Method for making field-structured memory materials
Martin, James E.; Anderson, Robert A.; Tigges, Chris P.
2002-01-01
A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.
Zettl, Alexander K.; Meyer, Jannik Christian
2013-04-02
An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
Supporting Structures for Flat Solar-Cell Arrays
NASA Technical Reports Server (NTRS)
Wilson, A. H.
1986-01-01
Strong supporting structures for flat solar photovoltaic arrays built with such commonly available materials as wood and galvanized steel sheet. Structures resist expected static loads from snow and ice as well as dynamic loads from winds and even Earthquake vibrations. Supporting structure uses inexpensive materials. Parts prefabricated to minimize assembly work in field.
NASA Astrophysics Data System (ADS)
Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro
In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.
Composite membrane with integral rim
Routkevitch, Dmitri; Polyakov, Oleg G
2015-01-27
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
3D printing PLA and silicone elastomer structures with sugar solution support material
NASA Astrophysics Data System (ADS)
Hamidi, Armita; Jain, Shrenik; Tadesse, Yonas
2017-04-01
3D printing technology has been used for rapid prototyping since 1980's and is still developing in a way that can be used for customized products with complex design and miniature features. Among all the available 3D printing techniques, Fused Deposition Modeling (FDM) is one of the most widely used technologies because of its capability to build different structures by employing various materials. However, complexity of parts made by FDM is greatly limited by restriction of using support materials. Support materials are often used in FDM for several complex geometries such as fully suspended shapes, overhanging surfaces and hollow features. This paper describes an approach to 3D print a structure using silicone elastomer and polylactide fiber (PLA) by employing a novel support material that is soluble in water. This support material is melted sugar which can easily be prepared at a low cost. Sugar is a carbohydrate, which is found naturally in plants such as sugarcane and sugar beets; therefore, it is completely organic and eco-friendly. As another advantage, the time for removing this material from the part is considerably less than other commercially available support materials and it can be removed easily by warm water without leaving any trace. Experiments were done using an inexpensive desktop 3D printer to fabricate complex structures for use in soft robots. The results envision that further development of this system would contribute to a method of fabrication of complex parts with lower cost yet high quality.
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong
2017-06-14
Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.
Composite membranes and methods for making same
Routkevitch, Dmitri; Polyakov, Oleg G
2012-07-03
Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.
Composite materials formed with anchored nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2015-03-10
A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.
The novel support structure design of high stability for space borne primary reflector
NASA Astrophysics Data System (ADS)
Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun
2018-01-01
The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Simpson, John T.; Aytug, Tolga
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liby, Alan L; Rogers, Hiram
The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less
Making Plant-Support Structures From Waste Plant Fiber
NASA Technical Reports Server (NTRS)
Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John
2006-01-01
Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet
Sail film materials and supporting structure for a solar sail, a preliminary design, volume 4
NASA Technical Reports Server (NTRS)
Rowe, W. M. (Editor)
1978-01-01
Solar sailing technology was examined in relation to a mission to rendezvous with Halley's Comet. Development of an ultra-light, highly reflecting material system capable of operating at high solar intensity for long periods of time was emphasized. Data resulting from the sail materials study are reported. Topics covered include: basic film; coatings and thermal control; joining and handling; system performance; and supporting structures assessment for the heliogyro.
Superconductive articles including cerium oxide layer
Wu, X.D.; Muenchausen, R.E.
1993-11-16
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.
Superconductive articles including cerium oxide layer
Wu, Xin D.; Muenchausen, Ross E.
1993-01-01
A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.
NASA Technical Reports Server (NTRS)
Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.
2018-01-01
The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.
Method of manufacturing positive nickel hydroxide electrodes
Gutjahr, M.A.; Schmid, R.; Beccu, K.D.
1975-12-16
A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.
Lightweight structure design for supporting plate of primary mirror
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng
2017-10-01
A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
29 CFR 1926.953 - Material handling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...
Content Management Middleware for the Support of Distributed Teaching
ERIC Educational Resources Information Center
Tsalapatas, Hariklia; Stav, John B.; Kalantzis, Christos
2004-01-01
eCMS is a web-based federated content management system for the support of distributed teaching based on an open, distributed middleware architecture for the publication, discovery, retrieval, and integration of educational material. The infrastructure supports the management of both standalone material and structured courses, as well as the…
Passive zero-gravity leg restraint
NASA Technical Reports Server (NTRS)
Miller, Christopher R. (Inventor)
1989-01-01
A passive zero or microgravity leg restraint is described which includes a central support post with a top and a bottom. Extending from the central support post are a calf pad tab, to which calf pad is attached, and a foot pad tab, to which foot tab is attached. Also extending from central support post are knee pads. When the restraint is in use the user's legs are forced between pads by a user imposed scissors action of the legs. The user's body is then supported in a zero or microgravity neutral body posture by the leg restraint. The calf pad has semi-ridig elastic padding material covering structural stiffener. The foot pad has padding material and a structural stiffener. Knee pads have s structural tube stiffener at their core.
Multi-component assembly casting
James, Allister W.
2015-10-13
Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.
NASA Astrophysics Data System (ADS)
Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar
2009-03-01
Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
Design of Functional Layered Oxide Materials Through Understanding Structure-Property Relationships
NASA Astrophysics Data System (ADS)
Strayer, Megan E.
A fundamental understanding of structure-property relationships is imperative in the rational design of new materials for tailored applications. In this dissertation, structureproperty relationships are exploited in layered oxides and their composite materials. Recent advances in characterization techniques have allowed for more in-depth investigations into both the atomic level structure and properties of these materials. This dissertation focuses on understanding the structure-property relationships in supported catalytic systems and ferroelectric materials to aid in the rational design of functional materials. In Chapter 2, a correlation between the enthalpy of nanoparticle adsorption to oxide supports and the subsequent growth of these nanoparticles as a function of temperature is investigated. When deposited onto layered niobium oxide and tantalum oxide supports, rhodium hydroxide nanoparticles remain small and evenly dispersed upon heating to 750 °C. Using isothermal titration calorimetry, the bonding enthalpy of rhodium hydroxide nanoparticles to oxide supports is quantified for the first time under the wet synthetic conditions of catalyst preparation. Rh(OH)3 is concluded to have a strong, covalent interaction with the early transition metal oxide supports, and the interfacial bonding is hypothesized to occur through Rh - O - Nb bonding. Chapter 3 extends the studies in Chapter 2 to include supported metal, metal oxide, and metal hydroxide nanoparticles in the cobalt, nickel and copper triads. The data confirms a strong correlation between the heats of interaction and stability of the supported nanoparticles. Both experimental data and density functional theory calculations demonstrate that the support and nanoparticle compositions impact the heat of interaction and that the qualitative periodic trends of the metal bonding interaction are independent of the metal oxidation state. A strong bond is shown computationally to arise from the formation of mixed d-states between an adsorbed metal atom and a metal atom in the support. A preliminary investigation into the synthesis and stability of catalytically relevant ligand-free metal nanoparticles is presented in Chapter 4. The nanoparticles are synthesized via base hydrolysis and reduction with methanol. When deposited onto a niobium oxide support, the nanoparticles are thermally stable at temperatures up to 900 °C. The mechanism of platinum nanoparticle formation is still largely unknown, and a synthesis of rhodium and iridium ligand-free nanoparticles is reported. In Chapter 5, the n = 2 Dion Jacobson family A'LaB2O 7 (A': Rb, Cs; B: Nb, Ta) is reported as non-centrosymmetric and piezoelectric at room temperature for the first time. This non-centrosymmetry is predicted to arise from two nonpolar oxygen octahedral rotational modes condensing via the hybrid improper ferroelectricity mechanism. Rietveld refinement of synchrotron X-ray diffraction data is unable to confirm an acentric crystal structure as peak splitting is evident, revealing that multiple phases are likely present in these materials. Chapter 6 presents temperature-dependent synchrotron X-ray diffraction and neutron diffraction Rietveld refinement analysis of CsLaNb2O 7 to investigate the crystal structure and mechanism of non-centrosymmetry. The crystal structure is found to be in the centrosymmetric P4/mmm phase at 600 K and above. From 550 K to 350 K, the space group is assigned to the non-centrosymmetric Amm2 phase, as SHG signal is steadily increasing over this temperature range. Unfortunately, the 300 K and below crystal structure(s) have yet to be solved. Currently, both single-phase and dual-phase models are being refined in the synchrotron X-ray and neutron diffraction data.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
NASA Astrophysics Data System (ADS)
He, Li; Song, Xuan
2018-03-01
In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.
Influence of the supporting die structures on the fracture strength of all-ceramic materials.
Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz
2012-08-01
This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.
Extraordinary absorption of sound in porous lamella-crystals.
Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J
2014-04-14
We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.
Extraordinary absorption of sound in porous lamella-crystals
Christensen, J.; Romero-García, V.; Picó, R.; Cebrecos, A.; de Abajo, F. J. García; Mortensen, N. A.; Willatzen, M.; Sánchez-Morcillo, V. J.
2014-01-01
We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material. PMID:24728322
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.
2017-05-09
Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.
Combustible structural composites and methods of forming combustible structural composites
Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID
2011-08-30
Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.
Combustible structural composites and methods of forming combustible structural composites
Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David
2013-04-02
Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.
An Adaptive Course Generation Framework
ERIC Educational Resources Information Center
Li, Frederick W. B.; Lau, Rynson W. H.; Dharmendran, Parthiban
2010-01-01
Existing adaptive e-learning methods are supported by student (user) profiling for capturing student characteristics, and course structuring for organizing learning materials according to topics and levels of difficulties. Adaptive courses are then generated by extracting materials from the course structure to match the criteria specified in the…
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials
ERIC Educational Resources Information Center
Eick, Charles J.; Stewart, Bethany
2010-01-01
Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…
NASA Astrophysics Data System (ADS)
El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.
2018-01-01
Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.
Forced air heat sink apparatus
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.
1976-01-01
A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.
Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong
2017-05-24
Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.
The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures
NASA Technical Reports Server (NTRS)
Aitchison, C S; Tuckerman, L B
1939-01-01
The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.
2010-09-02
Dynamic Mechanical Analysis (DMA). The fracture behavior of the mechanophore-linked polymer is also examined through the Double Cleavage Drilled ...multinary complex structures. Structural, microstructural, and chemical characterizations were explored by metrological tools to support this...simple hydrocarbons in order to quantitatively define structure-property relationships for reacting materials under shock compression. Embedded gauge
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.D. Stine
1996-01-23
The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Potential structural material problems in a hydrogen energy system
NASA Technical Reports Server (NTRS)
Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.
1975-01-01
Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.
NASA Technical Reports Server (NTRS)
1978-01-01
An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.
Surface-PlasmonoDielectric-polaritonic devices and systems
None, None
2013-06-25
There is provided a structure for supporting propagation of surface plasmon polaritons. The structure includes a plasmonic material region and a dielectric material region, disposed adjacent to a selected surface of the plasmonic material region. At least one of the plasmonic material region and the dielectric material region have a dielectric permittivity distribution that is specified as a function of depth through the corresponding material region. This dielectric permittivity distribution is selected to impose prespecified group velocities, v.sub.gj, on a dispersion relation for a surface polaritonic mode of the structure for at least one of a corresponding set of prespecified frequencies, .omega..sub.j, and corresponding set of prespecified wavevectors, where j=1 to N.
Support apparatus for semiconductor wafer processing
Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.
2003-06-10
A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.
Characterization of Carbon Nanotube Reinforced Nickel
NASA Technical Reports Server (NTRS)
Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)
2002-01-01
Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-01-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-10-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
Surface-Micromachined Planar Arrays of Thermopiles
NASA Technical Reports Server (NTRS)
Foote, Marc C.
2003-01-01
Planar two-dimensional arrays of thermopiles intended for use as thermal-imaging detectors are to be fabricated by a process that includes surface micromachining. These thermopile arrays are designed to perform better than do prior two-dimensional thermopile arrays. The lower performance of prior two-dimensional thermopile arrays is attributed to the following causes: The thermopiles are made from low-performance thermoelectric materials. The devices contain dielectric supporting structures, the thermal conductances of which give rise to parasitic losses of heat from detectors to substrates. The bulk-micromachining processes sometimes used to remove substrate material under the pixels, making it difficult to incorporate low-noise readout electronic circuitry. The thermoelectric lines are on the same level as the infrared absorbers, thereby reducing fill factor. The improved pixel design of a thermopile array of the type under development is expected to afford enhanced performance by virtue of the following combination of features: Surface-micromachined detectors are thermally isolated through suspension above readout circuitry. The thermopiles are made of such high-performance thermoelectric materials as Bi-Te and Bi-Sb-Te alloys. Pixel structures are supported only by the thermoelectric materials: there are no supporting dielectric structures that could leak heat by conduction to the substrate.
Conformally encapsulated multi-electrode arrays with seamless insulation
Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah
2016-11-22
Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Rock, H.R.
1963-12-24
A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)
Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.
Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I
2018-03-27
Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.
Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection
NASA Technical Reports Server (NTRS)
Nallasamy, Nambi; Bridges, James
2002-01-01
The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.
The ecoresponsive genome of Daphnia pulex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald
2011-02-04
This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46more » Daphnia pulex opsins. 36 figures, 50 tables, 183 references.« less
Dynamical observation and detailed description of catalysts under strong metal–support interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuyi; Plessow, Philipp N.; Willis, Joshua J.
2016-06-09
Understanding the structures of catalysts under realistic conditions with atomic precision is crucial to design better materials for challenging transformations. Under reducing conditions, certain reducible supports migrate onto supported metallic particles and create strong metal–support states that drastically change the reactivity of the systems. The details of this process are still unclear and preclude its thorough exploitation. Here, we report an atomic description of a palladium/titania (Pd/TiO 2) system by combining state-of-the-art in situ transmission electron microscopy and density functional theory (DFT) calculations with structurally defined materials, in which we visualize the formation of the overlayers at the atomic scalemore » under atmospheric pressure and high temperature. We show that an amorphous reduced titania layer is formed at low temperatures, and that crystallization of the layer into either mono- or bilayer structures is dictated by the reaction environment and predicted by theory. Moreover, it occurs in combination with a dramatic reshaping of the metallic surface facets.« less
Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong
2014-01-01
Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuyuan; Wu, Zili; Wen, Jianguo
2015-01-01
Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorodmore » support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.« less
Flexible energetic materials and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaps, Ronald J.
Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques maymore » be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.« less
Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice
NASA Astrophysics Data System (ADS)
Geyer, Florian
This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.
Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas
2014-01-01
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643
Overview of Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.;
2018-01-01
The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.
Unlocking the Structure of Positive
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.
2016-01-01
Recognizing and using mathematical structure are key components of mathematical reasoning. The authors believe that one productive way to support students' use of structure is by identifying opportunities to address structure in the context of what teachers are already doing, rather than developing additional tasks or new curriculum materials. The…
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
Molecular Dynamical Simulation of Thermal Conductivity in Amorphous Structures
NASA Astrophysics Data System (ADS)
Deangelis, Freddy; Henry, Asegun
While current descriptions of thermal transport exists for well-ordered materials such as crystal latices, new methods are needed to describe thermal transport in disordered materials, including amorphous solids. Because such structures lack periodic, long-range order, a group velocity cannot be defined for thermal modes of vibration; thus, the phonon gas model cannot be applied to these structures. Instead, a new framework must be applied to analyze such materials. Using a combination of density functional theory and molecular dynamics, we have analyzed thermal transport in amorphous structures, chiefly amorphous germanium. The analysis allows us to categorize vibrational modes as propagons, diffusons, or locons, and to determine how they contribute to thermal conductivity within amorphous structures. This method is also being extended to other disordered structures such as amorphous polymers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.
Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications.
Cooke, Megan E; Jones, Simon W; Ter Horst, Britt; Moiemen, Naiem; Snow, Martyn; Chouhan, Gurpreet; Hill, Lisa J; Esmaeli, Maryam; Moakes, Richard J A; Holton, James; Nandra, Rajpal; Williams, Richard L; Smith, Alan M; Grover, Liam M
2018-04-01
The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon-like structures. These structures then weakly interact at zero shear forming a solid-like material. The resulting self-healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger-scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
Energy conversion device with support member having pore channels
Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO
2014-01-07
Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.
Space station structures development
NASA Technical Reports Server (NTRS)
Teller, V. B.
1986-01-01
A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.
ERIC Educational Resources Information Center
Enfield, Mark; Smith, Edward L.; Grueber, David J.
2008-01-01
This research reports on a study of curriculum materials development and use compared with the use of existing curriculum materials in an elementary classroom. The research explored the effect of explicit attention to epistemic practices in curriculum materials and the enactment of those materials. Epistemic practices include asking questions,…
Manufacturing Methods and Technology Project Summary Reports
1984-06-01
was selected as the composite material. This selection was based upon the following advantages in comparison to aluminum: 0 Stiffness to weight...closer to titanium than aluminum. Other composite candidate materials considered ( glass , Kevlar and metal matrix) did not offer all of these...of the bearing support ring, and the attachment of the bearing support ring to the composite gimbal base plate. A thermal test structure, which
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Qiu, Guanzhou
2014-10-04
Nickel foam supported Zn-Co hydroxide nanoflakes were fabricated by a facile solvothermal method. Benefited from the unique structure of Zn-Co hydroxide nanoflakes on a nickel foam substrate, the as prepared materials exhibited an excellent specific capacitance of 901 F g(-1) at 5 A g(-1) and remarkable cycling stability as electrode materials in supercapacitors.
Honeycomb chassis for electronic components
NASA Technical Reports Server (NTRS)
Read, W. S.; Stebbins, B. W.
1977-01-01
In new electronic chassis support, machined honeycomb members are used to change basic relationship between chassis and support structure. Improved chassis combines internal and external support and heat dissipation by altering chassis internal geometry. Honeycomb materials allow mechanical support and thermal load sharing to be combined at lower weight and lower cost than previous equipment.
Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures
NASA Astrophysics Data System (ADS)
Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos
2015-02-01
The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.
Recent global trends in structural materials research
NASA Astrophysics Data System (ADS)
Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki
2013-02-01
Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural materials and fundamental research on structure-property relationships. We are grateful to the authors who contributed to cover these issues, and sincerely hope that our readers will expand their knowledge of emerging international research within the field of structural materials.
Traveling wave tube and method of manufacture
NASA Technical Reports Server (NTRS)
Vancil, Bernard K. (Inventor)
2004-01-01
A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.
Lunar vertical-shaft mining system
NASA Technical Reports Server (NTRS)
Introne, Steven D. (Editor); Krause, Roy; Williams, Erik; Baskette, Keith; Martich, Frederick; Weaver, Brad; Meve, Jeff; Alexander, Kyle; Dailey, Ron; White, Matt
1994-01-01
This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure.
Materials Aspects of Turboelectric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.
2009-01-01
The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
Computational Discovery of Materials Using the Firefly Algorithm
NASA Astrophysics Data System (ADS)
Avendaño-Franco, Guillermo; Romero, Aldo
Our current ability to model physical phenomena accurately, the increase computational power and better algorithms are the driving forces behind the computational discovery and design of novel materials, allowing for virtual characterization before their realization in the laboratory. We present the implementation of a novel firefly algorithm, a population-based algorithm for global optimization for searching the structure/composition space. This novel computation-intensive approach naturally take advantage of concurrency, targeted exploration and still keeping enough diversity. We apply the new method in both periodic and non-periodic structures and we present the implementation challenges and solutions to improve efficiency. The implementation makes use of computational materials databases and network analysis to optimize the search and get insights about the geometric structure of local minima on the energy landscape. The method has been implemented in our software PyChemia, an open-source package for materials discovery. We acknowledge the support of DMREF-NSF 1434897 and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10.
