Sensitivity Analysis in Engineering
NASA Technical Reports Server (NTRS)
Adelman, Howard M. (Compiler); Haftka, Raphael T. (Compiler)
1987-01-01
The symposium proceedings presented focused primarily on sensitivity analysis of structural response. However, the first session, entitled, General and Multidisciplinary Sensitivity, focused on areas such as physics, chemistry, controls, and aerodynamics. The other four sessions were concerned with the sensitivity of structural systems modeled by finite elements. Session 2 dealt with Static Sensitivity Analysis and Applications; Session 3 with Eigenproblem Sensitivity Methods; Session 4 with Transient Sensitivity Analysis; and Session 5 with Shape Sensitivity Analysis.
Design sensitivity analysis with Applicon IFAD using the adjoint variable method
NASA Technical Reports Server (NTRS)
Frederick, Marjorie C.; Choi, Kyung K.
1984-01-01
A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
Shape design sensitivity analysis and optimal design of structural systems
NASA Technical Reports Server (NTRS)
Choi, Kyung K.
1987-01-01
The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.
Shape design sensitivity analysis using domain information
NASA Technical Reports Server (NTRS)
Seong, Hwal-Gyeong; Choi, Kyung K.
1985-01-01
A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.
Design sensitivity analysis of nonlinear structural response
NASA Technical Reports Server (NTRS)
Cardoso, J. B.; Arora, J. S.
1987-01-01
A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi
1994-01-01
An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
Design component method for sensitivity analysis of built-up structures
NASA Technical Reports Server (NTRS)
Choi, Kyung K.; Seong, Hwai G.
1986-01-01
A 'design component method' that provides a unified and systematic organization of design sensitivity analysis for built-up structures is developed and implemented. Both conventional design variables, such as thickness and cross-sectional area, and shape design variables of components of built-up structures are considered. It is shown that design of components of built-up structures can be characterized and system design sensitivity expressions obtained by simply adding contributions from each component. The method leads to a systematic organization of computations for design sensitivity analysis that is similar to the way in which computations are organized within a finite element code.
Sensitivity analysis of a wing aeroelastic response
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.
1991-01-01
A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.
Multidisciplinary design optimization using multiobjective formulation techniques
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Pagaldipti, Narayanan S.
1995-01-01
This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.
Sensitivity analysis for large-scale problems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Whitworth, Sandra L.
1987-01-01
The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
NASA Astrophysics Data System (ADS)
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Sensitivity Analysis for Coupled Aero-structural Systems
NASA Technical Reports Server (NTRS)
Giunta, Anthony A.
1999-01-01
A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.
Sensitivity Analysis for Multidisciplinary Systems (SAMS)
2016-12-01
support both mode-based structural representations and time-dependent, nonlinear finite element structural dynamics. This interim report describes...Adaptation, & Sensitivity Toolkit • Elasticity, heat transfer, & compressible flow • Adjoint solver for sensitivity analysis • High-order finite elements ...PROGRAM ELEMENT NUMBER 62201F 6. AUTHOR(S) Richard D. Snyder 5d. PROJECT NUMBER 2401 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER Q1FS 7
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Design sensitivity analysis of boundary element substructures
NASA Technical Reports Server (NTRS)
Kane, James H.; Saigal, Sunil; Gallagher, Richard H.
1989-01-01
The ability to reduce or condense a three-dimensional model exactly, and then iterate on this reduced size model representing the parts of the design that are allowed to change in an optimization loop is discussed. The discussion presents the results obtained from an ongoing research effort to exploit the concept of substructuring within the structural shape optimization context using a Boundary Element Analysis (BEA) formulation. The first part contains a formulation for the exact condensation of portions of the overall boundary element model designated as substructures. The use of reduced boundary element models in shape optimization requires that structural sensitivity analysis can be performed. A reduced sensitivity analysis formulation is then presented that allows for the calculation of structural response sensitivities of both the substructured (reduced) and unsubstructured parts of the model. It is shown that this approach produces significant computational economy in the design sensitivity analysis and reanalysis process by facilitating the block triangular factorization and forward reduction and backward substitution of smaller matrices. The implementatior of this formulation is discussed and timings and accuracies of representative test cases presented.
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Sensitivity analysis for axis rotation diagrid structural systems according to brace angle changes
NASA Astrophysics Data System (ADS)
Yang, Jae-Kwang; Li, Long-Yang; Park, Sung-Soo
2017-10-01
General regular shaped diagrid structures can express diverse shapes because braces are installed along the exterior faces of the structures and the structures have no columns. However, since irregular shaped structures have diverse variables, studies to assess behaviors resulting from various variables are continuously required to supplement the imperfections related to such variables. In the present study, materials elastic modulus and yield strength were selected as variables for strength that would be applied to diagrid structural systems in the form of Twisters among the irregular shaped buildings classified by Vollers and that affect the structural design of these structural systems. The purpose of this study is to conduct sensitivity analysis for axial rotation diagrid structural systems according to changes in brace angles in order to identify the design variables that have relatively larger effects and the tendencies of the sensitivity of the structures according to changes in brace angles and axial rotation angles.
Design sensitivity analysis using EAL. Part 1: Conventional design parameters
NASA Technical Reports Server (NTRS)
Dopker, B.; Choi, Kyung K.; Lee, J.
1986-01-01
A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
Structural optimization: Status and promise
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.
Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-01-01
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372
A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-05-12
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.
Rastogi, S C; Lepoittevin, J P; Johansen, J D; Frosch, P J; Menné, T; Bruze, M; Dreier, B; Andersen, K E; White, I R
1998-12-01
Deodorants are one of the most frequently-used types of cosmetics and are a source of allergic contact dermatitis. Therefore, a gas chromatography - mass spectrometric analysis of 71 deodorants was performed for identification of fragrance and non-fragrance materials present in marketed deodorants. Futhermore, the sensitizing potential of these molecules was evaluated using structure activity relationships (SARs) analysis. This was based on the presence of 1 or more chemically reactive site(s), in the chemical structure, associated with sensitizing potential. Among the many different substances used to formulate cosmetic products (over 3500), 226 chemicals were identified in a sample of 71 deodorants. 84 molecules were found to contain at least 1 structural alert, and 70 to belong to, or be susceptible to being metabolized into, the chemical group of aldehydes, ketones and alpha,beta-unsaturated aldehydes, ketone or esters. The combination of GC-MS and SARs analysis could be helpful in the selection of substances for supplementary investigations regarding sensitizing properties. Thus, it may be a valuable tool in the management of contact allergy to deodorants and for producing new deodorants with decreased propensity to cause contact allergy.
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
Design sensitivity analysis of rotorcraft airframe structures for vibration reduction
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta
1987-01-01
Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.
Sensitivity analysis of discrete structural systems: A survey
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.
1984-01-01
Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications addressed to structural analysis, but also includes a number of methods developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.
Application of design sensitivity analysis for greater improvement on machine structural dynamics
NASA Technical Reports Server (NTRS)
Yoshimura, Masataka
1987-01-01
Methodologies are presented for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then, design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic structural members, (2) addition of mass elements, and (3) substantial charges of joint design variables. Cases (1) and (2) correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed.
’Coxiella Burnetii’ Vaccine Development: Lipopolysaccharide Structural Analysis
1991-02-20
Analytical instrumentation and methodology is presented for the determination of endotoxin -related structures at much improved sensitivity and... ENDOTOXIN CHARACTERIZATION BY SFC .......................... 10 III. COXIELLA BURNETII LPS CHARACTERIZATION A. EXPERIMENTAL...period for the determination of endotoxin -related structures at much improved sensitivity and specificity. Reports, and their applications, are listed in
Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies
NASA Technical Reports Server (NTRS)
Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen
2002-01-01
The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
An easily implemented static condensation method for structural sensitivity analysis
NASA Technical Reports Server (NTRS)
Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.
1990-01-01
A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2016-12-01
Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.
Computational methods for efficient structural reliability and reliability sensitivity analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.
1993-01-01
This paper presents recent developments in efficient structural reliability analysis methods. The paper proposes an efficient, adaptive importance sampling (AIS) method that can be used to compute reliability and reliability sensitivities. The AIS approach uses a sampling density that is proportional to the joint PDF of the random variables. Starting from an initial approximate failure domain, sampling proceeds adaptively and incrementally with the goal of reaching a sampling domain that is slightly greater than the failure domain to minimize over-sampling in the safe region. Several reliability sensitivity coefficients are proposed that can be computed directly and easily from the above AIS-based failure points. These probability sensitivities can be used for identifying key random variables and for adjusting design to achieve reliability-based objectives. The proposed AIS methodology is demonstrated using a turbine blade reliability analysis problem.
Efficient Analysis of Complex Structures
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.
2000-01-01
Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).
Boundary formulations for sensitivity analysis without matrix derivatives
NASA Technical Reports Server (NTRS)
Kane, J. H.; Guru Prasad, K.
1993-01-01
A new hybrid approach to continuum structural shape sensitivity analysis employing boundary element analysis (BEA) is presented. The approach uses iterative reanalysis to obviate the need to factor perturbed matrices in the determination of surface displacement and traction sensitivities via a univariate perturbation/finite difference (UPFD) step. The UPFD approach makes it possible to immediately reuse existing subroutines for computation of BEA matrix coefficients in the design sensitivity analysis process. The reanalysis technique computes economical response of univariately perturbed models without factoring perturbed matrices. The approach provides substantial computational economy without the burden of a large-scale reprogramming effort.
Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design
NASA Technical Reports Server (NTRS)
Kuguoglu, Latife; Ludwiczak, Damian
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.
Behavior sensitivities for control augmented structures
NASA Technical Reports Server (NTRS)
Manning, R. A.; Lust, R. V.; Schmit, L. A.
1987-01-01
During the past few years it has been recognized that combining passive structural design methods with active control techniques offers the prospect of being able to find substantially improved designs. These developments have stimulated interest in augmenting structural synthesis by adding active control system design variables to those usually considered in structural optimization. An essential step in extending the approximation concepts approach to control augmented structural synthesis is the development of a behavior sensitivity analysis capability for determining rates of change of dynamic response quantities with respect to changes in structural and control system design variables. Behavior sensitivity information is also useful for man-machine interactive design as well as in the context of system identification studies. Behavior sensitivity formulations for both steady state and transient response are presented and the quality of the resulting derivative information is evaluated.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.
2005-09-15
The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less
A new sensitivity analysis for structural optimization of composite rotor blades
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An
1993-01-01
This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.
Analysis of Publically Available Skin Sensitization Data from REACH Registrations 2008–2014
Luechtefeld, Thomas; Maertens, Alexandra; Russo, Daniel P.; Rovida, Costanza; Zhu, Hao; Hartung, Thomas
2017-01-01
Summary The public data on skin sensitization from REACH registrations already included 19,111 studies on skin sensitization in December 2014, making it the largest repository of such data so far (1,470 substances with mouse LLNA, 2,787 with GPMT, 762 with both in vivo and in vitro and 139 with only in vitro data). 21% were classified as sensitizers. The extracted skin sensitization data was analyzed to identify relationships in skin sensitization guidelines, visualize structural relationships of sensitizers, and build models to predict sensitization. A chemical with molecular weight > 500 Da is generally considered non-sensitizing owing to low bioavailability, but 49 sensitizing chemicals with a molecular weight > 500 Da were found. A chemical similarity map was produced using PubChem’s 2D Tanimoto similarity metric and Gephi force layout visualization. Nine clusters of chemicals were identified by Blondel’s module recognition algorithm revealing wide module-dependent variation. Approximately 31% of mapped chemicals are Michael’s acceptors but alone this does not imply skin sensitization. A simple sensitization model using molecular weight and five ToxTree structural alerts showed a balanced accuracy of 65.8% (specificity 80.4%, sensitivity 51.4%), demonstrating that structural alerts have information value. A simple variant of k-nearest neighbors outperformed the ToxTree approach even at 75% similarity threshold (82% balanced accuracy at 0.95 threshold). At higher thresholds, the balanced accuracy increased. Lower similarity thresholds decrease sensitivity faster than specificity. This analysis scopes the landscape of chemical skin sensitization, demonstrating the value of large public datasets for health hazard prediction. PMID:26863411
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
DOT National Transportation Integrated Search
2017-02-08
The study re-evaluates distress prediction models using the Mechanistic-Empirical Pavement Design Guide (MEPDG) and expands the sensitivity analysis to a wide range of pavement structures and soils. In addition, an extensive validation analysis of th...
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716
interest: mechanical system design sensitivity analysis and optimization of linear and nonlinear structural systems, reliability analysis and reliability-based design optimization, computational methods in committee member, ISSMO; Associate Editor, Mechanics Based Design of Structures and Machines; Associate
Performance analysis of structured gradient algorithm. [for adaptive beamforming linear arrays
NASA Technical Reports Server (NTRS)
Godara, Lal C.
1990-01-01
The structured gradient algorithm uses a structured estimate of the array correlation matrix (ACM) to estimate the gradient required for the constrained least-mean-square (LMS) algorithm. This structure reflects the structure of the exact array correlation matrix for an equispaced linear array and is obtained by spatial averaging of the elements of the noisy correlation matrix. In its standard form the LMS algorithm does not exploit the structure of the array correlation matrix. The gradient is estimated by multiplying the array output with the receiver outputs. An analysis of the two algorithms is presented to show that the covariance of the gradient estimated by the structured method is less sensitive to the look direction signal than that estimated by the standard method. The effect of the number of elements on the signal sensitivity of the two algorithms is studied.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
NASA Astrophysics Data System (ADS)
de Lautour, Oliver R.; Omenzetter, Piotr
2010-07-01
Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Optical-fiber strain sensors with asymmetric etched structures.
Vaziri, M; Chen, C L
1993-11-01
Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy; English, Shawn; Briggs, Timothy
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
Briggs, Andrew H; Ades, A E; Price, Martin J
2003-01-01
In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.
Nelson, Stacy; English, Shawn; Briggs, Timothy
2016-05-06
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
Sensitivity to musical structure in the human brain
McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy
2012-01-01
Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005
NASA Technical Reports Server (NTRS)
Martin, Carl J., Jr.
1996-01-01
This report describes a structural optimization procedure developed for use with the Engineering Analysis Language (EAL) finite element analysis system. The procedure is written primarily in the EAL command language. Three external processors which are written in FORTRAN generate equivalent stiffnesses and evaluate stress and local buckling constraints for the sections. Several built-up structural sections were coded into the design procedures. These structural sections were selected for use in aircraft design, but are suitable for other applications. Sensitivity calculations use the semi-analytic method, and an extensive effort has been made to increase the execution speed and reduce the storage requirements. There is also an approximate sensitivity update method included which can significantly reduce computational time. The optimization is performed by an implementation of the MINOS V5.4 linear programming routine in a sequential liner programming procedure.
Perspective: Optical measurement of feature dimensions and shapes by scatterometry
NASA Astrophysics Data System (ADS)
Diebold, Alain C.; Antonelli, Andy; Keller, Nick
2018-05-01
The use of optical scattering to measure feature shape and dimensions, scatterometry, is now routine during semiconductor manufacturing. Scatterometry iteratively improves an optical model structure using simulations that are compared to experimental data from an ellipsometer. These simulations are done using the rigorous coupled wave analysis for solving Maxwell's equations. In this article, we describe the Mueller matrix spectroscopic ellipsometry based scatterometry. Next, the rigorous coupled wave analysis for Maxwell's equations is presented. Following this, several example measurements are described as they apply to specific process steps in the fabrication of gate-all-around (GAA) transistor structures. First, simulations of measurement sensitivity for the inner spacer etch back step of horizontal GAA transistor processing are described. Next, the simulated metrology sensitivity for sacrificial (dummy) amorphous silicon etch back step of vertical GAA transistor processing is discussed. Finally, we present the application of plasmonically active test structures for improving the sensitivity of the measurement of metal linewidths.
Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.
Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien
2016-08-24
Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Dascalu, A M; Cherecheanu, A P; Stana, D; Voinea, L; Ciuluvica, R; Savlovschi, C; Serban, D
2014-01-01
to investigate the sensitivity and specificity of the stereometric parameters change analysis vs. Topographic Change Analysis in early detection of glaucoma progression. 81 patients with POAG were monitored for 4 years (GAT monthly, SAP at every 6 months, optic disc photographs and HRT3 yearly). The exclusion criteria were other optic disc or retinal pathology; topographic standard deviation (TSD>30; inter-test variation of reference height>25 μm. The criterion for structural progression was the following: at least 20 adjacent super-pixels with a clinically significant decrease in height (>5%). 16 patients of the total 81 presented structural progression on TCA. The most useful stereometric parameters for the early detection of glaucoma progression were the following: Rim Area change (sensitivity 100%, specificity 74.2% for a "cut-off " value of -0.05), C/D Area change (sensitivity 85.7%, specificity 71.5% for a "cut off " value of 0.02), C/D linear change (sensitivity 85.7%, specificity 71.5% for a "cut-off " value of 0.02), Rim Volume change (sensitivity 71.4%, specificity 88.8% for a "cut-off " value of -0.04). RNFL Thickness change (<0) was highly sensitive (82%), but less specific for glaucoma progression (45,2%). Changes of the other stereometric parameters have a limited diagnostic value for the early detection of glaucoma progression. TCA is a valuable tool for the assessment of the structural progression in glaucoma patients and its inter-test variability is low. On long-term, the quantitative analysis according to stereometric parameters change is also very important. The most relevant parameters to detect progression are RA, C/D Area, Linear C/D and RV.
NASA Technical Reports Server (NTRS)
Hou, Gene
1998-01-01
Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Liu, Lu-Ning; Su, Hai-Nan; Yan, Shi-Gan; Shao, Si-Mi; Xie, Bin-Bin; Chen, Xiu-Lan; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong
2009-07-01
Crystal structures of phycobiliproteins have provided valuable information regarding the conformations and amino acid organizations of peptides and chromophores, and enable us to investigate their structural and functional relationships with respect to environmental variations. In this work, we explored the pH-induced conformational and functional dynamics of R-phycoerythrin (R-PE) by means of absorption, fluorescence and circular dichroism spectra, together with analysis of its crystal structure. R-PE presents stronger functional stability in the pH range of 3.5-10 compared to the structural stability. Beyond this range, pronounced functional and structural changes occur. Crystal structure analysis shows that the tertiary structure of R-PE is fixed by several key anchoring points of the protein. With this specific association, the fundamental structure of R-PE is stabilized to present physiological spectroscopic properties, while local variations in protein peptides are also allowed in response to environmental disturbances. The functional stability and relative structural sensitivity of R-PE allow environmental adaptation.
Probabilistic structural analysis of a truss typical for space station
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.
1990-01-01
A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.
NASA Astrophysics Data System (ADS)
Judson, Richard S.; Rabitz, Herschel
1987-04-01
The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local potential regions affect the behavior of the observables by repeatedly and systematically altering the potential will be prohibitively expensive. The functional sensitivity method enables one to perform this analysis at a fraction of the computational labor required for the direct method.
NASA Technical Reports Server (NTRS)
Camarda, C. J.; Adelman, H. M.
1984-01-01
The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.
NASA Technical Reports Server (NTRS)
Greene, William H.
1989-01-01
A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.
Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H
2014-05-15
We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.
Ethical Sensitivity in Nursing Ethical Leadership: A Content Analysis of Iranian Nurses Experiences
Esmaelzadeh, Fatemeh; Abbaszadeh, Abbas; Borhani, Fariba; Peyrovi, Hamid
2017-01-01
Background: Considering that many nursing actions affect other people’s health and life, sensitivity to ethics in nursing practice is highly important to ethical leaders as a role model. Objective: The study aims to explore ethical sensitivity in ethical nursing leaders in Iran. Method: This was a qualitative study based on the conventional content analysis in 2015. Data were collected using deep and semi-structured interviews with 20 Iranian nurses. The participants were chosen using purposive sampling. Data were analyzed using conventional content analysis. In order to increase the accuracy and integrity of the data, Lincoln and Guba's criteria were considered. Results: Fourteen sub-categories and five main categories emerged. Main categories consisted of sensitivity to care, sensitivity to errors, sensitivity to communication, sensitivity in decision making and sensitivity to ethical practice. Conclusion: Ethical sensitivity appears to be a valuable attribute for ethical nurse leaders, having an important effect on various aspects of professional practice and help the development of ethics in nursing practice. PMID:28584564
Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.
2013-01-01
Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505
Recent Advances in Multidisciplinary Analysis and Optimization, part 3
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M. (Editor)
1989-01-01
This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.
Recent Advances in Multidisciplinary Analysis and Optimization, part 2
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M. (Editor)
1989-01-01
This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.
Recent Advances in Multidisciplinary Analysis and Optimization, part 1
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M. (Editor)
1989-01-01
This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Binary photonic crystal for refractometric applications (TE case)
NASA Astrophysics Data System (ADS)
Taya, Sofyan A.; Shaheen, Somaia A.
2018-04-01
In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.
NASA Astrophysics Data System (ADS)
Yu, Bo; Ning, Chao-lie; Li, Bing
2017-03-01
A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.
Grid sensitivity for aerodynamic optimization and flow analysis
NASA Technical Reports Server (NTRS)
Sadrehaghighi, I.; Tiwari, S. N.
1993-01-01
After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.
Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick
2015-01-01
This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. Copyright © 2015 John Wiley & Sons, Ltd.
Factor structure and construct validity of the Anxiety Sensitivity Index among island Puerto Ricans.
Cintrón, Jennifer A; Carter, Michele M; Suchday, Sonia; Sbrocco, Tracy; Gray, James
2005-01-01
The factor structure and convergent and discriminant validity of the Anxiety Sensitivity Index (ASI) were examined among a sample of 275 island Puerto Ricans. Results from a confirmatory factor analysis (CFA) comparing our data to factor solutions commonly reported as representative of European American and Spanish populations indicated a poor fit. A subsequent exploratory factor analysis (EFA) indicated that a two-factor solution (Factor 1, Anxiety Sensitivity; Factor 2, Emotional Concerns) provided the best fit. Correlations between the ASI and anxiety measures were moderately high providing evidence of convergent validity, while correlations between the ASI and BDI were significantly lower providing evidence of discriminant validity. Scores on all measures were positively correlated with acculturation, suggesting that those who ascribe to more traditional Hispanic culture report elevated anxiety.
NASA Astrophysics Data System (ADS)
Kamiński, M.; Supeł, Ł.
2016-02-01
It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.
Ethical sensitivity in professional practice: concept analysis.
Weaver, Kathryn; Morse, Janice; Mitcham, Carl
2008-06-01
This paper is a report of a concept analysis of ethical sensitivity. Ethical sensitivity enables nurses and other professionals to respond morally to the suffering and vulnerability of those receiving professional care and services. Because of its significance to nursing and other professional practices, ethical sensitivity deserves more focused analysis. A criteria-based method oriented toward pragmatic utility guided the analysis of 200 papers and books from the fields of nursing, medicine, psychology, dentistry, clinical ethics, theology, education, law, accounting or business, journalism, philosophy, political and social sciences and women's studies. This literature spanned 1970 to 2006 and was sorted by discipline and concept dimensions and examined for concept structure and use across various contexts. The analysis was completed in September 2007. Ethical sensitivity in professional practice develops in contexts of uncertainty, client suffering and vulnerability, and through relationships characterized by receptivity, responsiveness and courage on the part of professionals. Essential attributes of ethical sensitivity are identified as moral perception, affectivity and dividing loyalties. Outcomes include integrity preserving decision-making, comfort and well-being, learning and professional transcendence. Our findings promote ethical sensitivity as a type of practical wisdom that pursues client comfort and professional satisfaction with care delivery. The analysis and resulting model offers an inclusive view of ethical sensitivity that addresses some of the limitations with prior conceptualizations.
NASA Astrophysics Data System (ADS)
Wiesauer, Karin; Pircher, Michael; Goetzinger, Erich; Hitzenberger, Christoph K.; Engelke, Rainer; Ahrens, Gisela; Pfeiffer, Karl; Ostrzinski, Ute; Gruetzner, Gabi; Oster, Reinhold; Stifter, David
2006-02-01
Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.
