01
Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.
Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu
2018-04-10
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
Computational prediction of hinge axes in proteins
2014-01-01
Background A protein's function is determined by the wide range of motions exhibited by its 3D structure. However, current experimental techniques are not able to reliably provide the level of detail required for elucidating the exact mechanisms of protein motion essential for effective drug screening and design. Computational tools are instrumental in the study of the underlying structure-function relationship. We focus on a special type of proteins called "hinge proteins" which exhibit a motion that can be interpreted as a rotation of one domain relative to another. Results This work proposes a computational approach that uses the geometric structure of a single conformation to predict the feasible motions of the protein and is founded in recent work from rigidity theory, an area of mathematics that studies flexibility properties of general structures. Given a single conformational state, our analysis predicts a relative axis of motion between two specified domains. We analyze a dataset of 19 structures known to exhibit this hinge-like behavior. For 15, the predicted axis is consistent with a motion to a second, known conformation. We present a detailed case study for three proteins whose dynamics have been well-studied in the literature: calmodulin, the LAO binding protein and the Bence-Jones protein. Conclusions Our results show that incorporating rigidity-theoretic analyses can lead to effective computational methods for understanding hinge motions in macromolecules. This initial investigation is the first step towards a new tool for probing the structure-dynamics relationship in proteins. PMID:25080829
Auxetic behaviour from rotating rigid units
NASA Astrophysics Data System (ADS)
Grima, J. N.; Alderson, A.; Evans, K. E.
2005-03-01
Auxetic materials exhibit the unexpected feature of becoming fatter when stretched and narrower when compressed, in other words, they exhibit a negative Poisson's ratio. This counter-intuitive behaviour imparts many beneficial effects on the material's macroscopic properties that make auxetics superior to conventional materials in many commercial applications. Recent research suggests that auxetic be-haviour generally results from a cooperative effect between the material's internal structure (geometry setup) and the deformation mechanism it undergoes when submitted to a stress. Auxetic behaviour is also known to be scale-independent, and thus, the same geometry/deformation mechanism may operate at the macro-, micro- and nano- (molecular) level. A considerable amount of research has been focused on the re-entrant honeycomb structure which exhibits auxetic behaviour if deformed through hinging at the joints or flexure of the ribs, and it was proposed that this re-entrant geometry plays an impor- tant role in generating auxetic behaviour in various forms of materials ranging from nanostructured polymers to foams. This paper discusses an alternative mode of deformation involving rotating rigid units which also results in negative Poisson's ratios. In its most ideal form, this mechanism may be construc- ted in two dimensions using rigid polygons connected together through hinges at their vertices. On application of uniaxial loads, these rigid polygons rotate with respect to each other to form a more open structure hence giving rise to a negative Poisson's ratio. This paper also discusses the role that rotating rigid units are thought to have in various classes of materials to give rise to negative Poisson's ratios.
1985-04-01
mass is taken to be a rigid body . It is assumed that the base of the system is subjected to a periodic sinusoidal motion whose frequency is f. The...Step 9. Verify rigid body motion of the platform. - ■■:’-^V’^’:-’ The natural frequency of the individual members of the platform should be at least...5 times greater than the natural frequency of the system for rigid body motion of the platform to occur. - .’ : To increase the frequency of the
NASA Astrophysics Data System (ADS)
Hartmann, Timo; Tanner, Gregor; Xie, Gang; Chappell, David; Bajars, Janis
2016-09-01
Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping technique (DFM) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. This has proven to enhance vibro-acoustic simulations considerably by making it possible to work directly on existing finite element meshes circumventing time-consuming and costly re-modelling strategies. In addition, DFM provides detailed spatial information about the vibrational energy distribution within a complex structure in the mid-to-high frequency range. We will present here progress in the development of the DEA method towards handling complex FEM-meshes including Rigid Body Elements. In addition, structure borne transmission paths due to spot welds are considered. We will present applications for a car floor structure.
Origami Metamaterial based on Pattern Rigidity
NASA Astrophysics Data System (ADS)
Chen, Yan; You, Zhong
Origami inspired mechanical metamaterials are made from a tessellation of origami units. Their mechanical behaviour is closely related to the behaviour of the origami units used. In this article, we focus on a family of metamaterials that are created by the tessellation of the square twist origami units. Generally a square twist origami unit can have four distinct hill-valley crease arrangements, two of which are rigidly foldable whereas the others are not. The rigidly foldable unit has, in general, lower stiffness than that of the non-rigidly foldable one if the facets can easily rotate about the creases. We shall show that it is possible to put rigidly foldable and non-rigidly foldable units together to form a geometrically compatible tessellation, and the stiffness of the overall structure based on such a tessellation is primarily decided by the number of non-rigid units. By astutely placing such units in a tessellation, we are able to create a metamaterial with a tunable stiffness. Y Chen acknowledges the support of the NSFC (Projects 51290293 and 51422506) and the Ministry of Science and Technology of China (Project 2014DFA70710). Z You wishes to acknowledge the support of Air Force Office of Scientific Research (FA9550-16-1-0339).
Development of a Scientific Basis for Analysis of Aircraft Seating Systems
1975-01-01
JOINT MOVEMENTS IN NORMAL MALE HUMAN ADULTS, Human Biology , Vol. 9, pp. 197-211, 1937. 10. Brinkley, J. W., DEVELOPMENT OF AEROSPACE ESCAPE SYSTEMS...Resisting Torque 21 8 Human Joint Resisting Torques: (a) Displacement- Limiting Moment; (b) Muscular Resistance 22 9 Fxternal Forces of Cushions, Floor...head strike on rigid cockpit structure. Also, the relatively low tolerance of the human b.ody to accelerations in a direction parallel to the spine
Kodak AMSD Concept Overview and Status (Semi-Rigid Mirror with Sparse Actuators)
NASA Technical Reports Server (NTRS)
Matthews, Gary; Maji, Arup K. (Technical Monitor)
2001-01-01
This talk will review Kodak's current AMSD technical and schedule status. For AMSD, Kodak is fabricating a semi-rigid closed-back egg-crate glass mirror, a graphite composite reaction structure, and 16 force actuators for figure control. The mirror is currently on schedule for cryotesting in early '02.
Impact of Growth in the Universe of Subjects on Classification.
ERIC Educational Resources Information Center
Ranganathan, Shiyali Ramamritam
The development of the removal of rigidity in library classification is traced from the Enumerative Classification of DC (1876) through the Nearly-Faceted Classification of UDC (1896), the rigidly, though fully faceted version of CC (1933), the generalized faceted structure of version 2 of CC (1949), down to the Freely Faceted Classification of…
Complexity management theory: motivation for ideological rigidity and social conflict.
Peterson, Jordan B; Flanders, Joseph L
2002-06-01
We are doomed to formulate conceptual structures that are much simpler than the complex phenomena they are attempting to account for. These simple conceptual structures shield us, pragmatically, from real-world complexity, but also fail, frequently, as some aspect of what we did not take into consideration makes itself manifest. The failure of our concepts dysregulates our emotions and generates anxiety, necessarily, as the unconstrained world is challenging and dangerous. Such dysregulation can turn us into rigid, totalitarian dogmatists, as we strive to maintain the structure of our no longer valid beliefs. Alternatively, we can face the underlying complexity of experience, voluntarily, gather new information, and recast and reconfigure the structures that underly our habitable worlds.
A soft-rigid contact model of MPM for granular flow impact on retaining structures
NASA Astrophysics Data System (ADS)
Li, Xinpo; Xie, Yanfang; Gutierrez, Marte
2018-02-01
Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.
A deformation analysis of flat flexible gear and its equation of original curved surfaces
NASA Technical Reports Server (NTRS)
Yunwen, S.
1985-01-01
The equation of the original curved surface of end harmonic gearing is determined by displacement analysis of flat flexible gear. The displacement analysis is also used to calculate the strength and rigidity of the gear. The latter is regarded as a circular plate with two concentrated loads, since its torsional rigidity is much larger than its bending rigidity. Small-deflection theory of thin plates is used to solve for the displacement of any point in the middle plane of the gear. New expressions are given for radial and tangential displacements of the middle plane under asymmetrical loading. A digital computer is used to obtain numerical values for the displacements.
NASA Astrophysics Data System (ADS)
Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid
2018-04-01
The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.
Rigid spine reinforced polymer microelectrode array probe and method of fabrication
Tabada, Phillipe; Pannu, Satinderpall S
2014-05-27
A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustre de Leon, J.; Batistic, I.; Bishop, A.R.
1993-05-01
We assert that the one-site Cu(1)-O(4) model, suggested in the Comment by Thomsen and Cardona [Phys. Rev. B 47, 12 320 (1993)] is inconsistent with polarized x-ray-absorption fine-structure and diffraction results. We also show that the two-site Cu(1)-O(4) distribution is not inconsistent with optical measurements, although a rigid double-well modeling of this distribution is [Phys. Rev. Lett. 68, 3236 (1992)].
NASA Astrophysics Data System (ADS)
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Rigid-Cluster Models of Conformational Transitions in Macromolecular Machines and Assemblies
Kim, Moon K.; Jernigan, Robert L.; Chirikjian, Gregory S.
2005-01-01
We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Cα atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Cα coarse-grained model is >(300,000)2. However, it reduces to (84)2 when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed. PMID:15833998
Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions.
Calligari, Paolo; Gerolin, Marco; Abergel, Daniel; Polimeno, Antonino
2017-01-10
In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.
NASA Astrophysics Data System (ADS)
Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng
2018-04-01
A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Study of intensification zones in a rectangular acoustic cavity
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1992-01-01
The interior acoustic field of a rectangular acoustic cavity, which is excited by the structural vibration of one of its walls, or a portion of the wall, has been studied. Particularly, the spatial variations of sound pressure levels from the peak levels at the boundaries (intensification zones) to the uniform interior are considered. Analytical expressions, which describe the intensification zones, are obtained using the methodology of asymptotic modal analysis. These results agree well with results computed by a discrete summation over all of the modes. The intensification zones were also modeled as a set of oblique waves incident upon a surface. The result for a rigid surface agrees with the asymptotic modal analysis result. In the presence of an absorptive surface, the character of the intensification zone is dramatically changed. The behavior of the acoustic field near an absorptive wall is described by an expression containing the rigid wall result plus additional terms containing impedance information. The important parameter in the intensification zone analysis is the bandwidth to center frequency ratio. The effect of bandwidth is separated from that of center frequency by expanding the expression about the center frequency wave number. The contribution from the bandwidth is second order in bandwidth to center frequency ratio.
Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy
NASA Astrophysics Data System (ADS)
Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam
2018-03-01
The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.
Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.
Mahata, Paritosh; Das, Sovan Lal
2017-05-01
We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.
Band structure analysis of a thin plate with periodic arrangements of slender beams
NASA Astrophysics Data System (ADS)
Serrano, Ó.; Zaera, R.; Fernández-Sáez, J.
2018-04-01
This work analyzes the wave propagation in structures composed of a periodic arrangement of vertical beams rigidly joined to a plate substrate. Three different configurations for the distribution of the beams have been analyzed: square, triangular, and hexagonal. A dimensional analysis of the problem indicates the presence of three dimensionless groups of parameters controlling the response of the system. The main features of the wave propagation have been found using numerical procedures based on the Finite Element Method, through the application of the Bloch's theorem for the corresponding primitive unit cells. Illustrative examples of the effect of the different dimensionless parameters on the dynamic behavior of the system are presented, providing information relevant for design.
Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi
2015-09-01
The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Floros, Matthew W.; Johnson, Wayne
2007-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
Rigidity of Glasses and Macromolecules
NASA Astrophysics Data System (ADS)
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit
NASA Technical Reports Server (NTRS)
Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard
2010-01-01
Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.
Aerothermoelastic analysis of a NASP demonstrator model
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Zeiler, Thomas A.; Pototzky, Anthony S.; Spain, Charles V.; Engelund, Walter C.