Metallic dielectric photonic crystals and methods of fabrication
Chou, Jeffrey Brian; Kim, Sang-Gook
2017-12-05
A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.
Metallic dielectric photonic crystals and methods of fabrication
Chou, Jeffrey Brian; Kim, Sang-Gook
2016-12-20
A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.
NASA Astrophysics Data System (ADS)
Czubacki, Radosław
2018-01-01
The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.
Brown, Bryan N; Freund, John M; Han, Li; Rubin, J Peter; Reing, Janet E; Jeffries, Eric M; Wolf, Mathew T; Tottey, Stephen; Barnes, Christopher A; Ratner, Buddy D; Badylak, Stephen F
2011-04-01
Extracellular matrix (ECM)-based scaffold materials have been used successfully in both preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. Results of numerous studies have shown that ECM scaffolds are capable of supporting the growth and differentiation of multiple cell types in vitro and of acting as inductive templates for constructive tissue remodeling after implantation in vivo. Adipose tissue represents a potentially abundant source of ECM and may represent an ideal substrate for the growth and adipogenic differentiation of stem cells harvested from this tissue. Numerous studies have shown that the methods by which ECM scaffold materials are prepared have a dramatic effect upon both the biochemical and structural properties of the resultant ECM scaffold material as well as the ability of the material to support a positive tissue remodeling outcome after implantation. The objective of the present study was to characterize the adipose ECM material resulting from three methods of decellularization to determine the most effective method for the derivation of an adipose tissue ECM scaffold that was largely free of potentially immunogenic cellular content while retaining tissue-specific structural and functional components as well as the ability to support the growth and adipogenic differentiation of adipose-derived stem cells. The results show that each of the decellularization methods produced an adipose ECM scaffold that was distinct from both a structural and biochemical perspective, emphasizing the importance of the decellularization protocol used to produce adipose ECM scaffolds. Further, the results suggest that the adipose ECM scaffolds produced using the methods described herein are capable of supporting the maintenance and adipogenic differentiation of adipose-derived stem cells and may represent effective substrates for use in tissue engineering and regenerative medicine approaches to soft tissue reconstruction.
NASA Technical Reports Server (NTRS)
Smith, Thomas
2015-01-01
The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.
NASA Astrophysics Data System (ADS)
Hotta, Takashi
2016-02-01
This volume of Journal of Physics: Conference Series contains both invited and contributed papers presented at the International Symposium on "New Quantum Phases Emerging from Novel Crystal Structure", which was held from 24-25 September 2015 at the Minami-Osawa Campus of Tokyo Metropolitan University (TMU). The Graduate School of Science and Engineering of TMU is now promoting a research project on "New Quantum Phases Emerging from Novel Crystal Structure" with the support of the university. This is the cooperative project involving the electrical and electronic engineering and physics departments to discover new quantum phases in strongly correlated electron systems on novel crystal structures, with geometrically characteristic properties such as cage, layered, and geometrical frustrated structures. In this international symposium, we have mainly picked up BiS2-based layered superconductors, cage-structure materials such as 1-2-20 and filled skutterudites, geometrically frustrated systems such as pyrochlore compounds, and noncentrosymmetric materials. Topics on other materials with exotic crystal structure have been also discussed. I believe that this symposium provides a good opportunity to present recent research results on magnetism and superconductivity in such materials, and to discuss future directions of research on strongly correlated electron systems with novel crystal structure. I would like to give thanks, on behalf of the organizing committee, to all participants of the TMU International Symposium and all members of the Advisory Committee, who have contributed to the success of this symposium. I further thank the TMU Research Organization for the financial support of this symposium.
Plasmon modes supported by left-handed material slab waveguide with conducting interfaces
NASA Astrophysics Data System (ADS)
Taya, Sofyan A.
2018-07-01
Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.
Graded porous inorganic materials derived from self-assembled block copolymer templates.
Gu, Yibei; Werner, Jörg G; Dorin, Rachel M; Robbins, Spencer W; Wiesner, Ulrich
2015-03-19
Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.
NASA Astrophysics Data System (ADS)
Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang
2016-01-01
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).
10.2 Thermal-Structural Testing
NASA Technical Reports Server (NTRS)
Hudson, Larry D.
2008-01-01
Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading a) Thermal-structural mission cycling for re-entry and hypersonic cruise conditions; b) High-temperature modal survey to study the effect of heating on mode shapes, natural frequencies and damping. Supports NASA ARMD Hypersonics Material & Structures Program. Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP Test Phases - Phase 1: Acoustic-Vibration Testing (LaRC) completed - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly - Phase 3: Mechanical Testing (DFRC) in assembly
NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel
NASA Technical Reports Server (NTRS)
1975-01-01
Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.
Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.
Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew
2013-05-01
Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.
ERIC Educational Resources Information Center
Basten, Melanie; Meyer-Ahrens, Inga; Fries, Stefan; Wilde, Matthias
2014-01-01
Field trips can provide unique opportunities for authentic, meaningful, and self-determined learning. Capitalizing on these opportunities requires that field trips be structured. A common way to do this is through the use of educational materials such as worksheets. The extent to which the guide's or teacher's autonomy-supportive or…
Risk Analysis of Return Support Material on Gas Compressor Platform Project
NASA Astrophysics Data System (ADS)
Silvianita; Aulia, B. U.; Khakim, M. L. N.; Rosyid, Daniel M.
2017-07-01
On a fixed platforms project are not only carried out by a contractor, but two or more contractors. Cooperation in the construction of fixed platforms is often not according to plan, it is caused by several factors. It takes a good synergy between the contractor to avoid miss communication may cause problems on the project. For the example is about support material (sea fastening, skid shoe and shipping support) used in the process of sending a jacket structure to operation place often does not return to the contractor. It needs a systematic method to overcome the problem of support material. This paper analyses the causes and effects of GAS Compressor Platform that support material is not return, using Fault Tree Analysis (FTA) and Event Tree Analysis (ETA). From fault tree analysis, the probability of top event is 0.7783. From event tree analysis diagram, the contractors lose Rp.350.000.000, - to Rp.10.000.000.000, -.
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Supported catalysts using nanoparticles as the support material
Wong, Michael S.; Wachs, Israel E.; Knowles, William V.
2010-11-02
A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.
Utilization of on-site resources for regenerative life support systems at Lunar and Martian outposts
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.; Henninger, Donald L.
1993-01-01
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transportng supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions. Natural materials on the Moon and/or Mars may be used for a variety of RLSS needs including (1) soils or solid-support substrate for plant growth, (2) sources for extraction of essential plant-growth nutrients, (3) sources of O2, H2, CO2, and water, (4) substrates for microbial populations in the degradation of wastes, and (5) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. In addition to the regolith, the martian atmosphere will provide additional resources at a Mars outpost, including water, CO2 and other atmospheric gases.
Structural analysis and design for the development of floating photovoltaic energy generation system
NASA Astrophysics Data System (ADS)
Yoon, S. J.; Joo, H. J.; Kim, S. H.
2018-06-01
In this paper, we discussed the structural analysis and design for the development of floating photovoltaic energy generation system. Series of research conducted to develop the system from the analysis and design of the structural system to the installation of the system discussed. In the structural system supporting solar panels PFRP materials and SMC FRP materials used. A unit module structure is fabricated and then the unit module structures are connected each other to assemble whole PV energy generation complex. This system connected directly to the power grid system. In addition, extensive monitoring for the efficiency of electricity generation and the soundness of the structural system is in progress for the further system enhancement.
Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes
NASA Astrophysics Data System (ADS)
Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei
2013-11-01
This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.
Recent Niobium Developments for High Strength Steel Energy Applications
NASA Astrophysics Data System (ADS)
Jansto, Steven G.
Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Dutta, Shuchismita; Zardecki, Christine; Goodsell, David S; Berman, Helen M
2010-10-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) supports scientific research and education worldwide by providing an essential resource of information on biomolecular structures. In addition to serving as a deposition, data-processing and distribution center for PDB data, the RCSB PDB offers resources and online materials that different audiences can use to customize their structural biology instruction. These include resources for general audiences that present macromolecular structure in the context of a biological theme, method-based materials for researchers who take a more traditional approach to the presentation of structural science, and materials that mix theme-based and method-based approaches for educators and students. Through these efforts the RCSB PDB aims to enable optimal use of structural data by researchers, educators and students designing and understanding experiments in biology, chemistry and medicine, and by general users making informed decisions about their life and health.
Permeability and stability of base and subbase materials : research implementation plan.
DOT National Transportation Integrated Search
2000-08-01
The purpose of pavement base and subbase courses is to provide a means for free water to drain from : beneath roadways while providing structural support for the pavement. Problems occur when highway : materials which are assumed to have adequate dra...
Microanalytical Efforts in Support of NASA's Materials Science Programs
NASA Technical Reports Server (NTRS)
Gillies, Donald C.
2004-01-01
Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.
Potential of Organic Matrix Composites for Liquid Oxygen Tank
NASA Technical Reports Server (NTRS)
Davis, Samuel E.; Herald, Stephen D.; Stolzfus, Joel M.; Engel, Carl D.; Bohlen, James W.; Palm, Tod; Robinson, Michael J.
2005-01-01
Composite materials are being considered for the tankage of cryogenic propellants in access to space because of potentially lower structural weights. A major hurdle for composites is an inherent concern about the safety of using flammable structural materials in contact with liquid and gaseous oxygen. A hazards analysis approach addresses a series of specific concerns that must be addressed based upon test data. Under the 2nd Generation Reusable Launch Vehicle contracts, testing was begun for a variety of organic matrix composite materials both to aid in the selection of materials and to provide needed test data to support hazards analyses. The work has continued at NASA MSFC and the NASA WSTF to provide information on the potential for using composite materials in oxygen systems. Appropriate methods for oxygen compatibility testing of structural materials and data for a range of composite materials from impact, friction, flammability and electrostatic discharge testing are presented. Remaining concerns and conclusions about composite tank structures, and recommendations for additional testing are discussed. Requirements for system specific hazards analysis are identified.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames
NASA Technical Reports Server (NTRS)
1987-01-01
The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.
High pressure and multiferroics materials: a happy marriage
Gilioli, Edmondo; Ehm, Lars
2014-01-01
The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138
NASA Astrophysics Data System (ADS)
Lynch, Christopher
2009-10-01
The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.
NASA Astrophysics Data System (ADS)
Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill
2017-06-01
Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.
Family Structure Transitions and Changes in Maternal Resources and Well-Being
Osborne, Cynthia; Berger, Lawrence M.; Magnuson, Katherine
2013-01-01
This paper uses data from the Fragile Families and Child Wellbeing Study to examine whether family instability is associated with changes in perceived social support, material hardship, maternal depression, and parenting stress among mothers of young children. In addition to accounting for the number of transitions a mother experiences over the first five years of her child’s life, we pay close attention to the type and timing of these transitions. We find that mothers who transition to cohabitation or marriage with their child’s biological father experience declines in material hardship and that those who transition to cohabitation or marriage with another man exhibit modest declines in both material hardship and depression. Mothers who exit cohabiting or marital relationships encounter decreases in perceived social support and increases in material hardship, depression, and parenting stress. Overall, our results suggest that both the type and, to a much lesser degree, the timing of family structure transitions may influence maternal well-being. PMID:22215507
Compatibility of structural materials with liquid bismuth, lead, and mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, J.R.
1996-06-01
During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less
Utilization of on-site resources for Regenerative Life Support Systems at a lunar outpost
NASA Technical Reports Server (NTRS)
Ming, D. W.; Golden, D. C.; Henninger, D. L.
1992-01-01
Regenerative life support systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration stays on the moon. It may be possible to supplement some of the materials needed for RLSS from resources on the moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation.
High velocity impact on composite link of aircraft wing flap mechanism
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Lang, Holger; Havar, Tamas
2012-12-01
This paper describes the numerical investigation of the mechanical behaviour of a structural component of an aircraft wing flap support impacted by a wheel rim fragment. The support link made of composite materials was modelled in the commercial finite element code Abaqus/Explicit, incorporating intralaminar and interlaminar failure modes by adequate material models and cohesive interfaces. Validation studies were performed step by step using quasi-static tensile test data and low velocity impact test data. Finally, high velocity impact simulations with a metallic rim fragment were performed for several load cases involving different impact angles, impactor rotation and pre-stress. The numerical rim release analysis turned out to be an efficient approach in the development process of such composite structures and for the identification of structural damage and worst case impact loading scenarios.
Microwave limb sounder, graphite epoxy support structure
NASA Technical Reports Server (NTRS)
Pynchon, G.
1980-01-01
The manufacturing and processing procedures which were used to fabricate a precision graphite/epoxy support structure for a spherical microwave reflecting surface are described. The structure was made fromm GY-70/930 ultra high modulus graphite prepreg, laminated to achieve an isotropic in plane thermal expansion of less than + or - 0.1 PPM/F. The structure was hand assembled to match the interface of the reflective surface, which was an array of 18 flexure supported, aluminum, spherically contoured tiles. Structural adhesives were used in the final assembly to bond the elements into their final configuration. A eutectic metal coating was applied to the composite surface to reduce dimensional instabilities arising from changes in the composite epoxy moisture content due to environmental effects. Basic materials properties data are reported and the results of a finite element structural analysis are referenced.
Lightweight flywheel containment
Smith, James R.
2001-01-01
A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.
Lightweight flywheel containment
Smith, James R.
2004-06-29
A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.
Space Environmental Effects on Materials and Processes
NASA Technical Reports Server (NTRS)
Sabbann, Leslie M.
2009-01-01
The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A.; Simnad, Massoud T.
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Lessons learned for composite structures
NASA Technical Reports Server (NTRS)
Whitehead, R. S.
1991-01-01
Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes.
NASA Astrophysics Data System (ADS)
McCarthy, James A.
The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the A-site cation and the basicity of the titanate. When applied to cyclohexene ODH however, no discernable relationship between reducibility and TOF could be observed, implying that other factors play a major role in this reaction. Through this work, a deeper understanding has been developed concerning the impact of titanate supports on VOx redox and catalytic properties. These findings demonstrate the ability of novel support materials to reveal new insights into structure-function relationships.
Habitats and Surface Construction Technology and Development Roadmap
NASA Technical Reports Server (NTRS)
Cohen, Marc; Kennedy, Kriss J.
1997-01-01
The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.
The transition of ground-based space environmental effects testing to the space environment
NASA Technical Reports Server (NTRS)
Zaat, Stephen V.; Schaefer, Glen A.; Wallace, John F.
1991-01-01
The goal of the space flight program at the Center for Commercial Development of Space (CCDS)--Materials for Space Structures is to provide environmentally stable structural materials to support the continued humanization and commercialization of the space frontier. Information on environmental stability will be obtained through space exposure, evaluation, documentation, and subsequent return to the supplier of the candidate material for internal investigation. This program provides engineering and scientific service to space systems development firms and also exposes CCDS development candidate materials to space environments representative of in-flight conditions. The maintenance of a technological edge in space for NASA suggests the immediate search for space materials that maintain their structural integrity and remain environmentally stable. The materials being considered for long-lived space structures are complex, high strength/weight ratio composites. In order for these new candidate materials to qualify for use in space structures, they must undergo strenuous testing to determine their reliability and stability when subjected to the space environment. Ultraviolet radiation, atomic oxygen, debris/micrometeoroids, charged particles radiation, and thermal fatigue all influence the design of space structural materials. The investigation of these environmental interactions is the key purpose of this center. Some of the topics discussed with respect to the above information include: the Space Transportation System, mission planning, spaceborne experiments, and space flight payloads.
Integrated seal for high-temperature electrochemical device
Tucker, Michael C; Jacobson, Craig P
2013-07-16
The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.
Early hazard identification of new chemicals is often difficult due to lack of data on the novel material for toxicity endpoints, including neurotoxicity. At present, there are no structure searchable neurotoxicity databases. A working group was formed to construct a database to...
NASA Astrophysics Data System (ADS)
Manan, N. H.; Majid, D. L.; Romli, F. I.
2016-10-01
Sandwich structures with honeycomb core are known to significantly improve stiffness at lower weight and possess high flexural rigidity. They have found wide applications in aerospace as part of the primary structures, as well as the interior paneling and floors. High performance aluminum and aramid are the typical materials used for the purpose of honeycomb core whereas in other industries, materials such as fibre glass, carbon fibre, Nomex and also Kevlar reinforced with polymer are used. Recently, growing interest in developing composite structures with natural fibre reinforcement has also spurred research in natural fibre honeycomb material. The majority of the researches done, however, have generally emphasized on the usage of random chopped fibre and only a few are reported on development of honeycomb structure using unidirectional fibre as the reinforcement. This is mainly due to its processing difficulties, which often involve several stages to account for the arrangement of fibres and curing. Since the use of unidirectional fibre supports greater strength compared to random chopped fibre, a single-stage process in conjunction with vacuum infusion is suggested with a mould design that supports fibre arrangement in the direction of honeycomb loading.
NASA Astrophysics Data System (ADS)
Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.
2011-10-01
Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.
Preferred Visuographic Images to Support Reading by People with Chronic Aphasia.
Knollman-Porter, Kelly; Brown, Jessica; Hux, Karen; Wallace, Sarah E; Uchtman, Elizabeth
2016-08-01
Written materials used both clinically and in everyday reading tasks can contain visuographic images that vary in content and attributes. People with aphasia may benefit from visuographic images to support reading comprehension. Understanding the image type and feature preferences of individuals with aphasia is an important first step when developing guidelines for selecting reading materials that motivate and support reading comprehension. The study purposes were to determine the preferences and explore the perceptions of and opinions provided by adults with chronic aphasia regarding various image features and types on facilitating the reading process. Six adults with chronic aphasia ranked visuographic materials varying in context, engagement, and content regarding their perceived degree of helpfulness in comprehending written materials. Then, they participated in semi-structured interviews that allowed them to elaborate on their choices and convey opinions about potential benefits and detriments associated with preferred and non-preferred materials. All participants preferred high-context photographs rather than iconic images or portraits as potential supports to facilitate reading activities. Differences in opinions emerged across participants regarding the amount of preferred content included in high context images.
NASA Astrophysics Data System (ADS)
Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.
2016-08-01
The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.
Structured Course Objects in a Digital Library
NASA Technical Reports Server (NTRS)
Maly, K.; Zubair, M.; Liu, X.; Nelson, M.; Zeil, S.