Fragment-based prediction of skin sensitization using recursive partitioning
NASA Astrophysics Data System (ADS)
Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2011-09-01
Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 ( p < 0.1) were retained to make up an indicator descriptor fragment. The fragment descriptor and eight other physicochemical descriptors closely related to the endpoint were calculated to construct the recursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.
NASA Astrophysics Data System (ADS)
Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.
2018-04-01
The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.
Sensitivity analysis of a sound absorption model with correlated inputs
NASA Astrophysics Data System (ADS)
Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.
2017-04-01
Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.
2004-01-01
This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
Results of an integrated structure/control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1989-01-01
A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
NASA Astrophysics Data System (ADS)
Li, Chuang; Cordovilla, Francisco; Ocaña, José L.
2018-01-01
This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Yu, Gloria Qingyu; Yu, Peiqiang
2015-09-01
The objectives of this project were to (1) combine vibrational spectroscopy with chemometric multivariate techniques to determine the effect of processing applications on molecular structural changes of lipid biopolymer that mainly related to functional groups in green- and yellow-type Crop Development Centre (CDC) pea varieties [CDC strike (green-type) vs. CDC meadow (yellow-type)] that occurred during various processing applications; (2) relatively quantify the effect of processing applications on the antisymmetric CH3 ("CH3as") and CH2 ("CH2as") (ca. 2960 and 2923 cm(-1), respectively), symmetric CH3 ("CH3s") and CH2 ("CH2s") (ca. 2873 and 2954 cm(-1), respectively) functional groups and carbonyl C=O ester (ca. 1745 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2 (ratio of CH3as to CH2as), ratios of symmetric CH3 to symmetric CH2 (ratio of CH3s to CH2s), and ratios of carbonyl C=O ester peak area to total CH peak area (ratio of C=O ester to CH); and (3) illustrate non-invasive techniques to detect the sensitivity of individual molecular functional group to the various processing applications in the recently developed different types of pea varieties. The hypothesis of this research was that processing applications modified the molecular structure profiles in the processed products as opposed to original unprocessed pea seeds. The results showed that the different processing methods had different impacts on lipid molecular functional groups. Different lipid functional groups had different sensitivity to various heat processing applications. These changes were detected by advanced molecular spectroscopy with chemometric techniques which may be highly related to lipid utilization and availability. The multivariate molecular spectral analyses, cluster analysis, and principal component analysis of original spectra (without spectral parameterization) are unable to fully distinguish the structural differences in the antisymmetric and symmetric CH3 and CH2 spectral region (ca. 3001-2799 cm(-1)) and carbonyl C=O ester band region (ca. 1771-1714 cm(-1)). This result indicated that the sensitivity to detect treatment difference by multivariate analysis of cluster analysis (CLA) and principal components analysis (PCA) might be lower compared with univariate molecular spectral analysis. In the future, other more sensitive techniques such as "discriminant analysis" could be considered for discriminating and classifying structural differences. Molecular spectroscopy can be used as non-invasive technique to study processing-induced structural changes that are related to lipid compound in legume seeds.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The methodology used to implement structural sensitivity calculations into a major, general-purpose finite-element analysis system (SPAR) is described. This implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calculating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of SPAR are also discussed.
Sensitivity Analysis for Probabilistic Neural Network Structure Reduction.
Kowalski, Piotr A; Kusy, Maciej
2018-05-01
In this paper, we propose the use of local sensitivity analysis (LSA) for the structure simplification of the probabilistic neural network (PNN). Three algorithms are introduced. The first algorithm applies LSA to the PNN input layer reduction by selecting significant features of input patterns. The second algorithm utilizes LSA to remove redundant pattern neurons of the network. The third algorithm combines the proposed two and constitutes the solution of how they can work together. PNN with a product kernel estimator is used, where each multiplicand computes a one-dimensional Cauchy function. Therefore, the smoothing parameter is separately calculated for each dimension by means of the plug-in method. The classification qualities of the reduced and full structure PNN are compared. Furthermore, we evaluate the performance of PNN, for which global sensitivity analysis (GSA) and the common reduction methods are applied, both in the input layer and the pattern layer. The models are tested on the classification problems of eight repository data sets. A 10-fold cross validation procedure is used to determine the prediction ability of the networks. Based on the obtained results, it is shown that the LSA can be used as an alternative PNN reduction approach.
NASA Astrophysics Data System (ADS)
Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel
2015-12-01
Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon
1990-01-01
A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.
NASA Astrophysics Data System (ADS)
Attard, Guillaume; Rossier, Yvan; Eisenlohr, Laurent
2017-09-01
In a previous paper published in Journal of Hydrology, it was shown that underground structures are responsible for a mixing process between shallow and deep groundwater that can favour the spreading of urban contamination. In this paper, the impact of underground structures on the intrinsic vulnerability of urban aquifers was investigated. A sensitivity analysis was performed using a 2D deterministic modelling approach based on the reservoir theory generalized to hydrodispersive systems to better understand this mixing phenomenon and the mixing affected zone (MAZ) caused by underground structures. It was shown that the maximal extent of the MAZ caused by an underground structure is reached approximately 20 years after construction. Consequently, underground structures represent a long-term threat for deep aquifer reservoirs. Regarding the construction process, draining operations have a major impact and favour large-scale mixing between shallow and deep groundwater. Consequently, dewatering should be reduced and enclosed as much as possible. The role played by underground structures' dimensions was assessed. The obstruction of the first aquifer layer caused by construction has the greatest influence on the MAZ. The cumulative impact of several underground structures was assessed. It was shown that the total MAZ area increases linearly with underground structures' density. The role played by materials' properties and hydraulic gradient were assessed. Hydraulic conductivity, anisotropy and porosity have the strongest influence on the development of MAZ. Finally, an empirical law was derived to estimate the MAZ caused by an underground structure in a bi-layered aquifer under unconfined conditions. This empirical law, based on the results of the sensitivity analysis developed in this paper, allows for the estimation of MAZ dimensions under known material properties and underground structure dimensions. This empirical law can help urban planners assess the area of influence of underground structures and protect urban strategic reservoirs.
NASA Astrophysics Data System (ADS)
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
NASA Technical Reports Server (NTRS)
Greene, William H.
1990-01-01
A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.
NASA Technical Reports Server (NTRS)
1992-01-01
The papers presented at the symposium cover aerodynamics, design applications, propulsion systems, high-speed flight, structures, controls, sensitivity analysis, optimization algorithms, and space structures applications. Other topics include helicopter rotor design, artificial intelligence/neural nets, and computational aspects of optimization. Papers are included on flutter calculations for a system with interacting nonlinearities, optimization in solid rocket booster application, improving the efficiency of aerodynamic shape optimization procedures, nonlinear control theory, and probabilistic structural analysis of space truss structures for nonuniform thermal environmental effects.
Design for cyclic loading endurance of composites
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.
1993-01-01
The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.
Okamoto, Kiyoko; Ami, Yasushi; Suzaki, Yuriko; Otsuki, Noriyuki; Sakata, Masafumi; Takeda, Makoto; Mori, Yoshio
2016-04-01
The marker of Japanese domestic rubella vaccines is their lack of immunogenicity in guinea pigs. This has long been thought to be related to the temperature sensitivity of the viruses, but supporting evidence has not been described. In this study, we generated infectious clones of TO-336.vac, a Japanese domestic vaccine, TO-336.GMK5, the parental virus of TO-336.vac, and their mutants, and determined the molecular bases of their temperature sensitivity and immunogenicity in guinea pigs. The results revealed that Ser(1159) in the non-structural protein-coding region was responsible for the temperature sensitivity of TO-336.vac dominantly, while the structural protein-coding region affected the temperature sensitivity subordinately. The findings further suggested that the temperature sensitivity of TO-336.vac affected the antibody induction in guinea pigs after subcutaneous inoculation. Copyright © 2016 Elsevier Inc. All rights reserved.
An Investigation of the Dynamic Response of a Seismically Stable Platform
1982-08-01
PAD. The controls on the -9system are of two types. A low frequency tilt control, with a 10 arc second sensitivity, 2-axis tiltmeter as sensor ...Inertial Sensors Structural Analysis Holloman AFB, NiM. Support to this effort includes structural analyses toward active servo frequency band. This report...controlled to maintain a null position of a sensitive height sensor . The 6-degree-of- freedom high frequency controls are based on seismometers as sensors
Use of piezoelectric foil for flow diagnostics
NASA Technical Reports Server (NTRS)
Carraway, Debra L.; Bertelrud, Arild
1989-01-01
A laboratory investigation was conducted to characterize two piezoelectric-film sensor configurations, a rigidly mounted sensor and a sensor mounted over an air cavity. The sensors are evaluated for sensitivity and frequency response, and methods to optimize data are presented. The cavity-mounted sensor exhibited a superior frequency response and was more sensitive to normal pressure fluctuations and less sensitive to vibrations through the structure. Both configurations were sensitive to large-scale structural vibrations. Flight-test data are shown for cavity-mounted sensors, illustrating practical aspects to consider when designing sensors for application in such harsh environments. The relation of the data to skin friction and maximum shear stress, transition detection, and turbulent viscous layers is derived through analysis of the flight data.
Sobol' sensitivity analysis for stressor impacts on honeybee ...
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more
System parameter identification from projection of inverse analysis
NASA Astrophysics Data System (ADS)
Liu, K.; Law, S. S.; Zhu, X. Q.
2017-05-01
The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.
Bayesian Sensitivity Analysis of Statistical Models with Missing Data
ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG
2013-01-01
Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718
Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Modal test/analysis correlation of Space Station structures using nonlinear sensitivity
NASA Technical Reports Server (NTRS)
Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan
1992-01-01
The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.
Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.
ERIC Educational Resources Information Center
Hagekull, Berit; And Others
1980-01-01
The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…
Nishikaze, Takashi
2017-01-01
Mass spectrometry (MS) has become an indispensable tool for analyzing post translational modifications of proteins, including N-glycosylated molecules. Because most glycosylation sites carry a multitude of glycans, referred to as “glycoforms,” the purpose of an N-glycosylation analysis is glycoform profiling and glycosylation site mapping. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has unique characteristics that are suited for the sensitive analysis of N-glycosylated products. However, the analysis is often hampered by the inherent physico-chemical properties of N-glycans. Glycans are highly hydrophilic in nature, and therefore tend to show low ion yields in both positive- and negative-ion modes. The labile nature and complicated branched structures involving various linkage isomers make structural characterization difficult. This review focuses on MALDI-MS-based approaches for enhancing analytical performance in N-glycosylation research. In particular, the following three topics are emphasized: (1) Labeling for enhancing the ion yields of glycans and glycopeptides, (2) Negative-ion fragmentation for less ambiguous elucidation of the branched structure of N-glycans, (3) Derivatization for the stabilization and linkage isomer discrimination of sialic acid residues. PMID:28794918
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
Design and simulation analysis of a novel pressure sensor based on graphene film
NASA Astrophysics Data System (ADS)
Nie, M.; Xia, Y. H.; Guo, A. Q.
2018-02-01
A novel pressure sensor structure based on graphene film as the sensitive membrane was proposed in this paper, which solved the problem to measure low and minor pressure with high sensitivity. Moreover, the fabrication process was designed which can be compatible with CMOS IC fabrication technology. Finite element analysis has been used to simulate the displacement distribution of the thin movable graphene film of the designed pressure sensor under the different pressures with different dimensions. From the simulation results, the optimized structure has been obtained which can be applied in the low measurement range from 10hPa to 60hPa. The length and thickness of the graphene film could be designed as 100μm and 0.2μm, respectively. The maximum mechanical stress on the edge of the sensitive membrane was 1.84kPa, which was far below the breaking strength of the silicon nitride and graphene film.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao
2009-01-01
In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy.
Precision of Sensitivity in the Design Optimization of Indeterminate Structures
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Hopkins, Dale A.
2006-01-01
Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an indeterminate structural design optimization problem can be factored into a simple determinate term and a complicated indeterminate component. Sensitivity can be approximated by retaining only the determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. The benefit that accrues from using the approximate sensitivity is quantified by solving a set of problems in a controlled environment. Each problem is solved twice: first using the closed-form sensitivity expression, then using the approximation. The problem solutions use the CometBoards testbed as the optimization tool with the integrated force method as the analyzer. The modification that may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The design optimization problem of an indeterminate structure contains many dependent constraints because of the implicit relationship between stresses, as well as the relationship between the stresses and displacements. The design optimization process can become problematic because the implicit relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full rank and enhances the robustness of the design optimization method.
Slobodskaya, Helena R
2016-11-01
This study examined the contribution of reinforcement sensitivity to the hierarchical structure of child personality and common psychopathology in community samples of parent reports of children aged 2-18 (N = 968) and self-reports of adolescents aged 10-18 (N = 1,543) using the Inventory of Child Individual Differences-Short version (ICID-S), the Strengths and Difficulties Questionnaire (SDQ), and the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ). A joint higher-order factor analysis of the ICID-S and SDQ scales suggested a 4-factor solution; congruence coefficients indicated replicability of the factors across the 2 samples at all levels of the personality-psychopathology hierarchy. The canonical correlation analyses indicated that reinforcement sensitivity and personality-psychopathology dimensions shared much of their variance. The main contribution of reinforcement sensitivity was through opposing effects of reward and punishment sensitivities. The superordinate factors Beta and Internalizing were best predicted by reinforcement sensitivity, followed by the Externalizing and Positive personality factors. These findings provide evidence for consistency of the hierarchical structure of personality and common psychopathology across informants and highlight the role of reinforcement systems in the development of normal and abnormal patterns of behavior and affect. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Limiting similarity and niche theory for structured populations.
Szilágyi, András; Meszéna, Géza
2009-05-07
We develop the theory of limiting similarity and niche for structured populations with finite number of individual states (i-state). In line with a previously published theory for unstructured populations, the niche of a species is specified by the impact and sensitivity niche vectors. They describe the population's impact on and sensitivity towards the variables involved in the population regulation. Robust coexistence requires sufficient segregation of the impact, as well as of the sensitivity niche vectors. Connection between the population-level impact and sensitivity and the impact/sensitivity of the specific i-states is developed. Each i-state contributes to the impact of the population proportional to its frequency in the population. Sensitivity of the population is composed of the sensitivity of the rates of demographic transitions, weighted by the frequency and by the reproductive value of the initial and final i-states of the transition, respectively. Coexistence in a multi-patch environment is studied. This analysis is interpreted as spatial niche segregation.
Design and analysis of a silicon-based antiresonant reflecting optical waveguide chemical sensor
NASA Astrophysics Data System (ADS)
Remley, Kate A.; Weisshaar, Andreas
1996-08-01
The design of a silicon-based antiresonant reflecting optical waveguide (ARROW) chemical sensor is presented, and its theoretical performance is compared with that of a conventional structure. The use of an ARROW structure permits incorporation of a thick guiding region for efficient coupling to a single-mode fiber. A high-index overlay is added to fine tune the sensitivity of the ARROW chemical sensor. The sensitivity of the sensor is presented, and design trade-offs are discussed.
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
Nestorov, I A; Aarons, L J; Rowland, M
1997-08-01
Sensitivity analysis studies the effects of the inherent variability and uncertainty in model parameters on the model outputs and may be a useful tool at all stages of the pharmacokinetic modeling process. The present study examined the sensitivity of a whole-body physiologically based pharmacokinetic (PBPK) model for the distribution kinetics of nine 5-n-alkyl-5-ethyl barbituric acids in arterial blood and 14 tissues (lung, liver, kidney, stomach, pancreas, spleen, gut, muscle, adipose, skin, bone, heart, brain, testes) after i.v. bolus administration to rats. The aims were to obtain new insights into the model used, to rank the model parameters involved according to their impact on the model outputs and to study the changes in the sensitivity induced by the increase in the lipophilicity of the homologues on ascending the series. Two approaches for sensitivity analysis have been implemented. The first, based on the Matrix Perturbation Theory, uses a sensitivity index defined as the normalized sensitivity of the 2-norm of the model compartmental matrix to perturbations in its entries. The second approach uses the traditional definition of the normalized sensitivity function as the relative change in a model state (a tissue concentration) corresponding to a relative change in a model parameter. Autosensitivity has been defined as sensitivity of a state to any of its parameters; cross-sensitivity as the sensitivity of a state to any other states' parameters. Using the two approaches, the sensitivity of representative tissue concentrations (lung, liver, kidney, stomach, gut, adipose, heart, and brain) to the following model parameters: tissue-to-unbound plasma partition coefficients, tissue blood flows, unbound renal and intrinsic hepatic clearance, permeability surface area product of the brain, have been analyzed. Both the tissues and the parameters were ranked according to their sensitivity and impact. The following general conclusions were drawn: (i) the overall sensitivity of the system to all parameters involved is small due to the weak connectivity of the system structure; (ii) the time course of both the auto- and cross-sensitivity functions for all tissues depends on the dynamics of the tissues themselves, e.g., the higher the perfusion of a tissue, the higher are both its cross-sensitivity to other tissues' parameters and the cross-sensitivities of other tissues to its parameters; and (iii) with a few exceptions, there is not a marked influence of the lipophilicity of the homologues on either the pattern or the values of the sensitivity functions. The estimates of the sensitivity and the subsequent tissue and parameter rankings may be extended to other drugs, sharing the same common structure of the whole body PBPK model, and having similar model parameters. Results show also that the computationally simple Matrix Perturbation Analysis should be used only when an initial idea about the sensitivity of a system is required. If comprehensive information regarding the sensitivity is needed, the numerically expensive Direct Sensitivity Analysis should be used.
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
NASA Astrophysics Data System (ADS)
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
Reanalysis, compatibility and correlation in analysis of modified antenna structures
NASA Technical Reports Server (NTRS)
Levy, R.
1989-01-01
A simple computational procedure is synthesized to process changes in the microwave-antenna pathlength-error measure when there are changes in the antenna structure model. The procedure employs structural modification reanalysis methods combined with new extensions of correlation analysis to provide the revised rms pathlength error. Mainframe finite-element-method processing of the structure model is required only for the initial unmodified structure, and elementary postprocessor computations develop and deal with the effects of the changes. Several illustrative computational examples are included. The procedure adapts readily to processing spectra of changes for parameter studies or sensitivity analyses.
NASA Astrophysics Data System (ADS)
Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.
2017-12-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.
Development and application of optimum sensitivity analysis of structures
NASA Technical Reports Server (NTRS)
Barthelemy, J. F. M.; Hallauer, W. L., Jr.
1984-01-01
The research focused on developing an algorithm applying optimum sensitivity analysis for multilevel optimization. The research efforts have been devoted to assisting NASA Langley's Interdisciplinary Research Office (IRO) in the development of a mature methodology for a multilevel approach to the design of complex (large and multidisciplinary) engineering systems. An effort was undertaken to identify promising multilevel optimization algorithms. In the current reporting period, the computer program generating baseline single level solutions was completed and tested out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, C.
This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.
Nursing-sensitive indicators: a concept analysis
Heslop, Liza; Lu, Sai
2014-01-01
Aim To report a concept analysis of nursing-sensitive indicators within the applied context of the acute care setting. Background The concept of ‘nursing sensitive indicators’ is valuable to elaborate nursing care performance. The conceptual foundation, theoretical role, meaning, use and interpretation of the concept tend to differ. The elusiveness of the concept and the ambiguity of its attributes may have hindered research efforts to advance its application in practice. Design Concept analysis. Data sources Using ‘clinical indicators’ or ‘quality of nursing care’ as subject headings and incorporating keyword combinations of ‘acute care’ and ‘nurs*’, CINAHL and MEDLINE with full text in EBSCOhost databases were searched for English language journal articles published between 2000–2012. Only primary research articles were selected. Methods A hybrid approach was undertaken, incorporating traditional strategies as per Walker and Avant and a conceptual matrix based on Holzemer's Outcomes Model for Health Care Research. Results The analysis revealed two main attributes of nursing-sensitive indicators. Structural attributes related to health service operation included: hours of nursing care per patient day, nurse staffing. Outcome attributes related to patient care included: the prevalence of pressure ulcer, falls and falls with injury, nosocomial selective infection and patient/family satisfaction with nursing care. Conclusion This concept analysis may be used as a basis to advance understandings of the theoretical structures that underpin both research and practical application of quality dimensions of nursing care performance. PMID:25113388
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy
NASA Astrophysics Data System (ADS)
Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang
2003-03-01
CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.
Drenckhan, I; Glöckner-Rist, A; Rist, F; Richter, J; Gloster, A T; Fehm, L; Lang, T; Alpers, G W; Hamm, A O; Fydrich, T; Kircher, T; Arolt, V; Deckert, J; Ströhle, A; Wittchen, H-U; Gerlach, A L
2015-06-01
Previous studies of the dimensional structure of panic attack symptoms have mostly identified a respiratory and a vestibular/mixed somatic dimension. Evidence for additional dimensions such as a cardiac dimension and the allocation of several of the panic attack symptom criteria is less consistent. Clarifying the dimensional structure of the panic attack symptoms should help to specify the relationship of potential risk factors like anxiety sensitivity and fear of suffocation to the experience of panic attacks and the development of panic disorder. In an outpatient multicentre study 350 panic patients with agoraphobia rated the intensity of each of the ten DSM-IV bodily symptoms during a typical panic attack. The factor structure of these data was investigated with nonlinear confirmatory factor analysis (CFA). The identified bodily symptom dimensions were related to panic cognitions, anxiety sensitivity and fear of suffocation by means of nonlinear structural equation modelling (SEM). CFA indicated a respiratory, a vestibular/mixed somatic and a cardiac dimension of the bodily symptom criteria. These three factors were differentially associated with specific panic cognitions, different anxiety sensitivity facets and suffocation fear. Taking into account the dimensional structure of panic attack symptoms may help to increase the specificity of the associations between the experience of panic attack symptoms and various panic related constructs.
Pain Sensitivity is Inversely Related to Regional Grey Matter Density in the Brain
Emerson, Nichole M.; Zeidan, Fadel; Lobanov, Oleg V.; Hadsel, Morten S.; Martucci, Katherine T.; Quevedo, Alexandre S.; Starr, Christopher J.; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C.
2014-01-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity we used voxel-based morphometry (VBM) to investigate the relationship between grey matter density across the whole brain and inter-individual differences in pain sensitivity in 116 healthy volunteers (62 females, 54 males). Structural MRI and psychophysical data from 10 previous fMRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions exhibited a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. PMID:24333778
Tian, Bian; Zhao, Yulong; Jiang, Zhuangde; Zhang, Ling; Liao, Nansheng; Liu, Yuanhao; Meng, Chao
2009-01-01
In this paper we describe the design and testing of a micro piezoresistive pressure sensor for a Tire Pressure Measurement System (TPMS) which has the advantages of a minimized structure, high sensitivity, linearity and accuracy. Through analysis of the stress distribution of the diaphragm using the ANSYS software, a model of the structure was established. The fabrication on a single silicon substrate utilizes the technologies of anisotropic chemical etching and packaging through glass anodic bonding. The performance of this type of piezoresistive sensor, including size, sensitivity, and long-term stability, were investigated. The results indicate that the accuracy is 0.5% FS, therefore this design meets the requirements for a TPMS, and not only has a smaller size and simplicity of preparation, but also has high sensitivity and accuracy. PMID:22573960
On the topological structure of multinationals network
NASA Astrophysics Data System (ADS)
Joyez, Charlie
2017-05-01
This paper uses a weighted network analysis to examine the structure of multinationals' implantation countries network. Based on French firm-level dataset of multinational enterprises (MNEs) the network analysis provides information on each country position in the network and in internationalization strategies of French MNEs through connectivity preferences among the nodes. The paper also details network-wide features and their recent evolution toward a more decentralized structure. While much has been said on international trade network, this paper shows that multinational firms' studies would also benefit from network analysis, notably by investigating the sensitivity of the network construction to firm heterogeneity.
First- and second-order sensitivity analysis of linear and nonlinear structures
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Mroz, Z.