1993-01-01
The proposed National AeroSpace Plane (NASP) is designed to travel at speeds up to Mach 25. Because aerodynamic heating during high-speed flight through the atmosphere could destiffen a structure, significant couplings between the elastic and rigid body modes could result in lower flutter speeds and more pronounced aeroelastic response characteristics. These speeds will also generate thermal loads on the structure. The purpose of this research is develop methodologies applicable to the NASP and to apply them to a representative model to determine its aerothermoelastic characteristics when subjected to these thermal loads. This paper describes an aerothermoelastic analysis of the generic hypersonic vehicle configuration. The steps involved in this analysis were: (1) generating vehicle surface temperatures at the appropriate flight conditions; (2) applying these temperatures to the vehicle's structure to predict changes in the stiffness resulting from material property degradation; (3) predicting the vibration characteristics of the heated structure at the various temperature conditions; (4) performing aerodynamic analyses; and (5) conducting flutter analysis of the heated vehicle. Results of these analyses and conclusions representative of a NASP vehicle are provided in this paper.
Rigid collapsible dish structure
NASA Technical Reports Server (NTRS)
Palmer, William B. (Inventor); Giebler, Martin M. (Inventor)
1982-01-01
A collapsible dish structure composed of a plurality of rows of rigid radial petal assemblies concentric with the axis of the dish. The petal assemblies consist of a center petal and two side petals, the center petal hinged on an axis tangent to a circle concentric with the axis of the dish and the side petals hinged to the center petal at their mating edge. The center petal is foldable inwardly and the side petals rotate about their hinges such that the collapsed dish structure occupies a much smaller volume than the deployed dish. Means of controlling the shape of the dish to compensate for differential expansion of the deployed dish are also provided.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
On N = 1 partition functions without R-symmetry
Knodel, Gino; Liu, James T.; Zayas, Leopoldo A. Pando
2015-03-25
Here, we examine the dependence of four-dimensional Euclidean N = 1 partition functions on coupling constants. In particular, we focus on backgrounds without R-symmetry, which arise in the rigid limit of old minimal supergravity. Backgrounds preserving a single supercharge may be classified as having either trivial or SU(2) structure, with the former including S 4. We show that, in the absence of additional symmetries, the partition function depends non-trivially on all couplings in the trivial structure case, and (anti)-holomorphically on couplings in the SU(2) structure case. In both cases, this allows for ambiguities in the form of finite counterterms, whichmore » in principle render the partition function unphysical. However, we argue that on dimensional grounds, ambiguities are restricted to finite powers in relevant couplings, and can therefore be kept under control. On the other hand, for backgrounds preserving supercharges of opposite chiralities, the partition function is completely independent of all couplings. In this case, the background admits an R-symmetry, and the partition function is physical, in agreement with the results obtained in the rigid limit of new minimal supergravity. Based on a systematic analysis of supersymmetric invariants, we also demonstrate that N = 1 localization is not possible for backgrounds without R-symmetry.« less
Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.
Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand
2018-04-03
Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.
NASA Astrophysics Data System (ADS)
Dixon, T. H.; Xie, S.; Malservisi, R.; Lembke, C.; Iannaccone, G.; Law, J.; Rodgers, M.; Russell, R.; Voss, N. K.
2017-12-01
A GPS-buoy system has been built and is currently undergoing test to measure precise 3D sea floor motion in the shallow (less than 200 m) continental shelf environment. Offshore deformation is undersampled in most subduction zones. In Cascadia, the shallow shelf environment constitutes roughly 20%-25% of the offshore area between the coastline and the trench. In the system being tested, the GPS receiver at the top of the buoy is connected to the sea floor through a rigid structure supported by a float. A similar design has been used by INGV (Italy) to measure vertical deformation on the sea floor near the Campi Flegrei caldera. Synthetic analysis shows that by adding a 3-axis digital compass to measure heading and tilt, along with kinematic GPS measurements, position of the anchor can be recovered to an accuracy of several centimeters or better, depending on water depth and GPS baseline length. Synthetic resolution tests show that our ability to detect shallow slow slip events on subduction plate boundaries can be greatly improved by adding offshore GPS-buoy sites.
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
Wang, Conan K.; Hu, Shu-Hong; Martin, Jennifer L.; Sjögren, Tove; Hajdu, Janos; Bohlin, Lars; Claeson, Per; Göransson, Ulf; Rosengren, K. Johan; Tang, Jun; Tan, Ning-Hua; Craik, David J.
2009-01-01
Cyclotides are a family of plant defense proteins that are highly resistant to adverse chemical, thermal, and enzymatic treatment. Here, we present the first crystal structure of a cyclotide, varv F, from the European field pansy, Viola arvensis, determined at a resolution of 1.8 Å. The solution state NMR structure was also determined and, combined with measurements of biophysical parameters for several cyclotides, provided an insight into the structural features that account for the remarkable stability of the cyclotide family. The x-ray data confirm the cystine knot topology and the circular backbone, and delineate a conserved network of hydrogen bonds that contribute to the stability of the cyclotide fold. The structural role of a highly conserved Glu residue that has been shown to regulate cyclotide function was also determined, verifying its involvement in a stabilizing hydrogen bond network. We also demonstrate that varv F binds to dodecylphosphocholine micelles, defining the binding orientation and showing that its structure remains unchanged upon binding, further demonstrating that the cyclotide fold is rigid. This study provides a biological insight into the mechanism by which cyclotides maintain their native activity in the unfavorable environment of predator insect guts. It also provides a structural basis for explaining how a cluster of residues important for bioactivity may be involved in self-association interactions in membranes. As well as being important for their bioactivity, the structural rigidity of cyclotides makes them very suitable as a stable template for peptide-based drug design. PMID:19211551
Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2015-01-01
The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.
Quasi-static analysis of foil journal bearings for a Brayton cycle turboalternator
NASA Technical Reports Server (NTRS)
Eshel, A.
1974-01-01
A quasi-static analysis is presented for foil journal bearings designed for a NASA Brayton Cycle Turboalternator. Included in the analysis are effects of 'slack' (due to flexural rigidity of the foil), of frictionally restrained extension of the foil-length in contact with cylindrical guides, of fluid inertia and compressibility, and of thermal expansion of rotor, foil and supporting structure. Comparisons are made with results of early experiments performed by Licht (1968, 1969) and recent data of Licht and Branger (1973). Variatons of film thickness, foil tension and bearing stiffness are presented graphically as functions of pertinent parameters for the case of operation in zero-gravity environment.
A comparison of methods for evaluating structure during ship collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, D.J.; Daidola, J.C.
1996-10-01
A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less
Non-rigid Reconstruction of Casting Process with Temperature Feature
NASA Astrophysics Data System (ADS)
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu
2017-09-01
Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.
Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane
2017-03-01
Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.
Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype
NASA Astrophysics Data System (ADS)
Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.
2016-09-01
Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.
Schindler, Christina E M; de Vries, Sjoerd J; Zacharias, Martin
2015-02-01
Protein-protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure-based force field for intramolecular contributions. The approach was systematically evaluated on a large protein-protein docking benchmark, starting from an enriched decoy set of rigidly docked protein-protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. © 2014 Wiley Periodicals, Inc.
Knowledge-In-Action: An Example with Rigid Body Motion
ERIC Educational Resources Information Center
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Advanced Concept Architecture Design and Integrated Analysis (ACADIA)
2017-11-03
and the vertical drag due to the induced velocity download on the vehicle structure. The propeller blades are assumed to be rigid and therefore any...flapping of the blades is assumed to be negligible. Thus, the tip path plane angle of attack gives an indication of the multicopter attitude when used...The software required to run this printer is called Catalyst EX. Catalyst EX generates an estimated print time with a given STL file. Fixed wing
2011-02-01
was calculated as the difference between the lowest point of the rigid indenter and the initial position of the sample’s free surface. The total...SiC A high pressure structural phase transformation (HPPT) was previously reported for silicon, gallium arsenide, and silicon nitride and indirect...molecular dynamics (MD) simulations with thermodynamic analysis to settle this debate whether silicon carbide (SiC) can undergo a high pressure phase
Method to estimate center of rigidity using vibration recordings
Safak, Erdal; Çelebi, Mehmet
1990-01-01
A method to estimate the center of rigidity of buildings by using vibration recordings is presented. The method is based on the criterion that the coherence of translational motions with the rotational motion is minimum at the center of rigidity. Since the coherence is a function of frequency, a gross but frequency-independent measure of the coherency is defined as the integral of the coherence function over the frequency. The center of rigidity is determined by minimizing this integral. The formulation is given for two-dimensional motions. Two examples are presented for the method; a rectangular building with ambient-vibration recordings, and a triangular building with earthquake-vibration recordings. Although the examples given are for buildings, the method can be applied to any structure with two-dimensional motions.
Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana.
Li, Congmin; Guo, Xianrong; Jia, Zongchao; Xia, Bin; Jin, Changwen
2005-07-01
Antifreeze proteins (AFPs) are widely employed by various organisms as part of their overwintering survival strategy. AFPs have the unique ability to suppress the freezing point of aqueous solution and inhibit ice recrystallization through binding to the ice seed crystals and restricting their growth. The solution structure of CfAFP-501 from spruce budworm has been determined by NMR spectroscopy. Our result demonstrates that CfAFP-501 retains its rigid and highly regular structure in solution. Overall, the solution structure is similar to the crystal structure except the N- and C-terminal regions. NMR spin-relaxation experiments further indicate the overall rigidity of the protein and identify a collection of residues with greater flexibilities. Furthermore, Pro91 shows a cis conformation in solution instead of the trans conformation determined in the crystal structure.
Prytkova, Vera; Heyden, Matthias; Khago, Domarin; Freites, J Alfredo; Butts, Carter T; Martin, Rachel W; Tobias, Douglas J
2016-08-25
We present a novel multi-conformation Monte Carlo simulation method that enables the modeling of protein-protein interactions and aggregation in crowded protein solutions. This approach is relevant to a molecular-scale description of realistic biological environments, including the cytoplasm and the extracellular matrix, which are characterized by high concentrations of biomolecular solutes (e.g., 300-400 mg/mL for proteins and nucleic acids in the cytoplasm of Escherichia coli). Simulation of such environments necessitates the inclusion of a large number of protein molecules. Therefore, computationally inexpensive methods, such as rigid-body Brownian dynamics (BD) or Monte Carlo simulations, can be particularly useful. However, as we demonstrate herein, the rigid-body representation typically employed in simulations of many-protein systems gives rise to certain artifacts in protein-protein interactions. Our approach allows us to incorporate molecular flexibility in Monte Carlo simulations at low computational cost, thereby eliminating ambiguities arising from structure selection in rigid-body simulations. We benchmark and validate the methodology using simulations of hen egg white lysozyme in solution, a well-studied system for which extensive experimental data, including osmotic second virial coefficients, small-angle scattering structure factors, and multiple structures determined by X-ray and neutron crystallography and solution NMR, as well as rigid-body BD simulation results, are available for comparison.
Hydrogen bonds in concreto and in computro: the sequel
NASA Astrophysics Data System (ADS)
Stouten, Pieter F. W.; Van Eijck, Bouke P.; Kroon, Jan
1991-02-01
In the framework of our comparative research concerning hydrogen bonding in the crystalline and liquid phases we have carried out molecular dynamics (MD) simulations of liquid methanol. Six different rigid three site models are compared. Five of them had been reported in the literature and one (OM2) we developed by a fit to the experimental molar volume, heat of vaporization and neutron weighted radial distribution function. In general the agreement with experiment is satisfactory for the different models. None of the models has an explicit hydrogen bond potential, but five of the six models show a degree of hydrogen bonding comparable to experiments on liquid methanol. The analysis of the simulation hydrogen bonds indicates that there is a distinct preference of the O⋯O axis to lie in the acceptor lone pairs plane, but hardly any for the lone pair directions. Ab initio calculations and crystal structure statistics of OH⋯O hydrogen bonds agree with this observation. The O⋯O hydrogen bond length distributions are similar for most models. The crystal structures show a sharper O⋯O distribution. Explicit introduction of harmonic motion with a quite realistic root mean square amplitude of 0.08 Å to the thermally averaged crystal distribution results in a distribution comparable to OM2 although the maximum of the former is found at shorter distance. On the basis of the analysis of the static properties of all models we conclude that our OM2, Jorgenson's OPLS and Haughney, Ferrario and McDonald's HFM1 models are good candidates for simulations of liquid methanol under isothermal, isochoric conditions. Partly flexible and completely rigid OM2 are simulated at constant pressure and with fixed volume. The flexible simulations give essentially the same (correct) results under both conditions, which is not surprising because the flexible form was fitted under both conditions. Rigid OM2 has a similar potential energy but larger pressure in the isochoric case and larger energy and far larger volume in the isobaric case. Radial distribution functions and hydrogen bond geometries are very similar for all four cases. Only in the case of the osobaric rigid methanol does the volume expansion seem to be accompanied by a slight preference for tetrahedrality around the oxygen atom.