1999-01-01
We are developing an Undergraduate Digital Library Framework (UDLF) that will support creation/archiving of courses and reuse of existing course material to evolve courses. UDLF supports the publication of course materials for later instantiation for a specific offering and allows the addition of time-dependent and student-specific information and structures. Instructors and, depending on permissions, students can access the general course materials or the materials for a specific offering. We are building a reference implementation based on NCSTRL+, a digital library derived from NCSTRL. Digital objects in NCSTRL+ are called buckets, self-contained entities that carry their own methods for access and display. Current bucket implementations have a two level structure of packages and elements. This is not a rich enough structure for course objects in UDLF. Typically, courses can only be modeled as a multilevel hierarchy and among different courses, both the syntax and semantics of terms may vary. Therefore, we need a mechanism to define, within a particular library, course models, their constituent objects, and the associated semantics in a flexible, extensible way. In this paper, we describe our approach to define and implement these multilayered course objects. We use XML technology to emulate complex data structures within the NCSTRL+ buckets. We have developed authoring and browsing tools to manipulate these course objects. In our current implementation a user downloading an XML based course bucket also downloads the XML-aware tools: an applet that enables the user to edit or browse the bucket. We claim that XML provides an effective means to represent multi-level structure of a course bucket.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
NASA Technical Reports Server (NTRS)
Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris
2004-01-01
Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.
Preparation of resveratrol-loaded nanoporous silica materials with different structures
NASA Astrophysics Data System (ADS)
Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira
2014-11-01
Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.
Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides
2015-01-01
Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534
2010-04-14
assembly of new materials with magnetic, optical , and photonic properties, self-replicating colloidal structures, and sensors. (a) Papers published in...Nanostructures: New Properties Driving New Synthetic Opportunities” This talk explored optical properties of assemblies of structured colloids. - I...including experts on optical and photonic materials, numerical simulation, multiphase fluid flows, biomaterials, bacteriology, tribology
Nano-architecture of metal-organic frameworks
NASA Astrophysics Data System (ADS)
Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.
2017-09-01
Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.
Aerogel and xerogel composites for use as carbon anodes
Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA
2008-08-12
Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, Marco
2015-03-01
High-Throughput Quantum-Mechanics computation of materials properties by ab initio methods has become the foundation of an effective approach to materials design, discovery and characterization. This data driven approach to materials science currently presents the most promising path to the development of advanced technological materials that could solve or mitigate important social and economic challenges of the 21st century. In particular, the rapid proliferation of computational data on materials properties presents the possibility to complement and extend materials property databases where the experimental data is lacking and difficult to obtain. Enhanced repositories such as AFLOWLIB, open novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various properties. The practical realization of these opportunities depends on the the design effcient algorithms for electronic structure simulations of realistic material systems, the systematic compilation and classification of the generated data, and its presentation in easily accessed form to the materials science community, the primary mission of the AFLOW consortium. This work was supported by ONR-MURI under Contract N00014-13-1-0635 and the Duke University Center for Materials Genomics.
Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA
2009-06-09
A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.
Translatory shock absorber for attitude sensors
NASA Technical Reports Server (NTRS)
Vonpragenau, G. L.; Morgan, I. T., Jr.; Kirby, C. A. (Inventor)
1976-01-01
A translatory shock absorber is provided for mounting an attitude sensor thereon for isolating a sensor from translatory vibrations. The translatory shock absorber includes a hollow block structure formed as one piece to form a parallelogram. The absorber block structure includes a movable top plate for supporting the attitude sensor and a fixed base plate with opposed side plates interposed between. At the junctions of the side plates, and the base and top plates, there are provided grooves which act as flexible hinges for attenuating translatory vibrations. A damping material is supported on a pedestal which is carried on the base plate between the side plates thereof. The top of the damping material rests against the bottom surface of the top plate for eliminating the resonant peaks of vibration.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
Solid materials for removing arsenic and method thereof
Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.
2010-09-28
Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.
Solid materials for removing arsenic and method thereof
Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA
2008-07-01
Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.
High pressure and Multiferroics materials. A happy marriage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilioli, Edmondo; Ehm, Lars
2014-10-31
We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties andmore » the coupling to structural instabilities.« less
3D-printing and mechanics of bio-inspired articulated and multi-material structures.
Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto
2017-09-01
3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural and spectroscopic studies of a commercial glassy carbon
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.
2013-12-01
Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.
Developmental biology meets materials science: Morphogenesis of biomineralized structures.
Wilt, Fred H
2005-04-01
Biomineralization is the process by which metazoa form hard minerals for support, defense, and feeding. The minerals so formed, e.g., teeth, bones, shells, carapaces, and spicules, are of considerable interest to chemists and materials scientists. The cell biology underlying biomineralization is not well understood. The study of the formation of mineralized structures in developing organisms offers opportunities for understanding some intriguing aspects of cell and developmental biology. Five examples of biomineralization are presented: (1) the formation of siliceous spicules and frustules in sponges and diatoms, respectively; (2) the structure of skeletal spicules composed of amorphous calcium carbonate in some tunicates; (3) the secretion of the prism and nacre of some molluscan shells; (4) the development of skeletal spicules of sea urchin embryos; and (5) the formation of enamel of vertebrate teeth. Some speculations on the cellular and molecular mechanisms that support biomineralization, and their evolutionary origins, are discussed.
Reducing Structural Weight and Increasing Protection in Simple Structures Subjected to Blast Loads
2014-08-12
centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle...supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of...protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic
Dutta, Shuchismita; Zardecki, Christine; Goodsell, David S.; Berman, Helen M.
2010-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) supports scientific research and education worldwide by providing an essential resource of information on biomolecular structures. In addition to serving as a deposition, data-processing and distribution center for PDB data, the RCSB PDB offers resources and online materials that different audiences can use to customize their structural biology instruction. These include resources for general audiences that present macromolecular structure in the context of a biological theme, method-based materials for researchers who take a more traditional approach to the presentation of structural science, and materials that mix theme-based and method-based approaches for educators and students. Through these efforts the RCSB PDB aims to enable optimal use of structural data by researchers, educators and students designing and understanding experiments in biology, chemistry and medicine, and by general users making informed decisions about their life and health. PMID:20877496
Passive Isolators for use on the International Space Station
NASA Technical Reports Server (NTRS)
Houston, Janice; Gattis, Christy
2003-01-01
The value of the International Space Station (ISS) as a premier microgravity environment is currently at risk due to structure-borne vibration. The vibration sources are varied and include crew activities such as exercising or simply moving from module to module, and electro- mechanical equipment such as fans and pumps. Given such potential degradation of usable microgravity, anything that can be done to dampen vibration on-orbit will significantly benefit microgravity users. Most vibration isolation schemes, both active and passive, have proven to be expensive - both operationally and from the cost of integrating isolation systems into primary/secondary structural interfaces (e.g., the ISS module/rack interface). Recently, passively absorptive materials have been tested at the bolt interfaces between the operating equipment and support structure (secondary/tertiary structural interfaces). The results indicate that these materials may prove cost-effective in mitigating the vibrational problems of the ISS. We report herein tests of passive absorbers placed at the interface of a vibration-inducing component: the Development Distillation Assembly, a subassembly of the Urine Processing Assembly, which is a rotating centrifuge and cylinder assembly attached to a mounting plate. Passive isolators were installed between this mounting plate and its support shelf. Three materials were tested: BISCO HT-800, Sorbothane 30 and Sorbothane 50, plus a control test with a hard shim. In addition, four distinct combinations of the HT-800 and Sorbothane 50 were tested. Results show a significant (three orders of magnitude) reduction of transmitted energy, as measured in power spectral density (PSD), using the isolation materials. It is noted, however, that passive materials cannot prevent the transmission of very strong forces or absorb the total energy induced from structural resonances.
New crystal structures in hexagonal CuInS2 nanocrystals
NASA Astrophysics Data System (ADS)
Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.
2013-03-01
CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
NASA Astrophysics Data System (ADS)
Blinkov, Pavel; Ogorodov, Leonid; Grabovyy, Peter
2018-03-01
Modern high-rise construction introduces a number of limitations and tasks. In addition to durability, comfort and profitability, projects should take into account energy efficiency and environmental problems. Polymer building materials are used as substitutes for materials such as brick, concrete, metal, wood and glass, and in addition to traditional materials. Plastic materials are light, can be formed into complex shapes, durable and low, and also possess a wide range of properties. Plastic materials are available in various forms, colors and textures and require minimal or no color. They are resistant to heat transfer and diffusion of moisture and do not suffer from metal corrosion or microbial attack. Polymeric materials, including thermoplastics, thermoset materials and wood-polymer composites, have many structural and non-structural applications in the construction industry. They provide unique and innovative solutions at a low cost, and their use is likely to grow in the future. A number of polymer composite materials form complex material compositions, which are applied in the construction in order to analyze the processes of damage accumulation under the conditions of complex nonstationary loading modes, and to determine the life of structural elements considering the material aging. This paper present the results of tests on short-term compression loading with a deformation rate of v = 2 mm/min using composite samples of various shapes and sizes.
NASA Astrophysics Data System (ADS)
Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
NASA Astrophysics Data System (ADS)
Ribeiro, Eduardo Afonso; Lopes, Eduardo Márcio de Oliveira; Bavastri, Carlos Alberto
2017-12-01
Viscoelastic materials have played an important role in passive vibration control. Nevertheless, the use of such materials in supports of rotating machines, aiming at controlling vibration, is more recent, mainly when these supports present additional complexities like multiple degrees of freedom and require accurate models to predict the dynamic behavior of viscoelastic materials working in a broad band of frequencies and temperatures. Previously, the authors propose a methodology for an optimal design of viscoelastic supports (VES) for vibration suppression in rotordynamics, which improves the dynamic prediction accuracy, the speed calculation, and the modeling of VES as complex structures. However, a comprehensive numerical study of the dynamics of rotor-VES systems, regarding the types and combinations of translational and rotational degrees of freedom (DOFs), accompanied by the corresponding experimental validation, is still lacking. This paper presents such a study considering different types and combinations of DOFs in addition to the simulation of their number of additional masses/inertias, as well as the kind and association of the applied viscoelastic materials (VEMs). The results - regarding unbalance frequency response, transmissibility and displacement due to static loads - lead to: 1) considering VES as complex structures which allow improving the efficacy in passive vibration control; 2) acknowledging the best configuration concerning DOFs and VEM choice and association for a practical application concerning passive vibration control and load resistance. The specific outcomes of the conducted experimental validation attest the accuracy of the proposed methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Ho; Byun, Thak Sang
Accident-tolerant fuels are expected to have considerably longer coping time to respond to the loss of active cooling under severe accidents and, at the same time, have comparable or improved fuel performance during normal operation. The wear resistance of accident tolerant fuels, therefore, needs to be examined to determine the applicability of these cladding candidates to the current operating PWRs because the most common failure of nuclear fuel claddings is still caused by grid-to-rod fretting during normal operations. In this study, reciprocating sliding wear tests on three kinds of cladding candidates for accident-tolerant fuels have been performed to investigate themore » tribological compatibilities of selfmated cladding candidates and to determine the direct applicability of conventional Zirconium-based alloys as supporting structural materials. The friction coefficients of the cladding candidates are strongly influenced by the test environments and coupled materials. The wear test results under water lubrication conditions indicate that the supporting structural materials for the cladding candidates of accident-tolerant fuels need to be replaced with the same cladding materials instead of using conventional Zirconium-based alloys.« less
Young's modulus measurement of aluminum thin film with cantilever structure
NASA Astrophysics Data System (ADS)
Lee, ByoungChan; Lee, SangHun; Lee, Hwasu; Shin, Hyungjae
2001-09-01
Micromachined cantilever structures are commonly used for measuring mechanical properties of thin film materials in MEMS. The application of conventional cantilever theory in experiment raises severe problem. The deformation of the supporting post and flange is produced by the applied electrostatic force and lead to more reduced measurement value than real Young's modulus of thin film materials. In order to determine Young's modulus of aluminum thin film robustly and reproducibly, the modified cantilever structure is proposed. Two measurement methods, which are cantilever tip deflection measurement and resonant frequency measurement, are used for confirming the reliability of the proposed cantilever structure as well. Measured results indicate that the proposed measurement scheme provides useful and credible Young's modulus value for thin film materials with sub-micron thickness. The proved validation of the proposed scheme makes sure that in addition to Young's modulus of aluminum thin film, that of other thin film materials which are aluminum alloy, metal, and so forth, can be extracted easily and clearly.
JOYO-1 Irradiation Test Campaign Technical Close-out, For Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Borges
2006-01-31
The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less
29 CFR 1910.66 - Powered platforms for building maintenance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... roof socket or carriage attachment. Equivalent means alternative designs, materials or methods which... that the equipment is designed to support. Obstruction detector means a control that will stop the... scaffold is not designed for use on a specific structure or group of structures. Tail line means the...
29 CFR 1910.66 - Powered platforms for building maintenance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... roof socket or carriage attachment. Equivalent means alternative designs, materials or methods which... that the equipment is designed to support. Obstruction detector means a control that will stop the... scaffold is not designed for use on a specific structure or group of structures. Tail line means the...
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading
NASA Astrophysics Data System (ADS)
Tanaka, Hiro; Suga, Kaito; Iwata, Naoki; Shibutani, Yoji
2017-01-01
Anisotropic materials form inside living tissue and are widely applied in engineered structures, where sophisticated structural and functional design principles are essential to employing these materials. This paper presents a candidate laminated open-cell framework, which is an anisotropic material that shows remarkable mechanical performance. Using additive manufacturing, artificial frameworks are fabricated by lamination of in-plane orthotropic microstructures made of elbowed beam and column members; this fabricated structure features orthogonal anisotropy in three-dimensional space. Uniaxial loading tests reveal strong auxeticity (high negative Poisson’s ratios) in the out-of-plane direction, which is retained reproducibly up to the nonlinear elastic region, and is equal under tensile and compressive loading. Finite element simulations support the observed auxetic behaviors for a unit cell in the periodic framework, which preserve the theoretical elastic properties of an orthogonal solid. These findings open the possibility of conceptual materials design based on geometry.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
Method and apparatus for optimized sampling of volatilizable target substances
Lindgren, Eric R.; Phelan, James M.
2004-10-12
An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saputra, Hens; Othman, Raihan, E-mail: raihan@iium.edu.my; Sutjipto, A.G.E.
2012-03-15
Highlights: Black-Right-Pointing-Pointer MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. Black-Right-Pointing-Pointer The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40-70 wt. %. Black-Right-Pointing-Pointer MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol-gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electronmore » Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.« less
Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.
Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong
2017-10-01
Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.
Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm
2016-01-01
This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.
Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm
2016-01-01
Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.
ERIC Educational Resources Information Center
Caplan, Arnold I.
1984-01-01
Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stair, Peter C.
The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less
Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S
2015-06-23
We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.
Measures for improving the zeppelin airships for long distance transportation
NASA Technical Reports Server (NTRS)
Duerr, L. F.
1980-01-01
Factors to be considered in the construction of dirigibles include the design and weight of support structures, static and aerodynamic loads on the main ring, the annealing of support materials, and the dynamic gas pressure. Adaptations made for using helium as the lifting gas, and a method for extracting ballast are described.
High force vibration testing with wide frequency range
Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn
2013-04-02
A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.
Incorporation of Modified Basic and Advanced Life Support in the Pharmacy Curriculum
ERIC Educational Resources Information Center
Masoud, A. N.; And Others
1978-01-01
Offered as an independent, elective, one-credit course available to second-year pharmacy students, a life support course has been taught at the University of Nebraska Medical Center by instructors certified by the American Heart Association. Course structure and materials, student response, and course evaluation are discussed. (LBH)
Towards a Multi-Scale Understanding of Thermoacoustic Fatigue in Aerospace Materials and Structure
2016-05-31
for public release: distribution unlimited. 3.1.3 Pulsed laser Litron Nano This is a commercially available laser (Nano L200-10, Litron, Rugby , England...to disseminate recent research support by AFOSR and EOARD and associated work supported via European Union FP7 grants entitled ‘AD- VISE’ (Grant no
All dispenser printed flexible 3D structured thermoelectric generators
NASA Astrophysics Data System (ADS)
Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.
2015-12-01
This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.
Positrons as interface-sensitive probes of polar semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.
2010-07-01
Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.
Advanced materials for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.
1991-01-01
The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.
Design of internal support structures for an inflatable lunar habitat
NASA Technical Reports Server (NTRS)
Cameron, Elizabeth A.; Duston, John A.; Lee, David D.
1990-01-01
NASA has a long range goal of constructing a fully equipped, manned lunar outpost on the near side of the moon by the year 2015. The proposed outpost includes an inflatable lunar habitat to support crews during missions longer that 12 months. A design for the internal support structures of the inflatable habitat is presented. The design solution includes material selection, substructure design, assembly plan development, and concept scale model construction. Alternate designs and design solutions for each component of the design are discussed. Alternate materials include aluminum, titanium, and reinforced polymers. Vertical support alternates include column systems, truss systems, suspension systems, and lunar lander supports. Horizontal alternates include beams, trusses, floor/truss systems, and expandable trusses. Feasibility studies on each alternate showed that truss systems and expandable trusses were the most feasible candidates for conceptual design. The team based the designs on the properties of 7075 T73 aluminum. The substructure assembly plan, minimizes assembly time and allows crews to construct the habitat without the use of EVA suits. In addition to the design solutions, the report gives conclusions and recommendations for further study of the inflatable habitat design.
Exploring the role of curriculum materials to support teachers in science education reform
NASA Astrophysics Data System (ADS)
Schneider, Rebecca M.
2001-07-01
For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific educative supports for teachers. Overall, findings indicate curriculum materials that include detailed descriptions of lessons accompanied by educative features can help teachers with enactment. Therefore, design principles to improve materials to support teachers in reform are suggested. However, results also demonstrate materials alone are not sufficient to create intended enactments; reform efforts must include professional development in content and pedagogy and efforts to create systemic change in context and policy to support teacher learning and classroom enactment.
Structural design and performance of a rear support walking frame.
Woollam, P J; Miller, K; McLeod, N; Batty, D; Stallard, J
2002-01-01
Rear support walking frames provide predetermined vertical support for patients with dysfunctional lower limbs that have limited active control; the support is provided through a spring-loaded boom hinged on an upright stanchion mounted at the rear of a wheeled frame within which the patient ambulates. The application of these frames for total-body-involved cerebral palsy patients, in combination with a walking orthosis, has highlighted a number of practical problems that need to be addressed for the system to become fully viable. A composite material prototype walking frame has been developed that permits the patient to be transferred by a single carer without the need to use inappropriate manual handling techniques. The frame has improved structural properties, with stiffness in the sagittal and coronal planes increasing by between 50 and 100 per cent. Evaluation with patients showed that the greater structural stiffness permitted the objective of improved continuity of walking to be achieved. The strength of the frame is such that it can accommodate patients of up to 80 kg, more than twice that possible in the earlier system. Since the structural yield point is approximately twice the maximum working load, the device should not be prone to unacceptable fatigue characteristics. Despite the use of carbon composite materials (which have brittle failure characteristics), the mode of failure is of progressive collapse and is therefore inherently safe. The successful outcome of prototype testing has justified production development. Work is now proceeding on a design that incorporates further improvements in structural performance and ease of manufacture.
Impact analysis of automotive structures with distributed smart material systems
NASA Astrophysics Data System (ADS)
Peelamedu, Saravanan M.; Naganathan, Ganapathy; Buckley, Stephen J.