1986-01-01
This paper employs the principle of virtual work to derive sensitivity derivatives of structural response with respect to stiffness parameters using both direct and adjoint approaches. The computations required are based on additional load conditions characterized by imposed initial strains, body forces, or surface tractions. As such, they are equally applicable to numerical or analytical solution techniques. The relative efficiency of various approaches for calculating first and second derivatives is assessed. It is shown that for the evaluation of second derivatives the most efficient approach is one that makes use of both the first-order sensitivities and adjoint vectors. Two example problems are used for demonstrating the various approaches.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
Ten papers, published in various publications, on buckling, and the effects of imperfections on various structures are presented. These papers are: (1) Buckling mode localization in elastic plates due to misplacement in the stiffner location; (2) On vibrational imperfection sensitivity on Augusti's model structure in the vicinity of a non-linear static state; (3) Imperfection sensitivity due to elastic moduli in the Roorda Koiter frame; (4) Buckling mode localization in a multi-span periodic structure with a disorder in a single span; (5) Prediction of natural frequency and buckling load variability due to uncertainty in material properties by convex modeling; (6) Derivation of multi-dimensional ellipsoidal convex model for experimental data; (7) Passive control of buckling deformation via Anderson localization phenomenon; (8)Effect of the thickness and initial im perfection on buckling on composite cylindrical shells: asymptotic analysis and numerical results by BOSOR4 and PANDA2; (9) Worst case estimation of homology design by convex analysis; (10) Buckling of structures with uncertain imperfections - Personal perspective.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R
2009-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R.
2010-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534
Arnau, E G; Andersen, K E; Bruze, M; Frosch, P J; Johansen, J D; Menné, T; Rastogi, S C; White, I R; Lepoittevin, J P
2000-12-01
Fragrance materials are among the most common causes of allergic contact dermatitis. The aim of this study was to identify in a perfume fragrance allergens not included in the fragrance mix, by use of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships (SARs). The basis for the investigation was a 45-year-old woman allergic to her own perfume. She had a negative patch test to the fragrance mix and agreed to participate in the study. Chemical fractionation of the perfume concentrate was used for repeated patch testing and/or repeated open application test on the pre-sensitized patient. The chemical composition of the fractions giving a positive patch-test response and repeated open application test reactions was obtained by gas chromatography-mass spectrometry. From the compounds identified, those that contained a "structural alert" in their chemical structure, indicating an ability to modify skin proteins and thus behave as a skin sensitizer, were tested on the patient. The patient reacted positively to the synthetic fragrance p-t-butyl-alpha-methylhydrocinnamic aldehyde (Lilial), a widely used fragrance compound not present in the fragrance mix. The combination of bioassay-guided chemical fractionation and chemical analysis/structure-activity relationships seems to be a valuable tool for the investigation of contact allergy to fragrance materials.
Blurring the Inputs: A Natural Language Approach to Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Kleb, William L.; Thompson, Richard A.; Johnston, Christopher O.
2007-01-01
To document model parameter uncertainties and to automate sensitivity analyses for numerical simulation codes, a natural-language-based method to specify tolerances has been developed. With this new method, uncertainties are expressed in a natural manner, i.e., as one would on an engineering drawing, namely, 5.25 +/- 0.01. This approach is robust and readily adapted to various application domains because it does not rely on parsing the particular structure of input file formats. Instead, tolerances of a standard format are added to existing fields within an input file. As a demonstration of the power of this simple, natural language approach, a Monte Carlo sensitivity analysis is performed for three disparate simulation codes: fluid dynamics (LAURA), radiation (HARA), and ablation (FIAT). Effort required to harness each code for sensitivity analysis was recorded to demonstrate the generality and flexibility of this new approach.
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhiguo; Shen, Chunyan; Li, Luming
2018-03-01
Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.
Design sensitivity analysis and optimization tool (DSO) for sizing design applications
NASA Technical Reports Server (NTRS)
Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa
1992-01-01
The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.
Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun
2017-05-15
We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l) -1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO 2 . The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensitivity and Specificity of Eustachian Tube Function Tests in Adults
Doyle, William J.; Swarts, J. Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M.
2013-01-01
Objective Determine if Eustachian Tube (ET) function (ETF) tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and define the inter-relatedness of ETF test parameters. Methods ETF was evaluated using the Forced-Response, Inflation-Deflation, Valsalva and Sniffing tests in 15 control ears of adult subjects after unilateral myringotomy (Group I) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (Group II). Data were analyzed using logistic regression including each parameter independently and then a step-down Discriminant Analysis including all ETF test parameters to predict group assignment. Factor Analysis operating over all parameters was used to explore relatedness. Results The Discriminant Analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency and % positive pressure equilibrated) that together correctly assigned ears to Group II at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters, the first had negative loadings of the ETF structural parameters, the second had positive loadings of the muscle-assisted ET opening parameters and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. Discussion These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories. PMID:23868429
Spectral sensitivity characteristics simulation for silicon p-i-n photodiode
NASA Astrophysics Data System (ADS)
Urchuk, S. U.; Legotin, S. A.; Osipov, U. V.; Elnikov, D. S.; Didenko, S. I.; Astahov, V. P.; Rabinovich, O. I.; Yaromskiy, V. P.; Kuzmina, K. A.
2015-11-01
In this paper the simulation results of the spectral sensitivity characteristics of silicon p-i-n-photodiodes are presented. The analysis of the characteristics of the semiconductor material (the doping level, lifetime, surface recombination velocity), the construction and operation modes on the characteristics of photosensitive structures in order to optimize them was carried out.
ERIC Educational Resources Information Center
Kapur, Manu; Voiklis, John; Kinzer, Charles K.
2008-01-01
This study reports the impact of high sensitivity to early exchange in 11th-grade, CSCL triads solving well- and ill-structured problems in Newtonian Kinematics. A mixed-method analysis of the evolution of participation inequity (PI) in group discussions suggested that participation levels tended to get locked-in relatively early on in the…
NASA Astrophysics Data System (ADS)
Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian
2017-11-01
Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
Automated diagnosis of Alzheimer's disease with multi-atlas based whole brain segmentations
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tang, Xiaoying
2017-03-01
Voxel-based analysis is widely used in quantitative analysis of structural brain magnetic resonance imaging (MRI) and automated disease detection, such as Alzheimer's disease (AD). However, noise at the voxel level may cause low sensitivity to AD-induced structural abnormalities. This can be addressed with the use of a whole brain structural segmentation approach which greatly reduces the dimension of features (the number of voxels). In this paper, we propose an automatic AD diagnosis system that combines such whole brain segmen- tations with advanced machine learning methods. We used a multi-atlas segmentation technique to parcellate T1-weighted images into 54 distinct brain regions and extract their structural volumes to serve as the features for principal-component-analysis-based dimension reduction and support-vector-machine-based classification. The relationship between the number of retained principal components (PCs) and the diagnosis accuracy was systematically evaluated, in a leave-one-out fashion, based on 28 AD subjects and 23 age-matched healthy subjects. Our approach yielded pretty good classification results with 96.08% overall accuracy being achieved using the three foremost PCs. In addition, our approach yielded 96.43% specificity, 100% sensitivity, and 0.9891 area under the receiver operating characteristic curve.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
Smith, Travis B.; Parker, Maria; Steinkamp, Peter N.; Weleber, Richard G.; Smith, Ning; Wilson, David J.
2016-01-01
Purpose To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Methods Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Results Structure-function relationships were accurately modeled (conditional R2>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R2 = 0.85, p<10−10). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Conclusions Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline. PMID:26845445
Smith, Travis B; Parker, Maria; Steinkamp, Peter N; Weleber, Richard G; Smith, Ning; Wilson, David J
2016-01-01
To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Structure-function relationships were accurately modeled (conditional R(2)>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R(2) = 0.85, p<10(-10)). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline.
The neural correlates of morphological complexity processing: Detecting structure in pseudowords.
Schuster, Swetlana; Scharinger, Mathias; Brooks, Colin; Lahiri, Aditi; Hartwigsen, Gesa
2018-06-01
Morphological complexity is a highly debated issue in visual word recognition. Previous neuroimaging studies have shown that speakers are sensitive to degrees of morphological complexity. Two-step derived complex words (bridging through bridge N > bridge V > bridging) led to more enhanced activation in the left inferior frontal gyrus than their 1-step derived counterparts (running through run V > running). However, it remains unclear whether sensitivity to degrees of morphological complexity extends to pseudowords. If this were the case, it would indicate that abstract knowledge of morphological structure is independent of lexicality. We addressed this question by investigating the processing of two sets of pseudowords in German. Both sets contained morphologically viable two-step derived pseudowords differing in the number of derivational steps required to access an existing lexical representation and therefore the degree of structural analysis expected during processing. Using a 2 × 2 factorial design, we found lexicality effects to be distinct from processing signatures relating to structural analysis in pseudowords. Semantically-driven processes such as lexical search showed a more frontal distribution while combinatorial processes related to structural analysis engaged more parietal parts of the network. Specifically, more complex pseudowords showed increased activation in parietal regions (right superior parietal lobe and left precuneus) relative to pseudowords that required less structural analysis to arrive at an existing lexical representation. As the two sets were matched on cohort size and surface form, these results highlight the role of internal levels of morphological structure even in forms that do not possess a lexical representation. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Friedmann, P. P.; Venkatesan, C.; Yuan, K.
1992-01-01
This paper describes the development of a new structural optimization capability aimed at the aeroelastic tailoring of composite rotor blades with straight and swept tips. The primary objective is to reduce vibration levels in forward flight without diminishing the aeroelastic stability margins of the blade. In the course of this research activity a number of complicated tasks have been addressed: (1) development of a new, aeroelastic stability and response analysis; (2) formulation of a new comprehensive sensitive analysis, which facilitates the generation of the appropriate approximations for the objective and the constraints; (3) physical understanding of the new model and, in particular, determination of its potential for aeroelastic tailoring, and (4) combination of the newly developed analysis capability, the sensitivity derivatives and the optimizer into a comprehensive optimization capability. The first three tasks have been completed and the fourth task is in progress.
Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.
2011-01-01
Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
Sensitivity analysis of bridge health index to element failure and element conditions.
DOT National Transportation Integrated Search
2009-11-01
Bridge Health Index (BHI) is a bridge performance measure based on the condition of the bridge elements. It : is computed as the ratio of remaining value of the bridge structure to the initial value of the structure. Since it : is expressed as a perc...
A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.
Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan
2009-02-18
A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.
Brandao, Livia M; Monhart, Matthias; Schötzau, Andreas; Ledolter, Anna A; Palmowski-Wolfe, Anja M
2017-08-01
To further improve analysis of the two-flash multifocal electroretinogram (2F-mfERG) in glaucoma in regard to structure-function analysis, using discrete wavelet transform (DWT) analysis. Sixty subjects [35 controls and 25 primary open-angle glaucoma (POAG)] underwent 2F-mfERG. Responses were analyzed with the DWT. The DWT level that could best separate POAG from controls was compared to the root-mean-square (RMS) calculations previously used in the analysis of the 2F-mfERG. In a subgroup analysis, structure-function correlation was assessed between DWT, optical coherence tomography and automated perimetry (mf103 customized pattern) for the central 15°. Frequency level 4 of the wavelet variance analysis (144 Hz, WVA-144) was most sensitive (p < 0.003). It correlated positively with RMS but had a better AUC. Positive relations were found between visual field, WVA-144 and GCIPL thickness. The highest predictive factor for glaucoma diagnostic was seen in the GCIPL, but this improved further by adding the mean sensitivity and WVA-144. mfERG using WVA analysis improves glaucoma diagnosis, especially when combined with GCIPL and MS.
Eigenvalue sensitivity analysis of planar frames with variable joint and support locations
NASA Technical Reports Server (NTRS)
Chuang, Ching H.; Hou, Gene J. W.
1991-01-01
Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Görtelmeyer, Roman; Schmidt, Jürgen; Suckfüll, Markus; Jastreboff, Pawel; Gebauer, Alexander; Krüger, Hagen; Wittmann, Werner
2011-08-01
To evaluate the reliability, dimensionality, predictive validity, construct validity, and sensitivity to change of the THI-12 total and sub-scales as diagnostic aids to describe and quantify tinnitus-evoked reactions and evaluate treatment efficacy. Explorative analysis of the German tinnitus handicap inventory (THI-12) to assess potential sensitivity to tinnitus therapy in placebo-controlled randomized studies. Correlation analysis, including Cronbach's coefficient α and explorative common factor analysis (EFA), was conducted within and between assessments to demonstrate the construct validity, dimensionality, and factorial structure of the THI-12. N = 618 patients suffering from subjective tinnitus who were to be screened to participate in a randomized, placebo-controlled, 16-week, longitudinal study. The THI-12 can reliably diagnose tinnitus-related impairments and disabilities and assess changes over time. The test-retest coefficient for neighboured visits was r > 0.69, the internal consistency of the THI-12 total score was α ≤ 0.79 and α ≤ 0.89 at subsequent visits. Predictability of THI-12 total score and overall variance increased with successive measurements. The three-factorial structure allowed for evaluation of factors that affect aspects of patients' health-related quality of life. The THI-12, with its three-factorial structure, is a simple, reliable, and valid instrument for the diagnosis and assessment of tinnitus and associated impairment over time.
Structural synthesis: Precursor and catalyst
NASA Technical Reports Server (NTRS)
Schmit, L. A.
1984-01-01
More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.
Bao, Xiaofeng; Cao, Xiaowei; Nie, Xuemei; Jin, Yanyan; Zhou, Baojing
2014-06-11
A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job's plot suggested the RBAP formed a 1:1 complex with Sn2+.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
Pain sensitivity is inversely related to regional grey matter density in the brain.
Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C
2014-03-01
Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Mallinckrodt, C H; Lin, Q; Molenberghs, M
2013-01-01
The objective of this research was to demonstrate a framework for drawing inference from sensitivity analyses of incomplete longitudinal clinical trial data via a re-analysis of data from a confirmatory clinical trial in depression. A likelihood-based approach that assumed missing at random (MAR) was the primary analysis. Robustness to departure from MAR was assessed by comparing the primary result to those from a series of analyses that employed varying missing not at random (MNAR) assumptions (selection models, pattern mixture models and shared parameter models) and to MAR methods that used inclusive models. The key sensitivity analysis used multiple imputation assuming that after dropout the trajectory of drug-treated patients was that of placebo treated patients with a similar outcome history (placebo multiple imputation). This result was used as the worst reasonable case to define the lower limit of plausible values for the treatment contrast. The endpoint contrast from the primary analysis was - 2.79 (p = .013). In placebo multiple imputation, the result was - 2.17. Results from the other sensitivity analyses ranged from - 2.21 to - 3.87 and were symmetrically distributed around the primary result. Hence, no clear evidence of bias from missing not at random data was found. In the worst reasonable case scenario, the treatment effect was 80% of the magnitude of the primary result. Therefore, it was concluded that a treatment effect existed. The structured sensitivity framework of using a worst reasonable case result based on a controlled imputation approach with transparent and debatable assumptions supplemented a series of plausible alternative models under varying assumptions was useful in this specific situation and holds promise as a generally useful framework. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2001-01-01
This report describes the preliminary results of an investigation on component reliability analysis and reliability-based design optimization of thin-walled circular composite cylinders with average diameter and average length of 15 inches. Structural reliability is based on axial buckling strength of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered for reliability analysis with the latter incorporated into the reliability-based structural optimization problem. To improve the efficiency of reliability sensitivity analysis and design optimization solution, the buckling strength of the cylinder is estimated using a second-order response surface model. The sensitivity of the reliability index with respect to the mean and standard deviation of each random variable is calculated and compared. The reliability index is found to be extremely sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder diameter was found to have the third highest impact on the reliability index. Also the uncertainty in the applied load, captured by examining different values for its coefficient of variation, is found to have a large influence on cylinder reliability. The optimization problem for minimum weight is solved subject to a design constraint on element reliability index. The methodology, solution procedure and optimization results are included in this report.
ERIC Educational Resources Information Center
Vujanovic, Anka A.; Arrindell, Willem A.; Bernstein, Amit; Norton, Peter J.; Zvolensky, Michael J.
2007-01-01
The present investigation examined the factor structure, internal consistency, and construct validity of the 16-item Anxiety Sensitivity Index (ASI; Reiss Peterson, Gursky, & McNally 1986) in a young adult sample (n = 420) from the Netherlands. Confirmatory factor analysis was used to comparatively evaluate two-factor, three-factor, and…
NASA Astrophysics Data System (ADS)
Degenhardt, Richard
2014-06-01
Space industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis. Currently, the potential of composite light weight structures, which are prone to buckling, is not fully exploited as appropriate guidelines in the field of space applications do not exist. This paper deals with the state-of-the-art advances and challenges related to coupled stability analysis of composite structures which show very complex stability behaviour. Improved design guidelines for composites structures are still under development. This paper gives a short state-of-the-art and presents a proposal for a future design guideline.
The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
NASA Technical Reports Server (NTRS)
1990-01-01
The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.
NASA Astrophysics Data System (ADS)
Dawid, Rys; Piotr, Jaskula
2018-05-01
Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.
Microanalysis of plant cell wall polysaccharides.
Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus
2009-09-01
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.
Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie
2015-09-01
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.
Sensitivity of control-augmented structure obtained by a system decomposition method
NASA Technical Reports Server (NTRS)
Sobieszczanskisobieski, Jaroslaw; Bloebaum, Christina L.; Hajela, Prabhat
1988-01-01
The verification of a method for computing sensitivity derivatives of a coupled system is presented. The method deals with a system whose analysis can be partitioned into subsets that correspond to disciplines and/or physical subsystems that exchange input-output data with each other. The method uses the partial sensitivity derivatives of the output with respect to input obtained for each subset separately to assemble a set of linear, simultaneous, algebraic equations that are solved for the derivatives of the coupled system response. This sensitivity analysis is verified using an example of a cantilever beam augmented with an active control system to limit the beam's dynamic displacements under an excitation force. The verification shows good agreement of the method with reference data obtained by a finite difference technique involving entire system analysis. The usefulness of a system sensitivity method in optimization applications by employing a piecewise-linear approach to the same numerical example is demonstrated. The method's principal merits are its intrinsically superior accuracy in comparison with the finite difference technique, and its compatibility with the traditional division of work in complex engineering tasks among specialty groups.
Similitude design for the vibration problems of plates and shells: A review
NASA Astrophysics Data System (ADS)
Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou
2017-06-01
Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.
NASA Technical Reports Server (NTRS)
McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.
2012-01-01
This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.
Wavelet analysis of biological tissue's Mueller-matrix images
NASA Astrophysics Data System (ADS)
Tomka, Yu. Ya.
2008-05-01
The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.
Linden, Ariel; Yarnold, Paul R
2016-12-01
Single-group interrupted time series analysis (ITSA) is a popular evaluation methodology in which a single unit of observation is being studied, the outcome variable is serially ordered as a time series and the intervention is expected to 'interrupt' the level and/or trend of the time series, subsequent to its introduction. Given that the internal validity of the design rests on the premise that the interruption in the time series is associated with the introduction of the treatment, treatment effects may seem less plausible if a parallel trend already exists in the time series prior to the actual intervention. Thus, sensitivity analyses should focus on detecting structural breaks in the time series before the intervention. In this paper, we introduce a machine-learning algorithm called optimal discriminant analysis (ODA) as an approach to determine if structural breaks can be identified in years prior to the initiation of the intervention, using data from California's 1988 voter-initiated Proposition 99 to reduce smoking rates. The ODA analysis indicates that numerous structural breaks occurred prior to the actual initiation of Proposition 99 in 1989, including perfect structural breaks in 1983 and 1985, thereby casting doubt on the validity of treatment effects estimated for the actual intervention when using a single-group ITSA design. Given the widespread use of ITSA for evaluating observational data and the increasing use of machine-learning techniques in traditional research, we recommend that structural break sensitivity analysis is routinely incorporated in all research using the single-group ITSA design. © 2016 John Wiley & Sons, Ltd.
Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming
2017-07-15
We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry
2018-06-19
Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.
A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.
Lalkov, Vasko; Qasaimeh, Mohammad A
2017-07-01
This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.
Kim, Unyong; Oh, Myung Jin; Seo, Youngsuk; Jeon, Yinae; Eom, Joon-Ho; An, Hyun Joo
2017-09-01
Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
NASA Astrophysics Data System (ADS)
Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.
1983-07-01
The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061
Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls
NASA Astrophysics Data System (ADS)
Guha Ray, A.; Baidya, D. K.
2012-09-01
Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.
Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Wrenn, Gregory A.; Dovi, Augustine R.; Coen, Peter G.; Hall, Laura E.
1992-01-01
An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars.
Cost of Equity Estimation in Fuel and Energy Sector Companies Based on CAPM
NASA Astrophysics Data System (ADS)
Kozieł, Diana; Pawłowski, Stanisław; Kustra, Arkadiusz
2018-03-01
The article presents cost of equity estimation of capital groups from the fuel and energy sector, listed at the Warsaw Stock Exchange, based on the Capital Asset Pricing Model (CAPM). The objective of the article was to perform a valuation of equity with the application of CAPM, based on actual financial data and stock exchange data and to carry out a sensitivity analysis of such cost, depending on the financing structure of the entity. The objective of the article formulated in this manner has determined its' structure. It focuses on presentation of substantive analyses related to the core of equity and methods of estimating its' costs, with special attention given to the CAPM. In the practical section, estimation of cost was performed according to the CAPM methodology, based on the example of leading fuel and energy companies, such as Tauron GE and PGE. Simultaneously, sensitivity analysis of such cost was performed depending on the structure of financing the company's operation.
NASA Astrophysics Data System (ADS)
Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.
2017-09-01
In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.
Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells
NASA Astrophysics Data System (ADS)
Gupta, Tapan K.; Cirignano, Leonard J.; Shah, Kanai S.; Moy, Larry P.; Kelly, David J.; Squillante, Michael R.; Entine, Gerald; Smestad, Greg P.
1999-10-01
Titanium dioxide (TiO2) films have been deposited on SnO2 coated glass substrates by screen-printing. Film morphology and structure have been characterized by scanning electron microscopy, x-ray diffraction and BET analysis. Dye-sensitized TiO2 photoelectrochemical cells have been assembled and characterized. Cells sensitized with anthocyanin and a ruthenium complex have been investigated. A 0.77 cm2 ruthenium dye sensitized cell with 6.1% power conversion efficiency under Air Mass (AM1.5) conditions was obtained. Results obtained with a pure anthocyanin dye and dye extracted from blackberries were compared. Finally, a natural gel was found to improve the stability of anthocyanin sensitized cells.
Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.
Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis
NASA Technical Reports Server (NTRS)
Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.
2004-01-01
This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.
NASA Astrophysics Data System (ADS)
Razavi, S.; Gupta, H. V.
2014-12-01
Sensitivity analysis (SA) is an important paradigm in the context of Earth System model development and application, and provides a powerful tool that serves several essential functions in modelling practice, including 1) Uncertainty Apportionment - attribution of total uncertainty to different uncertainty sources, 2) Assessment of Similarity - diagnostic testing and evaluation of similarities between the functioning of the model and the real system, 3) Factor and Model Reduction - identification of non-influential factors and/or insensitive components of model structure, and 4) Factor Interdependence - investigation of the nature and strength of interactions between the factors, and the degree to which factors intensify, cancel, or compensate for the effects of each other. A variety of sensitivity analysis approaches have been proposed, each of which formally characterizes a different "intuitive" understanding of what is meant by the "sensitivity" of one or more model responses to its dependent factors (such as model parameters or forcings). These approaches are based on different philosophies and theoretical definitions of sensitivity, and range from simple local derivatives and one-factor-at-a-time procedures to rigorous variance-based (Sobol-type) approaches. In general, each approach focuses on, and identifies, different features and properties of the model response and may therefore lead to different (even conflicting) conclusions about the underlying sensitivity. This presentation revisits the theoretical basis for sensitivity analysis, and critically evaluates existing approaches so as to demonstrate their flaws and shortcomings. With this background, we discuss several important properties of response surfaces that are associated with the understanding and interpretation of sensitivity. Finally, a new approach towards global sensitivity assessment is developed that is consistent with important properties of Earth System model response surfaces.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
Choi, William; Tong, Xiuli; Cain, Kate
2016-08-01
This 1-year longitudinal study examined the role of Cantonese lexical tone sensitivity in predicting English reading comprehension and the pathways underlying their relation. Multiple measures of Cantonese lexical tone sensitivity, English lexical stress sensitivity, Cantonese segmental phonological awareness, general auditory sensitivity, English word reading, and English reading comprehension were administered to 133 Cantonese-English unbalanced bilingual second graders. Structural equation modeling analysis identified transfer of Cantonese lexical tone sensitivity to English reading comprehension. This transfer was realized through a direct pathway via English stress sensitivity and also an indirect pathway via English word reading. These results suggest that prosodic sensitivity is an important factor influencing English reading comprehension and that it needs to be incorporated into theoretical accounts of reading comprehension across languages. Copyright © 2016 Elsevier Inc. All rights reserved.