NASA Technical Reports Server (NTRS)
Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai
1987-01-01
Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.
Metastable Amyloid Phases and their Conversion to Mature Fibrils
NASA Astrophysics Data System (ADS)
Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy
Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.
The NASTRAN User's Manual Level 16.0 and Supplement
NASA Technical Reports Server (NTRS)
1976-01-01
The user's manual is restricted to those items related to the use of NASTRAN that are independent of the computing system being used. The features of NASTRAN described include: (1) procedures for defining and loading a structural model and a functional reference for every card that is used for structural modeling; (2) the NASTRAN data deck, including the details for each of the data cards; (3) the NASTRAN control cards that are associated with the use of the program; (4) rigid format procedures, along with specific instructions for the use of each rigid format: (5) procedures for using instructions for the use of each rigid format; (5) procedures for using the NASTRAN plotting capability; (6) procedures governing the creation of DMAP programs; and (7) the NASTRAN diagnostic messages. The NASTRAN dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included along with a limited number of sample problems.
Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study
NASA Astrophysics Data System (ADS)
Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary
Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.
A rigid disc for protection of exposed blood vessels during negative pressure wound therapy.
Anesäter, Erik; Borgquist, Ola; Torbrand, Christian; Roupé, K Markus; Ingemansson, Richard; Lindstedt, Sandra; Malmsjö, Malin
2013-02-01
There are increasing reports of serious complications and deaths associated with negative pressure wound therapy (NPWT). Bleeding may occur when NPWT is applied to a wound with exposed blood vessels. Inserting a rigid disc in the wound may protect these structures. The authors examined the effects of rigid discs on wound bed tissue pressure and blood flow through a large blood vessel in the wound bed during NPWT. Wounds were created over the femoral artery in the groin of 8 pigs. Rigid discs were inserted. Wound bed pressures and arterial blood flow were measured during NPWT. Pressure transduction to the wound bed was similar for control wounds and wounds with discs. Blood flow through the femoral artery decreased in control wounds. When a disc was inserted, the blood flow was restored. NPWT causes hypoperfusion in the wound bed tissue, presumably as a result of mechanical deformation. The insertion of a rigid barrier alleviates this effect and restores blood flow.
Green waste cooking oil-based rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Enderus, N. F.; Tahir, S. M.
2017-11-01
Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.
Alimohammadi, Mona; Sherwood, Joseph M; Karimpour, Morad; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa
2015-04-15
The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.
Conceptual design and structural analysis for an 8.4-m telescope
NASA Astrophysics Data System (ADS)
Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego
2004-09-01
This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.
Structural insights into the interaction of IL-33 with its receptors.
Liu, Xi; Hammel, Michal; He, Yanfeng; Tainer, John A; Jeng, U-Ser; Zhang, Linqi; Wang, Shuying; Wang, Xinquan
2013-09-10
Interleukin (IL)-33 is an important member of the IL-1 family that has pleiotropic activities in innate and adaptive immune responses in host defense and disease. It signals through its ligand-binding primary receptor ST2 and IL-1 receptor accessory protein (IL-1RAcP), both of which are members of the IL-1 receptor family. To clarify the interaction of IL-33 with its receptors, we determined the crystal structure of IL-33 in complex with the ectodomain of ST2 at a resolution of 3.27 Å. Coupled with structure-based mutagenesis and binding assay, the structural results define the molecular mechanism by which ST2 specifically recognizes IL-33. Structural comparison with other ligand-receptor complexes in the IL-1 family indicates that surface-charge complementarity is critical in determining ligand-binding specificity of IL-1 primary receptors. Combined crystallography and small-angle X-ray-scattering studies reveal that ST2 possesses hinge flexibility between the D3 domain and D1D2 module, whereas IL-1RAcP exhibits a rigid conformation in the unbound state in solution. The molecular flexibility of ST2 provides structural insights into domain-level conformational change of IL-1 primary receptors upon ligand binding, and the rigidity of IL-1RAcP explains its inability to bind ligands directly. The solution architecture of IL-33-ST2-IL-1RAcP complex from small-angle X-ray-scattering analysis resembles IL-1β-IL-1RII-IL-1RAcP and IL-1β-IL-1RI-IL-1RAcP crystal structures. The collective results confer IL-33 structure-function relationships, supporting and extending a general model for ligand-receptor assembly and activation in the IL-1 family.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
The next generation of solar panel substrates?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, K.M.; Boswell, R.L.; Paul, J.G.
For over 25 years, satellite power system designers have used rigid honeycomb panels as solar array substrates. Those years have seen very little improvement in the performance of these rigid systems. A new technology under development at the Phillips Laboratory, however, may undo this stagnancy. Composite isogrid panel structures offer a number of potential advantages over honeycomb sandwich structures for solar array applications, including stiffness, weight, and cost improvements. Phillips Laboratory will be performing a series of evaluative tests on the isogrid structure to determine its suitability as a substitute for honeycomb sandwiches in solar panel applications. Testing will includemore » three-point bending, thermal vacuum, and thermal cycling.« less
Porous carbonaceous electrode structure and method for secondary electrochemical cell
Kaun, Thomas D.
1977-03-08
Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.
The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter
NASA Astrophysics Data System (ADS)
Erickson, James K.
1990-09-01
An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.
Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases
2015-01-01
Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942
Stable, metastable, and kinetically trapped amyloid aggregate phases.
Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin
2015-01-12
Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1980-01-01
The formulation basis for establishing the static or dynamic equilibrium configurations of finite element models of structures which may behave in the nonlinear range are provided. With both geometric and time independent material nonlinearities included, the development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. Representations of a rigid link and an impenetrable contact plane are added to the deformation model so that any number of nodes of the finite element model may be connected by a rigid link or may contact the plane. Equilibrium configurations are derived as the stationary conditions of a potential function of the generalized nodal variables of the model. Minimization of the nonlinear potential function is achieved by using the best current variable metric update formula for use in unconstrained minimization. Powell's conjugate gradient algorithm, which offers very low storage requirements at some slight increase in the total number of calculations, is the other alternative algorithm to be used for extremely large scale problems.
Analysis of Forbush decreases during strong geomagnetic disturbances in March-April 2001
NASA Astrophysics Data System (ADS)
Kravtsova, M. V.; Sdobnov, V. E.
2014-08-01
Using ground-based cosmic-ray (CR) observations on the worldwide network of neutron monitors, we have studied the variations in CR rigidity spectrum, anisotropy, and planetary system of geomagnetic cutoff rigidities during Forbush decreases in March-April 2001 by the global spectrographic method. By jointly analyzing ground-based and satellite measurements, we have determined the parameters of the CR rigidity spectrum that reflect the electromagnetic characteristics of the heliospheric fields in each hour of observations within the framework of the model of CR modulation by the heliosphere's regular electromagnetic fields. The rigidity spectra of the variations and the relative changes in the intensity of CRs with rigidities of 4 and 10 GV in the solar-ecliptic geocentric coordinate system are presented in specific periods of the investigated events.
A more accurate modeling of the effects of actuators in large space structures
NASA Technical Reports Server (NTRS)
Hablani, H. B.
1981-01-01
The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-01-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health. PMID:26213417
NASA Astrophysics Data System (ADS)
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-10-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Tq Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health.
NASA Astrophysics Data System (ADS)
Curà, F.; Curti, G.; Mantovani, M.
1996-03-01
The subject of this paper is an experimental and analytical study of a structural-acoustical coupling problem. To simplify the issue, the analytical model considered here consists of a uni-dimensional acoustic cavity coupled to a one-degree-of-freedom system (mass, spring and damper). An harmonic excitation force is applied to the mass of the oscillator. In the theoretical analysis, the uni-dimensional cavity is subjected, in correspondence of its end sections, to boundary conditions, which are either the usual ones (closed or open ended) or those deriving from the coupling with the oscillator. This simple model proved to be very useful to investigate the influence of the variation of both the geometrical parameters (i.e., the length of the cavity) and the physical parameters (i.e., mass, damping coefficient and stiffness of the oscillator). The analytical results are compared to those obtained experimentally on a real coupled system, consisting of a cavity enclosed by an acoustically rigid steel cylinder, closed at one end by a movable, acoustically rigid piston and at the other end by a flexible plate, clamped around its edge by the cylinder. Thus the length of the cavity can be varied by simply moving the rigid piston.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
NASA Astrophysics Data System (ADS)
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
NASA Astrophysics Data System (ADS)
Bosela, P. A.; Fertis, D. G.; Shaker, F. J.
1992-09-01
Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.
NASA Technical Reports Server (NTRS)
Engrand, D.; Cortial, J.
1983-01-01
The inertial constants of an aircraft rocket, or of any other structure, are defined without materializing any rotating axis. The necessary equipment is very similar to that used normally for ground vibration tests. An elastic suspension is used to obtain the total natural modes corresponding to the motions of the structure as a solid. From the measurements of the generalized masses of these modes it is possible to compute the inertial constants: (1) center of inertia; (2) tensor of inertia; and (3) mass. When the structure is not strictly rigid a purification process, based on the mean square method makes it possible to rigidify it at the price of some approximations and a few more measurements. Eventual additional masses, that are not parts of the structure, can be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; ...
2017-01-20
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
1986-08-01
each subsystem wist include more than a set of rigid body and normal modes to properly represent the dynamics of the entire system. Various types of...MCM 1 AUGMENTATION HETNO-MrifaOII FIELD TflACKER »f Tl BASIC EXPERIMENT Figure 3. Dynamics augmentation experiment. i i mnc...Villeurbanne - France Today the dynamic behavior of rotors must be predicted with the greatest care. This work deals with the influence of disc flexi
2016-06-30
measurements as well as of the stiffness of the hull can be obtained by using measurements (accelerometer and gyro data) from one location of the boat to...assuming a rigid hull ) to bulkhead #5. The two estimates match exceptionally well. The data shown are fairly typical from operating the Nurnerette in...indicated in dE~ figure. The hull was designed to 2: G so it should be no surprise that the structure under ..vent permanent deformation during this
NASA Technical Reports Server (NTRS)
Gillham, J. K.
1974-01-01
The results are discussed of the on-line interface of the Torsional Braid Analysis experiment to an Hierarchical Computer System for data acquisition, data reduction and control of experimental variables. Some experimental results are demonstrated and the data reduction procedures are outlined. Several modes of presentation of the final computer-reduced data are discussed in an attempt to elucidate possible interrelations between the thermal variation of the rigidity and loss parameters.
Nonlinear model of a rotating hub-beams structure: Equations of motion
NASA Astrophysics Data System (ADS)
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric
2013-01-01
In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.
Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.
Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan
2016-07-20
Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.
Roof-crush strength improvement using rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Lilley, K.; Mani, A.
1998-08-01
Recent bending tests show the effectiveness of rigid, polyurethane foam in improving the strength of automotive body structures. By using foam, it is possible to reduce pillar sections, and to reduce thicknesses or eliminate reinforcements inside the pillars, and thereby offset the mass increase due to the foam filling. Further tests showed that utilizing the foam filling in a B-pillar to reduce section size can save ~20 mm that could be utilized to add energy absorbing structures in order to meet the new interior head impact requirements specified by the federal motor vehicle safety standards (FMVSS) 201 Head Impact Protection upgrade.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Marcus, S.; Starnes, J. H., JR.