1999-06-01
New class of automobiles has structural skins that are quite different from their current designs. Particularly, new families of composite skins are developed with new injection molding processes. These skins while support the concept of lighter vehicles of the future, are also susceptible to damage upon impact. It is important that their design should be based on a better understanding on the type of impact loads and the resulting strains and damage. It is possible that these skins can be integrally designed with active materials to counter damages. This paper presents a preliminary analysis of a new class of automotive skins, using piezoceramic as a smart material. The main objective is to consider the complex system with, the skin to be modeled as a layered plate structure involving a lightweight material with foam and active materials imbedded on them. To begin with a cantilever beam structure is subjected to a load through piezoceramic and the resulting strain at the active material site is predicted accounting for the material properties, piezoceramic thickness, adhesive thickness including the effect of adhesives. A finite element analysis is carried out to compare experimental work. Further work in this direction would provide an analytical tool that will provide the basis for algorithms to predict and counter impacts on the future class of automobiles.
A Review: Fundamental Aspects of Silicate Mesoporous Materials
ALOthman, Zeid A.
2012-01-01
Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.
Self-assembly of free-standing RNA membranes
NASA Astrophysics Data System (ADS)
Han, Daehoon; Park, Yongkuk; Kim, Hyejin; Lee, Jong Bum
2014-07-01
RNA has emerged as a promising material for nanostructure and microstructure engineering. Although rare, some macroscopic RNA structures have also been constructed using lipid or polymer materials. Here, we report the first example of an enzymatically generated RNA membrane. This robust and free-standing RNA membrane has a macroscopic structure and is generated without any polymer support or complexation. Our RNA membrane is fabricated following two sequential processes, complementary rolling circle transcription and evaporation-induced self-assembly, and its structural and functional properties are rationally controlled by adjusting RNA base pairing. In this study, three types of RNA membranes are fabricated and are used to demonstrate potential applications.
Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.
2007-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie Dawn
2010-01-01
Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.
Investigation of the optimal backscatter for an aSi electronic portal imaging device.
Ko, Lung; Kim, Jong Oh; Siebers, Jeffrey V
2004-05-07
The effects of backscattered radiation on the dosimetric response of the Varian aS500 amorphous silicon electronic portal imaging device (EPID) are studied. Measurements demonstrate that radiation backscattered from the EPID mechanical support structure causes 5% asymmetries in the detected signal. To minimize the effect of backscattered radiation from the support structure, this work proposes adding material downstream of the EPID phosphor which provides uniform backscattering material to the phosphor and attenuates backscatter from the support structure before it reaches the phosphor. Two material locations were studied: downstream of the existing image cassette and within the cassette, immediately downstream of the flat-panel imager glass panel. Monte Carlo simulations were used to determine the thicknesses of water, Pb and Cu backscattering materials required to saturate the backscattered signal response for 6 MV and 18 MV beams for material thicknesses up to 50 mm. Water was unable to saturate the backscattered signal for thicknesses up to 50 mm for both energies. For Pb, to obtain a signal within 1% of saturation, 3 mm was required at 6 MV, and 6.8 mm was required at 18 MV. For Cu, thicknesses of 20.6 mm and 22.6 mm were required for the 6 MV and 18 MV beams, respectively. For saturation thicknesses, at 6 MV, the Cu backscatter enhanced the signal more than for Pb (Cu 1.25, Pb 1.11), but at 18 MV the reverse was found (Cu 1.19, Pb 1.23). This is due to the fact that at 6 MV, the backscattered radiation signal is dominated by low-energy scattered photons, which are readily attenuated by the Pb, while at 18 MV, electron backscatter contributes substantially to the signal. Image blurring caused by backscatter spread was less for Pb than Cu. Placing Pb immediately downstream of the glass panel further reduced the signal spread and increased the backscatter enhancement to 1.20 and 1.39 for the 6 MV and 18 MV beams, respectively. Overall, it is determined that adding approximately 5 mm of Pb between the detector and the mechanical support structure will substantially reduce the nonuniformity in the backscattered signals for 6 MV and 18 MV photon beams.
New perspectives on potential hydrogen storage materials using high pressure.
Song, Yang
2013-09-21
In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.
Materials Analysis: A Key to Unlocking the Mystery of the Columbia Tragedy
NASA Technical Reports Server (NTRS)
Mayeaux, Brian M.; Collins, Thomas E.; Piascik, Robert S.; Russel, Richard W.; Jerman, Gregory A.; Shah, Sandeep R.; McDanels, Steven J.
2004-01-01
Materials analyses of key forensic evidence helped unlock the mystery of the loss of space shuttle Columbia that disintegrated February 1, 2003 while returning from a 16-day research mission. Following an intensive four-month recovery effort by federal, state, and local emergency management and law officials, Columbia debris was collected, catalogued, and reassembled at the Kennedy Space Center. Engineers and scientists from the Materials and Processes (M&P) team formed by NASA supported Columbia reconstruction efforts, provided factual data through analysis, and conducted experiments to validate the root cause of the accident. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The team also assessed left hand (LH) airframe components that were believed to be associated with a structural breach of Columbia. Analytical data collected by the M&P team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH reinforced carbon carbon (RCC) panels 8 and 9. The analysis also showed exposure to temperatures in excess of 1,649 C, which would severely degrade the support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC panel 8.
Durability of symmetric-structured metal-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Tucker, Michael C.
2017-11-01
Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.
Archway for Radiation and Micrometeorite Occurrence Resistance
NASA Technical Reports Server (NTRS)
Giersch, Louis R.
2012-01-01
The environmental conditions of the Moon require mitigation if a long-term human presence is to be achieved for extended periods of time. Radiation, micrometeoroid impacts, high-velocity debris, and thermal cycling represent threats to crew, equipment, and facilities. For decades, local regolith has been suggested as a candidate material to use in the construction of protective barriers. A thickness of roughly 3m is sufficient protection from both direct and secondary radiation from cosmic rays and solar protons; this thickness is sufficient to reduce radiation exposure even during solar flares. NASA has previously identified a need for innovations that will support lunar habitats using lightweight structures because the reduction of structural mass translates directly into additional up and down mass capability that would facilitate additional logistics capacity and increased science return for all mission phases. The development of non-pressurized primary structures that have synergy with the development of pressurized structures is also of interest. The use of indigenous or in situ materials is also a well-known and active area of research that could drastically improve the practicality of human exploration beyond low-Earth orbit. The Archway for Radiation and Micrometeorite Occurrence Resistance (ARMOR) concept is a new, multifunctional structure that acts as radiation shielding and micrometeorite impact shielding for long-duration lunar surface protection of humans and equipment. ARMOR uses a combination of native regolith and a deployed membrane jacket to yield a multifunctional structure. ARMOR is a robust and modular system that can be autonomously assembled on-site prior to the first human surface arrival. The system provides protection by holding a sufficiently thick (3 m) archshaped shell of local regolith around a central cavity. The regolith is held in shape by an arch-shaped jacket made of strong but deployable material. No regolith processing is required. During the regolith filling process, an inflatable structure under the arch supports the mass of the regolith, but once regolith filling is complete the catenary arch formed by the regolith and the jacket becomes self-supporting and the inflatable can be deflated and removed. When complete, habitat modules and equipment can be moved into the protected cavity under the arch. ARMOR is a nearterm system that would provide a reliable and robust lightweight structure technology to support large lunar habitats, drastically lower launch mass, and improve efficient volume use, reducing launch costs.
Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo
2014-05-01
The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack. Copyright © 2014 Elsevier Ltd. All rights reserved.
49 CFR 571.221 - Standard No. 221; School bus body joint strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...
49 CFR 571.221 - Standard No. 221; School bus body joint strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...
49 CFR 571.221 - Standard No. 221; School bus body joint strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...
49 CFR 571.221 - Standard No. 221; School bus body joint strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...
49 CFR 571.221 - Standard No. 221; School bus body joint strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...
Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course
ERIC Educational Resources Information Center
Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio
2012-01-01
In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…
Anisometric C 60 Fullerene Colloids Assisted by Structure-Directing Agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penterman, S.; Liddell Watson, Chekesha M.; Escobedo, Fernando A.
2016-08-05
Colloidal synthesis and assembly provide low cost, large area routes to mesoscale structures. In particular, shape-anisotropic particles may form crystalline, plastic crystalline, complex liquid crystalline and glassy phases. Arrangements in each order class have been used to generate photonic materials. For example, large photonic band gaps have been found for photonic crystals, hyperuniform photonic glasses, and also for plastic crystals at sufficient refractive index contrast. The latter structures support highly isotropic bandgaps that are desirable for free-form waveguides and LED out-coupling. Photonic glasses with optical gain lead to self-tuned lasing by the superposition of multiply scattered light. Typically, extrinsic mediamore » such as organic dyes, rare earths, lanthanides and quantum dots are used to impart optical gain in photonic solids. The present work advances fullerene microcrystals as a new materials platform for ‘active’ light emitting in colloid-based photonic crystals. Fullerenes support singlet excited states that recombine to produce a characteristic red photoluminescence. C 60 also has a high refractive index (n ~ 2.2) and transparency (> 560 nm) 9 so that inverse structures are not required.« less
PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju; Lin, Lianshan
2013-01-01
To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced featuresmore » facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.« less
Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.
2004-01-01
The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.
Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.
2004-01-01
The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture.
Kim, Hyun You; Hybertsen, Mark S; Liu, Ping
2017-01-11
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.
Optical spectroscopic methods for probing the conformational stability of immobilised enzymes.
Ganesan, Ashok; Moore, Barry D; Kelly, Sharon M; Price, Nicholas C; Rolinski, Olaf J; Birch, David J S; Dunkin, Ian R; Halling, Peter J
2009-07-13
We report the development of biophysical techniques based on circular dichroism (CD), diffuse reflectance infrared Fourier transform (DRIFT) and tryptophan (Trp) fluorescence to investigate in situ the structure of enzymes immobilised on solid particles. Their applicability is demonstrated using subtilisin Carlsberg (SC) immobilised on silica gel and Candida antartica lipase B immobilised on Lewatit VP.OC 1600 (Novozyme 435). SC shows nearly identical secondary structure in solution and in the immobilised state as evident from far UV CD spectra and amide I vibration bands. Increased near UV CD intensity and reduced Trp fluorescence suggest a more rigid tertiary structure on the silica surface. After immobilised SC is inactivated, these techniques reveal: a) almost complete loss of near UV CD signal, suggesting loss of tertiary structure; b) a shift in the amide I vibrational band from 1658 cm(-1) to 1632 cm(-1), indicating a shift from alpha-helical structure to beta-sheet; c) a substantial blue shift and reduced dichroism in the far UV CD, supporting a shift to beta-sheet structure; d) strong increase in Trp fluorescence intensity, which reflects reduced intramolecular quenching with loss of tertiary structure; and e) major change in fluorescence lifetime distribution, confirming a substantial change in Trp environment. DRIFT measurements suggest that pressing KBr discs may perturb protein structure. With the enzyme on organic polymer it was possible to obtain near UV CD spectra free of interference by the carrier material. However, far UV CD, DRIFT and fluorescence measurements showed strong signals from the organic support. In conclusion, the spectroscopic methods described here provide structural information hitherto inaccessible, with their applicability limited by interference from, rather than the particulate nature of, the support material.
Associating Specific Materials with Topological Insulation Behavior
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen
2014-03-01
The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.
Incident Waste Decision Support Tool - Waste Materials ...
Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.
Materials science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesuer, D.R.
1997-02-01
During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less
Russo, Christopher J.; Passmore, Lori A.
2016-01-01
Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474
Reducing Dropouts in Online Education-Group Tutoring in Virtual Seminars and Support Structures
ERIC Educational Resources Information Center
Holmgren, Robert; Johansson, Sigurd
2012-01-01
This paper describes a development project aimed at reducing the large number of dropouts in online degree project courses. The idea was that the introduction of group tutorials in virtual seminars, combined with extensive support materials, would reduce dropout rates. Among the students who participated, the dropout rate was reduced by 50%…
Supportability Technologies for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Watson, Kevin; Thompson, Karen
2007-01-01
Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
NASA Technical Reports Server (NTRS)
McBride, Timothy M.
1995-01-01
A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.
FUEL ELEMENT FOR A NUCLEAR REACTOR
Davidson, J.K.
1963-11-19
A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)
Observation of two-dimensional Fermi surface and Dirac dispersion in the new material YbMnSb2
NASA Astrophysics Data System (ADS)
Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinead; John, Caolan; Doyle, Spencer; Neaton, Jeffrey; Analytis, James G.; Denlinger, J. D.; Benavides, Katherine; Chan, Julia
We present the synthesis, crystal structure, electronic structure, and transport properties of the new material YbMnSb2. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a 3D Dirac dispersion. This Fermi surface is consistent with the predictions of antiferromagnetic density functional theory calculations and the Fermi surface observed via angle-resolved photoemission spectroscopy. The quantitative agreement between these measurements and calculations indicates that YbMnSb2 may be a new topological semimetal in the presence of magnetic order. R. K. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. C. J., J. G. A., and much of this work received support from the Gordon and Betty Moore Foundation Grant No. GBMF4374.
Thermal-Structures and Materials Testing Laboratory
NASA Technical Reports Server (NTRS)
Teate, Anthony A.
1997-01-01
Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing
Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.
Engineering on-chip nanoporous gold material libraries via precision photothermal treatment
NASA Astrophysics Data System (ADS)
Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; Seker, Erkin; Biener, Monika M.; Matthews, Manyalibo J.
2015-12-01
Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships.Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships. Electronic supplementary information (ESI) available: Details of sample preparation, fabrication of material libraries, as well as further analysis and supporting scanning electron micrographs can be found in ESI. See DOI: 10.1039/c5nr04580k
Low-temperature structure transition in hexagonal LuFeO3
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan; Wang, Wenbin; Wang, Xiao; Zhu, Leyi; Kim, Jong-Woo; Ryan, Phillip; Keavney, David; Ward, Thomas; Shen, Jian; Cheng, Xuemei
2014-03-01
The structural change of h-LuFeO3 films at low temperature has been studied using x-ray diffraction and x-ray absorption experiments. The results are analyzed using the displacements of three phonon modes that are related to the P63/mmc to P63cm structural transition. The data indicate that the in-plane motion of the Fe and apex oxygen are responsible for the observed anomaly in both x-ray absorption and diffraction experiments. This subtle structural transition may be an origin of the low temperature magnetic phase transition at TR=130 K. Research supported by US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).
Process for making ceramic hot gas filter
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
2001-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam
1999-01-01
A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.
Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.
1999-05-11
A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.
NASA Astrophysics Data System (ADS)
Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.; Duerloo, Karel-Alexander N.; Cui, Yi; Reed, Evan J.
We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To predict the likelihood of a candidate material exhibiting high lithium ion conductivity, we leverage machine learning techniques to train an ionic conductivity classification model using logistic regression based on experimental measurements reported in the literature. This model, which is built on easily calculable atomistic descriptors, provides new insight into the structure-property relationship for superionic behavior in solids and is approximately one million times faster to evaluate than DFT-based approaches to calculating diffusion coefficients or migration barriers. We couple this model with several other technologically motivated heuristics to reduce the list of candidate materials from the more than 12,000 known lithium containing solids to 21 structures that show promise as electrolytes, few of which have been examined experimentally. Our screening utilizes structures and electronic information contained in the Materials Project database. This work is supported by an Office of Technology Licensing Fellowship through the Stanford Graduate Fellowship Program and a seed Grant from the TomKat Center for Sustainable Energy at Stanford.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
Tuning the structural and electronic properties of heterogeneous chalcogenide nanostructures
NASA Astrophysics Data System (ADS)
Giberti, Federico; Voros, Marton; Galli, Giulia
Heterogeneous nanostructures, such as quantum dots (QDs) embedded in solid matrices, are promising platforms for solar energy conversion. Unfortunately, there is scarce information on the structure of the interface between the dots and their embedding matrix, thus hampering the design of functional materials with desired optoelectronic properties. Here, we developed a hierarchical computational strategy to obtain realistic models of semiconductor QDs embedded in matrices using enhanced sampling classical molecular dynamics simulations and predicted their electronic structure using first-principles electronic structure methods. We investigated PbSe/CdSe systems which are promising materials for solar cell applications and found a favorable quasi-type-II band alignments both for PbSe QDs in CdSe matrices and for CdSe embedded in PbSe. However, in the former case, we found the presence of detrimental intra-gap states, while in the latter no defect states are present. Hence we predict that embedding CdSe in PbSe leads to a more efficient platform for solar energy conversion. In addition, we showed that the structure of CdSe QD and in turn its band gap might be tuned by applying pressure to the PbSe matrix, providing a way to engineer the properties of new functional materials. Work by F. Giberti was supported by MICCoM funded by the U.S. Department of Energy (DOE), DOE/BES 5J-30161-0010A; work by M. Voros was supported by the U.S. DOE, under Award DE-AC02-06CH11357.
From molecular chemistry to hybrid nanomaterials. Design and functionalization.
Mehdi, Ahmad; Reye, Catherine; Corriu, Robert
2011-02-01
This tutorial review reports upon the organisation and functionalization of two families of hybrid organic-inorganic materials. We attempted to show in both cases the best ways permitting the organisation of materials in terms of properties at the nanometric scale. The first family concerns mesoporous hybrid organic-inorganic materials prepared in the presence of a structure-directing agent. We describe the functionalization of the channel pores of ordered mesoporous silica, that of the silica framework, as well as the functionalization of both of them simultaneously. This family is currently one of the best supports for exploring polyfunctional materials, which can provide a route to interactive materials. The second family concerns lamellar hybrid organic-inorganic materials which is a new class of nanostructured materials. These materials were first obtained by self-assembly, as a result of van der Waals interactions of bridged organosilica precursors containing long alkylene chains during the sol-gel process, without any structure directing agent. This methodology has been extended to functional materials. It is also shown that such materials can be obtained from monosilylated precursors.
Low Dimensional Carbon Materials for Nanooptics and Nanoplasmonics
2015-12-11
structure of the 2D glass supported by a graphene window and identified it as a bi-tetrahedral layer of SiO2 only 3 atoms thick. Our atomic resolution...developed can be directly applied to study other 2D materials such as molybdenum disulfide and 2D glasses . Novel properties in these materials open...up new avenues for studying old and new physics including glass phase transition and valley Hall effect. 15. SUBJECT TERMS graphene, bilayer graphene
Enhancing photocurrent transient spectroscopy by electromagnetic modeling.
Diesinger, H; Panahandeh-Fard, M; Wang, Z; Baillargeat, D; Soci, C
2012-05-01
The shape and duration of photocurrent transients generated by a photoconductive switch depend on both the intrinsic response of the active material and the geometry of the transmission line structure. The present electromagnetic model decouples both shape forming contributions. In contrast to previously published work, it accounts for the particular operating mode of transient spectroscopy. The objective is to increase the time resolution by two approaches, by optimizing structural response and by deconvolving it from experimental data. The switch structure is represented by an effective transimpedance onto which the active material acts as current generator. As proof of concept, the response of a standard microstrip switch is modeled and deconvolved from experimental data acquired in GaAs, yielding a single exponential material response and hence supporting the validity of the approach. Beyond compensating for the response deterioration by the structure, switch architectures can be a priori optimized with respect to frequency response. As an example, it is shown that a microstrip gap that can be deposited on materials incompatible with standard lithography reduces pulse broadening by an order of magnitude if it is provided with transitions to coplanar access lines.
Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors
Zhao, Huaping; Liu, Long; Vellacheri, Ranjith
2017-01-01
Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862
End Effects and Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2002-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.
General introduction: Liquid and solid (materials, main properties and applications …)
NASA Astrophysics Data System (ADS)
Zabler, Simon
2014-10-01
A general introduction about the diversity of foam structures is given with focus onto the structural, mechanical and dynamical properties at hand. Two classes of materials are addressed: liquid and semi-solid foams, on the one hand, solid foams, on the other hand. The latter can be subdivided into metallic, ceramic and organic foams, depending on the nature of the solid skeleton that supports the overall cell structure. Solid foams generally stem from the concept of mechanical light-weight structures, but they can just as well be employed for their large surface area as well as for their acoustic and thermal properties. Modern biomaterials use tailored ceramic or organo-ceramic foams as bone scaffolds, whereas hierarchically micro- and nanoporous structures are being used by chemistry to control catalytic reactions. Future materials design and development is going to rely increasingly on natural and synthetic foam structures and properties, be it food, thermal insulators or car frames, thus giving a promising outlook onto the foam research and development that is about to come. xml:lang="fr"
Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake
2013-08-20
Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide interfaces, because they may participate in catalytic reaction steps. Detailed information about the interfacial structures between GNPs and metal oxides provides valuable structure models for theoretical calculations which can elucidate the local electronic structure effective for activating a reactant molecule. Based on our observations with HRTEM and HAADF-STEM, we report the detailed structure of gold/metal oxide interfaces.
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1987-01-01
A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.
Nanoconfinement platform for nanostructure quantification via grazing-transmission X-ray scattering
Black, Charles T.; Yager, Kevin G.
2017-01-31
A nano-confinement platform that may allow improved quantification of the structural order of nanometer-scale systems. Sample-holder `chips` are designed for the GTSAXS experimental geometry. The platform involves fabricated nanostructured sample holders on and in one or more corners of a substrate support where the sample material of interest is positioned at the corner of the substrate support. In an embodiment, the substrate material making up the substrate support beneath the sample-holding area is removed. A scattering x-ray sample platform includes a substrate support arranged in a parallelepiped form, having a substantially flat base and a substantially flat top surface, the top surface being substantially parallel with the base, the parallelepiped having a plurality of corners. At least one corner of the substrate support has a sample holding area formed in the top surface of the substrate support and within a predetermined distance from the corner. The sample holding area includes a regular array of nano-wells formed in the top surface of the substrate support.
Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah
2014-01-01
The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380
Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Burks, K. H.; Perry M. R.; Cooper, R. W.; Fiske, M. R.
2006-01-01
For long duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them including habitats, laboratories, berms, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Habitat Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and planned efforts for FY06 will also be presented.
NASA Astrophysics Data System (ADS)
Ozcelik, Ongun; White, Claire
Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Crowd-Sourcing (Semantically) Structured Multilingual Educational Content (CoSMEC)
ERIC Educational Resources Information Center
Tarasowa, Darya; Auer, Sören; Khalili, Ali; Unbehauen, Jörg
2014-01-01
The support of multilingual content becomes crucial for educational platforms due to the benefits it offers. In this paper we propose a concept that allows content authors to use the power of the crowd to create (semantically) structured multilingual educational content out of their material. To enable the collaboration of the crowd, we expand our…
46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...
46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...
The Squeeze is On. Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
When asked to list some strong materials, people think of steel, concrete, and wood. In this activity, students learn about the force of compression and how it acts on structural components through a hands-on group problem. Using everyday products such as paper, toothpicks, and tape, students construct a structure that will support the weight of a…
46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...
46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...
46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...
Materials for Energy Conversion: Materials for Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atanassov, Plamen
2017-03-30
The main objective of this collaborative research project was to identify a formulation and develop a catalyst for electro-oxidation of ethanol. Ethanol is one of the most mass-produced biofuels, and such catalysts will enable the development of Direct Ethanol Fuel Cell technology and through it, will interconnect fuel cells with biofuels. Several catalysts for direct electrochemical oxidation of ethanol have been selected on the principles of rational desig from the knowledge build in studying aqueous oxidation of ethanol. The program involved fundamental study of ethanol oxidation in liquid media, and particularly in alakine solutions. The lessons learned from the heterogeneousmore » catalysis of ethanol thermal oxidation have been applied to the design of an electrocatalyst for direct ethanol fuel cells. The successful chemical compositions are based on PdZn and NiZn allows. The studies reveled the role of the transition metal oxide phase as a co-catalyst and the role of the active support material. To complete the set of materials for ethanol fuel cell, this program also invested n the development of ctalysts for oxygen reduction that are selective against alcohol oxidation. Non-platinum ctalysts based on pyrolyzed macrocycles or similar composites have been studied. This program included also the development of stuctured supports as an integral part of the catalyst development. A new family of materials has been designed based on mesoporous silica templating with synthetic carbon resulting in hierarchicaly porous structure. Structure-to-property relationship of catalysis and catalysts has been the center of this program. This have been engaged in both surface and bulk level and pursued with the tools avialble at the academic institutions and at LANSCE at LANL. The structural studies have been built in interaction with a computational effort on the basis of DFT approach to materials structure and reactivity.« less
NASA Technical Reports Server (NTRS)
Shaffer, Joe R.; Headley, David E.
1993-01-01
Compact storable components expand to create large shelter. Fully deployed structure provides large, unobstructed bay. Deployed trusses support wall and roof blankets. Provides temporary cover for vehicles, people, and materials. Terrestrial version used as garage, hangar, or large tent.
Radiation Effects in M and NEMS
2016-03-31
10.1117/12.876968 casing mobile core AFM tip Pt wire x δ a Figure 5. Proposed approach to combine single crystal silicon MEMS (Sandia) fab capabilities and form supporting structure for 2D materials (VU). 198
40 CFR 63.8105 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... heating value), use, reuse, or for sale for fuel value, use, or reuse. Examples of equipment that may be... nonearthen materials (e.g., wood, concrete, steel, plastic) which provide structural support. Wastewater...
40 CFR 63.8105 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... heating value), use, reuse, or for sale for fuel value, use, or reuse. Examples of equipment that may be... nonearthen materials (e.g., wood, concrete, steel, plastic) which provide structural support. Wastewater...
40 CFR 63.8105 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... heating value), use, reuse, or for sale for fuel value, use, or reuse. Examples of equipment that may be... nonearthen materials (e.g., wood, concrete, steel, plastic) which provide structural support. Wastewater...
Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Phillips, Richard S.
Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt particle dispersion and particle size controllability. Third, physical vapor deposition (PVD), which was also performed at room temperature, was used as a low temperature vapor-phase deposition technique for comparison with PEALD Pt coated materials. The temperature of the Pt deposition technique is an important parameter to consider due to the potential adverse effects of the strong metal support interaction (SMSI) which may take place at temperatures above 200°C. Platinum coated nanostructures were analyzed electrochemically using cyclic voltammetry (CV), rotating disk electrode (RDE) and accelerated stress tests (ASTs). CV and RDE results generally show that platinum activity values are initially not as high as those typically observed for platinum on carbon; however, AST results indicate that TiO x-based materials are much more stable long-term and hence their level of activity is likely to overtake traditional platinum on carbon materials in a PEMFC system.
New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology
Tworkiewicz, Jakub; Kowalczyk, Tomasz; van Breda, Shane V.; Tyloch, Dominik; Kloskowski, Tomasz; Bodnar, Magda; Skopinska-Wisniewska, Joanna; Marszałek, Andrzej; Frontczak-Baniewicz, Malgorzata; Kowalewski, Tomasz A.; Drewa, Tomasz
2016-01-01
Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile. PMID:26766636
Synthesis and characterization of titanium oxide supported silica materials
NASA Astrophysics Data System (ADS)
Schrijnemakers, Koen
2002-01-01
Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place. This incorporation manifested itself in both pore size as well as unit cell size increase and had a stabilizing effect on the titanium oxide coating prepared by the CSC method. Due to the incorporation of Ti in MCM-48, the coating was more firmly bound to the surface and no clustering was observed during the calcination in contrast to the silica gel support where no incorporation has taken place.
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.; ...
2018-04-04
We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less
The Biophysics Microgravity Initiative
NASA Technical Reports Server (NTRS)
Gorti, S.
2016-01-01
Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.
The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.
We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less
Methods and instruments for materials testing
NASA Technical Reports Server (NTRS)
Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)
2011-01-01
Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.
NASA Astrophysics Data System (ADS)
Zhang, Ruizhi; Du, Baoli; Chen, Kan; Reece, Mike; Materials Research Insititute Team
With the increasing computational power and reliable databases, high-throughput screening is playing a more and more important role in the search of new thermoelectric materials. Rather than the well established density functional theory (DFT) calculation based methods, we propose an alternative approach to screen for new TE materials: using crystal structural features as 'descriptors'. We show that a non-distorted transition metal sulphide polyhedral network can be a good descriptor for high power factor according to crystal filed theory. By using Cu/S containing compounds as an example, 1600+ Cu/S containing entries in the Inorganic Crystal Structure Database (ICSD) were screened, and of those 84 phases are identified as promising thermoelectric materials. The screening results are validated by both electronic structure calculations and experimental results from the literature. We also fabricated some new compounds to test our screening results. Another advantage of using crystal structure features as descriptors is that we can easily establish structural relationships between the identified phases. Based on this, two material design approaches are discussed: 1) High-pressure synthesis of metastable phase; 2) In-situ 2-phase composites with coherent interface. This work was supported by a Marie Curie International Incoming Fellowship of the European Community Human Potential Program.
Thermodynamic and structural properties of hcp bulk and nano-precipitated Ag-Al.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai; Johnson, Duane; Smirnov, Andrei
2002-03-01
We study the short- and long- range chemical ordering in hcp bulk Ag_2Al using the Monte Carlo method based on a Hamiltonian constructed via structural formation energies from ab initio electronic-structure calculations. We find that the ground-state structure and thermodynamic properties of bulk Ag_2Al is that determined from the X-ray experimental data. We also address the influence of the interface, coherency strain, and off-stoichiometric disorder on the structure of metastable γ' nano-precipitates in fcc Al matrix. We show that γ' precipitates are off-stoichiometric and provide a new Al-rich structure that reproduces the observed TEM image. We acknowledge our support in part by an ALCOA Foundation Grant, the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory at UIUC under grant DEFG02-91ER45439, and the UIUC Materials Computation Center under National Science Foundation grant DMR-9976550.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deli; Yu, Yingchao; He, Huan
2015-02-24
We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation–reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its uniquemore » hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Patel; K. Artyushkova; P. Atanassov
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2010-07-01
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Highly efficient and durable TiN nanofiber electrocatalyst supports.
Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young
2015-11-28
To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.
Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury
2015-02-28
This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination abovemore » 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.« less
Low Gravity Materials Science Research for Space Exploration
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.
2004-01-01
On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.
Topological Insulators in Ternary Compounds with a Honeycomb Lattice
NASA Astrophysics Data System (ADS)
Zhang, Hai-Jun; Chadov, Stanislav; Muchler, Lukas; Yan, Binghai; Qi, Xiao-Liang; Kübler, Jürgen; Zhang, Shou-Cheng; Felser, Claudia
2011-03-01
One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This is so-called Dirac cone. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. These materials exhibit the surface states formed by only a single Dirac cone at the G point together with the small direct band gap opened by a strong spin-orbit coupling (SOC) in the bulk. These materials are centro-symmetric, therefore, it is possible to determine the parity of their wave functions, and hence, their topological character. The work was supported by the supercomputing center at Stanford Institute Materials and Energy Science. The financial support of the DFG/ASPIMATT project (unit 1.2-A) is gratefully acknowledged.
Space environmental effects on materials
NASA Technical Reports Server (NTRS)
Schwinghmaer, R. J.
1980-01-01
The design of long life platforms and structures for space is discussed in terms of the space environmental effects on the materials used. Vacuum, ultraviolet radiation, and charged particle radiation are among the factors considered. Research oriented toward the acquisition of long term environmental effects data needed to support the design and development of large low Earth orbit and geosynchronous Earth orbit space platforms and systems is described.
Straight-Pore Microfilter with Efficient Regeneration
NASA Technical Reports Server (NTRS)
Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.
2010-01-01
A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.
NASA Technical Reports Server (NTRS)
1982-01-01
Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.
A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials
NASA Astrophysics Data System (ADS)
Song, Quan; Meng, Fan-Xin; Ning, Bo-Yuan; Zhuang, Jun; Ning, Xi-Jing
2017-12-01
Not Available Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle
2014-11-04
The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recentlymore » published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.« less
Novel Catalysis by Gold: A Modern Alchemy
NASA Astrophysics Data System (ADS)
Haruta, Masatake
Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.
Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuanwen; Carvalho-de-Souza, João L.; Wong, Raymond C. S.
Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permitsmore » non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.« less
Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces
Jiang, Yuanwen; Carvalho-de-Souza, João L.; Wong, Raymond C. S.; Luo, Zhiqiang; Isheim, Dieter; Zuo, Xiaobing; Nicholls, Alan W.; Jung, Il Woong; Yue, Jiping; Liu, Di-Jia; Wang, Yucai; De Andrade, Vincent; Xiao, Xianghui; Navrazhnykh, Luizetta; Weiss, Dara E.; Wu, Xiaoyang; Seidman, David N.; Bezanilla, Francisco; Tian, Bozhi
2017-01-01
Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multiscale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical-vapor-deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework, and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems. PMID:27348576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O.
New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude thatmore » the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.« less
NASA Astrophysics Data System (ADS)
Ye, Xiao-Feng; Wang, S. R.; Wang, Z. R.; Hu, Q.; Sun, X. F.; Wen, T. L.; Wen, Z. Y.
The perovskite system La 1- xSr xCr 1- yM yO 3- δ (M, Mn, Fe and V) has recently attracted much attention as a candidate material for the fabrication of solid oxide fuel cells (SOFCs) due to its stability in both H 2 and CH 4 atmospheres at temperatures up to 1000 °C. In this paper, we report the synthesis of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 (LSCM) by solid-state reaction and its employment as an alternative anode material for anode-supported SOFCs. Because LSCM shows a greatly decreased electronic conductivity in a reducing atmosphere compared to that in air, we have fabricated Cu-LSCM-ScSZ (scandia-stabilized zirconia) composite anodes by tape-casting and a wet-impregnation method. Additionally, a composite structure (support anode, functional anode and electrolyte) structure with a layer of Cu-LSCM-YSZ (yttria-stabilized zirconia) on the supported anode surface has been manufactured by tape-casting and screen-printing. Single cells with these two kinds of anodes have been fabricated, and their performance characteristics using hydrogen and ethanol have been measured. In the operation period, no obvious carbon deposition was observed when these cells were operated on ethanol. These results demonstrate the stability of LSCM in an ethanol atmosphere and its potential utilization in anode-supported SOFCs.
Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul
2017-03-01
Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.
NASA Astrophysics Data System (ADS)
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-07-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
2016-12-05
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
Code qualification of structural materials for AFCI advanced recycling reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Li, M.; Majumdar, S.
2012-05-31
This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.« less
Shotcrete for Expedient Structural Repair
1991-12-01
pp. 29-44. Selmer - Olsen , R., "Examples of the Behavior of Shotcrete Linings Underground," Proceedings, Shotcrete for Ground Support, The Engineering... Selmer - Olsen , R. PAPER TITLE: Examples of the Behavior of Shotcrete Linings Underground DESCRIPTIVE TITLE NOTE: -0- BOOK/REPORT TITLE: Proceedings...prestressed tanks, thin overlays over structural materials, repair of concrete deteriorated by fire or earthquake, rock slope stabilization, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas
The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in thesemore » cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.« less
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie
2015-01-01
Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.
Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers
NASA Astrophysics Data System (ADS)
Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.
2018-05-01
This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption
An overview of STRUCTURE: applications, parameter settings, and supporting software
Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.
2013-01-01
Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071
A rational design approach to nanostructured catalysts for the oxidation of carbon monoxide
NASA Astrophysics Data System (ADS)
Karwacki, Christopher
The extraordinary energetic properties of subnanometer (<10 nm) structures consisting of reduced metals, metal oxides, and graphitic carbons are emerging as the principal technologies involving catalytic reactions at ambient temperatures, for such applications as respiratory protection, pollution abatement, chemical synthesis, sensors, and energy conversion. Gold nanoparticles (Au NP) possess unique reactive properties not present in the bulk state and have served in the past decade as a model for the nanosciences, where molecular species are synthesized, scaled, and engineered into functional materials. Gold nanoparticles as isolated structures are not useful as real catalysts and must co-exist with supports that provide enhanced stability and activity. Support oxides such as TiO2, Fe2O 3, CeO2, SiO2, Al2O3, ZrO 2, and graphitic (active) carbons have been shown to increase the active nature of AuNP and have been the subject of several thousand publications in the past decade. Zirconia compared to titania as a support for Au NP catalysis has been studied with limited success. In fact, the majority of observations show that zirconia is one of the lowest performing metal oxide supports involving Au NP oxidation catalysis. The likely reason for these observations is a lack of understanding of the relationship between structure and surface functionality as it pertains to ambient temperature oxidation catalysis (ATOC). Furthermore, virtually all substrate and catalyst preparations in earlier work were performed at high temperatures, typically 400--900°C, thus forming progressively monomorphic structures containing larger crystals with reduced surface functionality and porosity. In this research, I established the hypothesis based on a structural model that surface functional hydroxides are important to sustained hydrolytic reactions, such as those involving Au NP for the oxidation of CO to CO 2. Theoretical calculations by Ignatchenko, Vittadini, et al. show that zirconia readily dissociates adsorbed water on the most active and stable crystal structures (111) compared to other metal oxides, such as the common anatase (101) form of titania. Also, the support must provide a source of activated oxygen as a means to oxidize intermediate carbonates with CO 2 formation. The role of the support is to provide lattice oxygen in an activated state (O2-) for oxidation of adsorbed CO the Au NP:support interface. Furthermore, the primary interest is the energy associated Au NP in proximity to the support surface. Advancing the understanding of this region is believed to be crucial to the future design of active nanostructured materials that function under ambient conditions. The proposed model involves a structure consisting of properly sized and highly dispersed Au NP supported on a hydroxylated form of nanocrystalline zirconia. This type of zirconia is in a highly polymorphic form consisting of aggregates of small crystals less than 10 nm. The structure is highly porous, containing undercoordinated zirconium atoms, and provides an environment for rapid dissociation of molecular water. In this research and in collaboration with Mogilevsky et al., 37 I introduce a novel method for quantifying the surface concentration of two major forms of hydroxide that form on zirconia. Furthermore, in this research I show how both the porosity of the zirconia support and the size of the crystalline aggregates affect the type and surface concentration of hydroxyl groups. This relationship is thus directly related to the oxidation activity of the catalyst consisting of Au NP supported on hydroxylated ZrO 2. These phenomena are exemplified by a reduction in structural porosity and surface hydroxyl groups with increasing temperature treatments of the zirconia support. Gold NP and ZrO2 supports were extended to studies that included interactions with activated carbons. This work was done on the premise that graphitic carbons, based on their tunable porosities and surface chemistries, can enhance or stabilize the catalytic activity of neighboring Au NP. Gold dispersed on active carbon and hybrid structures consisting of Au/ZrO 2/C shows interesting properties, which lend themselves to catalytic particle stabilization and to the advancement of multifunctional material design.