A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz
NASA Astrophysics Data System (ADS)
Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun
2017-12-01
This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.
A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz.
Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun
2017-12-01
This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.
Analysis of sensitivity to different parameterization schemes for a subtropical cyclone
NASA Astrophysics Data System (ADS)
Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.
2018-05-01
A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.
Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix
2014-08-01
Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.
NASA Astrophysics Data System (ADS)
Gao, Feng; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2018-04-01
The feasibility of nanocomposites of cir-coronene graphene quantum dot (GQD) with phthalocyanine, tetrabenzoporphyrin, tetrabenzotriazaporphyrins, cis-tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles as a sensitizer of dye-sensitized solar cells (DSSC) are investigated. Based on the first principles density functional theory (DFT), the geometrical structures of the separate GQD and 10 macrocycles, and their hybridized nanocomposites are fully optimized. The energy stabilities of the obtained structures are confirmed by harmonic frequency analysis. The optical absorptions of the optimized structures are calculated with time-dependent DFT. The feasibility of the nanocomposites as the sensitizer of DSSC is examined by the charge spatial separation, the electron transfer, the molecular orbital energy levels of the nanocomposites and the electrolyte, and the conduction band minimum of TiO2 electrode. The results demonstrate that all the nanocomposites have enhanced absorptions in the visible light range, and their molecular orbital energies satisfy the requirement of sensitizers. However, only two of the ten considered nanocomposites demonstrate significantly charge spatial separation. The GQD-Cu-TBP is identified as the most favorable candidate sensitizer of DSSC by the most enhanced in optical absorption, obvious charge spatial separation, suitable LUMO energy levels and driving force for electron transfer, and low recombination rate of electron and hole.
Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu
2011-03-03
A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.
NASA Astrophysics Data System (ADS)
Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.
2015-09-01
Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.
A Fiscal Analysis of Fixed-Amount Federal Grants-in-Aid: The Case of Vocational Education.
ERIC Educational Resources Information Center
Patterson, Philip D., Jr.
A fiscal analysis of fixed-amount Federal grant programs using the criteria of effectiveness, efficiency, and equity is essential to an evaluation of the Federal grant structure. Measures of program need should be current, comparable over time and among states, and subjected to sensitivity analysis so that future grants can be estimated. Income…
Eberhardt, Melanie; Nadig, Aparna
2018-01-01
We present two experiments examining the universality and uniqueness of reduced context sensitivity in language processing in Autism Spectrum Disorders (ASD), as proposed by the Weak Central Coherence account (Happé & Frith, 2006, Journal of Autism and Developmental Disorders, 36(1), 25). That is, do all children with ASD exhibit decreased context sensitivity, and is this characteristic specific to ASD versus other neurodevelopmental conditions? Experiment 1, conducted in English, was a comparison of children with ASD with normal language and their typically-developing peers on a picture selection task where interpretation of sentential context was required to identify homonyms. Contrary to the predictions of Weak Central Coherence, the ASD-normal language group exhibited no difficulty on this task. Experiment 2, conducted in German, compared children with ASD with variable language abilities, typically-developing children, and a second control group of children with Language Impairment (LI) on a sentence completion task where a context sentence had to be considered to produce the continuation of an ambiguous sentence fragment. Both ASD-variable language and LI groups exhibited reduced context sensitivity and did not differ from each other. Finally, to directly test which factors contribute to reduced context sensitivity, we conducted a regression analysis for each experiment, entering nonverbal IQ, structural language ability, and autism diagnosis as predictors. For both experiments structural language ability emerged as the only significant predictor. These convergent findings demonstrate that reduced sensitivity to context in language processing is linked to low structural language rather than ASD diagnosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buckling Design and Imperfection Sensitivity of Sandwich Composite Launch-Vehicle Shell Structures
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Myers, David E.; Waters, W. Allen, Jr.; Chunchu, Prasad B.; Lovejoy, Andrew W.; Hilburger, Mark W.
2016-01-01
Composite materials are increasingly being considered and used for launch-vehicle structures. For shell structures, such as interstages, skirts, and shrouds, honeycomb-core sandwich composites are often selected for their structural efficiency. Therefore, it is becoming increasingly important to understand the structural response, including buckling, of sandwich composite shell structures. Additionally, small geometric imperfections can significantly influence the buckling response, including considerably reducing the buckling load, of shell structures. Thus, both the response of the theoretically perfect structure and the buckling imperfection sensitivity must be considered during the design of such structures. To address the latter, empirically derived design factors, called buckling knockdown factors (KDFs), were developed by NASA in the 1960s to account for this buckling imperfection sensitivity during design. However, most of the test-article designs used in the development of these recommendations are not relevant to modern launch-vehicle constructions and material systems, and in particular, no composite test articles were considered. Herein, a two-part study on composite sandwich shells to (1) examine the relationship between the buckling knockdown factor and the areal mass of optimized designs, and (2) to interrogate the imperfection sensitivity of those optimized designs is presented. Four structures from recent NASA launch-vehicle development activities are considered. First, designs optimized for both strength and stability were generated for each of these structures using design optimization software and a range of buckling knockdown factors; it was found that the designed areal masses varied by between 6.1% and 19.6% over knockdown factors ranging from 0.6 to 0.9. Next, the buckling imperfection sensitivity of the optimized designs is explored using nonlinear finite-element analysis and the as-measured shape of a large-scale composite cylindrical shell. When compared with the current buckling design recommendations, the results suggest that the current recommendations are overly conservative and that the development of new recommendations could reduce the acreage areal mass of many composite sandwich shell designs by between 4% and 19%, depending on the structure.
NASA Astrophysics Data System (ADS)
Starodub, Nickolaj F.; Starodub, Valentyna M.; Krivenchuk, Vladimir E.; Shapovalenko, Valentyna F.
2002-02-01
New type of the multi-immune sensor was elaborated. It is based on electrolyte-insulator-semiconductors structures and intended for determination of such herbicides as simazine, atrazine and 2,4-D. The specific antibodies were immobilized on nitrocellulose disks, which were placed in measuring cells. The analysis was fulfilled by sequential saturation of antibodies, left unbound after their exposure to native herbicide in investigated sample, with labelled herbicide. If horse radish peroxidase (HRP) was used as label the sensitivity of this multi-immune sensor was about 5 and 1.25 (mu) g/L for simazine and 2,4-D, respectively. At the changing of HRP by (beta) -glucose oxidase the sensitivity of analysis of these herbicides increased approximately in 5 times. The linear plots of the registered concentrations were in the range of 1,0-150,0 and 0,25-150,0 ng/mL for simazine and 2,4-D respectively. It was recommended to use the developed immune sensor for wide screening of herbicides in environment. The ways for increasing of its sensitivity were proposed.
Volker, Martin A.; Dua, Elissa H.; Lopata, Christopher; Thomeer, Marcus L.; Toomey, Jennifer A.; Smerbeck, Audrey M.; Rodgers, Jonathan D.; Popkin, Joshua R.; Nelson, Andrew T.; Lee, Gloria K.
2016-01-01
The Gilliam Autism Rating Scale-Second Edition (GARS-2) is a widely used screening instrument that assists in the identification and diagnosis of autism. The purpose of this study was to examine the factor structure, internal consistency, and screening sensitivity of the GARS-2 using ratings from special education teaching staff for a sample of 240 individuals with autism or other significant developmental disabilities. Exploratory factor analysis yielded a correlated three-factor solution similar to that found in 2005 by Lecavalier for the original GARS. Though the three factors appeared to be reasonably consistent with the intended constructs of the three GARS-2 subscales, the analysis indicated that more than a third of the GARS-2 items were assigned to the wrong subscale. Internal consistency estimates met or exceeded standards for screening and were generally higher than those in previous studies. Screening sensitivity was .65 and specificity was .81 for the Autism Index using a cut score of 85. Based on these findings, recommendations are made for instrument revision. PMID:26981279
NASA Astrophysics Data System (ADS)
Kala, Zdeněk; Kala, Jiří
2011-09-01
The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
Identification of stochastic interactions in nonlinear models of structural mechanics
NASA Astrophysics Data System (ADS)
Kala, Zdeněk
2017-07-01
In the paper, the polynomial approximation is presented by which the Sobol sensitivity analysis can be evaluated with all sensitivity indices. The nonlinear FEM model is approximated. The input area is mapped using simulations runs of Latin Hypercube Sampling method. The domain of the approximation polynomial is chosen so that it were possible to apply large number of simulation runs of Latin Hypercube Sampling method. The method presented also makes possible to evaluate higher-order sensitivity indices, which could not be identified in case of nonlinear FEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmelee, R.W.; Wentsel, R.S.; Phillips, C.T.
1993-08-01
A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode andmore » microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.« less
Cylindrical optical resonators: fundamental properties and bio-sensing characteristics
NASA Astrophysics Data System (ADS)
Khozeymeh, Foroogh; Razaghi, Mohammad
2018-04-01
In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).
NASA Astrophysics Data System (ADS)
Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An
2016-03-01
A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.
NASA Astrophysics Data System (ADS)
Tian, Ying; Hu, Sen; Huang, Xiaojun; Yu, Zetai; Lin, Hai; Yang, Helin
2017-10-01
A low-loss and high transmission electromagnetically induced transparency like (EIT- like) structure is experimentally and numerically demonstrated in this paper. The proposed planar structure based on EIT-like metamaterial consists of two separate split-ring resonators, and its resulting transmission level can maximally reach 0.89 with significant suppression of radiation loss. According to the effective medium theory, the imaginary parts of the effective permittivity and permeability of the metamaterial are used as the evidence of low-loss. In the analysis, the simulated surface current, magnetic field distribution and coupled oscillator model reveal the principle of high transmittance EIT-effect. Furthermore, the peak of transparency frequency is highly sensitive to the variation of refractive index in the background medium. The sensor based on the proposed EIT structure can achieve a sensitivity of 1.69 GHz/RIU (refractive index unit) and a figure of merit of 11.66. Such metamaterials have potential perspectives in sensing and chiral slow light devices.
Sensitivity analysis of hybrid thermoelastic techniques
W.A. Samad; J.M. Considine
2017-01-01
Stress functions have been used as a complementary tool to support experimental techniques, such as thermoelastic stress analysis (TSA) and digital image correlation (DIC), in an effort to evaluate the complete and separate full-field stresses of loaded structures. The need for such coupling between experimental data and stress functions is due to the fact that...
ERIC Educational Resources Information Center
Johnson, Erin Phinney; Pennington, Bruce F.; Lowenstein, Joanna H.; Nittrouer, Susan
2011-01-01
Research Design;Intervention;Biology;Biotechnology;Teaching Methods;Hands on Science;Professional Development;Comparative Analysis;Genetics;Evaluation;Pretests Posttests;Control Groups;Science Education;Science Instruction;Pedagogical Content Knowledge;
Systems design and analysis of the microwave radiometer spacecraft
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1981-01-01
Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.
Frequency analysis for modulation-enhanced powder diffraction.
Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi
2016-07-01
Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.
Liu, Richard T; Burke, Taylor A; Abramson, Lyn Y; Alloy, Lauren B
2017-11-04
Behavioral Approach System (BAS) sensitivity has been implicated in the development of a variety of different psychiatric disorders. Prominent among these in the empirical literature are bipolar spectrum disorders (BSDs). Given that adolescence represents a critical developmental stage of risk for the onset of BSDs, it is important to clarify the latent structure of BAS sensitivity in this period of development. A statistical approach especially well-suited for delineating the latent structure of BAS sensitivity is taxometric analysis, which is designed to evaluate whether the latent structure of a construct is taxonic (i.e., categorical) or dimensional (i.e., continuous) in nature. The current study applied three mathematically non-redundant taxometric procedures (i.e., MAMBAC, MAXEIG, and L-Mode) to a large community sample of adolescents (n = 12,494) who completed two separate measures of BAS sensitivity: the BIS/BAS Scales Carver and White (Journal of Personality and Social Psychology, 67, 319-333. 1994) and the Sensitivity to Reward and Sensitivity to Punishment Questionnaire (Torrubia et al. Personality and Individual Differences, 31, 837-862. 2001). Given the significant developmental changes in reward sensitivity that occur across adolescence, the current investigation aimed to provide a fine-grained evaluation of the data by performing taxometric analyses at an age-by-age level (14-19 years; n for each age ≥ 883). Results derived from taxometric procedures, across all ages tested, were highly consistent, providing strong evidence that BAS sensitivity is best conceptualized as dimensional in nature. Thus, the findings suggest that BAS-related vulnerability to BSDs exists along a continuum of severity, with no natural cut-point qualitatively differentiating high- and low-risk adolescents. Clinical and research implications for the assessment of BSD-related vulnerability are discussed.
Nagel, Michael; Bolivar, Peter Haring; Brucherseifer, Martin; Kurz, Heinrich; Bosserhoff, Anja; Büttner, Reinhard
2002-04-01
A promising label-free approach for the analysis of genetic material by means of detecting the hybridization of polynucleotides with electromagnetic waves at terahertz (THz) frequencies is presented. Using an integrated waveguide approach, incorporating resonant THz structures as sample carriers and transducers for the analysis of the DNA molecules, we achieve a sensitivity down to femtomolar levels. The approach is demonstrated with time-domain ultrafast techniques based on femtosecond laser pulses for generating and electro-optically detecting broadband THz signals, although the principle can certainly be transferred to other THz technologies.
Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Zhu, Yeping
According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.
Percolation analyses of observed and simulated galaxy clustering
NASA Astrophysics Data System (ADS)
Bhavsar, S. P.; Barrow, J. D.
1983-11-01
A percolation cluster analysis is performed on equivalent regions of the CFA redshift survey of galaxies and the 4000 body simulations of gravitational clustering made by Aarseth, Gott and Turner (1979). The observed and simulated percolation properties are compared and, unlike correlation and multiplicity function analyses, favour high density (Omega = 1) models with n = - 1 initial data. The present results show that the three-dimensional data are consistent with the degree of filamentary structure present in isothermal models of galaxy formation at the level of percolation analysis. It is also found that the percolation structure of the CFA data is a function of depth. Percolation structure does not appear to be a sensitive probe of intrinsic filamentary structure.
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
ProTSAV: A protein tertiary structure analysis and validation server.
Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B
2016-01-01
Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.
A framework for sensitivity analysis of decision trees.
Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław
2018-01-01
In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.
An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
NASA Astrophysics Data System (ADS)
Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang
2015-10-01
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
NASA Astrophysics Data System (ADS)
Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.
2018-04-01
Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references
Analysis of TPA Pulsed-Laser-Induced Single-Event Latchup Sensitive-Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Sternberg, Andrew L.; Kozub, John A.
Two-photon absorption (TPA) testing is employed to analyze the laser-induced latchup sensitive-volume (SV) of a specially designed test structure. This method takes into account the existence of an onset region in which the probability of triggering latchup transitions from zero to one as the laser pulse energy increases. This variability is attributed to pulse-to-pulse variability, uncertainty in measurement of the pulse energy, and variation in local carrier density and temperature. For each spatial position, the latchup probability associated with a given energy is calculated from multiple pulses. The latchup probability data are well-described by a Weibull distribution. The results showmore » that the area between p-n-p-n cell structures is more sensitive than the p+ and n+ source areas, and locations far from the well contacts are more sensitive than those near the contact region. The transition from low probability of latchup to high probability is more abrupt near the source contacts than it is for the surrounding areas.« less
Analysis of TPA Pulsed-Laser-Induced Single-Event Latchup Sensitive-Area
Wang, Peng; Sternberg, Andrew L.; Kozub, John A.; ...
2017-12-07
Two-photon absorption (TPA) testing is employed to analyze the laser-induced latchup sensitive-volume (SV) of a specially designed test structure. This method takes into account the existence of an onset region in which the probability of triggering latchup transitions from zero to one as the laser pulse energy increases. This variability is attributed to pulse-to-pulse variability, uncertainty in measurement of the pulse energy, and variation in local carrier density and temperature. For each spatial position, the latchup probability associated with a given energy is calculated from multiple pulses. The latchup probability data are well-described by a Weibull distribution. The results showmore » that the area between p-n-p-n cell structures is more sensitive than the p+ and n+ source areas, and locations far from the well contacts are more sensitive than those near the contact region. The transition from low probability of latchup to high probability is more abrupt near the source contacts than it is for the surrounding areas.« less
Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
Xu, Shoufang; Lu, Hongzhi
2016-11-15
A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Design oriented structural analysis
NASA Technical Reports Server (NTRS)
Giles, Gary L.
1994-01-01
Desirable characteristics and benefits of design oriented analysis methods are described and illustrated by presenting a synoptic description of the development and uses of the Equivalent Laminated Plate Solution (ELAPS) computer code. ELAPS is a design oriented structural analysis method which is intended for use in the early design of aircraft wing structures. Model preparation is minimized by using a few large plate segments to model the wing box structure. Computational efficiency is achieved by using a limited number of global displacement functions that encompass all segments over the wing planform. Coupling with other codes is facilitated since the output quantities such as deflections and stresses are calculated as continuous functions over the plate segments. Various aspects of the ELAPS development are discussed including the analytical formulation, verification of results by comparison with finite element analysis results, coupling with other codes, and calculation of sensitivity derivatives. The effectiveness of ELAPS for multidisciplinary design application is illustrated by describing its use in design studies of high speed civil transport wing structures.
Sensitivity analysis of infectious disease models: methods, advances and their application
Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.
2013-01-01
Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497
Lee, Yeonok; Wu, Hulin
2012-01-01
Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
NASA Astrophysics Data System (ADS)
Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui
2016-02-01
The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.
A transmission Kikuchi diffraction study of cementite in a quenched and tempered steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Ahmed A., E-mail: asaleh@uow.edu.au; Casillas, Gilberto; Pereloma, Elena V.
2016-04-15
This is the first transmission Kikuchi diffraction (TKD) study to report the indexing of nano-sized cementite as distinct structures and its orientation relationship with the body-centered cubic matrix in a quenched and tempered steel. Crystallographic analysis via TKD and selected area diffraction returned the well-known Bagaryatskii and Isaichev orientation relationships. However, the indexing of nano-sized cementite via TKD was sensitive to the thickness of the electron transparent region such that TEM remains the most precise method to characterise such precipitates. - Highlights: • Nano-sized cementite in a QT steel has been investigated by TKD and TEM. • Cementite has beenmore » indexed as distinct structures via TKD. • Crystallographic analysis returned the Bagaryatskii and Isaichev ORs. • Success of TKD is sensitive to the thickness of the electron transparent region. • TEM remains the most precise technique to characterise nano-sized precipitates.« less
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2014-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
Structure analysis of polymerized phospholipid bilayer by TED and direct methods.
Stevens, M; Longo, M; Dorset, D L; Spence, J
2002-04-01
This paper describes the use of elastic energy filtered transmission electron diffraction combined with Direct Methods in order to study the structure of thin Langmuir-Blodgett films of a radiation sensitive diacetylene polymer (DC8.9PC). We obtain a potential map for one projection by direct phasing of zone axis patterns, and discuss experimental problems and possible solutions.
Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane
The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema
2018-01-01
Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196
Mechanical design and analysis of a low beta squeezed half-wave resonator
NASA Astrophysics Data System (ADS)
He, Shou-Bo; Zhang, Cong; Yue, Wei-Ming; Wang, Ruo-Xu; Xu, Meng-Xin; Wang, Zhi-Jun; Huang, Shi-Chun; Huang, Yu-Lu; Jiang, Tian-Cai; Wang, Feng-Feng; Zhang, Sheng-Xue; He, Yuan; Zhang, Sheng-Hu; Zhao, Hong-Wei
2014-08-01
A superconducting squeezed type half-wave resonator (HWR) of β=0.09 has been developed at the Institute of Modern Physics, Lanzhou. In this paper, a basic design is presented for the stiffening structure for the detuning effect caused by helium pressure and Lorentz force. The mechanical modal analysis has been investigated the with finite element method (FEM). Based on these considerations, a new stiffening structure is proposed for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient df/dp and Lorentz force detuning coefficient KL, and stable mechanical properties.
NASA Astrophysics Data System (ADS)
Ye, Yang; Liu, Aiping; Wang, Xiaohong; Chen, Fusheng
2016-10-01
For the detection of small hapten molecules, indirect competitive enzyme-linked immunosorbent assay (icELISA) is a preferred method. However, diverse coating antigen might bring different antiserum titer and sensitivity for the identical antiserum. In the present study, four AFB1-protein (aflatoxin B1-carrier protein) conjugates were prepared by activated ester method (AFB1O-BSA/AFB1O-OVA) and mannich method (AFB1-cBSA/AFB1-cOVA), and then applied as coating antigen for titer and sensitivity detection of the identical antiserum obtained from rabbit immunized by AFB1-KLH. Afterwards, the ultraviolet-visible, fluorescence and far-ultraviolet circular dichroism (far-UV CD) spectra were recorded for understanding the difference in titer and sensitivity obtained. Results revealed that AFB1O-BSA/AFB1O-OVA showed a strong intrinsic fluorescence band centered at 450 nm that originated from the emission of AFB1, which differed from AFB1-cBSA/AFB1-cOVA, while the decrease of α-helical and increase of β-sheet in AFB1-cBSA was the most remarkable. This indicated that the better sensitivity obtained by using AFB1O-BSA as coating antigen might be caused by its extended structure, because such structure affect the binding between AFB1 and antibody. The study might offer structural information for understanding the titer and sensitivity difference caused by coating antigen.
Perturbation Selection and Local Influence Analysis for Nonlinear Structural Equation Model
ERIC Educational Resources Information Center
Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum
2009-01-01
Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…
Sensitivity Analysis of Multiple Informant Models When Data Are Not Missing at Random
ERIC Educational Resources Information Center
Blozis, Shelley A.; Ge, Xiaojia; Xu, Shu; Natsuaki, Misaki N.; Shaw, Daniel S.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Leve, Leslie D.; Reiss, David
2013-01-01
Missing data are common in studies that rely on multiple informant data to evaluate relationships among variables for distinguishable individuals clustered within groups. Estimation of structural equation models using raw data allows for incomplete data, and so all groups can be retained for analysis even if only 1 member of a group contributes…
Ellipsoidal analysis of coordination polyhedra
Cumby, James; Attfield, J. Paul
2017-01-01
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146
Maintaining gender sensitivity in the family practice: facilitators and barriers.
Celik, Halime; Lagro-Janssen, Toine; Klinge, Ineke; van der Weijden, Trudy; Widdershoven, Guy
2009-12-01
This study aims to identify the facilitators and barriers perceived by General Practitioners (GPs) to maintain a gender perspective in family practice. Nine semi-structured interviews were conducted among nine pairs of GPs. The data were analysed by means of deductive content analysis using theory-based methods to generate facilitators and barriers to gender sensitivity. Gender sensitivity in family practice can be influenced by several factors which ultimately determine the extent to which a gender sensitive approach is satisfactorily practiced by GPs in the doctor-patient relationship. Gender awareness, repetition and reminders, motivation triggers and professional guidelines were found to facilitate gender sensitivity. On the other hand, lacking skills and routines, scepticism, heavy workload and the timing of implementation were found to be barriers to gender sensitivity. While the potential effect of each factor affecting gender sensitivity in family practice has been elucidated, the effects of the interplay between these factors still need to be determined.
ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature
NASA Astrophysics Data System (ADS)
Zhou, Xinbang; Gong, Zhenfeng
2018-03-01
In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus
2017-07-01
Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can quantify the remnant anisotropy of structures not captured by the mean intercept length analysis. If applied to porous tissue and microstructures, this improved structure characterization can yield new insights into the relationships between geometry and material properties. © 2017 American Association of Physicists in Medicine.