1998-01-01
In this paper we present a closed-form solution for vibrational imperfection sensitivity the effect of small imperfections on the vibrational frequencies of perturbed motion around the static equilibrium state of Augusti's model Structure (a rigid link, pinned at one end to a rigid foundation and supported at the other by a linear extensional spring that retains its horizontality, as the system deflects). We also treat a modified version of that model with attendant slightly different dynamics. It is demonstrated that the vibrational frequencies decreases as the initial imperfections increase.
Rigid Plate Fixation Versus Wire Cerclage for Sternotomy After Cardiac Surgery: A Meta-Analysis.
Tam, Derrick Y; Nedadur, Rashmi; Yu, Monica; Yanagawa, Bobby; Fremes, Stephen E; Friedrich, Jan O
2018-03-22
Traditionally, wire cerclage has been used to reapproximate the sternum after sternotomy. Recent evidence suggests that rigid plate fixation for sternal closure may reduce the risk of sternal complications. The Medline and Embase databases were searched from inception to February 2017 for studies that compared rigid plate fixation with wire cerclage for cardiac surgery patients undergoing sternotomy. Random effects meta-analysis compared rates of sternal complications (primary outcome, defined as deep or superficial sternal wound infection, or sternal instability), early mortality, and length of stay (secondary outcomes). Three randomized controlled trials (n = 427) and five unadjusted observational studies (n = 1,025) met inclusion criteria. There was no significant difference in sternal complications with rigid plate fixation at a median of 6 months' follow-up (incidence rate ratio 0.51, 95% confidence interval [CI]: 0.20 to 1.29, p = 0.15) overall, but a decrease when including only patients at high risk for sternal complications (incidence rate ratio 0.23, 95% CI: 0.06 to 0.89, p = 0.03; two observational studies). Perioperative mortality was reduced favoring rigid plate fixation (relative risk 0.40, 95% CI: 0.28 to 0.97, p = 0.04; four observational studies and one randomized controlled trial). Length of stay was similar overall (mean difference -0.77 days, 95% CI: -1.65 to +0.12, p = 0.09), but significantly reduced with rigid plate fixation in the observational studies (mean difference -1.34 days, 95% CI: -2.05 to -0.63, p = 0.0002). This meta-analysis, driven by the results of unmatched observational studies, suggests that rigid plate fixation may lead to reduced sternal complications in patients at high risk for such events, improved perioperative survival, and decreased hospital length of stay. More randomized controlled trials are required to confirm the potential benefits of rigid plate fixation for primary sternotomy closure. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Analysis of a new composite material for watercraft manufacturing
NASA Astrophysics Data System (ADS)
Wahrhaftig, Alexandre; Ribeiro, Henrique; Nascimento, Ademar; Filho, Milton
2016-09-01
In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.
Structure analysis of the wing of a dragonfly
NASA Astrophysics Data System (ADS)
Machida, Kenji; Shimanuki, J.
2005-04-01
It is considered that wing corrugation increases not only the warping rigidity but also the flexibility. The wing of a dragonfly has some characteristic structures, such as "Nodus", "Stigma". Nodus is located in the center of the leading edge, and stigma like a mark is located near the end of the wing. It is considered that these structures not only increase the flexibility of the wing, but also prevent fatigue fracture of wings. Therefore, to investigate the mechanism of dragonfly's wing, the configuration of wing used for analyses was measured using an optical coordinate profile measuring machine and a laser microscope. Moreover, several 3-D models of the dragonfly's wing were made, and calculated by the 3-D finite element method.
Venderink, Wulphert; de Rooij, Maarten; Sedelaar, J P Michiel; Huisman, Henkjan J; Fütterer, Jurgen J
2016-07-29
The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21-1.73, p<0.0001) and 1.40 (95% CI: 1.13-1.75, p=0.002), respectively. No significant difference was seen between the subgroups (p=0.83). Pooling subgroups resulted in an OR of 1.43 (95% CI: 1.25-1.63, p<0.00001). No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of csPCa; however, both techniques detected more csPCa than TRUS-guided biopsy alone. We did not identify any significant differences in prostate cancer detection between two distinct magnetic resonance imaging-transrectal ultrasound fusion systems which vary in their method of compensating for prostate deformation. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
100-kW hingeless metal wind turbine blade design, analysis and fabrication
NASA Technical Reports Server (NTRS)
Donham, R. E.; Schmidt, J.; Linscott, B. S.
1975-01-01
The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.
Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.
1978-01-01
Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.
Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J
2011-08-14
A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Lugni, C.; Bardazzi, A.; Faltinsen, O. M.; Graziani, G.
2014-03-01
The evolution of a flip-through event [6] upon a vertical, deformable wall during shallow-water sloshing in a 2D tank is analyzed, with specific focus on the role of hydroelasticity. An aluminium plate, whose dimensions are Froude-scaled in order to reproduce the first wet natural frequency associated with the typical structural panel of a Mark III containment system, is used. (Mark III Containment System is a membrane-type tank used in the Liquefied Natural Gas (LNG) carrier to contain the LNG. A typical structural panel is composed by two metallic membranes and two independent thermal insulation layers. The first membrane contains the LNG, the second one ensures redundancy in case of leakage.) Such a system is clamped to a fully rigid vertical wall of the tank at the vertical ends while being kept free on its lateral sides. Hence, in a 2D flow approximation the system can be suitably modelled, as a double-clamped Euler beam, with the Euler beam theory. The hydroelastic effects are assessed by cross-analyzing the experimental data based both on the images recorded by a fast camera, and on the strain measurements along the deformable panel and on the pressure measurements on the rigid wall below the elastic plate. The same experiments are also carried out by substituting the deformable plate with a fully stiff panel. The pressure transducers are mounted at the same positions of the strain gauges used for the deformable plate. The comparison between the results of rigid and elastic case allows to better define the role of hydroelasticity. The analysis has identified three different regimes characterizing the hydroelastic evolution: a quasi-static deformation of the beam (regime I) precedes a strongly hydroelastic behavior (regime II), for which the added mass effects are relevant; finally, the free-vibration phase (regime III) occurs. A hybrid method, combining numerical modelling and experimental data from the tests with fully rigid plate is proposed to examine the hydroelastic effects. Within this approach, the measurements provide the experimental loads acting on the rigid plate, while the numerical solution enables a more detailed analysis, by giving additional information not available from the experimental tests. More in detail, an Euler beam equation is used to model numerically the plate with the added-mass contribution estimated in time. In this way the resulting hybrid method accounts for the variation of the added mass associated with the instantaneous wetted length of the beam, estimated from the experimental images. Moreover, the forcing hydrodynamic load is prescribed by using the experimental pressure distribution measured in the rigid case. The experimental data for the elastic beam are compared with the numerical results of the hybrid model and with those of the standard methods used at the design stage. The comparison against the experimental data shows an overall satisfactory prediction of the hybrid model. The maximum peak pressure predicted by the standard methods agrees with the result of the hybrid model only when the added mass effect is considered. However, the standard methods are not able to properly estimate the temporal evolution of the plate deformation.
Emotional rigidity negatively impacts remission from anxiety and recovery of well-being.
Wiltgen, Anika; Shepard, Christopher; Smith, Ryan; Fowler, J Christopher
2018-08-15
Emotional rigidity is described in clinical literature as a significant barrier to recovery; however, few there are few empirical measures of the construct. The current study had two aims: Study 1 aimed to identify latent factors that may bear on the construct of emotional rigidity while Study 2 assessed the potential impact of the latent factor(s) on anxiety remission rates and well-being. This study utilized data from 2472 adult inpatients (1176 females and 1296 males) with severe psychopathology. Study 1 utilized exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to identify latent factors of emotional rigidity. Study 2 utilized hierarchical logistic regression analyses to assess the relationships among emotional rigidity factors and anxiety remission and well-being recovery at discharge. Study 1 yielded a two-factor solution identified in EFA was confirmed with CFA. Factor 1 consisted of neuroticism, experiential avoidance, non-acceptance of emotions, impaired goal-directed behavior, impulse control difficulties and limited access to emotion regulation strategies when experiencing negative emotions. Factor 2 consisted of lack of emotional awareness and lack of emotional clarity when experiencing negative emotions. Results of Study 2 indicated higher scores on Factor 1 was associated with lower remission rates from anxiety and poorer well-being upon discharge. Factor 2 was not predictive of outcome. Emotional rigidity appears to be a latent construct that negatively impacts remission rates from anxiety. Limitations of the present study include its retrospective design, and inefficient methods of assessing emotional rigidity. Copyright © 2018. Published by Elsevier B.V.
Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek
2018-06-01
Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.
Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin
2016-01-01
Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826
Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H.-J.; Wang, Ting-Fang
2009-01-01
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination. PMID:19295907
Saikia, Jiban; Saha, Bedabrata; Das, Gopal
2014-02-15
The work we have undertaken is to investigate the adsorption of two different proteins (BSA and BLG) having near same IEP and differing in their conformational flexibility, onto the surface of ZnS nanoparticles (ZnS NPs). BSA and BLG both have an IEP value around pH~5. BSA is more prone to conformational deformation and considered "soft" while BLG holds the conformational rigidity and considered as "hard" protein. To ascertain the differences in surface coverage and conformation of the protein onto ZnS surface (PZC ~ 3.7), we have evaluated the adsorption profile at pH 7, where the entire surface behaves negatively. An integrated approach was taken by incorporating zeta (ζ) potential, fluorescence and CD for analyzing the adsorption process. In both systems, an increase in protein surface coverage was observed with the increase in free protein concentration in the solution and ζ values approaching that of native protein at high surface coverage. An alteration in the tertiary structure was observed for both BSA and BLG. The CD spectra analysis reveals that the secondary structure of the BSA was more deviated from the native protein structure, accommodating the increased adsorption value. For BLG no such prominent structural alteration was observed. These findings help us to understand better, how adjustment of the protein adsorption amount can be achieved onto the surface of nanoparticles having like charges. Copyright © 2013 Elsevier Inc. All rights reserved.
Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering
Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.
2011-01-01
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796
Identifying Floppy and Rigid Regions in Proteins
NASA Astrophysics Data System (ADS)
Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.
1998-03-01
In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.
Rigidity controllable polishing tool based on magnetorheological effect
NASA Astrophysics Data System (ADS)
Wang, Jia; Wan, Yongjian; Shi, Chunyan
2012-10-01
A stable and predictable material removal function (MRF) plays a crucial role in computer controlled optical surfacing (CCOS). For physical contact polishing case, the stability of MRF depends on intimate contact between polishing interface and workpiece. Rigid laps maintain this function in polishing spherical surfaces, whose curvature has no variation with the position on the surface. Such rigid laps provide smoothing effect for mid-spatial frequency errors, but can't be used in aspherical surfaces for they will destroy the surface figure. Flexible tools such as magnetorheological fluid or air bonnet conform to the surface [1]. They lack rigidity and provide little natural smoothing effect. We present a rigidity controllable polishing tool that uses a kind of magnetorheological elastomers (MRE) medium [2]. It provides the ability of both conforming to the aspheric surface and maintaining natural smoothing effect. What's more, its rigidity can be controlled by the magnetic field. This paper will present the design, analysis, and stiffness variation mechanism model of such polishing tool [3].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihun, E-mail: jihun@umich.edu; Saitou, Kazuhiro; Matuszak, Martha M.