Sacramento, Ana S; Moreira, Felismina T C; Guerreiro, Joana L; Tavares, Ana P; Sales, M Goreti F
2017-10-01
This work describes a novel approach to produce an antibody-like biomimetic material. It includes preparing composite imprinted material never presented before, with highly conductive support nanostructures and assembling a high conductivity polymeric layer at low temperature. Overall, such highly conductive material may enhance the final features of electrically-based devices. Acetylcholine (ACh) was selected as target analyte, a neurotransmitter of importance in Alzheimer's disease. Potentiometric transduction was preferred, allowing quick responses and future adaptation to point-of-care requirements. The biomimetic material was obtained by bulk polymerization, where ACh was placed in a composite matrix of multiwalled carbon nanotubes (MWCNTs) and aniline (ANI). Subsequent polymerization, initiated by radical species, yielded a polymeric structure of polyaniline (PANI) acting as physical support of the composite. A non-imprinted material (NIM) having only PANI/MWCNT (without ACh) has been prepared for comparison of the biomimetic-imprinted material (BIM). RAMAN and Fourier Transform Infrared spectroscopy (FTIR), Transmission Electron microscopy (TEM), and Scanning Electron microscope (SEM) analysis characterized the structures of the materials. The ability of this biomaterial to rebind ACh was confirmed by including it as electroactive compound in a PVC/plasticizer mixture. The membranes with imprinted material and anionic additive presented the best analytical characteristics, with a sensitivity of 83.86mV decade -1 and limit of detection (LOD) of 3.45×10 -5 mol/L in HEPES buffer pH4.0. Good selectivity was observed against creatinine, creatine, glucose, cysteine and urea. The electrodes were also applied on synthetic serum samples and seemed a reliable tool for screening ACh in synthetic serum samples. The overall performance showed fast response, reusability, simplicity and low price. Copyright © 2017 Elsevier B.V. All rights reserved.
Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes
Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás
2010-01-01
In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.
Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodinger, Sebastian; Derewinski, Miroslaw A.; Vjunov, Aleksei
2016-03-13
This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopymore » (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL.« less
Chiu, Ching-Ju; Kuo, Su-E; Lin, Dai-Chan
2017-11-01
Mobile technology provides young adults important support for self-directed learning, but whether there is related support for older adults is not clear. This study aims to determine whether 1) nutrition education combined with mobile technology-supported teaching improves knowledge of and self-efficacy for a healthy diet; 2) if adults who reported reviewing the electronic course material or searching health information online, showed significantly greater progress in knowledge of and self-efficacy for a healthy diet than did those who did not adopt the electronic support. A total of 35 middle-aged and older adults were recruited from the community. Enrollees who were unable to read, who participated in the course fewer than five times, who did not take the post-test, or who did not return complete questionnaires at the pre-test were excluded. Overall, 21 participants were finally analyzed, and 14 participated in the qualitative investigation. The study interventions included three traditional nutrition lectures and three touch-screen tablet computer lessons to access the Internet and nutrition applications. Structured and semi-structured questionnaires were used to collect both quantitative and qualitative data and record participants' Internet use conditions at home. Participants' nutrition knowledge significantly improved (meanpost-pre = 1.19, p = 0.001) and their self-efficacy about a healthy diet showed marginal improvement (meanpost-pre = 0.22, p = 0.07). Nutrition knowledge was positively correlated with their intensity of surfing the Internet ( r = 0.46, p < 0.05), or reviewing the electronic course material ( r = 0.48, p < 0.05) but not correlated with reviewing paper course material ( r = 0.19, p = 0.09). Qualitative results showed that participants reported feeling freshness, joyfulness, and great achievement because of the combined course material. Technology-supported learning combined with traditional health education might provide great opportunities for positive behavioral change, even in older adults without any previous Internet experience.
Sustainability of transportation structures using composite materials to support trade and growth.
DOT National Transportation Integrated Search
2014-06-01
Corrosion-induced deterioration of steel rebar is one of the main reasons for repair and rehabilitation programs : for conventional steel-reinforced concrete bridge decks. According to the National Association of Corrosion Engineers : (NACE), of all ...
Structural and transport properties of lithium-conducting NASICON materials
NASA Astrophysics Data System (ADS)
Rossbach, Andreas; Tietz, Frank; Grieshammer, Steffen
2018-07-01
Lithium-containing NASICON-structured materials are a promising class of solid-state Li-ion conductors for application in electrochemical energy storage devices. Amongst the wide variety of possible compositions the highest conductivities are reported for materials according to the formula Li1+xMx(III) M2-x(IV) (PO4)3 , in which the substitution of tetravalent with trivalent metal cations leads to incorporation of additional lithium ions and a higher mobility of the charge carriers. For this study, we surveyed more than 300 research articles about Li-NASICON materials. The relations between composition, structure and conductivity are evaluated to give a comprehensive overview of published data on synthesized compositions. A special focus is laid on Li1+xAlxTi2-x (PO4)3 as the single most conductive and investigated material. The collected conductivities show a wide scattering in a range of 10-10 S cm-1 up to 10-3 S cm-1. The highest values are obtained for materials with M(III) to M(IV) cation ratios of x = 0.3-0.4. Further characteristics for high conductivity are evaluated and the rhombohedral structure as well as cation sizes of around 50-60 p.m. are identified as crucial prerequisites, favoring titanium-based compositions. Considering the evaluated data, selected compositions are suggested for further investigation to support future research.
Biodegradable Magnesium Alloys: A Review of Material Development and Applications
Persaud-Sharma, Dharam; McGoron, Anthony
2012-01-01
Magnesium based alloys possess a natural ability to biodegrade due to corrosion when placed within aqueous substances, which is promising for cardiovascular and orthopedic medical device applications. These materials can serve as a temporary scaffold when placed in vivo, which is desirable for treatments when temporary supportive structures are required to assist in the wound healing process. The nature of these materials to degrade is attributed to the high oxidative corrosion rates of magnesium. In this review, a summary is presented for magnesium material development, biocorrosion characteristics, as well as a biological translation for these results. PMID:22408600
NASA Technical Reports Server (NTRS)
Sutter, B.; Taylor, R. E.; Hossner, L. R.; Ming, D. W.
2002-01-01
The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (<1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.
Komilian, Soheil; Oklobia, Ochai; Sadat-Shafai, Torfeh
2018-02-01
The data included in this article is based on additional supporting information presented in our recent publication Komilian et al. [1]. The role of acceptor material (PC 71 BM) in restructuring copolymer PBDTTT-EFT from its relaxed pristine structure to interfaces suitable for exciton dissociation is discussed. The analysis of data indicates that the impact of acceptor material on nanostructuring initiates concurrent processes some of which supports and some impedes charge extractions. Therefore, this manuscript is designed to identify these processes and give and account of their impact on power conversion efficiency.
Additive Construction with Mobile Emplacement (ACME)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.
NASA Technical Reports Server (NTRS)
Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well.
Structural concept studies for a horizontal cylindrical lunar habitat and a lunar guyed tower
NASA Technical Reports Server (NTRS)
Yin, Paul K.
1990-01-01
A conceptual structural design of a horizontal cylindrical lunar habitat is presented. The design includes the interior floor framing, the exterior support structure, the foundation mat, and the radiation shielding. Particular attention was given on its efficiency in shipping and field erection, and on selection of structural materials. Presented also is a conceptual design of a 2000-foot lunar guyed tower. A special field erection scheme is implemented in the design. In order to analyze the over-all column buckling of the mast, where its axial compression includes its own body weight, a simple numerical procedure is formulated in a form ready for coding in FORTRAN. Selection of structural materials, effect of temperature variations, dynamic response of the tower to moonquake, and guy anchoring system are discussed. Proposed field erection concepts for the habitat and for the guyed tower are described.
NASA Technical Reports Server (NTRS)
2004-01-01
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Nanocontainers in and onto Nanofibers.
Jiang, Shuai; Lv, Li-Ping; Landfester, Katharina; Crespy, Daniel
2016-05-17
Hierarchical structure is a key feature explaining the superior properties of many materials in nature. Fibers usually serve in textiles, for structural reinforcement, or as support for other materials, whereas spherical micro- and nanoobjects can be either highly functional or also used as fillers to reinforce structure materials. Combining nanocontainers with fibers in one single object has been used to increase the functionality of fibers, for example, antibacterial and thermoregulation, when the advantageous properties given by the encapsulated materials inside the containers are transferred to the fibers. Herein we focus our discussion on how the hierarchical structure composed of nanocontainers in nanofibers yields materials displaying advantages of both types of materials and sometimes synergetical effects. Such materials can be produced by first carefully designing nanocontainers with defined morphology and chemistry and subsequently electrospinning them to fabricate nanofibers. This method, called colloid-electrospinning, allows for marrying the properties of nanocontainers and nanofibers. The obtained fibers could be successfully applied in different fields such as catalysis, optics, energy conversion and production, and biomedicine. The miniemulsion process is a convenient approach for the encapsulation of hydrophobic or hydrophilic payloads in nanocontainers. These nanocontainers can be embedded in fibers by the colloid-electrospinning technique. The combination of nanocontainers with nanofibers by colloid-electrospinning has several advantages. (1) The fiber matrix serves as support for the embedded nanocontainers. For example, through combining catalysts nanoparticles with fiber networks, the catalysts can be easily separated from the reaction media and handled visually. This combination is beneficial for the reuse of the catalyst and the purification of products. (2) Electrospun nanofibers containing nanocontainers offer the active agents inside the nanocontainers a double protection by both the fiber matrix and the nanocontainers. Since the polymer of the fibers and the polymer of the nanocontainers have usually opposite polarities, the encapsulated substance, for example, catalysts, dyes, or drugs, can be protected against a large variety of environmental influences. (3) Electrospun nanofibers exhibit unique advantages for tissue engineering and drug delivery that are a structural similarity to the extracellular matrix of biological tissues, large specific surface area, high and interconnected porosity which enhances cell adhesion, proliferation, drug loading, and mass transfer properties, as well as the flexibility in selecting the raw materials. Moreover, the nanocontainer-in-nanofiber structure allows multidrug loading and programmable release of each drug, which are very important to achieve synergistic effects in tissue engineering and disease therapy. The advantages offered by these materials encourage us to further understand the relationship between colloidal properties and fibers, to predict the morphology and properties of the fibers obtained by colloid-electrospinning, and to explore new possible combination of properties offered by nanoparticles and nanofibers.
Engineering study of the module/array interface for large terrestrial photovoltaic arrays
NASA Technical Reports Server (NTRS)
1977-01-01
Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.
Fast Detection of Material Deformation through Structural Dissimilarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth
2015-10-29
Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of themore » problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.« less
NASA Astrophysics Data System (ADS)
Kalfarisi, Rony G.
Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.
Thomson, W.B.; Corbin, A. Jr.
1961-07-18
An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.
Support systems of the orbiting quarantine facility
NASA Technical Reports Server (NTRS)
1981-01-01
The physical support systems, the personnel management structure, and the contingency systems necessary to permit the Orbiting Quarantine Facility (OQF) to function as an integrated system are described. The interactions between the subsystems within the preassembled modules are illustrated. The Power Module generates and distributes electrical power throughout each of the four modules, stabilizes the OQF's attitude, and dissipates heat generated throughout the system. The Habitation Module is a multifunctional structure designed to monitor and control all aspects of the system's activities. The Logistics Module stores the supplies needed for 30 days of operation and provides storage for waste materials generated during the mission. The Laboratory Module contains the equipment necessary for executing the protocol, as well as an independent life support system.
Method of fabricating a monolithic core for a solid oxide fuela cell
Zwick, S.A.; Ackerman, J.P.
1983-10-12
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Method of fabricating a monolithic core for a solid oxide fuel cell
Zwick, Stanley A.; Ackerman, John P.
1985-01-01
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Solid phase microextraction device using aerogel
Miller, Fred S.; Andresen, Brian D.
2005-06-14
A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.
Method for preparing a solid phase microextraction device using aerogel
Miller, Fred S [Bethel Island, CA; Andresen, Brian D [Livermore, CA
2006-10-24
A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.
Imaging and quantitative measurement of corrosion in painted automotive and aircraft structures
NASA Astrophysics Data System (ADS)
Sun, G.; Wang, Xun; Feng, Z. J.; Jin, Huijia; Sui, Hua; Ouyang, Zhong; Han, Xiaoyan; Favro, L. D.; Thomas, R. L.; Bomback, J. L.
2000-05-01
Some of the authors have shown that it is possible to image and make rapid, quantitative measurements of metal thickness loss due to corrosion on the rear surface of a single layer structure, with an accuracy better than one percent. These measurements are complicated by the presence of thick and/or uneven layers of paint on either the front surface, the back surface, or both. We will discuss progress in overcoming these complications. Examples from both automotive and aircraft structures will be presented.—This material is based in part upon work performed at the FAA Center for Aviation Systems Reliability operated at Iowa State University and supported by the Federal Aviation Administration Technical Center, Atlantic City, New Jersey, under Grant number 95-G-025, and is also supported in part by the Institute for Manufacturing Research, Wayne State University, and by Ford Motor Company. Supported by a Grant from Ford Motor Company.
Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays
NASA Technical Reports Server (NTRS)
Carmichael, D. C.; Gaines, G. B.; Noel, G. T.; Sliemers, F. A.; Nance, G. P.; Bunk, A. R.; Brockway, M. C.
1978-01-01
Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation.
The Structure of the Chinese Material Value Scale: An Eastern Cultural View
Liao, Jiangqun; Wang, Lei
2017-01-01
This study investigated the structure of the Chinese Material Value Scale (MVS). A two-factor structure, rather than the original three-factor structure, was proposed for China by means of confirmatory factor analysis. Direct evidence showed that the dimensions of success and happiness could be merged together. Both explicit and implicit methods were used to examine the relationship between success and happiness based on possession. In particular, as an implicit method, the dot-probe paradigm recording participants’ response time supported the idea that the two-factors could be merged together. The results also showed that for Chinese people, success to an extent means happiness, while the converse is not necessarily true. Chinese are much more concerned about social evaluation than their own feelings, and this cultural characteristic is reflected in our findings. PMID:29163258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritz, MichaL; Laniecki, Marek, E-mail: laniecki@amu.edu.pl
A series of modified SBA-15 materials were applied in drug delivery systems. The internal surface of siliceous hexagonal structure of SBA-15 was modified with different amount of (3-mercaptopropyl)trimethoxysilane (MPTMS) and oxidized in the presence of hydrogen peroxide. The sulfonated material was loaded with metoprolol tartrate or papaverine hydrochloride. Both drugs indicated strong chemical interaction with modified mesoporous surface. The characteristic of the obtained materials was performed with XRD and DRUV-vis spectrometry, themogravimetry and nitrogen adsorption (BET) measurements. The obtained results show that modification of the mesoporous materials leads towards significant decrease of the drug delivery rate. - Graphical abstract: XRDmore » and DSC of the -SO{sub 3}H modified SBA-15 loaded with metoprolol. Highlights: > Modification of SBA-15 internal channels with SO{sub 3}H groups. > Adsorption of metoprolol and papaverine on modified SBA-15. > Uniform and homogeneous distribution of the drugs inside the mesoporous structure of SBA-15. > Release of the supported drugs.« less
Bibliography on the Design and Performance of Rail Track Structures
DOT National Transportation Integrated Search
1974-01-01
This bibliography was prepared as part of the Rail Supporting Technology Program being sponsored by the Rail Programs Branch of the Urban Mass Transportation Administration. It is based on the reference material that was used to evaluate the technica...
Analysis of movable bus stop boarding and alighting areas.
DOT National Transportation Integrated Search
2013-05-01
This study explored the feasibility of using movable and reusable boarding and alighting (B&A) pads at bus stops. : Potential design alternatives in terms of materials and structural support for these pads were evaluated. The review : focused on the ...
Preparation of resveratrol-loaded nanoporous silica materials with different structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Margarita, E-mail: mpopova@orgchem.bas.bg; Szegedi, Agnes; Mavrodinova, Vesselina
2014-11-15
Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated.more » Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.« less
NASA Astrophysics Data System (ADS)
Starosolski, Zbigniew; Ezon, David S.; Krishnamurthy, Rajesh; Dodd, Nicholas; Heinle, Jeffrey; Mckenzie, Dean E.; Annapragada, Ananth
2017-03-01
We developed a technology that allows a simple desktop 3D printer with dual extruder to fabricate 3D flexible models of Major AortoPulmonary Collateral Arteries. The study was designed to assess whether the flexible 3D printed models could help during surgical planning phase. Simple FDM 3D printers are inexpensive, versatile in use and easy to maintain, but complications arise when the designed model is complex and has tubular structures with small diameter less than 2mm. The advantages of FDM printers are cost and simplicity of use. We use precisely selected materials to overcome the obstacles listed above. Dual extruder allows to use two different materials while printing, which is especially important in the case of fragile structures like pulmonary vessels and its supporting structures. The latter should not be removed by hand to avoid a truncation of the model. We utilize the water soluble PVA as a supporting structure and Poro-Lay filament for flexible model of AortoPulmonary collateral arteries. Poro-Lay filament is different as compared to all the other flexible ones like polymer-based. Poro-Lay is rigid while printing and this allows printing of structures small in diameter. It achieves flexibility after washing out of printed model with water. It becomes soft in touch and gelatinous. Using both PVA and Poro-Lay gives a huge advantage allowing to wash out the supporting structures and achieve flexibility in one washing operation, saving time and avoiding human error with cleaning the model. We evaluated 6 models for MAPCAS surgical planning study. This approach is also cost-effective - an average cost of materials for print is less than $15; models are printed in facility without any delays. Flexibility of 3D printed models approximate soft tissues properly, mimicking Aortopulmonary collateral arteries. Second utilization models has educational value for both residents and patients' family. Simplification of 3D flexible process could help in other models of soft tissue pathologies like aneurysms, ventricular septal defects and other vascular anomalies.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Jurena, Mark T.; Godines, Cody R.; Chamis, Christos C. (Technical Monitor)
2001-01-01
This project included both research and education objectives. The goal of this project was to advance innovative research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction for improved reliability and safety of structural components of aerospace and aircraft propulsion systems. Research and education partners included Glenn Research Center (GRC) and Southwest Research Institute (SwRI) along with the University of Texas at San Antonio (UTSA). SwRI enhanced the NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) code and provided consulting support for NESSUS-related activities at UTSA. NASA funding supported three undergraduate students, two graduate students, a summer course instructor and the Principal Investigator. Matching funds from UTSA provided for the purchase of additional equipment for the enhancement of the Advanced Interactive Computational SGI Lab established during the first year of this Partnership Award to conduct the probabilistic finite element summer courses. The research portion of this report presents the cumulation of work performed through the use of the probabilistic finite element program, NESSUS, Numerical Evaluation and Structures Under Stress, and an embedded Material Strength Degradation (MSD) model. Probabilistic structural analysis provided for quantification of uncertainties associated with the design, thus enabling increased system performance and reliability. The structure examined was a Space Shuttle Main Engine (SSME) fuel turbopump blade. The blade material analyzed was Inconel 718, since the MSD model was previously calibrated for this material. Reliability analysis encompassing the effects of high temperature and high cycle fatigue, yielded a reliability value of 0.99978 using a fully correlated random field for the blade thickness. The reliability did not change significantly for a change in distribution type except for a change in distribution from Gaussian to Weibull for the centrifugal load. The sensitivity factors determined to be most dominant were the centrifugal loading and the initial strength of the material. These two sensitivity factors were influenced most by a change in distribution type from Gaussian to Weibull. The education portion of this report describes short-term and long-term educational objectives. Such objectives serve to integrate research and education components of this project resulting in opportunities for ethnic minority students, principally Hispanic. The primary vehicle to facilitate such integration was the teaching of two probabilistic finite element method courses to undergraduate engineering students in the summers of 1998 and 1999.