The ZH ratio Analysis of Global Seismic Data
NASA Astrophysics Data System (ADS)
Yano, T.; Shikato, S.; Rivera, L.; Tanimoto, T.
2007-12-01
The ZH ratio, the ratio of vertical to horizontal component of the fundamental Rayleigh wave as a function of frequency, is an alternative approach to phase/group velocity analysis for constructing the S-wave velocity structure. In this study, teleseismic Rayleigh wave data for the frequency range between 0.004Hz to 0.04Hz is used to investigate the interior structure. We have analyzed most of the GEOSCOPE network data and some IRIS GSN stations using a technique developed by Tanimoto and Rivera (2007). Stable estimates of the ZH ratios were obtained for the frequency range for most stations. We have performed the inversion of the measured ZH ratios for the structure in the crust and mantle by using nonlinear iterative scheme. The depth sensitivity kernels for inversion are numerically calculated. Depth sensitivity of the lowest frequency extends to depths beyond 500 km but the sensitivity of the overall data for the frequency band extends down to about 300km. We found that an appropriate selection of an initial model, particularly the depth of Mohorovicic discontinuity, is important for this inversion. The inversion result depends on the initial model and turned out to be non-unique. We have constructed the initial model from the CRUST 2.0. Inversion with equal weighting to each data point tends to reduce variance of certain frequency range only. Therefore, we have developed a scheme to increase weighting to data points that do not fit well after the fifth iteration. This occurs more often for low frequency range, 0.004-0.007Hz. After fitting the lower frequency region, the low velocity zone around a depth of 100km is observed under some stations such as KIP (Kipapa, Hawaii) and ATD (Arta Cave, Djibouti). We have also carried out an analysis on the resolving power of data by examining the eigenvalues-eigenvectors of the least-squares problem. Unfortunately, the normal matrix usually has 1-2 very large eigenvalues, followed by much smaller eigenvalues. The third one is often an order of magnitude smaller. The largest eigenvalue is always dominated by an eigenfunction that has the peak at the surface. It indicates that the ZH ratio is sensitive to shallow structure but it has limited form in resolving power for underlying structure. We will report on the details on the resolving capabilities of the ZH ratios.
Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki
2015-01-01
In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034
NASA Astrophysics Data System (ADS)
Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.
2015-10-01
Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
NASA Astrophysics Data System (ADS)
Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.
2014-12-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.
Sensitivity and specificity of eustachian tube function tests in adults.
Doyle, William J; Swarts, J Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M
2013-07-01
The study demonstrates the utility of eustachian tube (ET) function (ETF) test results for accurately assigning ears to disease state. To determine if ETF tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and to define the interrelatedness of ETF test parameters. Through use of the forced-response, inflation-deflation, Valsalva, and sniffing tests, ETF was evaluated in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). Data were analyzed using logistic regression including each parameter independently and then a step-down discriminant analysis including all ETF test parameters to predict group assignment. Factor analysis operating over all parameters was used to explore relatedness. ETF testing. ETF parameters for the forced response, inflation-deflation, Valsalva, and sniffing tests measured in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). The discriminant analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency, and percentage of positive pressure equilibrated) that together correctly assigned ears to group 2 at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters: the first had negative loadings of the ETF structural parameters; the second had positive loadings of the muscle-assisted ET opening parameters; and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Paul W; Mulder, David W; Artz, Jacob H.
The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas-treatments. Other themesmore » presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.« less
Research and analysis on response characteristics of bracket-line coupling system under wind load
NASA Astrophysics Data System (ADS)
Jiayu, Zhao; Qing, Sun
2018-01-01
In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.
Cross-cultural validation of the moral sensitivity questionnaire-revised Chinese version.
Huang, Fei Fei; Yang, Qing; Zhang, Jie; Zhang, Qing Hua; Khoshnood, Kaveh; Zhang, Jing Ping
2016-11-01
Ethical issues pose challenges for nurses who are increasingly caring for patients in complicated situations. Ethical sensitivity is a prerequisite for nurses to make decisions in the best interest of their patients in daily practice. Currently, there is no tool for assessing ethical sensitivity in Chinese language, and no empirical studies of ethical sensitivity among Chinese nurses. The study was conducted to translate the Moral Sensitivity Questionnaire-Revised Version (MSQ-R) into Chinese and establish the psychometric properties of the Moral Sensitivity Questionnaire-Revised Version into Chinese (MSQ-R-CV). This research was a methodological and descriptive study. MSQ-R was translated into Chinese using Brislin's model, and the Translation Validity Index was evaluated. MSQ-R-CV was then distributed along with a demographic questionnaire to 360 nurses working at tertiary and municipal hospitals in Changsha, China. This study was approved by the Institutional Review Boards of Yale University and Central South University. MSQ-R-CV achieved Cronbach's alpha 0.82, Spearman-Brown coefficient 0.75, significant item discrimination (p < 0.001), and item-total correlation values ranging from 0.524 to 0.717. A two-factor structure was illustrated by exploratory factor analysis, and further confirmed by confirmatory factor analysis. Chinese nurses had a mean total score of 40.22 ± 7.08 on the MSQ-R-CV, and sub-scores of 23.85 ± 4.4 for moral responsibility and strength and 16.37 ± 3.75 for sense of moral burden. The findings of this study were compared with studies from other countries to examine the structure and meaningful implications of ethical sensitivity in Chinese nurses. The two-factor MSQ-R-CV (moral responsibility and strength, and sense of moral burden) is a linguistically and culturally appropriate instrument for assessing ethical sensitivity among Chinese nurses. © The Author(s) 2015.
Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.
Wu, Yue; Nan, Bo; Chen, Liang
2014-01-01
3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.
Research on the control of large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1983-01-01
The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.
Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W
2018-06-01
Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.
Structure and work process in primary care and hospitalizations for sensitive conditions
Araujo, Waleska Regina Machado; Queiroz, Rejane Christine de Sousa; Rocha, Thiago Augusto Hernandes; da Silva, Núbia Cristina; Thumé, Elaine; Tomasi, Elaine; Facchini, Luiz Augusto; Thomaz, Erika Barbara Abreu Fonseca
2017-01-01
ABSTRACT OBJECTIVE The objective of this study is to investigate whether the characteristics of the structure of primary health units and the work process of primary care teams are associated with the number of hospitalizations for primary care sensitive conditions. METHODS In this ecological study, we have analyzed data of Brazilian municipalities related to sociodemographic characteristics, coverage of care programs, structure of primary health units, and work process of primary care teams. We have obtained the data from the first cycle of the Brazilian Program for Improving Access and Quality of the Primary Care, of the Department of Information Technology of the Brazilian Unified Health System, the Brazilian Institute of Geography and Statistics, and the United Nations Development Programme. The associations have been estimated using negative binomial regression coefficients (β) and respective 95% confidence intervals, with a hierarchical approach in three levels (alpha = 5%). RESULTS In the adjusted analysis for the outcome in 2013, in the distal level, the coverage of the Bolsa Família Program (β = -0.001) and private insurance (β = -0.01) had a negative association, and the human development index (β = 1.13), the proportion of older adults (β = 0.05) and children under the age of five (β = 0.05), and the coverage of the Community Health Agent Strategy (β = 0.002) showed positive association with hospitalizations for primary care sensitive conditions. In the intermediate level, minimum hours (β = -0.14) and availability of vaccines (β = -0.16) showed a negative association, and availability of medications showed a positive association (β = 0.16). In the proximal level, only the variable of matrix support (β = 0.10) showed a positive association. The variables in the adjusted analysis of the number of hospitalizations for primary care sensitive conditions in 2014 presented the same association as in 2013. CONCLUSIONS The characteristics of the structure of primary health units and the work process of the primary care teams impact the number of hospitalizations for primary care sensitive conditions in Brazilian municipalities. PMID:28832757
Sensitivity analysis of reactive ecological dynamics.
Verdy, Ariane; Caswell, Hal
2008-08-01
Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.
Distillation tray structural parameter study: Phase 1
NASA Technical Reports Server (NTRS)
Winter, J. Ronald
1991-01-01
The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.
NASA Technical Reports Server (NTRS)
Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.
1999-01-01
An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.
Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan
2017-03-22
Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.
Python package for model STructure ANalysis (pySTAN)
NASA Astrophysics Data System (ADS)
Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet
2013-04-01
The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.
Structural, Functional, and Genetic Analysis of Sorangicin Inhibition of Bacterial RNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell,E.; Pavlova, O.; Zenkin, N.
2005-01-01
A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP {beta} subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive tomore » mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.« less
Optimization of Aerospace Structure Subject to Damage Tolerance Criteria
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.
1999-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
Evaluating the quality of NMR structures by local density of protons.
Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert
2006-03-01
Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.
Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.
2016-12-01
The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.
Li, Ping-Yi; Chen, Xiu-Lan; Ji, Peng; Li, Chun-Yang; Wang, Peng; Zhang, Yi; Xie, Bin-Bin; Qin, Qi-Long; Su, Hai-Nan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Zhang, Xi-Ying
2015-01-01
Microbial hormone-sensitive lipases (HSLs) contain a CAP domain and a catalytic domain. However, it remains unclear how the CAP domain interacts with the catalytic domain to maintain the stability of microbial HSLs. Here, we isolated an HSL esterase, E40, from a marine sedimental metagenomic library. E40 exhibited the maximal activity at 45 °C and was quite thermolabile, with a half-life of only 2 min at 40 °C, which may be an adaptation of E40 to the permanently cold sediment environment. The structure of E40 was solved to study its thermolability. Structural analysis showed that E40 lacks the interdomain hydrophobic interactions between loop 1 of the CAP domain and α7 of the catalytic domain compared with its thermostable homologs. Mutational analysis showed that the introduction of hydrophobic residues Trp202 and Phe203 in α7 significantly improved E40 stability and that a further introduction of hydrophobic residues in loop 1 made E40 more thermostable because of the formation of interdomain hydrophobic interactions. Altogether, the results indicate that the absence of interdomain hydrophobic interactions between loop 1 and α7 leads to the thermolability of E40. In addition, a comparative analysis of the structures of E40 and other thermolabile and thermostable HSLs suggests that the interdomain hydrophobic interactions between loop 1 and α7 are a key element for the thermostability of microbial HSLs. Therefore, this study not only illustrates the structural element leading to the thermolability of E40 but also reveals a structural determinant for HSL thermostability. PMID:25771540
NASA Astrophysics Data System (ADS)
Barton, E.; Middleton, C.; Koo, K.; Crocker, L.; Brownjohn, J.
2011-07-01
This paper presents the results from collaboration between the National Physical Laboratory (NPL) and the University of Sheffield on an ongoing research project at NPL. A 50 year old reinforced concrete footbridge has been converted to a full scale structural health monitoring (SHM) demonstrator. The structure is monitored using a variety of techniques; however, interrelating results and converting data to knowledge are not possible without a reliable numerical model. During the first stage of the project, the work concentrated on static loading and an FE model of the undamaged bridge was created, and updated, under specified static loading and temperature conditions. This model was found to accurately represent the response under static loading and it was used to identify locations for sensor installation. The next stage involves the evaluation of repair/strengthening patches under both static and dynamic loading. Therefore, before deliberately introducing significant damage, the first set of dynamic tests was conducted and modal properties were estimated. The measured modal properties did not match the modal analysis from the statically updated FE model; it was clear that the existing model required updating. This paper introduces the results of the dynamic testing and model updating. It is shown that the structure exhibits large non-linear, amplitude dependant characteristics. This creates a difficult updating process, but we attempt to produce the best linear representation of the structure. A sensitivity analysis is performed to determine the most sensitive locations for planned damage/repair scenarios and is used to decide whether additional sensors will be necessary.
Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting
2016-01-01
ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181
NASA Astrophysics Data System (ADS)
Sun, Yi; Cai, Haoyuan; Wang, Xiaoping
2017-12-01
A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.
Operational Modal Analysis of the Cablestayed Footbridge
NASA Astrophysics Data System (ADS)
Kortiš, Ján; Daniel, Ľuboš; Farbák, Matúš; Maliar, Lukáš; Škarupa, Milan
2017-12-01
Modern architecture leads to design subtle bridge structures that are more sensitive to increased dynamic loading than the massive ones. This phenomenon can be especially observed on lightweight steel structures such as suspended footbridges. As a result, it is necessary to know precisely its dynamic characteristics, such as natural frequencies, natural shapes and damping of construction. This information can be used for further analysis such as damage detection, system identification, health monitoring, etc. or also for the design of new types of construction. For this purpose, classical modal analysis using trigger load or harmonic vibration exciter in combination with acceleration sensors is used in practice. However, there are many situations where it is not possible to stop the traffic or operation of the bridge. The article presents an experimental measurement of the dynamic parameters of the structure at the operating load using the operational modal analysis.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.
2004-01-01
The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.
Rotation sensitivity analysis of a two-dimensional array of coupled resonators
NASA Astrophysics Data System (ADS)
Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.
2015-03-01
In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.
NMR in the SPINE Structural Proteomics project.
Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R
2006-10-01
This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
A Model for Analyzing Disability Policy
ERIC Educational Resources Information Center
Turnbull, Rud; Stowe, Matthew J.
2017-01-01
This article describes a 12-step model that can be used for policy analysis. The model encompasses policy development, implementation, and evaluation; takes into account structural foundations of policy; addresses both legal formalism and legal realism; demonstrates contextual sensitivity; and addresses application issues and different…
GC/HRSIR as a Complementary Technique to GC/ECNIMS
Gas chromatography/electron capture negative ion mass spectrometry (GC/ECNIMS) is a highly selective and sensitive technique for the analysis of appropriate analytes in complex matrices. Its major drawback is often the lack of fragmentation indicative of structure that can be use...
Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.
Jackson, Howard F; Tunstall, Victoria; Hague, Gemma; Daniels, Leanne; Crompton, Stacey; Taplin, Kimberly
2014-01-01
Jackson et al. (this edition) argue that structure is an important component in reducing the handicaps caused by cognitive impairments following acquired brain injury and that post-acute neuropsychological brain injury rehabilitation programmes should not only endeavour to provide structure but also aim to develop self-structuring. However, at present there is no standardized device for assessing self-structuring. To provide preliminary analysis of the psychometric properties of the Behavioural Assessment of Self-Structuring (BASS) staff rating scale (a 26 item informant five point rating scale based on the degree of support client requires to achieve self-structuring item). BASS data was utilised for clients attending residential rehabilitation. Reliability (inter-rarer and intra-rater), validity (construct, concurrent and discriminate) and sensitivity to change were investigated. Initial results indicate that the BASS has reasonably good reliability, good construct validity (via principal components analysis), good discriminant validity, and good concurrent validity correlating well with a number of other outcome measures (HoNOS; NPDS, Supervision Rating Scale, MPAI, FIM and FAM). The BASS did not correlate well with the NPCNA. Finally, the BASS was shown to demonstrate sensitivity to change. Although some caution is required in drawing firm conclusions at the present time and further exploration of the psychometric properties of the BASS is required, initial results are encouraging for the use of the BASS in assessing rehabilitation progress. These findings are discussed in terms of the value of the concept of self-structuring to the rehabilitation process for individuals with neuropsychological impairments consequent on acquired brain injury.
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ACOSS Eight (Active Control of Space Structures), Phase 2
1981-09-01
A-2 A-2 Nominal Model - Equipment Section and Solar Panels ....... A-3 A-3 Nominal Model - Upper Support .-uss ...... ............ A-4 A...sensitivity analysis technique ef selecting critical system parameters is applied tc the Diaper tetrahedral truss structure (See Section 4-2...and solar panels are omitted. The precision section is mounted on isolators to inertially r•" I fixed rigid support. The mode frequencies of this
NASA Astrophysics Data System (ADS)
Sakata, Kenichi
Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
NASA Astrophysics Data System (ADS)
Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.
2015-05-01
Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.
Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan
2016-11-15
In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells.
Park, Yesle; Lee, Jung Woo; Ha, Su-Jin; Moon, Jun Hyuk
2014-03-21
The effectiveness of the 1D nanorod (NR)-planted 3D inverse opal (IO) structure as an electrode for dye-sensitized solar cells (DSSCs) is demonstrated here. The NRs were grown on the surface of a macroporous IO structure and their longitudinal growth increased the surface area of the structure proportional to the growth duration. NR/IO electrodes with various NR growth times were compared. A remarkable JSC was obtained for the DSSCs utilizing a NR/IO electrode. The improvement of the JSC was analyzed in terms of its efficiency in light harvesting and electron transport. The growth of the NRs improved the dye adsorption density and scattering property of the electrode, resulting in an improvement in the light harvesting efficiency. Electrochemical impedance analysis revealed that the NRs also improved its electron transport properties. Further growth of the NRs tended to limit the increase of the JSC, which could be attributed to an overlap between them.
Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography.
Govyadinov, Alexander A; Mastel, Stefan; Golmar, Federico; Chuvilin, Andrey; Carney, P Scott; Hillenbrand, Rainer
2014-07-22
The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.
Byron, Meg; Hall, Lisa L; Lawrence, Jeanne B
2013-01-01
Fluorescence in situ hybridization (FISH) is not a singular technique, but a battery of powerful and versatile tools for examining the distribution of endogenous genes and RNAs in precise context with each other and in relation to specific proteins or cell structures. This unit offers the details of highly sensitive and successful protocols that were initially developed largely in our lab and honed over a number of years. Our emphasis is on analysis of nuclear RNAs and DNA to address specific biological questions about nuclear structure, pre-mRNA metabolism, or the role of noncoding RNAs; however, cytoplasmic RNA detection is also discussed. Multifaceted molecular cytological approaches bring precise resolution and sensitive multicolor detection to illuminate the organization and functional roles of endogenous genes and their RNAs within the native structure of fixed cells. Solutions to several common technical pitfalls are discussed, as are cautions regarding the judicious use of digital imaging and the rigors of analyzing and interpreting complex molecular cytological results.
Liu, Hao; Liu, Haodong; Lapidus, Saul H.; ...
2017-06-21
Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Liu, Haodong; Lapidus, Saul H.
Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less
VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids
NASA Astrophysics Data System (ADS)
Svensson, T.; Andersson, M.; Rippe, L.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S.
2008-02-01
We present a minimalistic and flexible single-beam instrumentation based on sensitive tunable diode laser absorption spectroscopy (TDLAS) and its use in structural analysis of highly scattering pharmaceutical solids. By utilising a vertical cavity surface emitting laser (VCSEL) for sensing of molecular oxygen dispersed in tablets, we address structural properties such as porosity. Experiments involve working with unknown path lengths, severe backscattering and diffuse light. These unusual experimental conditions has led to the use of the term gas in scattering media absorption spectroscopy (GASMAS). By employing fully digital wavelength modulation spectroscopy and coherent sampling, system sensitivity in ambient air experiments reaches the 10-7 range. Oxygen absorption exhibited by our tablets, being influenced by both sample porosity and scattering, was in the range 8×10-5 to 2×10-3, and corresponds to 2-50 mm of path length through ambient air (Leq). The day-to-day reproducibility was on average 1.8% (0.3 mm Leq), being limited by mechanical positioning. This is the first time sub-millimetre sensitivity is reached in GASMAS. We also demonstrate measurements on gas transport on a 1-s time scale. By employing pulsed illumination and time-correlated single-photon counting, we reveal that GASMAS exhibits excellent correlation with time-domain photon migration. In addition, we introduce an optical measure of porosity by relating oxygen absorption to average photon time-of-flight. Finally, the simplicity, robustness and low cost of this novel TDLAS instrumentation provide industrial potential.
Nanostructured ZnO - its challenging properties and potential for device applications
NASA Astrophysics Data System (ADS)
Dimova-Malinovska, D.
2017-01-01
Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.
Size-exclusive Nanosensor for Quantitative Analysis of Fullerene C60: A Concept Paper
This paper presents the first development of a mass-sensitive nanosensor for the isolation and quantitative analyses of engineered fullerene (C60) nanoparticles, while excluding mixtures of structurally similar fullerenes. Amino-modified beta cyclodextrin (β-CD-NH
Culture-Sensitive Functional Analytic Psychotherapy
ERIC Educational Resources Information Center
Vandenberghe, L.
2008-01-01
Functional analytic psychotherapy (FAP) is defined as behavior-analytically conceptualized talk therapy. In contrast to the technique-oriented educational format of cognitive behavior therapy and the use of structural mediational models, FAP depends on the functional analysis of the moment-to-moment stream of interactions between client and…
Security aspects of space operations data
NASA Technical Reports Server (NTRS)
Schmitz, Stefan
1993-01-01
This paper deals with data security. It identifies security threats to European Space Agency's (ESA) In Orbit Infrastructure Ground Segment (IOI GS) and proposes a method of dealing with its complex data structures from the security point of view. It is part of the 'Analysis of Failure Modes, Effects Hazards and Risks of the IOI GS for Operations, including Backup Facilities and Functions' carried out on behalf of the European Space Operations Center (ESOC). The security part of this analysis has been prepared with the following aspects in mind: ESA's large decentralized ground facilities for operations, the multiple organizations/users involved in the operations and the developments of ground data systems, and the large heterogeneous network structure enabling access to (sensitive) data which does involve crossing organizational boundaries. An IOI GS data objects classification is introduced to determine the extent of the necessary protection mechanisms. The proposal of security countermeasures is oriented towards the European 'Information Technology Security Evaluation Criteria (ITSEC)' whose hierarchically organized requirements can be directly mapped to the security sensitivity classification.
Introduction and application of the multiscale coefficient of variation analysis.
Abney, Drew H; Kello, Christopher T; Balasubramaniam, Ramesh
2017-10-01
Quantifying how patterns of behavior relate across multiple levels of measurement typically requires long time series for reliable parameter estimation. We describe a novel analysis that estimates patterns of variability across multiple scales of analysis suitable for time series of short duration. The multiscale coefficient of variation (MSCV) measures the distance between local coefficient of variation estimates within particular time windows and the overall coefficient of variation across all time samples. We first describe the MSCV analysis and provide an example analytical protocol with corresponding MATLAB implementation and code. Next, we present a simulation study testing the new analysis using time series generated by ARFIMA models that span white noise, short-term and long-term correlations. The MSCV analysis was observed to be sensitive to specific parameters of ARFIMA models varying in the type of temporal structure and time series length. We then apply the MSCV analysis to short time series of speech phrases and musical themes to show commonalities in multiscale structure. The simulation and application studies provide evidence that the MSCV analysis can discriminate between time series varying in multiscale structure and length.
Zhang, T; Gordon, H R
1997-04-20
We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.
van Bilsen, Jolanda H M; Sienkiewicz-Szłapka, Edyta; Lozano-Ojalvo, Daniel; Willemsen, Linette E M; Antunes, Celia M; Molina, Elena; Smit, Joost J; Wróblewska, Barbara; Wichers, Harry J; Knol, Edward F; Ladics, Gregory S; Pieters, Raymond H H; Denery-Papini, Sandra; Vissers, Yvonne M; Bavaro, Simona L; Larré, Colette; Verhoeckx, Kitty C M; Roggen, Erwin L
2017-01-01
The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Caliendo, Cinzia; Hamidullah, Muhammad
2016-01-01
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419
Dsouza, Roshan; Won, Jungeun; Monroy, Guillermo L; Hill, Malcolm C; Porter, Ryan G; Novak, Michael A; Boppart, Stephen A
2018-06-08
Otitis media (OM) is a common ear infection and a leading cause of conductive hearing loss in the pediatric population. Current technologies such as otoscopy, pneumatic otoscopy, tympanometry, and acoustic reflectometry are used to diagnose OM, which can reasonably diagnose the infection with a sensitivity and specificity of 50-90% and 60-90%, respectively. However, these techniques provide limited information about the physical architecture of the tympanic membrane (TM), or what may lie behind it. Here, we report the detection of nanometer-scale structural changes of the TM using nano-sensitive optical coherence tomography (nsOCT). In total, an image dataset from 65 pediatric subjects from three different groups (normal, acute OM, and chronic OM) and with longitudinal image-based analysis of ear infections were included in this study. The nsOCT data were correlated with physician diagnosis and with OCT thickness measurements and were found to be in good agreement with these results. We report that nsOCT detects in vivo structural deformations of the TM earlier than OCT alone, and enhances the detection sensitivity of OCT measurements. This unique technique for early detection of nano-scale structural modifications in the TM has the potential to aid in our understanding of microbiological effects, and possibly for early diagnosis and more effective treatment of OM.
Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads
NASA Technical Reports Server (NTRS)
Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)
2002-01-01
Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.
X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region
NASA Astrophysics Data System (ADS)
Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben
2009-10-01
Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.
The Best of Two Worlds: ALMA + IRAM30M Observations of the Orion Integral Shape Filament
NASA Astrophysics Data System (ADS)
Hacar Gonzalez, Alvaro
2018-01-01
We have investigated the internal gas structure of the Orion Integral Shape filament using two large-scale, 150-pointing ALMA-12m mosaics and previous IRAM30m single-dish (SD) observations. From the combination of both single-dish and interferometric data we have produced a high-dynamic range and high-sensitivity map describing the internal gas structure of this filament at scales between 2 pc and 2000 AU (Hacar et al, submitted to A&A). In a series of individual CASA reductions (w/o SD data + w/o feathering), we have investigated the impact of the different uv-coverages on both the total flux and line velocity structure of our ALMA maps. Our analysis highlights the critical role played by the zero-spacing data at the different stages of the cleaning process. The results of these ALMA+IRAM30m experiments emphasize the need of high-sensitivity SD observations for the analysis of large-scale interferometric maps. During my talk, I will discuss the implications of these experiments on the dawn of the ALMA era and in the context of the new AtLAST telescope.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
Biological Diversity Research: An Analysis
James W. McMinn
1991-01-01
An appropriate yardstick for a biodiversity program is how it affects the persistence of viable populations. A coordinated program of biodiversity research could be structured under three overlapping subject areas: (1) threatened, endangered, and sensitive species; (2) restoration of missing, underrepresented, or declining communities; and (3) general principles and...
Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing
2014-01-01
Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
NASA Astrophysics Data System (ADS)
Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei
2011-12-01
Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.
Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions
NASA Astrophysics Data System (ADS)
Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard
2017-12-01
Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).
Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.
2008-01-01
This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.
Cascaded Amplitude Modulations in Sound Texture Perception
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191
Cascaded Amplitude Modulations in Sound Texture Perception.
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
Kurian, Mary; Korff, Christian M; Ranza, Emmanuelle; Bernasconi, Andrea; Lübbig, Anja; Nangia, Srishti; Ramelli, Gian Paolo; Wohlrab, Gabriele; Nordli, Douglas R; Bast, Thomas
2018-01-01
In this case report we assess the occurrence of cortical malformations in children with early infantile epilepsy associated with variants of the gene protocadherin 19 (PCDH19). We describe the clinical course, and electrographic, imaging, genetic, and neuropathological features in a cohort of female children with pharmacoresistant epilepsy. All five children (mean age 10y) had an early onset of epilepsy during infancy and a predominance of fever sensitive seizures occurring in clusters. Cognitive impairment was noted in four out of five patients. Radiological evidence of cortical malformations was present in all cases and, in two patients, validated by histology. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification analysis of PCDH19 revealed pathogenic variants in four patients. In one patient, array comparative genomic hybridization showed a microdeletion encompassing PCDH19. We propose molecular testing and analysis of PCDH19 in patients with pharmacoresistant epilepsy, with onset in early infancy, seizures in clusters, and fever sensitivity. Structural lesions are to be searched in patients with PCDH19 pathogenic variants. Further, PCDH19 analysis should be considered in epilepsy surgery evaluation even in the presence of cerebral structural lesions. Focal cortical malformations and monogenic epilepsy syndromes may coexist. Structural lesions are to be searched for in patients with protocadherin 19 (PCDH19) pathogenic variants with refractory focal seizures. © 2017 Mac Keith Press.
NASA Astrophysics Data System (ADS)
Bolam, S. G.; Coggan, R. C.; Eggleton, J.; Diesing, M.; Stephens, D.
2014-01-01
Demersal trawling constitutes the most significant human impact on both the structure and functioning of coastal seabed fauna. While a number of studies have assessed the impacts of trawling on faunal community structure and the degree to which different taxa are vulnerable to trawling, few have focused on how these impacts affect important ecological functions of the seabed. In this study, we use biological trait analysis (BTA) to assess the relative sensitivity of benthic macrofauna to trawling, in both the short- and long-term, and use this information to describe the spatial variation in sensitivity of secondary production for the Greater North Sea (GNS). Within the GNS, estimates of total production varied by almost three orders of magnitude, from 1.66 kJ m- 2 y- 1 to 968.9 kJ m- 2 y- 1. Large-scale patterns were observed in the proportion of secondary production derived from trawling-sensitive taxa. In the southern North Sea, total production is predominantly governed by taxa with low sensitivity to trawling, whereas production is relatively trawling-sensitive in the northern North Sea and western English Channel. In general, the more sensitive and productive regions are associated with poorly-sorted, gravelly or muddy sediments, while the less sensitive and less productive regions are associated with well-sorted, sandy substrates. These relationships between production sensitivity and environmental features are primarily due to variations in long-term recovery; total production of most assemblages is highly sensitive to the direct impacts of trawling. We discuss the implications of these findings for management 1decisions to improve the environmental sustainability of trawling.
Oh, Woon Yong; Lee, Ji Woong; Lee, Chong Eon; Ko, Moon Seok; Jeong, Jae Hong
2009-12-01
In this study, a structured survey questionnaire was used to determine consumers' preferences and behavior with regard to horse meat at a horse meat restaurant located in Jeju, Korea, from October 1 to December 24, 2005. The questionnaire employed in this study consisted of 20 questions designed to characterize six general attributes: horse meat sensory property, physical appearance, health condition, origin, price, and other attributes. Of the 1370 questionnaires distributed, 1126 completed questionnaires were retained based on the completeness of the answers, representing an 82.2% response rate. Two issues were investigated that might facilitate the search for ways to improve horse meat production and marketing programs in Korea. The first step was to determine certain important factors, called principal components, which enabled the researchers to understand the needs of horse meat consumers via principal component analysis. The second step was to define consumer segments with regard to their preferences for horse meat, which was accomplished via cluster analysis. The results of the current study showed that health condition, price, origin, and leanness were the most critical physical attributes affecting the preferences of horse meat consumers. Four segments of consumers, with different demands for horse meat attributes, were identified: origin-sensitive consumers, price-sensitive consumers, quality and safety-sensitive consumers, and non-specific consumers. Significant differences existed among segments of consumers in terms of age, nature of work, frequency of consumption, and general level of acceptability of horse meat.
Erguler, Kamil; Stumpf, Michael P H
2011-05-01
The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.
The structure of paranoia in the general population.
Bebbington, Paul E; McBride, Orla; Steel, Craig; Kuipers, Elizabeth; Radovanovic, Mirjana; Brugha, Traolach; Jenkins, Rachel; Meltzer, Howard I; Freeman, Daniel
2013-06-01
Psychotic phenomena appear to form a continuum with normal experience and beliefs, and may build on common emotional interpersonal concerns. We tested predictions that paranoid ideation is exponentially distributed and hierarchically arranged in the general population, and that persecutory ideas build on more common cognitions of mistrust, interpersonal sensitivity and ideas of reference. Items were chosen from the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II) questionnaire and the Psychosis Screening Questionnaire in the second British National Survey of Psychiatric Morbidity (n = 8580), to test a putative hierarchy of paranoid development using confirmatory factor analysis, latent class analysis and factor mixture modelling analysis. Different types of paranoid ideation ranged in frequency from less than 2% to nearly 30%. Total scores on these items followed an almost perfect exponential distribution (r = 0.99). Our four a priori first-order factors were corroborated (interpersonal sensitivity; mistrust; ideas of reference; ideas of persecution). These mapped onto four classes of individual respondents: a rare, severe, persecutory class with high endorsement of all item factors, including persecutory ideation; a quasi-normal class with infrequent endorsement of interpersonal sensitivity, mistrust and ideas of reference, and no ideas of persecution; and two intermediate classes, characterised respectively by relatively high endorsement of items relating to mistrust and to ideas of reference. The paranoia continuum has implications for the aetiology, mechanisms and treatment of psychotic disorders, while confirming the lack of a clear distinction from normal experiences and processes.
Vibro-acoustic analysis of composite plates
NASA Astrophysics Data System (ADS)
Sarigül, A. S.; Karagözlü, E.
2014-03-01
Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.
NASA Technical Reports Server (NTRS)
Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.
2015-01-01
A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.
Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D
2014-12-15
The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890 cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3) Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.
Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay
NASA Astrophysics Data System (ADS)
Serebrennikova, Kseniya; Samsonova, Jeanne; Osipov, Alexander
2018-06-01
Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection
Chopard, Tony; Lacour, Vivien; Leblois, Therese
2014-01-01
This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375
Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju
2018-01-10
With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.
Kumar Varma, Chekuri Ashok; Jayaram Kumar, K
2017-11-01
Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn 1/3Nb 2/3O 3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations inmore » the B-site—O separation distances and the fact that (110) Pb 2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less
Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; ...
2014-09-15
Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating amore » gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.« less
Braddick, Oliver; Atkinson, Janette; Akshoomoff, Natacha; Newman, Erik; Curley, Lauren B; Gonzalez, Marybel Robledo; Brown, Timothy; Dale, Anders; Jernigan, Terry
2017-12-01
Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements
NASA Technical Reports Server (NTRS)
Bakalyar, John A.; Jutte, Christine
2012-01-01
Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene
Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, wemore » found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and skin permeability has been found. • Structural rules for optimizing sensitization and penetration were established.« less
Linear stability analysis of scramjet unstart
NASA Astrophysics Data System (ADS)
Jang, Ik; Nichols, Joseph; Moin, Parviz
2015-11-01
We investigate the bifurcation structure of unstart and restart events in a dual-mode scramjet using the Reynolds-averaged Navier-Stokes equations. The scramjet of interest (HyShot II, Laurence et al., AIAA2011-2310) operates at a free-stream Mach number of approximately 8, and the length of the combustor chamber is 300mm. A heat-release model is applied to mimic the combustion process. Pseudo-arclength continuation with Newton-Raphson iteration is used to calculate multiple solution branches. Stability analysis based on linearized dynamics about the solution curves reveals a metric that optimally forewarns unstart. By combining direct and adjoint eigenmodes, structural sensitivity analysis suggests strategies for unstart mitigation, including changing the isolator length. This work is supported by DOE/NNSA and AFOSR.
Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A; Rathbun, Stephen L; Whitman, William B
2016-01-01
K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley's K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing.
Isolation of a Moderately Stable but Sensitive Zwitterionic Diazonium Tetrazolyl-1,2,3-triazolate.
Klapötke, Thomas M; Krumm, Burkhard; Pflüger, Carolin
2016-07-15
An unexpected formation of a diazonium compound was observed by nitration of an amino substituted triazolyl tetrazole with mixed acid. The crystal structure determination revealed a zwitterionic diazonium tetrazolyl-1,2,3-triazolate, whose constitution was supported by NMR and vibrational spectroscopic analysis. The thermal stability and sensitivity toward impact and friction were determined. In contrast, diazotriazoles are rather unstable and are mainly handled in solution and/or low temperatures, which is not the case for this diazonium tetrazolyl-1,2,3-triazolate, being stable at ambient temperature.
Using global sensitivity analysis of demographic models for ecological impact assessment.
Aiello-Lammens, Matthew E; Akçakaya, H Resit
2017-02-01
Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Rohmer, Jeremy
2016-04-01
Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
NASA Astrophysics Data System (ADS)
Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy
2017-12-01
Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.
Automatic differentiation as a tool in engineering design
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois; Hall, Laura E.
1992-01-01
Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. AD is assessed as a tool for engineering design. The forward and reverse modes of AD, their computing requirements, as well as approaches to implementing AD are discussed. The application of two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation is also discussed. The observation is made that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available; in some instances, AD may be the alternative to consider in lieu of analytical sensitivity analysis.
Development and application of an instrument for analysis of bone structure on radiographs.
Xu, S; Liu, S; Bao, K
1997-01-01
An instrument used for quantitative assessment of trabecular structure of radius on radiograph including trabecular number and trabecular width was developed using a microdensitometer and a single-chip microcomputer. The device is characterized by its high sensitivity, good reproducibility, convenience and economy. The results obtained with the instrument were significantly correlated to actual bone mineral content. This device can be used for the diagnosis of osteoporosis, fluorosis, rickets and bone damages caused by cadmium.
A method for detecting structural deterioration in bridges
NASA Technical Reports Server (NTRS)
Cole, H. A., Jr.; Reed, R. E., Jr.
1974-01-01
The problem of detecting deterioration in bridge structures is studied with the use of Randomdec analysis. Randomdec signatures, derived from the ambient bridge vibrations in the acoustic range, were obtained for a girder bridge over a period of a year to show the insensitivity of the signatures to environmental changes. A laboratory study was also conducted to show the sensitivity of signatures to fatigue cracks on the order of a centimeter in length in steel beams.
Automatic detection of lung vessel bifurcation in thoracic CT images
NASA Astrophysics Data System (ADS)
Maduskar, Pragnya; Vikal, Siddharth; Devarakota, Pandu
2011-03-01
Computer-aided diagnosis (CAD) systems for detection of lung nodules have been an active topic of research for last few years. It is desirable that a CAD system should generate very low false positives (FPs) while maintaining high sensitivity. This work aims to reduce the number of false positives occurring at vessel bifurcation point. FPs occur quite frequently on vessel branching point due to its shape which can appear locally spherical due to the intrinsic geometry of intersecting tubular vessel structures combined with partial volume effects and soft tissue attenuation appearance surrounded by parenchyma. We propose a model-based technique for detection of vessel branching points using skeletonization, followed by branch-point analysis. First we perform vessel structure enhancement using a multi-scale Hessian filter to accurately segment tubular structures of various sizes followed by thresholding to get binary vessel structure segmentation [6]. A modified Reebgraph [7] is applied next to extract the critical points of structure and these are joined by a nearest neighbor criterion to obtain complete skeletal model of vessel structure. Finally, the skeletal model is traversed to identify branch points, and extract metrics including individual branch length, number of branches and angle between various branches. Results on 80 sub-volumes consisting of 60 actual vessel-branching and 20 solitary solid nodules show that the algorithm identified correctly vessel branching points for 57 sub-volumes (95% sensitivity) and misclassified 2 nodules as vessel branch. Thus, this technique has potential in explicit identification of vessel branching points for general vessel analysis, and could be useful in false positive reduction in a lung CAD system.
Wang, Xue; Zhao, Kun; Kirberger, Michael; Wong, Hing; Chen, Guantao; Yang, Jenny J
2010-01-01
Calcium binding in proteins exhibits a wide range of polygonal geometries that relate directly to an equally diverse set of biological functions. The binding process stabilizes protein structures and typically results in local conformational change and/or global restructuring of the backbone. Previously, we established the MUG program, which utilized multiple geometries in the Ca2+-binding pockets of holoproteins to identify such pockets, ignoring possible Ca2+-induced conformational change. In this article, we first report our progress in the analysis of Ca2+-induced conformational changes followed by improved prediction of Ca2+-binding sites in the large group of Ca2+-binding proteins that exhibit only localized conformational changes. The MUGSR algorithm was devised to incorporate side chain torsional rotation as a predictor. The output from MUGSR presents groups of residues where each group, typically containing two to five residues, is a potential binding pocket. MUGSR was applied to both X-ray apo structures and NMR holo structures, which did not use calcium distance constraints in structure calculations. Predicted pockets were validated by comparison with homologous holo structures. Defining a “correct hit” as a group of residues containing at least two true ligand residues, the sensitivity was at least 90%; whereas for a “correct hit” defined as a group of residues containing at least three true ligand residues, the sensitivity was at least 78%. These data suggest that Ca2+-binding pockets are at least partially prepositioned to chelate the ion in the apo form of the protein. PMID:20512971
Sensitivity study and parameter optimization of OCD tool for 14nm finFET process
NASA Astrophysics Data System (ADS)
Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping
2016-03-01
Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
NASA Technical Reports Server (NTRS)
Barthelemy, J. F. M.
1983-01-01
A general algorithm is proposed which carries out the design process iteratively, starting at the top of the hierarchy and proceeding downward. Each subproblem is optimized separately for fixed controls from higher level subproblems. An optimum sensitivity analysis is then performed which determines the sensitivity of the subproblem design to changes in higher level subproblem controls. The resulting sensitivity derivatives are used to construct constraints which force the controlling subproblems into chosing their own designs so as to improve the lower levels subproblem designs while satisfying their own constraints. The applicability of the proposed algorithm is demonstrated by devising a four-level hierarchy to perform the simultaneous aerodynamic and structural design of a high-performance sailplane wing for maximum cross-country speed. Finally, the concepts discussed are applied to the two-level minimum weight structural design of the sailplane wing. The numerical experiments show that discontinuities in the sensitivity derivatives may delay convergence, but that the algorithm is robust enough to overcome these discontinuities and produce low-weight feasible designs, regardless of whether the optimization is started from the feasible space or the infeasible one.
NASA Astrophysics Data System (ADS)
Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu
2013-03-01
In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
Wang, Yuqin; Hornshaw, Martin; Alvelius, Gunvor; Bodin, Karl; Liu, Suya; Sjövall, Jan; Griffiths, William J.
2008-01-01
Neutral steroids have traditionally been analysed by gas chromatography – mass spectrometry (GC-MS) after necessary derivatisation reactions. However, GC-MS is unsuitable for the analysis of many conjugated steroids and those with unsuspected functional groups. Here we describe an alternative analytical method specifically designed for the analysis of oxosteroids and those with a 3β-hydroxy-Δ5 or 5α-hydrogen-3β-hydroxy structure. Steroids were derivatised with Girard P (GP) hydrazine to give GP hydrazones which are charged species and readily analysed by matrix-assisted laser desorption/ionization mass spectrometry. The resulting [M]+ ions were then subjected to high-energy collision-induced dissociation on a tandem time-of-flight instrument. The product-ion spectra give structurally informative fragment-ion patterns. The sensitivity of the analytical method is such that steroids structures can be determined from low pg (low fmole) amounts of sample. The utility of the method has been demonstrated by the analysis of oxysterols extracted from rat brain. PMID:16383324
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
An Aeroelastic Analysis of a Thin Flexible Membrane
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.
2007-01-01
Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.
NASA Astrophysics Data System (ADS)
Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.
2013-05-01
Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a distinct Anthropocene fluvial response, and underpin the enormity of the challenge faced in trying to sustainably manage and restore rivers.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.
1997-01-01
A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.
Effect of thermal stresses on frequency band structures of elastic metamaterial plates
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Yang, Linyun; Zhao, Rui; Shi, Xiaotian; Tian, Kuo
2018-01-01
We investigate the effect of thermal stresses on the band structure of elastic metamaterial plates by developing a useful finite-element based method. The thermal field is assumed to be uniform throughout the whole plate. Specifically, we find that the stiffness matrix of plate element is comprised of elastic and thermal stresses parts, which can be regarded as a linear function of temperature difference. We additionally demonstrate that the relative magnitudes between elastic properties and thermal stresses will lead to nonlinear effects on frequency band structures based on two different types of metamaterial plates made of single and double inclusions of square plates, respectively. Then, we validate the proposed approach by comparing the band structures with the frequency response curves obtained in finite periodic structures. We conduct sensitivity analysis and discuss in-depth the sensitivities of band structures with respect to temperature difference to quantitatively investigate the effect of thermal stresses on each band. In addition, the coupled effects of thermal stresses and temperature-dependent material properties on the band structure of Aluminum/silicone rubber plate have also been discussed. The proposed method and new findings in this paper extends the ability of existing metamaterial plates by enabling tunability over a wide range of frequencies in thermal environments.
An orientation analysis method for protein immobilized on quantum dot particles
NASA Astrophysics Data System (ADS)
Aoyagi, Satoka; Inoue, Masae
2009-11-01
The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga +) and a cluster ion source (Au 3+) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga + and Au 3+, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.
Design, analysis, and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Mardesich, N.; Minning, C.
1982-01-01
Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.
Simulation of probabilistic wind loads and building analysis
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Chamis, Christos C.
1991-01-01
Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.
Study of the pH-sensitive mechanism of tumor-targeting liposomes.
Fan, Yang; Chen, Cong; Huang, Yiheng; Zhang, Fang; Lin, Guimei
2017-03-01
Currently, the phosphatidylethanolamine-based, pH-sensitive, liposome drug-delivery system has been widely developed for efficient, targeted cancer therapy. However, the mechanism of pH sensitivity was unclear; it is a main obstacle in controlling the preparation of pH-sensitive liposomes (PSLs).Therefore, our research is aimed at clarifying the pH-response mechanism of the various molecules that compose liposomes. We chose the small pH-sensitive molecules oleic acid (OA), linoleic acid (LA) and cholesteryl hemisuccinate (CHEMS) and the fundamental lipids cholesterol and phosphatidylethanolamine (PE) as test molecules. The PSLs were prepared using the thin-film hydration method and characterized in detail at various pH values (pH 5.0, 6.0 and 7.4), including particle size, ζ-potential, drug encapsulation efficiency and drug loading. The surface structure was observed by transmission electron microscopy (TEM), and the electrical conductivity of the liposome dispersion was also tested. The calorimetric analysis was conducted by Nano-differential scanning calorimetry (Nano-DSC). The in vitro drug release profile showed that PSLs exhibit good pH sensitivity. At neutral pH, the particle size was approximately 150nm, and it dramatically increased at pH 5.0. The ζ-potential increased as the pH decreased. The Nano-DSC results showed that cholesterol and CHEMS can both increase the stability and phase transfer temperature of PSLs. Conductivity increased to a maximum at pH 5.0 and was rather low at pH 7.4. In conclusion, results show that the three kinds of liposomes have pH responsive release characteristics in acidic pH. The OA-PSLs have a pH sensitive point of 5. Since CHEMS has a cholesterol-like structure, it can stabilizes the phospholipid bilayer under neutral conditions as shown in the Nano-DSC data, and because it has a special steroidal rigid structure, it exhibits better pH response characteristics under acidic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanoca, P.; Ramakrishna, H. V.
2018-03-01
This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.
NASA Astrophysics Data System (ADS)
Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi
2016-04-01
In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.
Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit
Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less
Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution
Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit; ...
2018-02-05
Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less
Coupled rotor/airframe vibration analysis
NASA Technical Reports Server (NTRS)
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code
NASA Technical Reports Server (NTRS)
Lemonds, Jeffrey; Kumar, Virendra
1995-01-01
An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.
2016-01-01
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179
Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A
2016-08-24
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.
Sensitivity Enhancement of FBG-Based Strain Sensor.
Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian
2018-05-17
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.
Sensitivity Enhancement of FBG-Based Strain Sensor
Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian
2018-01-01
A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826
Brillouin Optical Correlation Domain Analysis in Composite Material Beams
Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Shalev, Doron; Zadok, Avi
2017-01-01
Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. PMID:28974041
Brillouin Optical Correlation Domain Analysis in Composite Material Beams.
Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi
2017-10-02
Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Ye, Xuan; Li, Xide
2016-08-01
In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.
Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko
2017-07-28
High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.