Purpose: This study aims at developing and testing a novel rigidity penalty suitable for the deformable registration of tightly located skeletal components in the head and neck from planning computed tomography (CT) and daily cone-beam CT (CBCT) scans of patients undergoing radiotherapy. Methods: The proposed rigidity penalty is designed to preserve intervoxel distances within each bony structure. This penalty was tested in the intensity-based B-spline deformable registration of five cervical vertebral bodies (C1–C5). The displacement vector fields (DVFs) from the registrations were compared to the DVFs generated by using rigid body motions of the cervical vertebrae, measured by the surfacemore » registration of vertebrae delineated on CT and CBCT images. Twenty five pairs of planning CT (reference) and treatment CBCTs (target) from five patients were aligned without and with the penalty. An existing penalty based on the orthonormality of the deformation gradient tensor was also tested and the effects of the penalties compared. Results: The mean magnitude of the maximum registration error with the proposed distance-preserving penalty was (0.86, 1.12, 1.33) mm compared to (2.11, 2.49, 2.46) without penalty and (1.53, 1.64, 1.64) with the existing orthonormality-based penalty. The improvement in the accuracy of the deformable image registration was also verified by comparing the Procrustes distance between the DVFs. With the proposed penalty, the average distance was 0.11 (σ 0.03 mm) which is smaller than 0.53 (0.1 mm) without penalty and 0.28 (0.04 mm) with the orthonormality-based penalty. Conclusions: The accuracy of aligning multiple bony elements was improved by using the proposed distance-preserving rigidity penalty. The voxel-based statistical analysis of the registration error shows that the proposed penalty improved the integrity of the DVFs within the vertebral bodies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihun, E-mail: jihun@umich.edu; Saitou, Kazuhiro; Matuszak, Martha M.
2013-12-15
Purpose: This study aims at developing and testing a novel rigidity penalty suitable for the deformable registration of tightly located skeletal components in the head and neck from planning computed tomography (CT) and daily cone-beam CT (CBCT) scans of patients undergoing radiotherapy. Methods: The proposed rigidity penalty is designed to preserve intervoxel distances within each bony structure. This penalty was tested in the intensity-based B-spline deformable registration of five cervical vertebral bodies (C1–C5). The displacement vector fields (DVFs) from the registrations were compared to the DVFs generated by using rigid body motions of the cervical vertebrae, measured by the surfacemore » registration of vertebrae delineated on CT and CBCT images. Twenty five pairs of planning CT (reference) and treatment CBCTs (target) from five patients were aligned without and with the penalty. An existing penalty based on the orthonormality of the deformation gradient tensor was also tested and the effects of the penalties compared. Results: The mean magnitude of the maximum registration error with the proposed distance-preserving penalty was (0.86, 1.12, 1.33) mm compared to (2.11, 2.49, 2.46) without penalty and (1.53, 1.64, 1.64) with the existing orthonormality-based penalty. The improvement in the accuracy of the deformable image registration was also verified by comparing the Procrustes distance between the DVFs. With the proposed penalty, the average distance was 0.11 (σ 0.03 mm) which is smaller than 0.53 (0.1 mm) without penalty and 0.28 (0.04 mm) with the orthonormality-based penalty. Conclusions: The accuracy of aligning multiple bony elements was improved by using the proposed distance-preserving rigidity penalty. The voxel-based statistical analysis of the registration error shows that the proposed penalty improved the integrity of the DVFs within the vertebral bodies.« less
Analysis and optimization of the active rigidity joint
NASA Astrophysics Data System (ADS)
Manzo, Justin; Garcia, Ephrahim
2009-12-01
The active rigidity joint is a composite mechanism using shape memory alloy and shape memory polymer to create a passively rigid joint with thermally activated deflection. A new model for the active rigidity joint relaxes constraints of earlier methods and allows for more accurate deflection predictions compared to finite element results. Using an iterative process to determine the strain distribution and deflection, the method demonstrates accurate results for both surface bonded and embedded actuators with and without external loading. Deflection capabilities are explored through simulated annealing heuristic optimization using a variety of cost functions to explore actuator performance. A family of responses presents actuator characteristics in terms of load bearing and deflection capabilities given material and thermal constraints. Optimization greatly expands the available workspace of the active rigidity joint from the initial configuration, demonstrating specific work capabilities comparable to those of muscle tissue.
Haig, E L; Woodcock, K A
2017-05-01
Individuals with Prader-Willi syndrome (PWS) commonly show debilitating resistance to change, which has been linked to cognitive deficits in task switching. Anecdotal reports suggest that exposure to flexibility in routines during development may be beneficial for limiting subsequent resistance to change in people with PWS, which is consistent with a beneficial role of such exposure on the development of task switching, highlighted in typical children. Here, we aim to investigate the development of resistance to change in individuals with PWS and hypothesise that exposure to increased rigidity in routines will be associated with increased subsequent resistance to change. An author-compiled informant report interview and two previously validated questionnaires were administered to the caregivers of 10 individuals with PWS (5-23 years). The interview examined rigidity in routines and resistance to change across life stages defined by easily distinguishable events (before school, during primary school, during secondary school, after school, currently), using open-ended and structured yes/no and 5-point Likert questions. Open-ended data were coded using an author-compiled system. Responses from two additional informants and data from the questionnaires were used to assess inter-informant reliability and concurrent validity of the structured questions. The validity of the interview was supported by acceptable inter-rater reliability of the open-ended coding system and inter-informant reliability, internal consistency and concurrent validity of structured questions. Descriptive analyses of ratings of behaviour change showed a pattern of increasing resistance to change over the life course for the four oldest individuals, who had all been exposed to substantial rigidity in routines before and during primary school. Furthermore, only one individual - currently in primary school - was exposed to very little rigidity in routines before and during primary school, and he had showed a decrease in resistance to change after entering primary school. Open-ended data showed that more individuals currently evidencing little resistance to change had been exposed to parent or self-imposed flexibility in routines, than those currently evidencing substantial resistance to change. However, correlational analyses on rigidity and resistance to change ratings highlighted the possibility that rigidity during primary school is most relevant for developing resistance to change. Finally, open-ended data emphasised an important beneficial role of rigidity in routines for limiting the current challenging behaviour of individuals with high resistance to change. Because task switching appears to evidence a period of high developmental sensitivity during early primary school years, we propose that this period may represent a critical time when increasing flexibility in the routines of children with PWS could limit the development of resistance to change. However, a careful balance would need to be struck, given the apparent benefit of rigid routines on current behaviour. Further work in this area is much needed. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Padariya, Monikaben; Kalathiya, Umesh
2016-10-01
Fat mass and obesity-associated (FTO) protein contributes to non-syndromic human obesity which refers to excessive fat accumulation in human body and results in health risk. FTO protein has become a promising target for anti-obesity medicines as there is an immense need for the rational design of potent inhibitors to treat obesity. In our study, a new scaffold N-phenyl-1H-indol-2-amine was selected as a base for FTO protein inhibitors by applying scaffold hopping approach. Using this novel scaffold, different derivatives were designed by extending scaffold structure with potential functional groups. Molecular docking simulations were carried out by using two different docking algorithm implemented in CDOCKER (flexible docking) and AutoDock programs (rigid docking). Analyzing results of rigid and flexible docking, compound MU06 was selected based on different properties and predicted binding affinities for further analysis. Molecular dynamics simulation of FTO/MU06 complex was performed to characterize structure rationale and binding stability. Certainly, Arg96 and His231 residue of FTO protein showed stable interaction with inhibitor MU06 throughout the production dynamics phase. Three residues of FTO protein (Arg96, Asp233, and His231) were found common in making H-bond interactions with MU06 during molecular dynamics simulation and CDOCKER docking. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lau, Ernest W
2013-01-01
The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Computer program for determining mass properties of a rigid structure
NASA Technical Reports Server (NTRS)
Hull, R. A.; Gilbert, J. L.; Klich, P. J.
1978-01-01
A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.
Yu, Jinchao; Vavrusa, Marek; Andreani, Jessica; Rey, Julien; Tufféry, Pierre; Guerois, Raphaël
2016-01-01
The structural modeling of protein–protein interactions is key in understanding how cell machineries cross-talk with each other. Molecular docking simulations provide efficient means to explore how two unbound protein structures interact. InterEvDock is a server for protein docking based on a free rigid-body docking strategy. A systematic rigid-body docking search is performed using the FRODOCK program and the resulting models are re-scored with InterEvScore and SOAP-PP statistical potentials. The InterEvScore potential was specifically designed to integrate co-evolutionary information in the docking process. InterEvDock server is thus particularly well suited in case homologous sequences are available for both binding partners. The server returns 10 structures of the most likely consensus models together with 10 predicted residues most likely involved in the interface. In 91% of all complexes tested in the benchmark, at least one residue out of the 10 predicted is involved in the interface, providing useful guidelines for mutagenesis. InterEvDock is able to identify a correct model among the top10 models for 49% of the rigid-body cases with evolutionary information, making it a unique and efficient tool to explore structural interactomes under an evolutionary perspective. The InterEvDock web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock/. PMID:27131368
NASA Astrophysics Data System (ADS)
Popinako, Anna V.; Antonov, Mikhail Yu.; Bezsudnova, Ekaterina Yu.; Prokopiev, Georgiy A.; Popov, Vladimir O.
2017-11-01
The study of structural adaptations of proteins from polyextremophilic organisms using computational molecular dynamics method is appealing because the obtained knowledge can be applied to construction of synthetic proteins with high activity and stability in polyextreme media which is useful for many industrial applications. To investigate molecular adaptations to high temperature, we have focused on a superthermostable short-chain dehydrogenase TsAdh319 from the Thermococcus sibiricus polyextremophilic archaeon and its closest structural homologues. Molecular dynamics method is widely used for molecular structure refinement, investigation of biological macromolecules motion, and, consequently, for interpreting the results of certain biophysical experiments. We performed molecular dynamics simulations of the proteins at different temperatures. Comparison of root mean square fluctuations (RMSF) of the atoms in thermophilic alcohol dehydrogenases (ADHs) at 300 K and 358 K revealed the existence of stable residues at 358 K. These residues surround the active site and form a "nucleus of rigidity" in thermophilic ADHs. The results of our studies suggest that the existence of the "nucleus of rigidity" is crucial for the stability of TsAdh319. Absence of the "nucleus of rigidity" in non-thermally stable proteins causes fluctuations throughout the protein, especially on the surface, triggering the process of denaturation at high temperatures.
Fatoye, Francis; Haigh, Carol
2016-05-01
To examine the cost-effectiveness of semi-rigid ankle brace to facilitate return to work following first-time acute ankle sprains. Economic evaluation based on cost-utility analysis. Ankle sprains are a source of morbidity and absenteeism from work, accounting for 15-20% of all sports injuries. Semi-rigid ankle brace and taping are functional treatment interventions used by Musculoskeletal Physiotherapists and Nurses to facilitate return to work following acute ankle sprains. A decision model analysis, based on cost-utility analysis from the perspective of National Health Service was used. The primary outcomes measure was incremental cost-effectiveness ratio, based on quality-adjusted life years. Costs and quality of life data were derived from published literature, while model clinical probabilities were sourced from Musculoskeletal Physiotherapists. The cost and quality adjusted life years gained using semi-rigid ankle brace was £184 and 0.72 respectively. However, the cost and quality adjusted life years gained following taping was £155 and 0.61 respectively. The incremental cost-effectiveness ratio for the semi-rigid brace was £263 per quality adjusted life year. Probabilistic sensitivity analysis showed that ankle brace provided the highest net-benefit, hence the preferred option. Taping is a cheaper intervention compared with ankle brace to facilitate return to work following first-time ankle sprains. However, the incremental cost-effectiveness ratio observed for ankle brace was less than the National Institute for Health and Care Excellence threshold and the intervention had a higher net-benefit, suggesting that it is a cost-effective intervention. Decision-makers may be willing to pay £263 for an additional gain in quality adjusted life year. The findings of this economic evaluation provide justification for the use of semi-rigid ankle brace by Musculoskeletal Physiotherapists and Nurses to facilitate return to work in individuals with first-time ankle sprains. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Mayo, Wilbur L
1952-01-01
Solutions of impact of a rigid prismatic float connected by a massless spring to a rigid upper mass are presented. The solutions are based on hydrodynamic theory which has been experimentally confirmed for a rigid structure. Equations are given for defining the spring constant and the ratio of the sprung mass to the lower mass so that the two-mass system provides representation of the fundamental mode of an airplane wing. The forces calculated are more accurate than the forces which would be predicted for a rigid airframe since the effect of the fundamental mode on the hydrodynamic force is taken into account. In a comparison of the theoretical data with data for a severe flight-test landing impact, the effect of the fundamental mode on the hydrodynamic force is considered and response data are compared with experimental data.