Ablative thermal management structural material on the hypersonic vehicles
NASA Astrophysics Data System (ADS)
Shortland, H.; Tsai, C.
A hypersonic vehicle is designed to fly at high Mach number in the earth's atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.
Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon
2015-01-01
Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between and is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc. PMID:26206417
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
NASA Astrophysics Data System (ADS)
Nealley, W. H. Harrison; Nakano, Anna; Nakano, Jinichiro; Bennett, James P.
2018-05-01
Alumina-supported Cu/Fe spinel particles were exposed to oxidation/reduction atmospheres at 800°C. Structural changes of the particles subjected to gas cycles between air and 10 vol.% CO-90 vol.% Ar were studied from physical data and real-time images collected using a confocal scanning laser microscope equipped with a heating chamber. Overall particle volume slowly expanded with cycles while surface roughness decreased. Cross-sections of the exposed particles showed segregation of Cu and Fe to the edges of inner grains, which may have acted as oxygen carriers during the exposures. The particles remained whole during the cyclic exposures without any noticeable structural breakdown.
Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration
Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; ...
2015-11-04
The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe 2) 4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe 2) n@MSN. Exhaustive characterization of Zr(NMe 2) n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe 2) 3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe 2) n@MSN material reacts with pinacolborane (HBpin) to provide Me 2NBpin and the material ZrH/Bpin@MSN thatmore » is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/ 2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D 2. The zirconium hydride material or the zirconium amide precursor Zr(NMe 2) n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less
Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh
The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe 2) 4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe 2) n@MSN. Exhaustive characterization of Zr(NMe 2) n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe 2) 3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe 2) n@MSN material reacts with pinacolborane (HBpin) to provide Me 2NBpin and the material ZrH/Bpin@MSN thatmore » is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/ 2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D 2. The zirconium hydride material or the zirconium amide precursor Zr(NMe 2) n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less
Economic efficiency of application of innovative materials and structures in high-rise construction
NASA Astrophysics Data System (ADS)
Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly
2018-03-01
The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony D. Rollett; Hasso Weiland; Mohammed Alvi
Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that willmore » provide a scientific basis for shortening processing times and consuming less energy during annealing.« less
Elbert, Donald L.
2011-01-01
Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed. PMID:21524904
Synthetic Phage for Tissue Regeneration
Merzlyak, Anna; Lee, Seung-Wuk
2014-01-01
Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085
Van Hiel, Alain; Cornelis, Ilse; Roets, Arne
2010-06-01
The present study aimed to delineate the psychological structure of materialism and intrinsic and extrinsic value pursuit. Moreover, we compared models based on self-determination theory (SDT), Fromm's marketing character, and Inglehart's theory of social change to account for racial prejudice. In a sample of undergraduate students (n=131) and adults (n=176) it was revealed that the extrinsic value pursuit Financial Success/Materialism could be distinguished from the extrinsic value scales Physical Appeal and Social Recognition, and Community Concern could be distinguished from the intrinsic value pursuit scales Self-acceptance and Affiliation. Moreover, Financial Success/Materialism and Community Concern were consistently and significantly related to prejudice, whereas the other SDT facet scales yielded weaker relationships with prejudice. Structural models based on SDT and Inglehart were not corroborated, but instead the present data supported a mediation model based on Fromm's work in which the effect of Community Concern was mediated by Financial Success/Materialism. Broader implications for SDT are critically assessed.
PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008
NASA Astrophysics Data System (ADS)
Kakeshita, Tomoyuki
2009-07-01
The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss related research topics. The organizing committee gratefully thanks participants for presenting their recent results and for discussions with our COE members and international attendees. November 2008 Professor Tomoyuki Kakeshita Chairman of the Conference Vice Dean, Graduate School of Engineering, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering Leader of Global COE Program, Osaka University, ''Center of Excellence for Advanced Structural and Functional Materials Design'' Organization Chairman: T Kakeshita (Osaka University) Advisory Board:H Mehrer (University Münster, Germany), E K H Salje (University of Cambridge, United Kingdom), H-E Schaefer (University of Stuttgart, Germany), P Veyssiere (CNRS-ONERA, France) Organizing Committee: T Kakeshita, H Araki, H Fujii, S Fujimoto, Y Fujiwara, A Hirose, S Kirihara, M Mochizuki, H Mori, T Nagase, H Nakajima, T Nakano, R Nakatani, K Nogi, Y Setsuhara, Y Shiratsuchi, T Tanaka, T Terai, H Tsuchiya, N Tsuji, H Utsunomiya, H Yasuda, H Yasuda (Osaka University) Executive Committee: T Kakeshita, S Fujimoto, Y Fujiwara, A Hirose, T Tanaka, H Yasuda (Osaka University) Conference Secretariat: Y Fujiwara (Osaka University) Proceedings Editors: T Kakeshita and Y Fujiwara (Osaka University) Conference photograph
NASA Astrophysics Data System (ADS)
Colladay, R. S.; Carlisle, R. F.
1984-10-01
Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
NASA Astrophysics Data System (ADS)
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Ecological performance of construction materials subject to ocean climate change.
Davis, Kay L; Coleman, Melinda A; Connell, Sean D; Russell, Bayden D; Gillanders, Bronwyn M; Kelaher, Brendan P
2017-10-01
Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferroelectricity in corundum derivatives
NASA Astrophysics Data System (ADS)
Ye, Meng; Vanderbilt, David
The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. The known FE materials LiNbO3 can be regarded as derived from the A2O3 corundum structure with cation ordering. Here we consider more general binary (AB O3) and ternary (A2 BB' O6) corundum derivatives as an extended class of potential FE materials, motivated by the fact that some members of this class have recently been synthesized. There are four structure types for these corundum derivatives, and the number of cation combinations is enormous, but in many cases the energy barriers for polarization reversal may be too large to allow FE behavior. Here we present a first-principles study of the polar structure, coherent FE barrier, and domain-wall switching barrier for a representative set of polar corundum derivatives, allowing us to identify several potentially new FE materials. We also discuss the conditions under which ferroelectricity is compatible with magnetic ordering. Finally, we identify several empirical measures that can provide a rule of thumb for estimating the barrier energies. Our results should assist in the experimental search for new FE materials in the corundum derivative family. This work is supported by ONR Grant No. N-00014-12-1-1035.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com
Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction andmore » increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.« less
Solid Modeling of Crew Exploration Vehicle Structure Concepts for Mass Optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2006-01-01
Parametric solid and surface models of the crew exploration vehicle (CEV) command module (CM) structure concepts are developed for rapid finite element analyses, structural sizing and estimation of optimal structural mass. The effects of the structural configuration and critical design parameters on the stress distribution are visualized, examined to arrive at an efficient design. The CM structural components consisted of the outer heat shield, inner pressurized crew cabin, ring bulkhead and spars. For this study only the internal cabin pressure load case is considered. Component stress, deflection, margins of safety and mass are used as design goodness criteria. The design scenario is explored by changing the component thickness parameters and materials until an acceptable design is achieved. Aluminum alloy, titanium alloy and an advanced composite material properties are considered for the stress analysis and the results are compared as a part of lessons learned and to build up a structural component sizing knowledge base for the future CEV technology support. This independent structural analysis and the design scenario based optimization process may also facilitate better CM structural definition and rapid prototyping.
NASA Astrophysics Data System (ADS)
Yilmaz, Deniz; Peyneau, Pierre-Emmanuel; Beaudet, Laure; Cannavo, Patrice; Sere, Geoffroy
2017-04-01
For the characterization of hydraulics soils functions, in situ infiltration experiments are commonly used. The BEST method based on the infiltration through a single ring is well suited for soils containing coarse material. Technosols built from Civil engineering waste material such as brick waste, concrete waste, track ballast and demolition rubble wastes contain large part of coarse material. In this work, different materials made of civil engineering wastes mixed with organic wastes are tested for greening applications in an urban environment using in situ lysimeters. Beerkan infiltrations experiments were performed on these technosols. Experimental data are used to estimate hydraulics properties through the BEST method. The results shows from a hydraulic point of view that studied technosols can achieve the role of urban soil for greening application. Five combinations of artefacts were tested either as "growing material" (one combination) or "structural material" (4 combinations) - as support for traffic. Structural materials consisted in 27 wt.% earth material, 60 wt.% mineral coarse material and 3 wt.% organic material. These constructed technosols were studied in situ using lysimeters under two contrasted climatic conditions in two sites in France (Angers, in northwestern France and Homécourt, in northeastern France). Constructed technosols exhibited high porosities (31-48 vol% for structural materials, 70 vol% for the growing material). The dry bulk density of the growing material is estimated to 0.66 kg/m3 and 1.59 kg/m3 for structural material. The particle size distribution analysis, involving manual sieving (> 2 mm) and complemented by a grain size analysis (< 2 mm) were used as described in the BEST method (2006) for the estimation of the shape parameter n of hydraulics functions (Van-Genuchten -Mualem, 1980). This n parameter was estimated to 2.23 for growing materials and 2.29 for structural materials. Beerkan infiltrations experiments data were inversed using the BEST method, the results exhibited high saturated hydraulic conductivities 10.7 cm/h for structural materials and 14,8 cm/h for the growing material. Beerkan infiltration experiements are well suited for assesment of hydraulic properties of technosol constructed with civil engineering wastes. According to the estimated hydraulics functions, the studied technosols can be classified between a sand and a loam soil. It shows that these materials can achieve the role of alternative to the consumption of natural arable earth for urban greening applications such as gardens, parks and trees lines.
Differentiating between Distance/Open Education Systems: Parameters for Comparison.
ERIC Educational Resources Information Center
Guri-Rozenblit, Sarah
1993-01-01
Suggests eight parameters as criteria for describing and comparing distance education/open learning institutions: target population, dimensions of openness, organizational structure, design and development of learning materials, use of advanced technology, teaching/tutoring system, student support systems, and interinstitutional collaboration. (35…
NASA Technical Reports Server (NTRS)
Manta, G.; Gurau, Y.; Nica, P.; Facacaru, I.
1974-01-01
The development of methods for the nondestructive study of concrete structures is discussed. The nondestructive test procedure is based on the method of ultrasonic pulse transmission through the material. The measurements indicate that the elastic properties of concrete or other heterogeneous materials are a function of the rate of ultrasonic propagation. Diagrams of the test equipment are provided. Mathematical models are included to support the theoretical aspects.
Summary of materials and hardware performance on LDEF
NASA Technical Reports Server (NTRS)
Dursch, Harry; Pippin, Gary; Teichman, Lou
1993-01-01
A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.
2004-04-15
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO 2 on global climate change, the study of the use of amine-oxide hybrid materials as CO 2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO 2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO 2 from ultradilute gas mixtures, such as ambientmore » air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO 2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO 2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO 2 extraction from simulated ambient air (400 ppm of CO 2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO 2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In conclusion, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
CONSPECTUS: Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique,more » low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine−oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas−solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
Next-Generation MKIII Lightweight HUT/Hatch Assembly
NASA Technical Reports Server (NTRS)
McCarthy, Mike; Toscano, Ralph
2013-01-01
The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (˜58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (˜54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (˜26 kPa), it was felt that the suit's re-designed weight could be reduced to 79 lb (˜35 kg) with the incorporation of lightweight structural materials. Many robust, lightweight structures based on the technologies of advanced honeycomb materials, revolutionary new composite laminates, metal matrix composites, and recent breakthroughs in fullerene fillers and nanotechnology lend themselves well to applications requiring materials that are both light and strong. The major problem involves the reduction in weight of the HUT/ Hatch assembly for use in lunar and/or planetary applications, while at the same time maintaining a robust structural design. The technical objective is to research, design, and develop manufacturing methods that support fa b rica - tion of a lightweight HUT/Hatch assembly using advanced material and geometric redesign as necessary. Additionally, the lightweight HUT/Hatch assembly will interface directly with current MK III hardware. Using the new operating pressure and current MK III (H-1) interfaces as a starting block, it is planned to maximize HUT/Hatch assembly weight reduction through material selection and geometric redesign. A hard upper torso shell structure with rear-entry closure and corresponding hatch will be fabricated. The lightweight HUT/Hatch assembly will retrofit and interface with existing MK III (H-1) hardware elements, providing NASA with immediate "plug-andplay" capability. NASA crewmembers will have a lightweight, robust, life-support system that will minimize fatigue during extraterrestrial surface sojourns. Its unique feature is the utilization of a new and innovative family of materials used by the aerospace industry, which at the time of this reporting has not been used for the proposed application.
Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst
NASA Astrophysics Data System (ADS)
Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.
2018-02-01
Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.
Structures and Materials Experimental Facilities and Capabilities Catalog
NASA Technical Reports Server (NTRS)
Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)
2000-01-01
The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.
Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Fangfang; Bai, Jing; Feng, Jinkui; Xiong, Shenglin
2015-10-01
The relentless pursuit of new electrode materials for lithium ion batteries (LIBs) has been conducted for decades. Structures with either porous or nanostructure configurations have been confirmed as advantageous candidates for energy storage/conversion applications. The integration of the two features into one structure can provide another chance to improve the electroactivities. Recently, single-phased mixed metal oxides (MMOs) containing different metal cations, in particular, have confirmed high electrochemical activities because of their complex chemical composition, interfacial effects, and the synergic effects of the multiple metal species. In this review, we will focus on recent research advances of MMOs with porous architectures as anode materials in the matter of structural arrangement and compositional manipulation. Moreover, the application of self-supported MMO-based porous structures as LIB anodes is also explained herein. More importantly, investigations on the synthetic system and formation mechanism of porous MMOs will be highlighted. Some future trends for the innovative design of new electrode materials are also discussed in this review. The challenges and prospects will draw many researchers' attention.
Data-driven discovery of new Dirac semimetal materials
NASA Astrophysics Data System (ADS)
Yan, Qimin; Chen, Ru; Neaton, Jeffrey
In recent years, a significant amount of materials property data from high-throughput computations based on density functional theory (DFT) and the application of database technologies have enabled the rise of data-driven materials discovery. In this work, we initiate the extension of the data-driven materials discovery framework to the realm of topological semimetal materials and to accelerate the discovery of novel Dirac semimetals. We implement current available and develop new workflows to data-mine the Materials Project database for novel Dirac semimetals with desirable band structures and symmetry protected topological properties. This data-driven effort relies on the successful development of several automatic data generation and analysis tools, including a workflow for the automatic identification of topological invariants and pattern recognition techniques to find specific features in a massive number of computed band structures. Utilizing this approach, we successfully identified more than 15 novel Dirac point and Dirac nodal line systems that have not been theoretically predicted or experimentally identified. This work is supported by the Materials Project Predictive Modeling Center through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Realizing nanographene activated by a vacancy to solve hydrogen storage problem
NASA Astrophysics Data System (ADS)
Sunnardianto, Gagus Ketut; Maruyama, Isao; Kusakabe, Koichi
We found a triply hydrogenated vacancy (V111) in nanographene reduces an activation barrier of adsorption-desorption process in both ways in an equal manner from the known values for pristine graphene as well as those of other hydrogenated vacancies of graphene. This finding may give a key to overcome existing problems in the hydrogen uptake and release processes in known hydrogen storage materials, e.g. graphene and organic hydrides (OHs) in near ambient operation temperature. In this study, we used DFT-NEB simulation to estimate the barrier height, which is supported by realized real experiments. We consider a nanographene molecule (VANG) which contains V111 with armchair structure at the periphery. We found interesting feature in comparable values of energy barriers for both hydrogen uptake and release, where hydrogenation process is even a little bit endothermic and dehydrogenation is a little but exothermic nature. Thus, this material structure acts as ``self-catalytic properties'', which has an important role in reducing an energy barrier and as a trapping site for hydrogen serving a new material prevailing other hopeful candidates. The work is supported by JSPS KAKENHI in Science of Atomic Layers\\x9D.
Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku
2012-01-01
The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.
Irradiation response and stability of nanoporous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Engang; Wang, Yongqiang; Serrano De Caro, Magdalena
2012-08-28
Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not undermore » the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.« less
Data Mining for 3D Organic Dirac Materials
NASA Astrophysics Data System (ADS)
Geilhufe, R. Matthias; Borysov, Stanislav S.; Bouhon, Adrien; Balatsky, Alexander V.
The study of Dirac materials, i.e. materials where the low-energy fermionic excitations behave as massless Dirac particles has been of ongoing interest for more than two decades. Such massless Dirac fermions are characterized by a linear dispersion relation with respect to the particle momentum. A combined study using group theory and data mining within the Organic Materials Database leads to the discovery of stable Dirac-point nodes and Dirac line-nodes within the electronic band structure in the class of 3-dimensional organic crystals. The nodes are protected by crystalline symmetry. As a result of this study, we present band structure calculations and symmetry analysis for previously synthesized organic materials. In all these materials, the Dirac nodes are well separated within the energy and located near the Fermi surface, which opens up a possibility for their direct experimental observation. The authors acknowledge support by the US Department of Energy, BES E3B7, the swedish Research Council Grant No. 638-2013-9243, the Knut and Alice Wallenberg Foundation, and the European Research Council (FP/2207-2013)/ERC Grant Agreement No. DM-321031.
Improving Interlaminar Shear Strength
NASA Technical Reports Server (NTRS)
Jackson, Justin
2015-01-01
To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
2012-01-01
Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. PMID:22889332
Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.
Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R
2012-08-13
The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.
Method and apparatus for optimized sampling of volatilizable target substances
Lindgren, Eric R.; Phelan, James M.
2002-01-01
An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include 1) a conventional solid-phase microextraction (SPME) fiber, 2) a SPME fiber suspended in a capillary tube (with means provided for moving gases through the capillary tube so that the gases come into close proximity to the suspended fiber), and 3) a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.
Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology
NASA Astrophysics Data System (ADS)
Zhang, Dongxing; Xiao, Junfeng; Moorlag, Carolyn; Guo, Qiuquan; Yang, Jun
2017-11-01
Lightweight and mechanically robust materials show promising applications in thermal insulation, energy absorption, and battery catalyst supports. This study demonstrates an effective method for creation of ultralight metallic structures based on initiator-integrated 3D printing technology (i3DP), which provides a possible platform to design the materials with the best geometric parameters and desired mechanical performance. In this study, ultralight Ni foams with 3D interconnected hollow tubes were fabricated, consisting of hierarchical features spanning three scale orders ranging from submicron to centimeter. The resultant materials can achieve an ultralight density of as low as 5.1 mg cm-3 and nearly recover after significant compression up to 50%. Due to a high compression ratio, the hierarchical structure exhibits superior properties in terms of energy absorption and mechanical efficiency. The relationship of structural parameters and mechanical response was established. The ability of achieving ultralight density <10 mg cm-3 and the stable \\bar{E}˜ {\\bar{ρ }}2 scaling through all range of relative density, indicates an advantage over the previous stochastic metal foams. Overall, this initiator-integrated 3D printing approach provides metallic structures with substantial benefits from the hierarchical design and fabrication flexibility to ultralight applications.