Dong, Yu-Wei; Fan, Rui-Qing; Wang, Ping; Wei, Li-Guo; Wang, Xin-Ming; Zhang, Hui-Jie; Gao, Song; Yang, Yu-Lin; Wang, Yu-Lei
2015-03-28
Nine IIB group complexes, [ZnL1Cl2] (Zn1), [CdL1Cl2]2 (Cd1), [HgL1Cl2] (Hg1), [ZnL2Cl2] (Zn2), [CdL2Cl2] (Cd2), [HgL2Cl2] (Hg2), [ZnL3Cl2] (Zn3), [CdL3Cl2] (Cd3) and [HgL3Cl2] (Hg3), have been synthesized from the corresponding ortho-(6-methoxy-pyridyl)(CH[double bond, length as m-dash]NAr) (where Ar = 2,6-iPr2C6H3, L1; 4-MeC6H4, L2; 2-OMeC6H4, L3) Schiff base and structurally characterized by elemental analysis, FT-IR, (1)H NMR and X-ray single-crystal analysis. Crystallographic studies reveal that the center metal of the complexes adopts a distorted tetrahedron geometry (except for Cd1 and Cd3, which display square pyramidal geometry) and C-HCl hydrogen bonds and ππ stacking interactions contribute to three-dimensional supramolecular structures. The series of complexes exhibit tunable luminescence from blue, through green, to light yellow by varying the temperature (298 K and 77 K), both in solution and in the solid state. Moreover, the quantum yields range from 0.027 to 0.422, and decrease according to the order of the periodic table (Zn > Cd > Hg). These results indicate that the center atom of the complexes leads to the geometry differences and hence to the tunable luminescence properties. Because Zn1-Zn3 exhibited higher molar extinction coefficients and a distinct absorption region, they were employed as co-sensitizers in ruthenium dye N719-sensitized photoanodes to deliver light-electricity efficiency enhancement, being assembled with counter-electrodes and electrolyte to prepare ZnX/N719 (where ZnX = Zn1, Zn2, and Zn3) co-sensitized dye sensitized solar cell (DSSC) devices. The prepared co-absorbent could overcome the deficiency of N719 absorption in the low-wavelength region of the visible spectrum, and offset competitive visible-light absorption of I3(-). Application of these prepared complexes in N719-sensitized solar cells enhanced their performance by 10-36%, which indicated a potential application of these types of complexes in DSSCs.
NASA Astrophysics Data System (ADS)
Wagener, Thorsten; Pianosi, Francesca
2016-04-01
Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be attributed to variations of its input factors. SA is increasingly being used in earth and environmental modelling for a variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant control analysis and robust decision-making. Here we provide some practical advice regarding best practice in SA and discuss important open questions based on a detailed recent review of the existing body of work in SA. Open questions relate to the consideration of input factor interactions, methods for factor mapping and the formal inclusion of discrete factors in SA (for example for model structure comparison). We will analyse these questions using relevant examples and discuss possible ways forward. We aim at stimulating the discussion within the community of SA developers and users regarding the setting of good practices and on defining priorities for future research.
The Organization of Children's Same-Sex Peer Relationships.
ERIC Educational Resources Information Center
Benenson, Joyce; Apostoleris, Nicholas; Parnass, Jodi
1998-01-01
Uses a sociometric analysis to explore the differential organization of boys' and girls' peer groups. Finds that boys structure their peer groups by creating a large central cluster composed of smaller integrated clusters, whereas girls form small clusters unrelated to one another. Nevertheless, girls are aware of and sensitive to the status of…
Analysis, compensation, and correction of temperature effects on FBG strain sensors
NASA Astrophysics Data System (ADS)
Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis
2013-05-01
One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
Long, Xi; Parks, Joseph W; Stone, Michael D
2016-08-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural design using equilibrium programming formulations
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1995-01-01
Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.
Long, Xi; Parks, Joseph W.; Stone, Michael D.
2017-01-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203
Crystal structure determination and analysis of 11S coconut allergen: Cocosin.
Vajravijayan, S; Nandhagopal, N; Gunasekaran, K
2017-12-01
Allergy is an abnormal immune response against an innocuous target. Food allergy is an adverse reaction caused by common foods most well-known being those involving peanuts. Apart from mono sensitized food allergy, cross-reactivity with other food allergens is also commonly observed. To understand the phenomenon of cross-reactivity related to immune response, three dimensional structures of the allergens and their antigenic epitopes has to be analysed in detail. The X-ray crystal structure of Cocosin, a common 11S food allergen from coconut, has been determined at 2.2Å resolution using molecular replacement technique. The monomer of 52kDa is composed of two β-jelly roll domains, one with acidic and the other with basic character. The structure shows hexameric association with two trimers facing each other. Though the overall structure of Cocosin is similar to other 11S allergens, the occurrence of experimentally determined epitopes of the peanut allergen Ara h 3 at flexible as well as variable regions could be the reason for the clinically reported result of cross-reactivity that the peanut allergic patients are not sensitized with coconut allergen. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of morphological and conventional edge detectors in medical imaging applications
NASA Astrophysics Data System (ADS)
Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.
1991-06-01
Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.
Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.
2011-01-01
Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
Analysis of world terror networks from the reduced Google matrix of Wikipedia
NASA Astrophysics Data System (ADS)
El Zant, Samer; Frahm, Klaus M.; Jaffrès-Runser, Katia; Shepelyansky, Dima L.
2018-01-01
We apply the reduced Google matrix method to analyze interactions between 95 terrorist groups and determine their relationships and influence on 64 world countries. This is done on the basis of the Google matrix of the English Wikipedia (2017) composed of 5 416 537 articles which accumulate a great part of global human knowledge. The reduced Google matrix takes into account the direct and hidden links between a selection of 159 nodes (articles) appearing due to all paths of a random surfer moving over the whole network. As a result we obtain the network structure of terrorist groups and their relations with selected countries including hidden indirect links. Using the sensitivity of PageRank to a weight variation of specific links we determine the geopolitical sensitivity and influence of specific terrorist groups on world countries. The world maps of the sensitivity of various countries to influence of specific terrorist groups are obtained. We argue that this approach can find useful application for more extensive and detailed data bases analysis.
Kemeny, Steven Frank; Clyne, Alisa Morss
2011-04-01
Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.
Kim, Kyung Hoon; Choi, Jaewan; Lee, Chang Hwan; Cho, Beom-Jin; Kook, Michael S.
2008-01-01
Purpose To evaluate the structure-function relationships between retinal sensitivity measured by Humphrey visual field analyzer (HVFA) and the retinal nerve fiber layer (RNFL) thickness measured by scanning laser polarimetry (SLP) with variable corneal compensation (VCC) and enhanced corneal compensation (ECC) in glaucomatous and healthy eyes. Methods Fifty-three eyes with an atypical birefringence pattern (ABP) based on SLP-VCC (28 glaucomatous eyes and 25 normal healthy eyes) were enrolled in this cross-sectional study. RNFL thickness was measured by both VCC and ECC techniques, and the visual field was examined by HVFA with 24-2 full-threshold program. The relationships between RNFL measurements in superior and inferior sectors and corresponding retinal mean sensitivity were sought globally and regionally with linear regression analysis in each group. Coefficients of the determination were calculated and compared between VCC and ECC techniques. Results In eyes with ABP, R2 values for the association between SLP parameters and retinal sensitivity were 0.06-0.16 with VCC, whereas they were 0.21-0.48 with ECC. The association of RNFL thickness with retinal sensitivity was significantly better with ECC than with VCC in 5 out of 8 regression models between SLP parameters and HVF parameters (P<0.05). Conclusions The strength of the structure-function association was higher with ECC than with VCC in eyes with ABP, which suggests that the ECC algorithm is a better approach for evaluating the structure-function relationship in eyes with ABP. PMID:18323701
Ferromagnetic-Insulator-Based Superconducting Junctions as Sensitive Electron Thermometers
NASA Astrophysics Data System (ADS)
Giazotto, F.; Solinas, P.; Braggio, A.; Bergeret, F. S.
2015-10-01
We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal-metal-ferromagnetic-insulator-superconductor junction and explore the possibility of its use as a sensitive thermometer. We investigate the transfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature-noise performance is obtained in the nonlinear temperature regime for a structure based on an Europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve 10 nK Hz-1 /2 , a realistic amplifying chain will reduce the sensitivity up to 10 μ K Hz-1 /2 . To overcome this limitation, we propose a measurement scheme in a closed-circuit configuration based on state-of-the-art superconducting-quantum-interference-device detection technology in an inductive setup. In such a case, we show that temperature-noise can be as low as 35 nK Hz-1 /2 . We also discuss a temperature-to-frequency converter where the obtained thermovoltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to approximately 120 GHz and transfer functions up to 200 GHz /K at around 1 K. If operated as an electron thermometer, the device may provide temperature-noise lower than 35 nK Hz-1 /2 thereby being potentially attractive for radiation-sensing applications.
TASI Lectures on Cosmological Observables and String Theory
NASA Astrophysics Data System (ADS)
Silverstein, Eva
These lectures provide an updated pedagogical treatment of the theoretical structure and phenomenology of some basic mechanisms for inflation, along with an overview of the structure of cosmological uplifts of holographic duality. A full treatment of the problem requires `ultraviolet completion' because of the sensitivity of inflation to quantum gravity effects, including back reaction and non-adiabatic production of heavy degrees of freedom. Cosmological observations imply accelerated expansion of the late universe, and provide increasingly precise constraints and discovery potential on the amplitude and shape of primordial tensor and scalar perturbations, and some of their correlation functions. Most backgrounds of string theory have positive potential energy, with a rich but still highly constrained landscape of solutions. The theory contains novel mechanisms for inflation, some subject to significant observational tests, with highly UV-sensitive tensor mode measurements being a prime example along with certain shapes of primordial correlation functions. Although the detailed ultraviolet completion is not accessible experimentally, some of these mechanisms directly stimulate a more systematic analysis of the space of low energy theories and signatures relevant for analysis of data, which is sensitive to physics orders of magnitude above the energy scale of inflation as a result of long time evolution (dangerous irrelevance) and the substantial amount of data (allowing constraints on quantities with signal/noise. Portions of these lectures appeared previously in Les Houches 2013, "Post-Planck Cosmology".
Walmsley, Christopher W; McCurry, Matthew R; Clausen, Phillip D; McHenry, Colin R
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be 'reasonable' are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
McCurry, Matthew R.; Clausen, Phillip D.; McHenry, Colin R.
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results. PMID:24255817
Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz
2016-01-01
The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692
A Scalable Nonuniform Pointer Analysis for Embedded Program
NASA Technical Reports Server (NTRS)
Venet, Arnaud
2004-01-01
In this paper we present a scalable pointer analysis for embedded applications that is able to distinguish between instances of recursively defined data structures and elements of arrays. The main contribution consists of an efficient yet precise algorithm that can handle multithreaded programs. We first perform an inexpensive flow-sensitive analysis of each function in the program that generates semantic equations describing the effect of the function on the memory graph. These equations bear numerical constraints that describe nonuniform points-to relationships. We then iteratively solve these equations in order to obtain an abstract storage graph that describes the shape of data structures at every point of the program for all possible thread interleavings. We bring experimental evidence that this approach is tractable and precise for real-size embedded applications.
NASA Astrophysics Data System (ADS)
Biset, S.; Nieto Deglioumini, L.; Basualdo, M.; Garcia, V. M.; Serra, M.
The aim of this work is to investigate which would be a good preliminary plantwide control structure for the process of Hydrogen production from bioethanol to be used in a proton exchange membrane (PEM) accounting only steady-state information. The objective is to keep the process under optimal operation point, that is doing energy integration to achieve the maximum efficiency. Ethanol, produced from renewable feedstocks, feeds a fuel processor investigated for steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying steady-state simulation techniques and using thermodynamic models the performance of the complete system with two different control structures have been evaluated for the most typical perturbations. A sensitivity analysis for the key process variables together with the rigorous operability requirements for the fuel cell are taking into account for defining acceptable plantwide control structure. This is the first work showing an alternative control structure applied to this kind of process.
Response Sensitivity of Typical Aircraft Jet Engine Fan Blade-Like Structures to Bird Impacts.
1982-05-01
AIRCRAFT ENGINE BU--ETC F/G 21/5 RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -L...SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -LIKE STRUCTURES TO BIRD IMPACTS David P. Bauer Robert S. Bertke University of Dayton Research...COVERED RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT FINAL REPORT JET ENGINE FAN BLADE -LIKE STRUCTURES Oct. 1977 to Jan. 1979 TO BIRD IMPACTS s.
Estimation of splitting functions from Earth's normal mode spectra using the neighbourhood algorithm
NASA Astrophysics Data System (ADS)
Pachhai, Surya; Tkalčić, Hrvoje; Masters, Guy
2016-01-01
The inverse problem for Earth structure from normal mode data is strongly non-linear and can be inherently non-unique. Traditionally, the inversion is linearized by taking partial derivatives of the complex spectra with respect to the model parameters (i.e. structure coefficients), and solved in an iterative fashion. This method requires that the earthquake source model is known. However, the release of energy in large earthquakes used for the analysis of Earth's normal modes is not simple. A point source approximation is often inadequate, and a more complete account of energy release at the source is required. In addition, many earthquakes are required for the solution to be insensitive to the initial constraints and regularization. In contrast to an iterative approach, the autoregressive linear inversion technique conveniently avoids the need for earthquake source parameters, but it also requires a number of events to achieve full convergence when a single event does not excite all singlets well. To build on previous improvements, we develop a technique to estimate structure coefficients (and consequently, the splitting functions) using a derivative-free parameter search, known as neighbourhood algorithm (NA). We implement an efficient forward method derived using the autoregresssion of receiver strips, and this allows us to search over a multiplicity of structure coefficients in a relatively short time. After demonstrating feasibility of the use of NA in synthetic cases, we apply it to observations of the inner core sensitive mode 13S2. The splitting function of this mode is dominated by spherical harmonic degree 2 axisymmetric structure and is consistent with the results obtained from the autoregressive linear inversion. The sensitivity analysis of multiple events confirms the importance of the Bolivia, 1994 earthquake. When this event is used in the analysis, as little as two events are sufficient to constrain the splitting functions of 13S2 mode. Apart from not requiring the knowledge of earthquake source, the newly developed technique provides an approximate uncertainty measure of the structure coefficients and allows us to control the type of structure solved for, for example to establish if elastic structure is sufficient.
Sensitivity Analysis to Turbulent Combustion Models for Combustor-Turbine Interactions
NASA Astrophysics Data System (ADS)
Miki, Kenji; Moder, Jeff; Liou, Meng-Sing
2017-11-01
The recently-updated Open National CombustionCode (Open NCC) equipped with alarge-eddy simulation (LES) is applied to model the flow field inside the Energy Efficient Engine (EEE) in conjunction with sensitivity analysis to turbulent combustion models. In this study, we consider three different turbulence-combustion interaction models, the Eddy-Breakup model (EBU), the Linear-Eddy Model (LEM) and the Probability Density Function (PDF)model as well as the laminar chemistry model. Acomprehensive comparison of the flow field and the flame structure will be provided. One of our main interests isto understand how a different model predicts thermal variation on the surface of the first stage vane. Considering that these models are often used in combustor/turbine communities, this study should provide some guidelines on numerical modeling of combustor-turbine interactions.
Ebesutani, Chad; Kim, Mirihae; Park, Hee-Hoon
2016-08-01
The present study was the first to examine the applicability of the bifactor structure underlying the Anxiety Sensitivity Index-3 (ASI-3) in an East Asian (South Korean) sample and to determine which factors in the bifactor model were significantly associated with anxiety, depression, and negative affect. Using a sample of 289 South Korean university students, we compared (a) the original 3-factor AS model, (b) a 3-group bifactor AS model, and (c) a 2-group bifactor AS model (with only the physical and social concern group factors present). Results revealed that the 2-group bifactor AS model fit the ASI-3 data the best. Relatedly, although all ASI-3 items loaded on the general AS factor, the Cognitive Concern group factor was not defined in the bifactor model and may therefore need to be omitted in order to accurately model AS when conducting factor analysis and structural equation modeling (SEM) in cross cultural contexts. SEM results also revealed that the general AS factor was the only factor from the 2-group bifactor model that significantly predicted anxiety, depression, and negative affect. Implications and importance of this new bifactor structure of Anxiety Sensitivity in East Asian samples are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury
Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan
2016-01-01
Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123
Refractive index sensor based on plastic optical fiber with tapered structure.
De-Jun, Feng; Guan-Xiu, Liu; Xi-Lu, Liu; Ming-Shun, Jiang; Qing-Mei, Sui
2014-04-01
This work reports a refractive index sensor made of plastic optical fiber (POF) with tapered structure. Transmission loss is measured when the external environment's refractive index changes from 1.33 to 1.41. Three wavelengths (532, 633, and 780 nm) are used to evaluate the sensitivity of the sensor, and results indicate that 633 nm is the best sensing wavelength due to the increased levels of sensitivity achieved at this wavelength. A biconical sensing structure is designed to enhance the sensitivity of the sensor. A sensitivity of 950 μW/RIU at 633 nm is obtained for a biconical sensing structure when launched power is 1 mW. Due to its sensitivity to the refractive index and simple construction, POF with tapered structure has potential applications in the biosensing field.
Mid-frequency Band Dynamics of Large Space Structures
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu
2018-04-01
It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Mayes, Melanie; Parker, Jack C
2010-01-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less
Pressure sensitivity of low permeability sandstones
Kilmer, N.H.; Morrow, N.R.; Pitman, Janet K.
1987-01-01
Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.
Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation
Vila, Jorge A.; Arnautova, Yelena A.; Martin, Osvaldo A.; Scheraga, Harold A.
2009-01-01
A server (CheShift) has been developed to predict 13Cα chemical shifts of protein structures. It is based on the generation of 696,916 conformations as a function of the φ, ψ, ω, χ1 and χ2 torsional angles for all 20 naturally occurring amino acids. Their 13Cα chemical shifts were computed at the DFT level of theory with a small basis set and extrapolated, with an empirically-determined linear regression formula, to reproduce the values obtained with a larger basis set. Analysis of the accuracy and sensitivity of the CheShift predictions, in terms of both the correlation coefficient R and the conformational-averaged rmsd between the observed and predicted 13Cα chemical shifts, was carried out for 3 sets of conformations: (i) 36 x-ray-derived protein structures solved at 2.3 Å or better resolution, for which sets of 13Cα chemical shifts were available; (ii) 15 pairs of x-ray and NMR-derived sets of protein conformations; and (iii) a set of decoys for 3 proteins showing an rmsd with respect to the x-ray structure from which they were derived of up to 3 Å. Comparative analysis carried out with 4 popular servers, namely SHIFTS, SHIFTX, SPARTA, and PROSHIFT, for these 3 sets of conformations demonstrated that CheShift is the most sensitive server with which to detect subtle differences between protein models and, hence, to validate protein structures determined by either x-ray or NMR methods, if the observed 13Cα chemical shifts are available. CheShift is available as a web server. PMID:19805131
Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A.; Rathbun, Stephen L.; Whitman, William B.
2016-01-01
K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley’s K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing. PMID:27911946
Latent factor structure of a behavioral economic marijuana demand curve.
Aston, Elizabeth R; Farris, Samantha G; MacKillop, James; Metrik, Jane
2017-08-01
Drug demand, or relative value, can be assessed via analysis of behavioral economic purchase task performance. Five demand indices are typically obtained from drug purchase tasks. The goal of this research was to determine whether metrics of marijuana reinforcement from a marijuana purchase task (MPT) exhibit a latent factor structure that efficiently characterizes marijuana demand. Participants were regular marijuana users (n = 99; 37.4% female, 71.5% marijuana use days [5 days/week], 15.2% cannabis dependent) who completed study assessments, including the MPT, during a baseline session. Principal component analysis was used to examine the latent structure underlying MPT indices. Concurrent validity was assessed via examination of relationships between latent factors and marijuana use, past quit attempts, and marijuana expectancies. A two-factor solution was confirmed as the best fitting structure, accounting for 88.5% of the overall variance. Factor 1 (65.8% variance) reflected "Persistence," indicating sensitivity to escalating marijuana price, which comprised four MPT indices (elasticity, O max , P max , and breakpoint). Factor 2 (22.7% variance) reflected "Amplitude," indicating the amount consumed at unrestricted price (intensity). Persistence factor scores were associated with fewer past marijuana quit attempts and lower expectancies of negative use outcomes. Amplitude factor scores were associated with more frequent use, dependence symptoms, craving severity, and positive marijuana outcome expectancies. Consistent with research on alcohol and cigarette purchase tasks, the MPT can be characterized with a latent two-factor structure. Thus, demand for marijuana appears to encompass distinct dimensions of price sensitivity and volumetric consumption, with differential relations to other aspects of marijuana motivation.
Chen, Shuning; Wang, Yunyun; Schnabel, Guido; Peng, Congyue Annie; Lagishetty, Satyanarayana; Smith, Kerry; Luo, Chao-Xi; Yuan, Huizhu
2018-05-24
Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor fungicides (DMIs) are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the USA and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 µg/ml to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 value of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factor of 27.4 and 96.0), and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factor of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alteration may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.
ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY
Mechref, Yehia
2012-01-01
The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203
Quantifying the bending of bilayer temperature-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Dong, Chenling; Chen, Bin
2017-04-01
Stimuli-responsive hydrogels can serve as manipulators, including grippers, sensors, etc., where structures can undergo significant bending. Here, a finite-deformation theory is developed to quantify the evolution of the curvature of bilayer temperature-sensitive hydrogels when subjected to a temperature change. Analysis of the theory indicates that there is an optimal thickness ratio to acquire the largest curvature in the bilayer and also suggests that the sign or the magnitude of the curvature can be significantly affected by pre-stretches or small pores in the bilayer. This study may provide important guidelines in fabricating temperature-responsive bilayers with desirable mechanical performance.
Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C
1982-01-01
Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712
NASA Astrophysics Data System (ADS)
Bohn, Friedrich J.; May, Felix; Huth, Andreas
2018-03-01
Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.
Polarization-independent beam focusing by high-contrast grating reflectors
NASA Astrophysics Data System (ADS)
Su, Wei; Zheng, Gaige; Jiang, Liyong; Li, Xiangyin
2014-08-01
A kind of high-contrast grating (HCG) reflector for beam focusing has been proposed. We design a planar grating structure with a parabolic surface and numerical simulations using a finite different time domain (FDTD) method to verify that the structure has the capability of focusing both transverse-magnetic (TM) and transverse-electric (TE) polarized lights. Finally, we expand the design structure into a three-dimensional (3D) case. Numerical results demonstrate that the power intensities at the focal point are all greater than 8.5 dB compared with incident intensity, which means the structure has a better focusing effect. Further analysis of incident wavelength sensitivity (1.55, 1.79 and 2 μm) reveals that the proposed structure has a wide range of working wavelength.
A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.
Layton, D M; Bundschuh, R
2005-01-01
Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Maurer, Jürgen; Roth, Andreas
A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the depositionmore » of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.« less
Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R
2001-12-01
ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.
NASA Astrophysics Data System (ADS)
Li, Yang; Maurer, Jürgen; Roth, Andreas; Vogel, Vitali; Winter, Ernst; Mäntele, Werner
2014-08-01
A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the deposition of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
Pressure sensitivity analysis of fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex
2014-09-01
Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).
Bile acids: analysis in biological fluids and tissues
Griffiths, William J.; Sjövall, Jan
2010-01-01
The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121
Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378
Physical and Chemical Microstructural Damage in Pressed CL-20 explosives
NASA Astrophysics Data System (ADS)
Demol, Gauthier; Sandusky, Harold W.
1999-06-01
Based upon its molecular composition, its structure, and its heat of formation, it was expected that CL-20 (hexanitrohexaazaisowurtzitane) would be more energetic and more sensitive than RDX and HMX. Reports of batch-to-batch variations in the sensitivity of neat CL-20 have led to its sensitivity being ranked in the range between the sensitivity of RDX and that of PETN. The ultimate utility of CL-20 as an ingredient in explosive and propellant formulations will depend upon the ability to understand the factors that are responsible for this batch-to-batch variability, and to control the sensitivity in formulations within acceptable limits. This work is a characterization of CL-20 at various stages in its life cycle. The evolution of damage from the initial neat crystals of CL-20 to the ready-to-use pressed pellets will be described. This characterization includes physical documentation using light microscopy and Scanning Electron Microscopy. Spatially resolved chemical analysis is also performed using Fourier-Transform Infrared Spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab
2013-12-23
We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Monitoring stress changes in a concrete bridge with coda wave interferometry.
Stähler, Simon Christian; Sens-Schönfelder, Christoph; Niederleithinger, Ernst
2011-04-01
Coda wave interferometry is a recent analysis method now widely used in seismology. It uses the increased sensitivity of multiply scattered elastic waves with long travel-times for monitoring weak changes in a medium. While its application for structural monitoring has been shown to work under laboratory conditions, the usability on a real structure with known material changes had yet to be proven. This article presents experiments on a concrete bridge during construction. The results show that small velocity perturbations induced by a changing stress state in the structure can be determined even under adverse conditions. Theoretical estimations based on the stress calculations by the structural engineers are in good agreement with the measured velocity variations.