NASA Technical Reports Server (NTRS)
Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)
1992-01-01
Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.
Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities
NASA Technical Reports Server (NTRS)
Numata, Kenji; Kemery, Amy; Camp, Jordan
2005-01-01
We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.
Kelaher, D; Mirka, G A; Dudziak, K Q
2000-10-01
For many years, arch-support orthotics have been prescribed for individuals with discomfort and/or abnormal skeletal alignments in the structures of the lower extremity. Recently there has been an increased interest in promoting semi-rigid orthotics as an ergonomic aid for asymptomatic workers who must stand all day at their workplace. A laboratory study was performed to assess the biomechanical impact of prefabricated semi-rigid orthotics on asymptomatic individuals. Ten subjects wore semi-rigid arch-support orthotics (experimental condition) for two months and flexible polyurethane/Sorbothane shoe inserts (control condition) for two months. Throughout this 18-week testing period, the subjects returned to the lab to perform a battery of assessment tests at regularly scheduled intervals. These tests examined subject strength, standing posture, stability, fatigue effects, and body part discomfort. The results of this study showed no significant changes in the strength, posture, or stability as a function of insert type. The subjects reported a reduction in low-back discomfort along with an increase in foot discomfort during a fatiguing exertion task while wearing the semi-rigid orthotics as compared to the control condition.
The Delicate Balance of Preorganisation and Adaptability in Multiply Bonded Host-Guest Complexes.
von Krbek, Larissa K S; Achazi, Andreas J; Schoder, Stefan; Gaedke, Marius; Biberger, Tobias; Paulus, Beate; Schalley, Christoph A
2017-02-24
Rigidity and preorganisation are believed to be required for high affinity in multiply bonded supramolecular complexes as they help reduce the entropic penalty of the binding event. This comes at the price that such rigid complexes are sensitive to small geometric mismatches. In marked contrast, nature uses more flexible building blocks. Thus, one might consider putting the rigidity/high-affinity notion to the test. Multivalent crown/ammonium complexes are ideal for this purpose as the monovalent interaction is well understood. A series of divalent complexes with different spacer lengths and rigidities has thus been analysed to correlate chelate cooperativities and spacer properties. Too long spacers reduce chelate cooperativity compared to exactly matching ones. However, in contrast to expectation, flexible guests bind with chelate cooperativities clearly exceeding those of rigid structures. Flexible spacers adapt to small geometric host-guest mismatches. Spacer-spacer interactions help overcome the entropic penalty of conformational fixation during binding and a delicate balance of preorganisation and adaptability is at play in multivalent complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bunderson, Nathan E.; Bingham, Jeffrey T.; Sohn, M. Hongchul; Ting, Lena H.; Burkholder, Thomas J.
2015-01-01
Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states as well as muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization and stability analysis tools to provide structural insights into the neural control of movement. PMID:23027632
Bunderson, Nathan E; Bingham, Jeffrey T; Sohn, M Hongchul; Ting, Lena H; Burkholder, Thomas J
2012-10-01
Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states and muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization, and stability analysis tools to provide structural insights into the neural control of movement. Copyright © 2012 John Wiley & Sons, Ltd.
Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.
Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng
2018-02-01
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
The dynamics and control of large flexible space structures X, part 1
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Diarra, Cheick M.
1987-01-01
The effect of delay in the control system input on the stability of a continuously acting controller which is designed without considering the delay is studied. The stability analysis of a second order plant is studied analytically and verified numerically. For this example it is found that the system becomes unstable for a delay which is equivalent to only 16 percent of its natural period of motion. It is also observed that even a small amount of natural damping in the system can increase the amount of delay that can be tolerated before the onset of instability. The delay problem is formulated in the discrete time domain and an analysis procedure suggested. The maximum principle from optimal control theory is applied to minimize the time required for the slewing of a general rigid spacecraft. The slewing motion need not be restricted to a single axis maneuver. The minimum slewing time is calculated based on a quasi-linearization algorithm for the resulting two point boundary value problem. Numerical examples based on the rigidized in-orbit model of the SCOLE also include the more general reflector line-of-sight slewing maneuvers.
Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge
NASA Astrophysics Data System (ADS)
Zuo, XinDai
2018-03-01
Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.
Constitutive modeling of the rheological behavior of platelet suspensions
NASA Astrophysics Data System (ADS)
Sommer, Drew E.
Compression molding of chopped fiber composites is used to manufacture complex 3D geometries with high fiber volume fractions of 50-60% and long, discontinuous fibers and thermoplastic matrices. When prepreg, chopped into platelets, is used as a charge material, the individual platelets remain intact during the molding process and flow relative to one another, as experimental observations show. Heterogeneity of the platelet/resin suspension cannot be considered at the structural scale of molding simulation. Instead, the suspension should be idealized into the homogenized anisotropic and viscous system which obeys the prescribed anisotropic stress-strain rate constitutive relation. The viscosity tensor of the aforementioned constitutive law was analytically evaluated in this work through the representative volume element (RVE) based analysis. An idealized microstructure of platelets was developed to perform such an analysis. The platelets were aligned and arranged in a planar configuration with periodic boundary conditions. Analytic expressions for the effective, anisotropic viscosities were derived by micromechanical analysis for the idealized microstructure of rigid platelets. In this analysis, the load transfer mechanisms and their contribution to the viscosity of the platelet assembly were investigated. The kinematic assumption of linear velocity distributions consistent with the mechanism of shearing rate was adopted. While the platelets were assumed to be rigid, the resin was taken as an incompressible, isotropic fluid which provided for the platelet-to-platelet load transfer. Strain rate and temperature dependence were included by modeling the polymer matrix as a Carreau fluid. Shear strain in the resin was developed due to the relative motion of adjacent platelets. The resin shear strain rate was expressed in terms of the corresponding platelet velocities. Equilibrium of the platelet was used to relate the applied far-field stress to the average strain rate through the viscosity of neat resin and geometric parameters of the RVE constituents. When combined, these parameters defined the effective homogenized viscosities of an anisotropic system equivalent to the platelet/resin suspension. The expressions for the effective viscosities were found to be dependent on the platelet geometry, stack geometry, the platelet volume fraction and the viscosity of neat resin. In this study, the platelet volume fraction was defined as the volume of platelets within the RVE divided by the RVE volume and discriminated from the fiber volume fraction within a platelet. An approach using the "viscous solid analogy'' was developed to leverage structural finite element methods to predict homogenized viscosities of the platelet assembly. A finite element model was constructed to develop a comparison to the analytic expressions for rigid platelets and include the effect of deformation within the platelets. To compare with the analytic expressions, large viscosities were prescribed for the platelet to approximate rigidity. The properties of the deformable platelets were determined by an approach proposed by Pipes and co-workers. The assumption of rigidity was found to be approximate except in the case of elongation along the fiber direction. A laminate analogy was implemented as a homogenization tool to include the effect of orientation on the apparent viscosities of a multi-axial platelet assembly. The aligned platelet suspension was used to predict the `pseudo-ply' properties. Pseudo-laminates, which were assumed to approximate the microstructure, were developed. The effective `pseudo-laminate' viscosities were predicted with classical lamination theory.
Sakado, K; Sakado, M; Seki, T; Kuwabara, H; Kojima, M; Sato, T; Someya, T
2001-06-01
Although a number of studies have reported on the association between obsessional personality features as measured by the Munich Personality Test (MPT) "Rigidity" scale and depression, there has been no examination of these relationships in a non-clinical sample. The dimensional scores on the MPT were compared between subjects with and without lifetime depression, using a sample of employed Japanese adults. The odds ratio for suffering from lifetime depression was estimated by multiple logistic regression analysis. To diagnose a lifetime history of depression, the Inventory to Diagnose Depression, Lifetime version (IDDL) was used. The subjects with lifetime depression scored significantly higher on the "Rigidity" scale than the subjects without lifetime depression. In our logistic regression analysis, three risk factors were identified as each independently increasing a person's risk for suffering from lifetime depression: higher levels of "Rigidity", being of the female gender, and suffering from current depressive symptoms. The MPT "Rigidity" scale is a sensitive measure of personality features that occur with depression.
Image defects from surface and alignment errors in grazing incidence telescopes
NASA Technical Reports Server (NTRS)
Saha, Timo T.
1989-01-01
The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.
Sheykhi-Dolagh, Roghaye; Saeedi, Hassan; Farahmand, Behshid; Kamyab, Mojtaba; Kamali, Mohammad; Gholizadeh, Hossein; Derayatifar, Amir A; Curran, Sarah
2015-06-01
Flexible flat foot is described as a reduction in the height of the medial longitudinal arch and may occur from abnormal foot pronation. A foot orthosis is thought to modify and control excessive pronation and improve arch height. To compare the immediate effect of three types of orthoses on foot mobility and the arch height index in subjects with flexible flat feet. A quasi-experimental study. The dorsal arch height, midfoot width, foot mobility and arch height index were assessed in 20 participants with flexible flat feet (mean age = 23.2 ± 3 years) for three different foot orthosis conditions: soft, semi-rigid and rigid University of California Biomechanics Laboratory (UCBL). Maximum midfoot width at 90% with arch mobility in the coronal plane was shown in the semi-rigid orthosis condition. The semi-rigid orthosis resulted in the highest mean foot mobility in 90% of weight bearing, and the rigid orthosis (UCBL) had the lowest mean foot mobility. The soft orthosis resulted in foot mobility between that of the rigid and the semi-rigid orthosis. UCBL orthosis showed the highest arch height index, and the semi-rigid orthosis showed the lowest mean arch height index. Due to its rigid structure and long medial-lateral walls, the UCBL orthosis appears to limit foot mobility. Therefore, it is necessary to make an orthosis that facilitates foot mobility in the normal range of the foot arch. Future studies should address the dynamic mobility of the foot with using various types of foot orthoses. Although there are many studies focussed on flat foot and the use of foot orthoses, the mechanism of action is still unclear. This study explored foot mobility and the influence of foot orthoses and showed that a more rigid foot orthosis should be selected based on foot mobility. © The International Society for Prosthetics and Orthotics 2014.
Passive Earth Entry Vehicle Landing Test
NASA Technical Reports Server (NTRS)
Kellas, Sotiris
2017-01-01
Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.
Morra, Giulia; Potestio, Raffaello; Micheletti, Cristian; Colombo, Giorgio
2012-01-01
Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones. PMID:22457611
NASA Astrophysics Data System (ADS)
Qi, Dewei; Liu, Yingming; Shyy, Wei; Aono, Hikaru
2010-09-01
The lattice Boltzmann flexible particle method (LBFPM) is used to simulate fluid-structure interaction and motion of a flexible wing in a three-dimensional space. In the method, a beam with rectangular cross section has been discretized into a chain of rigid segments. The segments are connected through ball and socket joints at their ends and may be bent and twisted. Deformation of flexible structure is treated with a linear elasticity model through bending and twisting. It is demonstrated that the flexible particle method (FPM) can approximate the nonlinear Euler-Bernoulli beam equation without resorting to a nonlinear elasticity model. Simulations of plunge and pitch of flexible wing at Reynolds number Re=136 are conducted in hovering condition by using the LBFPM. It is found that both lift and drag forces increase first, then decrease dramatically as the bending rigidity in spanwise direction decreases and that the lift and drag forces are sensitive to rigidity in a certain range. It is shown that the downwash flows induced by wing tip and trailing vortices in wake area are larger for a flexible wing than for a rigid wing, lead to a smaller effective angle of attack, and result in a larger lift force.
FPCAS2D user's guide, version 1.0
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1994-01-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.
2014-01-01
Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060
Local structure and structural rigidity of the green phosphor β -SiAlON:Eu 2+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, J.; Gaultois, M. W.; Balasubramanian, M.
Eu2+ inserted in beta-Si3-xAlxOxN4-x is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L-3 X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu2+ substitution in the crystal structure. The Debye temperature Theta(D), which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting beta-Si3N4 framework and is determined to decrease only slightly for the small amounts of Al3+ and O2- co-substitution that are required for charge balance associated with Eu2+ insertion.more » (C) 2014 AIP Publishing LLC.« less
Dynamical analysis of an orbiting three-rigid-body system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory suchmore » as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.« less
Electron-phonon interaction in efficient perovskite blue emitters
NASA Astrophysics Data System (ADS)
Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.
2018-06-01
Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.
NASA Astrophysics Data System (ADS)
Huo, Lin; Cheng, Xing-Hua; Yang, Tao
2015-05-01
This paper presents a study of aerothermoelastic response of a C/SiC panel, which is a primary structure for ceramic matrix composite shingle thermal protection system for hypersonic vehicles. It is based on a three dimensional thermal protection shingle panel on a quasi-waverider vehicle model. Firstly, the Thin Shock Layer and piston theory are adopted to compute the aerodynamic pressure of rigid body and deformable body, and a series of engineering methods are used to compute the aerodynamic heating. Then an aerothermoelastic loosely-coupled time marching strategy and self-adapting aerodynamic heating time step are developed to analyze the aerothermoelastic response of the panel, with an aerodynamic heating and temperature field coupling parameter selection method being adopted to increase the efficiency. Finally, a few revealing conclusions are reached by analyzing how coupling at different degrees influences the quasi-static aerothermoelastic response of the panel and how aerodynamic pressure of rigid body time step influences the quasi-static aerothermoelastic response on a glide trajectory.
Plane stress problems using hysteretic rigid body spring network models
NASA Astrophysics Data System (ADS)
Christos, Sofianos D.; Vlasis, Koumousis K.
2017-10-01
In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.
NASA Astrophysics Data System (ADS)
Takahashi, Riku; Wu, Zi Liang; Arifuzzaman, Md; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
2014-08-01
Biomacromolecules usually form complex superstructures in natural biotissues, such as different alignments of collagen fibres in articular cartilages, for multifunctionalities. Inspired by nature, there are efforts towards developing multiscale ordered structures in hydrogels (recognized as one of the best candidates of soft biotissues). However, creating complex superstructures in gels are hardly realized because of the absence of effective approaches to control the localized molecular orientation. Here we introduce a method to create various superstructures of rigid polyanions in polycationic hydrogels. The control of localized orientation of rigid molecules, which are sensitive to the internal stress field of the gel, is achieved by tuning the swelling mismatch between masked and unmasked regions of the photolithographic patterned gel. Furthermore, we develop a double network structure to toughen the hydrogels with programmed superstructures, which deform reversibly under large strain. This work presents a promising pathway to develop superstructures in hydrogels and should shed light on designing biomimetic materials with intricate molecular alignments.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Machate, F.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2016-12-01
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B /C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B /C spectral index is reported for the first time. The B /C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B /C ratio is well described by a single power law RΔ with index Δ =-0.333 ±0.014 (fit ) ±0.005 (syst ) , in good agreement with the Kolmogorov theory of turbulence which predicts Δ =-1 /3 asymptotically.
Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC).
Deva, Taru; Baker, Edward N; Squire, Christopher J; Smith, Clyde A
2006-12-01
The bacterial cell wall provides essential protection from the external environment and confers strength and rigidity to counteract internal osmotic pressure. Without this layer the cell would be easily ruptured and it is for this reason that biosynthetic pathways leading to the formation of peptidoglycan have for many years been a prime target for effective antibiotics. Central to this pathway are four similar ligase enzymes which add peptide groups to glycan moieties. As part of a program to better understand the structure-function relationships in these four enzymes, the crystal structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC) has been determined to 2.6 A resolution. The structure was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and refined to a crystallographic R factor of 0.212 (R(free) = 0.259). The enzyme has a modular multi-domain structure very similar to those of other members of the mur family of ATP-dependent amide-bond ligases. Detailed comparison of these four enzymes shows that considerable conformational changes are possible. These changes, together with the recruitment of two different N-terminal domains, allow this family of enzymes to bind a substrate which is identical at one end and at the other has the growing peptide tail which will ultimately become part of the rigid bacterial cell wall. Comparison of the E. coli and Haemophilus influenzae structures and analysis of the sequences of known MurC enzymes indicate the presence of a ;dimerization' motif in almost 50% of the MurC enzymes and points to a highly conserved loop in domain 3 that may play a key role in amino-acid ligand specificity.
NASA Astrophysics Data System (ADS)
Bachoo, Richard; Bridge, Jacqueline
2018-06-01
Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.
NASA Astrophysics Data System (ADS)
Mandal, S.; Datta, N.; Sahoo, T.
2013-10-01
The present study deals with the hydroelastic analysis of gravity wave interaction with concentric porous and flexible cylinder systems, in which the inner cylinder is rigid and the outer cylinder is porous and flexible. The problems are analyzed in finite water depth under the assumption of small amplitude water wave theory and structural response. The cylinder configurations in the present study are namely (a) surface-piercing truncated cylinders, (b) bottom-touching truncated cylinders and (c) complete submerged cylinders extended from free surface to bottom. As special cases of the concentric cylinder system, wave diffraction by (i) porous flexible cylinder and (ii) flexible floating cage with rigid bottom are analyzed. The scattering potentials are evaluated using Fourier-Bessel series expansion method and the least square approximation method. The convergence of the double series is tested numerically to determine the number of terms in the Fourier-Bessel series expansion. The effects of porosity and flexibility of the outer cylinder, in attenuating the hydrodynamic forces and dynamic overturning moments, are analyzed for various cylinder configurations and wave characteristics. A parametric study with respect to wave frequency, ratios of inner-to-outer cylinder radii, annular spacing between the two cylinders and porosities is done. In order to understand the flow distribution around the cylinders, contour plots are provided. The findings of the present study are likely to be of immense help in the design of various types of marine structures which can withstand the wave loads of varied nature in the marine environment. The theory can be easily extended to deal with a large class of problems associated with acoustic wave interaction with flexible porous structures.
Housing flexibility effects on rotor stability
NASA Technical Reports Server (NTRS)
Davis, L. B.; Wolfe, E. A.; Beatty, R. F.
1985-01-01
Preliminary rotordynamic evaluations are performed with a housing stiffness assumption that is typically determined only after the hardware is built. In addressing rotor stability, a rigid housing assumption was shown to predict an instability at a lower spin speed than a comparable flexible housing analysis. This rigid housing assumption therefore provides a conservative estimate of the stability threshold speed. A flexible housing appears to act as an energy absorber and dissipated some of the destabilizing force. The fact that a flexible housing is usually asymmetric and considerably heavier than the rotor was related to this apparent increase in rotor stability. Rigid housing analysis is proposed as a valuable screening criteria and may save time and money in construction of elaborate housing finite element models for linear stability analyses.
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
14 CFR 25.629 - Aeroelastic stability requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... weights are used, their effectiveness and strength, including supporting structure, must be substantiated... of any single element of the structure supporting any engine, independently mounted propeller shaft... dynamic forces, any single failure of the engine structure that would reduce the rigidity of the...
Interpersonal Dynamics and Organizational Change in Religious Communities.
ERIC Educational Resources Information Center
Barber, William H.; Rock, Leo P.
This paper discusses the organizational structure of religious communities and its effect on interpersonal relations. Religious communities tend to be organized structurally according to the traditional bureaucratic model of (1) relatively rigid structure; (2) carefully defined functional specialization; (3) direction and control implemented…
Tsaousoglou, Phoebus; Michalakis, Konstantinos; Kang, Kiho; Weber, Hans-Peter; Sculean, Anton
2017-07-01
To assess survival, as well as technical and biological complication rates of partial fixed dental prostheses (FDPs) supported by implants and teeth. An electronic Medline search was conducted to identify articles, published in dental journals from January 1980 to August 2015, reporting on partial FDPs supported by implants and teeth. The search terms were categorized into four groups comprising the PICO question. Manual searches of published full-text articles and related reviews were also performed. The initial database search produced 3587 relevant titles. Three hundred and eighty-six articles were retrieved for abstract review, while 39 articles were selected for full-text review. A total of 10 studies were selected for inclusion. Overall survival rate for implants ranged between 90% and 100%, after follow-up periods with a mean range of 18-120 months. The survival of the abutment teeth was 94.1-100%, while the prostheses survival was 85-100% for the same time period. The most frequent complications were "periapical lesions" (11.53%). The most frequent technical complication was "porcelain occlusal fracture" (16.6%), followed by "screw loosening" (15%). According to the meta-analysis, no intrusion was noted on the rigid connection group, while five teeth (8.19%) were intruded in the non-rigid connection group [95% CI (0.013-0.151)]. The tooth-implant FDP seems to be a possible alternative to an implant-supported FDP. There is limited evidence that rigid connection between teeth and implants presents better results when compared with the non-rigid one. The major drawback of non-rigidly connected FDPs is tooth intrusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications
NASA Astrophysics Data System (ADS)
Suchea, M.; Kornilios, N.; Koudoumas, E.
2010-10-01
This contribution presents some preliminary results regarding the use of a chemical route for the growth of good quality ZnO thin films that can be used for the fabrication of thin film transistors (TFTs). The films were grown at rather low temperature (60 °C) on glass and PET substrates using non-aqueous (zinc acetate dihydrate in methanol) precursor solution and their surface morphology, crystalline structure, optical transmittance and electrical characteristics were studied. The study indicated that good quality films with desirable ZnO structure onto rigid and flexible substrates can be obtained, using a simple, cheap, low temperature chemical growth method.
Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly.
Wong, Hua; Prévoteau-Jonquet, Jessica; Baud, Stéphanie; Dauchez, Manuel; Belloy, Nicolas
2018-06-11
The extracellular matrix (ECM) plays an important role in supporting tissues and organs. It even has a functional role in morphogenesis and differentiation by acting as a source of active molecules (matrikines). Many diseases are linked to dysfunction of ECM components and fragments or changes in their structures. As such it is a prime target for drugs. Because of technological limitations for observations at mesoscopic scales, the precise structural organisation of the ECM is not well-known, with sparse or fuzzy experimental observables. Based on the Unity3D game and physics engines, along with rigid body dynamics, we propose a virtual sandbox to model large biological molecules as dynamic chains of rigid bodies interacting together to gain insight into ECM components behaviour in the mesoscopic range. We have preliminary results showing how parameters such as fibre flexibility or the nature and number of interactions between molecules can induce different structures in the basement membrane. Using the Unity3D game engine and virtual reality headset coupled with haptic controllers, we immerse the user inside the corresponding simulation. Untrained users are able to navigate a complex virtual sandbox crowded with large biomolecules models in a matter of seconds.
Stress analysis of the haunch region in a rigid frame bridge.
DOT National Transportation Integrated Search
1977-01-01
The purpose of this study was to obtain an understanding of the behavior and stress distribution in the haunch region of a rigid frame highway bridge. A finite element model of the haunch of the bridge was developed to permit the prediction of stress...
Li, Tong; Tracka, Malgorzata B; Uddin, Shahid; Casas-Finet, Jose; Jacobs, Donald J; Livesay, Dennis R
2014-01-01
Le Châtelier's principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc.), La Châtelier's principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect.
Li, Tong; Tracka, Malgorzata B.; Uddin, Shahid; Casas-Finet, Jose; Jacobs, Donald J.; Livesay, Dennis R.
2014-01-01
Le Châtelier’s principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc.), La Châtelier’s principle states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate that the effects of stabilizing mutations on the rigidity ⇔ flexibility equilibrium within the native state ensemble manifest themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-β receptor antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed. Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example, a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility within the VH β4/β5 loop is a noteworthy illustration of this long-range effect. PMID:24671209
NASA Astrophysics Data System (ADS)
CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.
1999-07-01
The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.
NASA Astrophysics Data System (ADS)
Bluman, James Edward
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures
NASA Astrophysics Data System (ADS)
Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina
2018-03-01
There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.