Structure of turbulent non-premixed flames modeled with two-step chemistry
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.
NASA Astrophysics Data System (ADS)
Starodub, Nickolaj F.; Slyshyk, Nelya F.; Shavanova, Kateryna E.; Karpyuk, Andrij; Mel'nichenko, Mykola M.; Zherdev, Anatolij V.; Dzantiev, Boris B.
2014-10-01
It is presented the experimental results about the investigations of the efficiency of the structured nano-pourous silicon (sNPS) application as transducer in the immune biosensors designed for the control of retroviral bovine leucosis (RBL) and the determination of the level such mycotoxins as T2 and patulin among environmental objects. Today, there is an arsenal of the traditional immunological methods that allow for the biochemical diagnostics of the above diseases and control of toxins but they are deeply routine and can not provide the requirements of practice for express analysis, its low cost and simplicity. Early to provide practical demands we developed immune biosensors based on SPR, TIRE and thermistors. To find more simple variant of the assay we studied the efficiency sNPS as trasducer in immune biosensor. The registration of the specific signals was made by measuremets of level of chemiluminescence (ChL) or photocurrent. The sensitivity of biosensor for both variants of the specific signal registration at the determination of T2 and patulin was about 10-20 ng/ml. Sensitivity analysis of RBL by this immune biosensors exceeds traditionally used approaches including the ELISA-method too. The optimal serum dilution of blood at the screening leukemia should be no less than 1:100, or even 1:500. The immune biosensor may be applied too for express screening leucosis through analysis of milk. In this case the optimal serum dilution of milk should be about 1:20. The total time of analysis including all steps (immobilization of specific Ab or antigens on the transducer surface and measurements) was about 40 min and it may be a sharp decline if the above mentione sensitive elements will be immobilized preliminary measurements. It is concluded that the proposed type of transducer for immune biosensor is effective for analysis of mycotoxins in screening regime.
Bi-directional evolutionary optimization for photonic band gap structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au
2015-12-01
Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less
Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2002-01-01
A study was performed to develop an understanding of the key factors that govern the performance of metallic thermal protection systems for reusable launch vehicles. A current advanced metallic thermal protection system (TPS) concept was systematically analyzed to discover the most important factors governing the thermal performance of metallic TPS. A large number of relevant factors that influence the thermal analysis and thermal performance of metallic TPS were identified and quantified. Detailed finite element models were developed for predicting the thermal performance of design variations of the advanced metallic TPS concept mounted on a simple, unstiffened structure. The computational models were also used, in an automated iterative procedure, for sizing the metallic TPS to maintain the structure below a specified temperature limit. A statistical sensitivity analysis method, based on orthogonal matrix techniques used in robust design, was used to quantify and rank the relative importance of the various modeling and design factors considered in this study. Results of the study indicate that radiation, even in small gaps between panels, can reduce significantly the thermal performance of metallic TPS, so that gaps should be eliminated by design if possible. Thermal performance was also shown to be sensitive to several analytical assumptions that should be chosen carefully. One of the factors that was found to have the greatest effect on thermal performance is the heat capacity of the underlying structure. Therefore the structure and TPS should be designed concurrently.
Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H
2018-06-16
Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter; ...
2017-02-09
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Proof Of Concept of Integrated Load Measurement in 3D Printed Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderdael, Michael; Strantza, Maria; De Baere, Dieter
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less
Lei, Wanying; Zhang, Tingting; Gu, Lin; ...
2015-06-19
Structure–function correlations are a central theme in heterogeneous (photo)catalysis. In this research, using aberration-corrected scanning transmission electron microscopy (STEM), the atomic surface structures of well-defined one-dimensional (1D) CeO 2 nanorods (NRs) and 3D nanocubes (NCs) are directly visualized at subangstrom resolution. CeO 2 NCs predominantly expose the {100} facet, with {110} and {111} as minor cutoff facets at the respective edges and corners. Notably, the outermost surface layer of the {100} facet is nearly O-terminated. Neither surface relaxations nor reconstructions on {100} are observed, indicating unusual polarity compensation, which is primarily mediated by near-surface oxygen vacancies. The surface of CeOmore » 2 NRs is highly stepped, with the enclosed {110} facet exposing Ce cations and O anions on terraces. On the basis of STEM profile-view imaging and electronic structure analysis, the photoreactivity of CeO2 nanocrystals toward aqueous methyl orange degradation under UV is revealed to be surface-structure-sensitive, following the order: {110} >> {100}. The underlying surface-structure sensitivity can be attributed to the variation in low-coordinate surface cerium cations between {110} and {100} facets. To further enhance light absorption, Au nanoparticles (NPs) are deposited on CeO 2 NRs to form Au/CeO 2 plasmonic nanocomposites, which dramatically promotes the photoreactivity that is Au particle size- and excitation light wavelength-dependent. The mechanisms responsible for the enhancement of photocatalytic activity are discussed, highlighting the crucial role of photoexcited charge carrier transfer.« less
Proof of Concept of Integrated Load Measurement in 3D Printed Structures
Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick
2017-01-01
Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779
Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru
2013-03-10
Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
NASA Astrophysics Data System (ADS)
Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh
2016-04-01
This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.
Chen, Jun; Zhou, Xueqing; Ma, Yingjun; Lin, Xiulian; Dai, Zong; Zou, Xiaoyong
2016-01-01
The sensitive and specific analysis of microRNAs (miRNAs) without using a thermal cycler instrument is significant and would greatly facilitate biological research and disease diagnostics. Although exponential amplification reaction (EXPAR) is the most attractive strategy for the isothermal analysis of miRNAs, its intrinsic limitations of detection efficiency and inevitable non-specific amplification critically restrict its use in analytical sensitivity and specificity. Here, we present a novel asymmetric EXPAR based on a new biotin/toehold featured template. A biotin tag was used to reduce the melting temperature of the primer/template duplex at the 5′ terminus of the template, and a toehold exchange structure acted as a filter to suppress the non-specific trigger of EXPAR. The asymmetric EXPAR exhibited great improvements in amplification efficiency and specificity as well as a dramatic extension of dynamic range. The limit of detection for the let-7a analysis was decreased to 6.02 copies (0.01 zmol), and the dynamic range was extended to 10 orders of magnitude. The strategy enabled the sensitive and accurate analysis of let-7a miRNA in human cancer tissues with clearly better precision than both standard EXPAR and RT-qPCR. Asymmetric EXPAR is expected to have an important impact on the development of simple and rapid molecular diagnostic applications for short oligonucleotides. PMID:27257058
Smoking and Cancers: Case-Robust Analysis of a Classic Data Set
ERIC Educational Resources Information Center
Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai
2009-01-01
A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…
1988-05-01
fluctuations were measured with a fast response resistance bridge driving microthermal sensor probes as the temperature sensitive resistance elements. The bridge...used was a Thermo Systems, Inc. (TSI) type 1044, dc Wheatstone bridge with a frequency response of 800 hz. The microthermal probes were TSI type 1210
Matsukawa, T; Kawasaki, H; Tanaka, M; Ohba, Y
1997-01-01
Transcription of the ratalpha1-acid glycoprotein (AGP) gene is activated by glucocorticoid, thyroid hormone (T3) and cytokines. Following these treatments, the chromatin structure of this gene was analyzed by means of digestion with DNase I or micrococcal nuclease. Four DNase I hypersensitive sites were observed in the 5'-upstream region of the rat AGP gene of liver cells. They were designated HS1, HS2, HS3 and HS4 (3'-->5'). After T3treatment the sensitivity of HS1 and HS2 increased and after dexamethasone (Dex) treatment that of all four sites did so. Three new sites appeared after turpentine oil treatment, while the sensitivities of HS3 and HS4 increased. We conclude that transcriptional activation of the gene by T3and Dex have very similar mechanisms, but that at the inflammation stage they become slightly different. The increase in sensitivity at HS1 and HS2 after T3treatment in vivo was successfully reproduced in a cell-free system by in vitro treatment with T3. HS1, HS2 and HS3 were also sensitive for micrococcal nuclease. PMID:9185575
Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)
NASA Astrophysics Data System (ADS)
Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.
2016-03-01
In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.
Tension fracture of laminates for transport fuselage. Part 1: Material screening
NASA Technical Reports Server (NTRS)
Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.
1992-01-01
Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Application of composites to fuselage structures requires a data base and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity, (2) evaluate composite failure criteria, and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in load bearing plies. Parameters for conventional fracture criteria were found to increase with the crack length of the smallest notch sizes studied. Most materials and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Results indicate that a range of notch sizes must be tested to determine notch sensitivity.
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ney, Michael; Abdulhalim, Ibrahim
2016-03-01
Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong
2018-05-01
A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mardechay
1992-01-01
The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.
Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi
2012-11-06
Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.
Application of ultrasonic signature analysis for fatigue detection in complex structures
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1974-01-01
Ultrasonic signature analysis shows promise of being a singularly well-suited method for detecting fatigue in structures as complex as aircraft. The method employs instrumentation centered about a Fourier analyzer system, which features analog-to-digital conversion, digital data processing, and digital display of cross-correlation functions and cross-spectra. These features are essential to the analysis of ultrasonic signatures according to the procedure described here. In order to establish the feasibility of the method, the initial experiments were confined to simple plates with simulated and fatigue-induced defects respectively. In the first test the signature proved sensitive to the size of a small hole drilled into the plate. In the second test, performed on a series of fatigue-loaded plates, the signature proved capable of indicating both the initial appearance and subsequent growth of a fatigue crack. In view of these encouraging results it is concluded that the method has reached a sufficiently advanced stage of development to warrant application to small-scale structures or even actual aircraft.
Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing
2016-08-24
Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.
NASA Astrophysics Data System (ADS)
Tran, Trang; Tran, Huy; Mansfield, Marc; Lyman, Seth; Crosman, Erik
2018-03-01
Four-dimensional data assimilation (FDDA) was applied in WRF-CMAQ model sensitivity tests to study the impact of observational and analysis nudging on model performance in simulating inversion layers and O3 concentration distributions within the Uintah Basin, Utah, U.S.A. in winter 2013. Observational nudging substantially improved WRF model performance in simulating surface wind fields, correcting a 10 °C warm surface temperature bias, correcting overestimation of the planetary boundary layer height (PBLH) and correcting underestimation of inversion strengths produced by regular WRF model physics without nudging. However, the combined effects of poor performance of WRF meteorological model physical parameterization schemes in simulating low clouds, and warm and moist biases in the temperature and moisture initialization and subsequent simulation fields, likely amplified the overestimation of warm clouds during inversion days when observational nudging was applied, impacting the resulting O3 photochemical formation in the chemistry model. To reduce the impact of a moist bias in the simulations on warm cloud formation, nudging with the analysis water mixing ratio above the planetary boundary layer (PBL) was applied. However, due to poor analysis vertical temperature profiles, applying analysis nudging also increased the errors in the modeled inversion layer vertical structure compared to observational nudging. Combining both observational and analysis nudging methods resulted in unrealistically extreme stratified stability that trapped pollutants at the lowest elevations at the center of the Uintah Basin and yielded the worst WRF performance in simulating inversion layer structure among the four sensitivity tests. The results of this study illustrate the importance of carefully considering the representativeness and quality of the observational and model analysis data sets when applying nudging techniques within stable PBLs, and the need to evaluate model results on a basin-wide scale.
Analysis of asteroid (216) Kleopatra using dynamical and structural constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Masatoshi; Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu
This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure;more » in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.« less
Atom Probe Tomography Analysis of Gallium-Nitride-Based Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Prosa, Ty J.; Olson, David; Giddings, A. Devin; Clifton, Peter H.; Larson, David J.; Lefebvre, Williams
2014-03-01
Thin-film light-emitting diodes (LEDs) composed of GaN/InxGa1-xN/GaN quantum well (QW) structures are integrated into modern optoelectronic devices because of the tunable InGaN band-gap enabling emission of the full visible spectrum. Atom probe tomography (APT) offers unique capabilities for 3D device characterization including compositional mapping of nano-volumes (>106 nm3) , high detection efficiency (>50%), and good sensitivity. In this study, APT is used to understand the distribution of dopants as well as Al and In alloying agents in a GaN device. Measurements using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have also been made to improve the accuracy of the APT analysis by correlating the information content of these complimentary techniques. APT analysis reveals various QW and other optoelectronic structures including a Mg p-GaN layer, an Al-rich electron blocking layer, an In-rich multi-QW region, and an In-based super-lattice structure. The multi-QW composition shows good quantitative agreement with layer thickness and spacing extracted from a high resolution TEM image intensity analysis.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Jurena, Mark T.; Godines, Cody R.; Chamis, Christos C. (Technical Monitor)
2001-01-01
This project included both research and education objectives. The goal of this project was to advance innovative research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction for improved reliability and safety of structural components of aerospace and aircraft propulsion systems. Research and education partners included Glenn Research Center (GRC) and Southwest Research Institute (SwRI) along with the University of Texas at San Antonio (UTSA). SwRI enhanced the NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) code and provided consulting support for NESSUS-related activities at UTSA. NASA funding supported three undergraduate students, two graduate students, a summer course instructor and the Principal Investigator. Matching funds from UTSA provided for the purchase of additional equipment for the enhancement of the Advanced Interactive Computational SGI Lab established during the first year of this Partnership Award to conduct the probabilistic finite element summer courses. The research portion of this report presents the cumulation of work performed through the use of the probabilistic finite element program, NESSUS, Numerical Evaluation and Structures Under Stress, and an embedded Material Strength Degradation (MSD) model. Probabilistic structural analysis provided for quantification of uncertainties associated with the design, thus enabling increased system performance and reliability. The structure examined was a Space Shuttle Main Engine (SSME) fuel turbopump blade. The blade material analyzed was Inconel 718, since the MSD model was previously calibrated for this material. Reliability analysis encompassing the effects of high temperature and high cycle fatigue, yielded a reliability value of 0.99978 using a fully correlated random field for the blade thickness. The reliability did not change significantly for a change in distribution type except for a change in distribution from Gaussian to Weibull for the centrifugal load. The sensitivity factors determined to be most dominant were the centrifugal loading and the initial strength of the material. These two sensitivity factors were influenced most by a change in distribution type from Gaussian to Weibull. The education portion of this report describes short-term and long-term educational objectives. Such objectives serve to integrate research and education components of this project resulting in opportunities for ethnic minority students, principally Hispanic. The primary vehicle to facilitate such integration was the teaching of two probabilistic finite element method courses to undergraduate engineering students in the summers of 1998 and 1999.
Jiménez-Murcia, Susana; Fernández-Aranda, Fernando; Mestre-Bach, Gemma; Granero, Roser; Tárrega, Salomé; Torrubia, Rafael; Aymamí, Neus; Gómez-Peña, Mónica; Soriano-Mas, Carles; Steward, Trevor; Moragas, Laura; Baño, Marta; Del Pino-Gutiérrez, Amparo; Menchón, José M
2017-06-01
Most individuals will gamble during their lifetime, yet only a select few will develop gambling disorder. Gray's Reinforcement Sensitivity Theory holds promise for providing insight into gambling disorder etiology and symptomatology as it ascertains that neurobiological differences in reward and punishment sensitivity play a crucial role in determining an individual's affect and motives. The aim of the study was to assess a mediational pathway, which included patients' sex, personality traits, reward and punishment sensitivity, and gambling-severity variables. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire, the South Oaks Gambling Screen, the Symptom Checklist-Revised, and the Temperament and Character Inventory-Revised were administered to a sample of gambling disorder outpatients (N = 831), diagnosed according to DSM-5 criteria, attending a specialized outpatient unit. Sociodemographic variables were also recorded. A structural equation model found that both reward and punishment sensitivity were positively and directly associated with increased gambling severity, sociodemographic variables, and certain personality traits while also revealing a complex mediational role for these dimensions. To this end, our findings suggest that the Sensitivity to Punishment and Sensitivity to Reward Questionnaire could be a useful tool for gaining a better understanding of different gambling disorder phenotypes and developing tailored interventions.
Sensitivity analysis of limit state functions for probability-based plastic design
NASA Technical Reports Server (NTRS)
Frangopol, D. M.
1984-01-01
The evaluation of the total probability of a plastic collapse failure P sub f for a highly redundant structure of random interdependent plastic moments acted on by random interdepedent loads is a difficult and computationally very costly process. The evaluation of reasonable bounds to this probability requires the use of second moment algebra which involves man statistical parameters. A computer program which selects the best strategy for minimizing the interval between upper and lower bounds of P sub f is now in its final stage of development. The relative importance of various uncertainties involved in the computational process on the resulting bounds of P sub f, sensitivity is analyzed. Response sensitivities for both mode and system reliability of an ideal plastic portal frame are shown.
Inui, Yoshitaka; Ito, Kengo; Kato, Takashi
2017-01-01
The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.
Predicting lower mantle heterogeneity from 4-D Earth models
NASA Astrophysics Data System (ADS)
Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.
2016-04-01
The Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower mantle structure predicted by forward global mantle flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the mantle deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour (Rayleigh number Ra), mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which mantle temperature is significantly larger than ambient and a low-temperature cluster in which mantle temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).
Umari, P; Gonze, Xavier; Pasquarello, Alfredo
2003-01-17
Using a first-principles approach, we calculate Raman spectra for a model structure of vitreous silica. We develop a perturbational method for calculating the dielectric tensor in an ultrasoft pseudopotential scheme and obtain Raman coupling tensors by finite differences with respect to atomic displacements. For frequencies below 1000 cm(-1), the parallel-polarized Raman spectrum of vitreous silica is dominated by oxygen bending motions, showing a strong sensitivity to the intermediate range structure. By modeling the Raman coupling, we derive estimates for the concentrations of three- and four-membered rings from the experimental intensities of the Raman defect lines.
NASA Astrophysics Data System (ADS)
Motrich, A. V.; Ushenko, O. G.
2018-01-01
The results of statistical dependence and correlation structures of two-dimensional Mueller matrix elements in various spectral regions of laser radiation by changes in the distribution of orientations of optical axes and birefringence of protein crystals. Namely, a two-wave ("red-blue") approach - layer of biological tissues irradiated by He-Ne laser (λ1 = 0,63μm ) and He-Cd laser (λ1 = 0,41μm )was used Conducted analysis of polarimetric sensitivity was made, a state of polarization points that contain volumetric structures of biological objects to spectral region of laser radiation was detected.
Ultratight crystal packing of a 10 kDa protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.
2013-03-01
The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.
Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C
2013-01-01
The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.
Construct validity of the abbreviated mental test in older medical inpatients.
Antonelli Incalzi, R; Cesari, M; Pedone, C; Carosella, L; Carbonin, P U
2003-01-01
To evaluate validity and internal structure of the Abbreviated Mental Test (AMT), and to assess the dependence of the internal structure upon the characteristics of the patients examined. Cross-sectional examination using data from the Italian Group of Pharmacoepidemiology in the Elderly (GIFA) database. Twenty-four acute care wards of Geriatrics or General Medicine. Two thousand eight hundred and eight patients consecutively admitted over a 4-month period. Demographic characteristics, functional status, medical conditions and performance on AMT were collected at discharge. Sensitivity, specificity and predictive values of the AMT <7 versus a diagnosis of dementia made according to DSM-III-R criteria were computed. The internal structure of AMT was assessed by principal component analysis. The analysis was performed on the whole population and stratified for age (<65, 65-80 and >80 years), gender, education (<6 or >5 years) and presence of congestive heart failure (CHF). AMT achieved high sensitivity (81%), specificity (84%) and negative predictive value (99%), but a low positive predictive value of 25%. The principal component analysis isolated two components: the former component represents the orientation to time and space and explains 45% of AMT variance; the latter is linked to memory and attention and explains 13% of variance. Comparable results were obtained after stratification by age, gender or education. In patients with CHF, only 48.3% of the cumulative variance was explained; the factor accounting for most (34.6%) of the variance explained was mainly related to the three items assessing memory. AMT >6 rules out dementia very reliably, whereas AMT <7 requires a second level cognitive assessment to confirm dementia. AMT is bidimensional and maintains the same internal structure across classes defined by selected social and demographic characteristics, but not in CHF patients. It is likely that its internal structure depends on the type of patients. The use of a sum-score could conceal some part of the information provided by the AMT. Copyright 2003 S. Karger AG, Basel
Validation of a Brazilian version of the moral sensitivity questionnaire.
Dalla Nora, Carlise R; Zoboli, Elma Lcp; Vieira, Margarida M
2017-01-01
Moral sensitivity has been identified as a foundational component of ethical action. Diminished or absent moral sensitivity can result in deficient care. In this context, assessing moral sensitivity is imperative for designing interventions to facilitate ethical practice and ensure that nurses make appropriate decisions. The main purpose of this study was to validate a scale for examining the moral sensitivity of Brazilian nurses. A pre-existing scale, the Moral Sensitivity Questionnaire, which was developed by Lützén, was used after the deletion of three items. The reliability and validity of the scale were examined using Cronbach's alpha and factor analysis, respectively. Participants and research context: Overall, 316 nurses from Rio Grande do Sul, Brazil, participated in the study. Ethical considerations: This study was approved by the Ethics Committee of Research of the Nursing School of the University of São Paulo. The Moral Sensitivity Questionnaire contained 27 items that were distributed across four dimensions: interpersonal orientation, professional knowledge, moral conflict and moral meaning. The questionnaire accounted for 55.8% of the total variance, with Cronbach's alpha of 0.82. The mean score for moral sensitivity was 4.45 (out of 7). The results of this study were compared with studies from other countries to examine the structure and implications of the moral sensitivity of nurses in Brazil. The Moral Sensitivity Questionnaire is an appropriate tool for examining the moral sensitivity of Brazilian nurses.
Barratt, M D; Langowski, J J
1999-01-01
The DEREK knowledge-based computer system contains a subset of approximately 50 rules describing chemical substructures (toxophores) responsible for skin sensitization. This rulebase, based originally on Unilever historical in-house guinea pig maximization test data, has been subject to extensive validation and is undergoing refinement as the next stage of its development. As part of an ongoing program of validation and testing, the predictive ability of the sensitization rule set has been assessed by processing the structures of the 84 chemical substances in the list of contact allergens issued by the BgVV (German Federal Institute for Health Protection of Consumers). This list of chemicals is important because the biological data for each of the chemicals have been carefully scrutinized and peer reviewed, a key consideration in an area of toxicology in which much unreliable and potentially misleading data have been published. The existing DEREK rulebase for skin sensitization identified toxophores for skin sensitization in the structures of 71 out of the 84 chemicals (85%). The exercise highlighted areas of chemistry where further development of the rulebase was required, either by extension of the scope of existing rules or by generation of new rules where a sound mechanistic rationale for the biological activity could be established. Chemicals likely to be acting as photoallergens were identified, and new rules for photoallergenicity have subsequently been written. At the end of the exercise, the refined rulebase was able to identify toxophores for skin sensitization for 82 of the 84 chemicals in the BgVV list.
Characteristic analysis of surface waves in a sensitive plasma absorption probe
NASA Astrophysics Data System (ADS)
You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong
2018-01-01
With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.
Monomer/Dimer Transition of the Caspase-Recruitment Domain of Human Nod1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srimathi,T.; Robbins, S.; Dubas, R.
2008-01-01
Nod1 is an essential cytoplasmic sensor for bacterial peptidoglycans in the innate immune system. The caspase-recruitment domain of Nod1 (Nod1{_}CARD) is indispensable for recruiting a downstream kinase, receptor-interacting protein 2 (RIP2), that activates nuclear factor-?B (NF-?B). The crystal structure of human Nod1{_}CARD at 1.9 Angstroms resolution reveals a novel homodimeric conformation. Our structural and biochemical analysis shows that the homodimerization of Nod1{_}CARD is achieved by swapping the H6 helices at the carboxy termini and stabilized by forming an interchain disulfide bond between the Cys39 residues of the two monomers in solution and in the crystal. In addition, we present experimentalmore » evidence for a pH-sensitive conformational change of Nod1{_}CARD. Our results suggest that the pH-sensitive monomer/dimer transition is a unique molecular property of Nod1{_}CARD.« less
Structural health monitoring based on sensitivity vector fields and attractor morphing.
Yin, Shih-Hsun; Epureanu, Bogdan I
2006-09-15
The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.