Construction simulation analysis of 120m continuous rigid frame bridge based on Midas Civil
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-03-01
In this paper, a three-dimensional finite element model of a continuous rigid frame bridge with a main span of 120m is established by the simulation and analysis of Midas Civil software. The deflection and stress of the main beam in each construction stage of continuous beam bridge are simulated and analyzed, which provides a reliable technical guarantee for the safe construction of the bridge.
Analysis of Slabs-on-Grade for a Variety of Loading and Support Conditions.
1984-12-01
applications, namely "- the problem of a slab-on-grade, as encountered in the analysis and design of rigid pavements. - ". This is one of the few...proper design and construction methods are adhered to. There are several additional reasons, entirely due to recent developments, that warrant the...conservative designs led to almost imperceptible pavement deformations, thus warranting the term "rigid pavements". Modern-day analytical techniques
Modular Approach to Structural Simulation for Vehicle Crashworthiness Prediction
DOT National Transportation Integrated Search
1975-03-01
A modular formulation for simulation of the structural deformation and deceleration of a vehicle for crashworthiness and collision compatibility is presented. This formulation includes three dimensional beam elements, various spring elements, rigid b...
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Pan, Xuejun; Saddler, Jack N
2013-01-28
Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs.
Adhesive plasters. [Patent application; coatings for crucibles, control rods, etc
Holcombe, C.E. Jr.; Swain, R.L.; Banker, J.G.; Edwards, C.C.
1975-09-26
Adhesive plaster compositions are provided by treating particles of Y/sub 2/O/sub 3/, Eu/sub 2/O/sub 3/, Gd/sub 2/O/sub 3/, or Nd/sub 2/O/sub 3/ with dilute acid solutions. The resulting compositions were found to harden spontaneously into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure. 1 table.
Integration of car-body flexibility into train-track coupling system dynamics analysis
NASA Astrophysics Data System (ADS)
Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong
2018-04-01
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Research on durability of a concrete continuous rigid frame bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-05-01
The research on the durability of concrete structures has also become one of the most important topics for discussion at international academic institutions and conferences. This paper summarizes and reviews the current research on the durability of bridge structure of the bridge at the index relationship between state lifetime and structure durability. According to the actual situation in this paper on a continuous rigid frame bridge China of Yunnan as an example, this bridge was completed and opened to traffic during the first half of the year, a series of tests are carried out for the durability problem. It is found that all the indicators are good within six months after the bridge opened to traffic, but durability issues should be further studied in future monitoring efforts.
Nuclear quantum effects in water clusters: the role of the molecular flexibility.
González, Briesta S; Noya, Eva G; Vega, Carlos; Sesé, Luis M
2010-02-25
With the objective of establishing the importance of water flexibility in empirical models which explicitly include nuclear quantum effects, we have carried out path integral Monte Carlo simulations in water clusters with up to seven molecules. Two recently developed models have been used for comparison: the rigid TIP4PQ/2005 and the flexible q-TIP4P/F models, both inspired by the rigid TIP4P/2005 model. To obtain a starting configuration for our simulations, we have located the global minima for the rigid TIP4P/2005 and TIP4PQ/2005 models and for the flexible q-TIP4P/F model. All the structures are similar to those predicted by the rigid TIP4P potential showing that the charge distribution mainly determines the global minimum structure. For the flexible q-TIP4P/F model, we have studied the geometrical distortion upon isotopic substitution by studying tritiated water clusters. Our results show that tritiated water clusters exhibit an r(OT) distance shorter than the r(OH) distance in water clusters, not significant changes in the Phi(HOH) angle, and a lower average dipole moment than water clusters. We have also carried out classical simulations with the rigid TIP4PQ/2005 model showing that the rotational kinetic energy is greatly affected by quantum effects, but the translational kinetic energy is only slightly modified. The potential energy is also noticeably higher than in classical simulations. Finally, as a concluding remark, we have calculated the formation energies of water clusters using both models, finding that the formation energies predicted by the rigid TIP4PQ/2005 model are lower by roughly 0.6 kcal/mol than those of the flexible q-TIP4P/F model for clusters of moderate size, the origin of this difference coming mainly from the geometrical distortion of the water molecule in the clusters that causes an increase in the intramolecular potential energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, B.M.; Sadayappan, S.; Wang, Y.
2011-10-06
We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT{sub t/t}), and constitutively unphosphorylated cMyBP-C (AllP{sub -t/t}). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT{sub t/t}. These results suggest that the presence and phosphorylation ofmore » the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP{sub -t/t} compared with WT{sub t/t} controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP{sub -t/t} both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.« less
Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere
NASA Technical Reports Server (NTRS)
Raftopoulos, D. D.; Spicer, A. L.
1976-01-01
An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.
NASA Astrophysics Data System (ADS)
Kothavale, Shantaram; Katariya, Santosh; Sekar, Nagaiyan
2018-01-01
Rigid pyrazino-phenanthroline based donor-π-acceptor-π-auxiliary acceptor type compounds have been studied for their linear and non-linear optical properties. The non-linear optical (NLO) behavior of these dyes was studied by calculating the values of static α , β and γ using solvatochromic as well as computational methods. The results obtained by solvatochromic method are correlated theoretically with Density Functional Theory (DFT) using B3LYP/6-31G (d), CAM B3LYP/6-31 G(d), B3LYP/6-31++ g(d,P) and CAM B3LYP/6-31++ g(d,P) methods. The results reveal that, among all four computational methods CAM-B3LYP/6-31++ g(d,P) performs well for the calculation of linear polarizability (α) and first order hyperpolarizability (β), while CAM-B3LYP/6-31 g(d,P) for the calculation of second order hyperpolarizability (ϒ). Overall TPA depends on the molecular structure variation with increase in complexity and molecular weight, which implies that both the number of branches and the size of π-framework are important factors for the molecular TPA in this chromophoric system. Generalized Mulliken-Hush (GMH) analysis is performed to study the effective charge transfer from donor to acceptor.
Anomalous Flexural Behaviors of Microtubules
Liu, Xiaojing; Zhou, Youhe; Gao, Huajian; Wang, Jizeng
2012-01-01
Apparent controversies exist on whether the persistence length of microtubules depends on its contour length. This issue is particularly challenging from a theoretical point of view due to the tubular structure and strongly anisotropic material property of microtubules. Here we adopt a higher order continuum orthotropic thin shell model to study the flexural behavior of microtubules. Our model overcomes some key limitations of a recent study based on a simplified anisotropic shell model and results in a closed-form solution for the contour-length-dependent persistence length of microtubules, with predictions in excellent agreement with experimental measurements. By studying the ratio between their contour and persistence lengths, we find that microtubules with length at ∼1.5 μm show the lowest flexural rigidity, whereas those with length at ∼15 μm show the highest flexural rigidity. This finding may provide an important theoretical basis for understanding the mechanical structure of mitotic spindles during cell division. Further analysis on the buckling of microtubules indicates that the critical buckling load becomes insensitive to the tube length for relatively short microtubules, in drastic contrast to the classical Euler buckling. These rich flexural behaviors of microtubules are of profound implication for many biological functions and biomimetic molecular devices. PMID:22768935
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.
1987-01-01
The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.
NASA Technical Reports Server (NTRS)
Kia, T.; Longuski, J. M.
1984-01-01
Analytic error bounds are presented for the solutions of approximate models for self-excited near-symmetric rigid bodies. The error bounds are developed for analytic solutions to Euler's equations of motion. The results are applied to obtain a simplified analytic solution for Eulerian rates and angles. The results of a sample application of the range and error bound expressions for the case of the Galileo spacecraft experiencing transverse torques demonstrate the use of the bounds in analyses of rigid body spin change maneuvers.
Elastic properties of rigid fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Chen, J.; Thorpe, M. F.; Davis, L. C.
1995-05-01
We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.
1991-08-01
photovoltaic array (PVA) and regenerative fuel cell (RFC) is a critical construction activity during the first manned visit to the lunar surface ( February...An alternative design would be to have a standoff structure, possibly integrated with the photovoltaic material, in rigid panels. The difference in...8 Unload Fuel Cell Power (1CI) Cart 5 1 1 Ig item 0.2 Test FCP Can 1 1 4 systems 4 10 Unload Thermal Control (TC) Cans 5 1 1 Ig item U -.- 1 II lrest
NASA Technical Reports Server (NTRS)
Zalesak, J.
1975-01-01
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.
Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature.
Tehei, Moeava; Madern, Dominique; Franzetti, Bruno; Zaccai, Giuseppe
2005-12-09
To explore protein adaptation to extremely high temperatures, two parameters related to macromolecular dynamics, the mean square atomic fluctuation and structural resilience, expressed as a mean force constant, were measured by neutron scattering for hyperthermophilic malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The root mean square fluctuations, defining flexibility, were found to be similar for both enzymes (1.5 A) at their optimal activity temperature. Resilience values, defining structural rigidity, are higher by an order of magnitude for the high temperature-adapted protein (0.15 Newtons/meter for O. cunniculus lactate dehydrogenase and 1.5 Newtons/meter for M. jannaschii malate dehydrogenase). Thermoadaptation appears to have been achieved by evolution through selection of appropriate structural rigidity in order to preserve specific protein structure while allowing the conformational flexibility required for activity.
System definition study of deployable, non-metallic space structures
NASA Technical Reports Server (NTRS)
Stimler, F. J.
1984-01-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
Local structure and structural rigidity of the green phosphor β-SiAlON:Eu{sup 2+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, J., E-mail: jbrgoch@uh.edu; Gaultois, M. W., E-mail: mgaultois@mrl.ucsb.edu; Seshadri, R.
Eu{sup 2+} inserted in β-Si{sub 3−x}Al{sub x}O{sub x}N{sub 4−x} is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L{sub 3} X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu{sup 2+} substitution in the crystal structure. The Debye temperature Θ{sub D}, which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting β-Si{sub 3}N{sub 4} framework and is determined to decrease only slightly for the small amounts of Al{sup 3+} and O{supmore » 2−} co-substitution that are required for charge balance associated with Eu{sup 2+} insertion.« less
Impact Behaviour of Soft Body Projectiles
NASA Astrophysics Data System (ADS)
Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana
2018-02-01
Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.
Rational design of the column of a heavy multipurpose machining center
NASA Astrophysics Data System (ADS)
Atapin, V. V.; Kurlaev, N. V.
2016-04-01
The main purpose in the design of supporting constructions of heavy multipurpose machining center is the reduction of mass at the given precision and productivity of machining. Accomplish these ends the technology of rational design of supporting constructions is offered. This technology is based on the decomposition method and the finite elements method in the combination with optimization methods. The technology has four stages: 1) calculation of external forces and loads, 2) as a result the boundary conditions (force, kinematics) for individual supporting constructions are formed, 3) a problem about final optimal distribution of a material by the individual supporting constructions with the real cross-section is solved; 4) dynamic analysis. By the example of design of the column of a heavy multipurpose machining center the main stages of rational design of the individual supporting constructions are shown. At a design stage of the carrying system consisting of load-bearing structures with simplified geometry, optimum overall dimensions of the column are identified. For the admitted system of preferences, it is necessary to accept the fact that the carrying system with the column with the sizes of cross section of 1.8 m (along x axis) and 2.6 m (along y axis) is the best. The analysis of the work of the column under the torsion condition with the use of method of mechanics shows that the column with square cross sections = 2.46·2.46 m which rigidity on torsion is 26 % higher in comparison with a production version is the best. The results of calculation show that a production-release design of the column with longitudinal and transverse edges of rigidity is 24 % heavier than the column with the edges located on a diagonally at equal rigidity.
Formation Flying of Tethered and Nontethered Spacecraft
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2005-01-01
A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.
HyBAR: hybrid bone-attached robot for joint arthroplasty.
Song, S; Mor, A; Jaramaz, B
2009-06-01
A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.
Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria
NASA Astrophysics Data System (ADS)
Adegbola, R. B.; Oyedele, K. F.; Adeoti, L.; Adeloye, A. B.
2016-09-01
We present a method that utilizes multichannel analysis of surface waves (MASW), which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D) structure reflective of the depth and surface wave velocity distribution within a depth of 0-15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.