High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.
NASA Astrophysics Data System (ADS)
Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof
Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
Space ultra-vacuum facility and method of operation
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Inventor)
1986-01-01
A wake shield facility providing an ultrahigh vacuum level for space processing is described. The facility is in the shape of a truncated, hollow hemispherical section, one side of the shield convex and the other concave. The shield surface is preferably made of material that has low out-gassing characteristics such as stainless steel. A material sample supporting fixture in the form of a carousel is disposed on the convex side of the shield at its apex. Movable arms, also on the convex side, are connected by the shield in proximity to the carousel, the arms supporting processing fixtures, and providing for movement of the fixtures to predetermined locations required for producing interations with material samples. For MBE processes a vapor jet projects a stream of vaporized material onto a sample surface. The fixtures are oriented to face the surface of the sample being processed when in their extended position, and when not in use they are retractable to a storage position. The concave side of the shield has a support structure including metal struts connected to the shield, extending radially inward. The struts are joined to an end plate disposed parallel to the outer edge of the shield. This system eliminates outgassing contamination.
NASA Astrophysics Data System (ADS)
Feinberg, Adam
We demonstrate the additive manufacturing of complex three-dimensional (3D) structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels (FRESH), enables 3D printing of hydrated materials with an elastic modulus less than 500 kPa including alginate, collagen, hyaluronic acid and fibrin. A range of crosslinking mechanisms can be used depending on the polymer being printed, including ionic, enzymatic, pH, thermal and light based approaches. CAD models of 3D optical, computed tomography, and magnetic resonance imaging data can be 3D printed at a resolution of 100 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains are mechanically robust and recreate complex 3D internal and external anatomical architectures. Recent advances have improved the resolution and broadened the range of materials that can be FRESH 3D printed. This work was supported in part by the NIH Director's New Innovator Award (DP2HL117750) and the NSF CAREER Award (1454248).
NASA Astrophysics Data System (ADS)
Puchala, Brian; Tarcea, Glenn; Marquis, Emmanuelle. A.; Hedstrom, Margaret; Jagadish, H. V.; Allison, John E.
2016-08-01
Accelerating the pace of materials discovery and development requires new approaches and means of collaborating and sharing information. To address this need, we are developing the Materials Commons, a collaboration platform and information repository for use by the structural materials community. The Materials Commons has been designed to be a continuous, seamless part of the scientific workflow process. Researchers upload the results of experiments and computations as they are performed, automatically where possible, along with the provenance information describing the experimental and computational processes. The Materials Commons website provides an easy-to-use interface for uploading and downloading data and data provenance, as well as for searching and sharing data. This paper provides an overview of the Materials Commons. Concepts are also outlined for integrating the Materials Commons with the broader Materials Information Infrastructure that is evolving to support the Materials Genome Initiative.
Evolving marine biomimetics for regenerative dentistry.
Green, David W; Lai, Wing-Fu; Jung, Han-Sung
2014-05-13
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Evolving Marine Biomimetics for Regenerative Dentistry
Green, David W.; Lai, Wing-Fu; Jung, Han-Sung
2014-01-01
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo. PMID:24828293
Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming
NASA Astrophysics Data System (ADS)
Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo
2017-11-01
It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Kizer, J. A.
1976-01-01
The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.
Register of experts for information on mechanics of structural failure
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Stuhrke, W. F.
1975-01-01
This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.
Deconvolution of the role of metal and pH in metal coordinating polymers
NASA Astrophysics Data System (ADS)
Cazzell, Seth; Holten-Andersen, Niels
Nature uses metal binding amino acids to engineer both mechanical properties and structural functionality. Some examples of this metal binding behavior can be found in both mussel foot protein and DNA binding protein. The mussel byssal thread contains reversible intermolecular protein-metal bonds, allowing it to withstand harsh intertidal environments. Zinc fingers form intramolecular protein-metal bonds to stabilize the tertiary structure of DNA binding proteins, allowing specific structural functionality. Inspired by both these metal-binding materials, we present mechanical and spectroscopic characterization of a model polymer system, designed to mimic this bonding. Through these studies, we are able to answer fundamental polymer physics questions, such as the role of pH and metal to ligand ratio, illuminating both the macroscopic and microscopic material behavior. These understandings further bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Australian defence requirements and initiatives in smart materials and structures
NASA Astrophysics Data System (ADS)
Wilson, Alan R.; Galea, Stephen C.; Scala, Christine; Wong, Albert
2002-11-01
The Australian Defence Force is increasingly facing escalating costs on through-life support for major platforms (ships, aircraft and land vehicles). The application of smart materials and structures technologies in platform management systems is seen as a very promising approach to reduce these costs and to potentially achieve significant enhancement of platform capability. A new DSTO Key Initiative, 'Smart Materials and Structures', has been recently developed and funded to address these technologies. The Initiative will build on and grow the current activities within DSTO and promote collaboration with external Australian institutes and industry. This paper will present an overview of the Initiative and the generic sensor and system issues inherent in the 'whole-of-platform' and 'whole-of-life' monitoring and management of major defence platforms. Examples for some particular elements of this will be drawn from current work in DSTO. Other presentations in the conference will cover the technical and scientific aspects of these in more detail.
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
Ahadian, Samad; Davenport Huyer, Locke; Estili, Mehdi; Yee, Bess; Smith, Nathaniel; Xu, Zhensong; Sun, Yu; Radisic, Milica
2017-04-01
Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration. CNTs were incorporated in elastomeric polymers in a facile and reproducible approach. Polymer-CNT materials were able to construct complicated scaffold structures by injecting the prepolymer into a mold and crosslinking the prepolymer under ultraviolet light. CNTs enhanced electrical conductivity and structural support of elastomeric polymers. Hybrid polymeric scaffolds containing 0.5wt% CNTs increased the maturation of cardiac tissues fabricated on them compared to pure polymeric scaffolds. The cardiac tissues on hybrid polymer-CNT scaffolds showed earlier beating than those on pure polymer scaffolds. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such neural and skeletal muscle tissues. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such as neural and skeletal muscle tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Silica based hybrid materials for drug delivery and bioimaging.
Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona
2018-05-10
Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer; Ceter, Talip
2017-01-15
Bio-based catalyst support materials with high thermal and structural stability are desired for catalysts systems requiring harsh conditions. In this study, a thermally stable palladium catalyst (up to 440°C) was designed from sporopollenin, which occurs naturally in the outer exine layer of pollens and is widely acknowledged as chemically very stable and inert biological material. Catalyst design procedure included (1) extraction of sporopollenin microcapsules from Betula pendula pollens (∼25μm), (2) amino-functionalisation of the microcapsules, (3) Schiff base modification and (4) preparation of Pd(II) catalyst. The catalytic activity of the sporopollenin microcapsule supported palladium catalyst was tested in catalysis of biaryls by following a fast, simple and green microwave-assisted method. We recorded outstanding turnover number (TON: 40,000) and frequency (TOF: 400,000) for the catalyst in Suzuki coupling reactions. The catalyst proved to be reusable at least in eight cycles. The catalyst can be suggested for different catalyst systems due to its thermal and structural durability, reusability, inertness to air and its eco-friendly nature. Copyright © 2016 Elsevier Inc. All rights reserved.
75 FR 49429 - Metal and Nonmetal Dams
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... internal water pressures. Pressures beyond a certain level would lead to structural instability. In the 18... foundation and embankment material strengths, and stability analyses to verify that the slopes of the dam..., rationales, benefits to miners, technological and economic feasibility, impact on small mines, and supporting...
Material design of two-phase-coexisting niobate dielectrics by electrostatic adsorption
NASA Astrophysics Data System (ADS)
Fuchigami, Teruaki; Yoshida, Katsuya; Kakimoto, Ken-ichi
2017-10-01
A material design process using electrostatic adsorption was proposed to synthesize composite ceramics with a two-phase-coexisting structure. Supported particles were fabricated by the electrostatic adsorption of (Na,K)NbO3-SrTiO3 (NKN-ST) nanoparticles on (Na,K)NbO3-Ba2NaNb5O15 (NKN-BNN) particles. NKN-ST and NKN-BNN were well dispersed with no aggregate in NKN-ST/NKN-BNN ceramics synthesized using the supported particles in comparison with ceramics synthesized using a mixture obtained by simply mixing NKN-ST and NKN-BNN powder. The temperature dependence of dielectric constant is closely related to the composite structure and the dielectric constant was stable in a wide temperature range from room temperature to 400 °C. Capacitance for DC bias was also insensitive to temperature in the range of 0-2 kV/mm, and the change rate of the capacitance was within ±5% in the temperature range from room temperature to 200 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen
Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less
Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; ...
2016-01-01
Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less
[Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].
Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin
2015-06-01
Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable after repeated use of the supported TiO2 material for 5 times.
The RCSB protein data bank: integrative view of protein, gene and 3D structural information
Rose, Peter W.; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R.; Christie, Cole H.; Costanzo, Luigi Di; Duarte, Jose M.; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S.; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S.; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D.; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y.; Zardecki, Christine; Berman, Helen M.; Burley, Stephen K.
2017-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. PMID:27794042
Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong
2016-06-03
Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach.
Technology development life cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2013-05-01
This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Effect of Mg doping on the Structure and Reflectivity of Alumina surfaces
NASA Astrophysics Data System (ADS)
Pennycook, Timothy; Idrobo, Juan C.; Varga, Kalman; Pantelides, Sokrates T.
2008-03-01
Mg is used in the fabrication of Al alloys to increase the strength of the material. In typical applications, a layer of alumina is present on the surface. The high diffusivity and chemical reactivity of Mg means that Mg can migrate from the bulk alloy to the alumina film and the surface, where it can affect the structural and optical properties of the material. The doping of Al alloys with Mg is known to cause ``darkening'' and affect the coloration of the material. We will report results of first principles density functional theory calculations that explore the segregation modes of Mg in the near-surface region of alumina and the corresponding effect on optical properties, i.e., reflectivity. This work is supported in part by NSF grant DMR-0513048 and ALCOA Inc.
Enhancing Reactivity in Structural Energetic Materials
NASA Astrophysics Data System (ADS)
Glumac, Nick
2017-06-01
In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.
Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon
2015-07-24
Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.
NASA Astrophysics Data System (ADS)
Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna
2013-03-01
Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.
Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang
2018-03-01
Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.
Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less
Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework
Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.; ...
2016-11-22
Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less
Belver, C; Bedia, J; Rodriguez, J J
2017-01-15
Solar light-active Zr-doped TiO 2 nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO 2 at 65wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO 2 /clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO 2 particles (15-20nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO 2 /clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay. Copyright © 2016 Elsevier B.V. All rights reserved.
Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes.
Han, Meikang; Yin, Xiaowei; Li, Xinliang; Anasori, Babak; Zhang, Litong; Cheng, Laifei; Gogotsi, Yury
2017-06-14
Microwave absorbers with layered structures that can provide abundant interfaces are highly desirable for enhancing electromagnetic absorbing capability and decreasing the thickness. The atomically thin layers of two-dimensional (2D) transition-metal carbides (MXenes) make them a convenient precursor for synthesis of other 2D and layered structures. Here, laminated carbon/TiO 2 hybrid materials composed of well-aligned 2D carbon sheets with embedded TiO 2 nanoparticles were synthesized and showed excellent microwave absorption. Disordered 2D carbon layers with an unusual structure were obtained by annealing multilayer Ti 3 C 2 MXene in a CO 2 atmosphere. The minimum reflection coefficient of laminated carbon/TiO 2 composites reaches -36 dB, and the effective absorption bandwidth ranges from 3.6 to 18 GHz with the tunable thickness from 1.7 to 5 mm. The effective absorption bandwidth covers the whole Ku band (12.4-18 GHz) when the thickness of carbon/TiO 2 /paraffin composite is 1.7 mm. This study is expected to pave the way to the synthesis of carbon-supported absorbing materials using a large family of 2D carbides.
On the Mechanical Behavior of Advanced Composite Material Structures
NASA Astrophysics Data System (ADS)
Vinson, Jack
During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.; Berry, D.; Shekhawt, D.
2010-01-01
Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) ofmore » n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were removed. This material also maintained >50% of its initial hydrogen yield for more than 4 h after exposure to DBT and MN, while the hydrogen for the material prepared by SSM dropped to this same level within 2 h. Incipient wetness impregnation appears to provide a higher degree of interaction between the oxygenconducting GDC support and the hexaaluminate, resulting in less rapid deactivation, which appears to be due primarily to carbon deposition.« less
NASA Astrophysics Data System (ADS)
Bajin, P. A.; Chijikov, A. P.; Leybo, D. V.; Chuprunov, K. O.; Yudin, A. G.; Alymov, M. A.; Kuznetsov, D. V.
2016-01-01
The development of low cost and hardwearing mining tools is one of the most important areas in mining industry. It is especially important for technologies of rare and rare earth metals mining due to high hardness of related ores. Coatings for electrodes, produced by extrusion of self-propagating high temperature synthesis (SHS) products from hard-alloyed materials with nanosized structure, for further application in processes of electrospark alloying and deposition were studied in this work. The results of microstructure and properties of deposited layers, interaction of support with SHS produced electrodes, comparison of frictional properties of obtained materials as well as some industrial testing results are presented in this work.
NASA Technical Reports Server (NTRS)
2004-01-01
Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.
Hadfield poses with MSL FLSS in the Node 2
2012-12-23
View of Canada Space Agency (CSA) Chris Hadfield, Expedition 34 Flight Engineer (FE), poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the U.S. Laboratory. Tom Marshburn (background), Expedition 34 FE uses laptop computer. Photo was taken during Expedition 34.
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2011 CFR
2011-07-01
... site of small structures, such as power poles, signs, or fence lines; or (ii) Will not destroy the... unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind and water erosion... from facilities such as support facilities and preparation plants and where stockpiling of materials...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2010 CFR
2010-07-01
... site of small structures, such as power poles, signs, or fence lines; or (ii) Will not destroy the... unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind and water erosion... from facilities such as support facilities and preparation plants and where stockpiling of materials...
Self-similar and fractal design for stretchable electronics
Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui
2017-04-04
The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Pilot cryo tunnel: Attachments, seals, and insulation
NASA Technical Reports Server (NTRS)
Wilson, J. F.; Ware, G. D.; Ramsey, J. W., Jr.
1974-01-01
Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports.
High-speed non-contact measuring apparatus for gauging the thickness of moving sheet material
Grann, Eric B.; Holcomb, David E.
2000-01-01
An optical measurement apparatus is provided for measuring the thickness of a moving sheet material (18). The apparatus has a pair of optical measurement systems (21, 31) attached to opposing surfaces (14, 16) of a rigid support structure (10). A pair of high-power laser diodes (20,30) and a pair of photodetector arrays (22,32) are attached to the opposing surfaces. Light emitted from the laser diodes is reflected off of the sheet material surfaces (17, 19) and received by the respective photodetector arrays. An associated method for implementing the apparatus is also provided.
The role of spin-orbit coupling in topologically protected interface states in Dirac materials
NASA Astrophysics Data System (ADS)
Abergel, D. S. L.; Edge, Jonathan M.; Balatsky, Alexander V.
2014-06-01
We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as Mo{{S}_{2}}.
Gas Permeable Chemochromic Compositions for Hydrogen Sensing
NASA Technical Reports Server (NTRS)
Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor); Bokerman, Gary (Inventor)
2013-01-01
A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.
Lightweight composite reflectors for space optics
NASA Astrophysics Data System (ADS)
Williams, Brian E.; McNeal, Shawn R.; Ono, Russell M.
1998-01-01
The primary goal of this work was to advance the state of the art in lightweight, high optical quality reflectors for space- and Earth-based telescopes. This was accomplished through the combination of a precision silicon carbide (SiC) reflector surface and a high specific strength, low-mass SiC structural support. Reducing the mass of components launched into space can lead to substantial cost savings, but an even greater benefit of lightweight reflectors for both space- and Earth-based optics applications is the fact that they require far less complex and less expensive positioning systems. While Ultramet is not the first company to produce SiC by chemical vapor deposition (CVD) for reflector surfaces, it is the first to propose and demonstrate a lightweight, open-cell SiC structural foam that can support a thin layer of the highly desirable polished SiC reflector material. SiC foam provides a substantial structural and mass advantage over conventional honeycomb supports and alternative finned structures. The result is a reflector component that meets or exceeds the optical properties of current high-quality glass, ceramic, and metal reflectors while maintaining a substantially lower areal density.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, Bahne C.
1994-01-01
The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).
Constructive systems, load-bearing and enclosing structures of high-rise buildings
NASA Astrophysics Data System (ADS)
Anatol'evna Korol', Elena; Olegovna Kustikova, Yuliya
2018-03-01
As the height of the building increases, loads on load-carrying structures increase dramatically, and as a result of the development of high-rise construction, several structural systems of such buildings have been developed: frame, frame-frame, cross-wall, barrel, box-type, box-to-wall ("pipe in pipe", "Trumpet in the farm"), etc. In turn, the barrel systems have their own versions: cantilever support of the ceilings on the trunk, suspension of the outer part of the overlap to the upper carrying console "hanging house" or its support by means of the walls on the lower bearing cantilever, intermediate position of the supporting cantilevers in height to the floor, from a part of floors. The object of the study are the structural solutions of high-rise buildings. The subject of the study is the layout of structural schemes of high-rise buildings, taking into account the main parameters - altitude (height), natural climatic conditions of construction, materials of structural elements and their physical and mechanical characteristics. The purpose of the study is to identify the features and systematization of structural systems of high-rise buildings and the corresponding structural elements. The results of the research make it possible, at the stage of making design decisions, to establish rational parameters for the correspondence between the structural systems of high-rise buildings and their individual elements.
Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.
Chen, Jige; Chen, Shunda; Gao, Yi
2016-07-07
Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
NASA Astrophysics Data System (ADS)
Sui, Dong; Xie, Yuqing; Zhao, Weimin; Zhang, Hongtao; Zhou, Ying; Qin, Xiting; Ma, Yanfeng; Yang, Yong; Chen, Yongsheng
2018-04-01
Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g-1 at 0.1 A g-1, initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g-1 with 83.6% capacity retention (∼610 mAh g-1) after 300 cycles.
[Modern aspects of organization of medical support for the Armed Forces].
Stavila, A G; Krasavin, K D; Levchenko, V N; Lemeshko, A L; Roenko, A S
2015-09-01
The challenges that medical service of the Armed Forces of the Russian Federation faces cannot be solved without a new qualitative approach to military and medical support. In order to create a complete organizational system of the medical support, consisting of united process of material flow management and management of accompanying elements, the. structure of the medical support and its equipment must correspond to performed tasks. The article describes a set of activities that are performed in the system of military-medical support and offers some promising approaches, which are supposed to solve assigned tasks imposed upon the center of pharmacy and medical technology and its interaction with superior body control, maintainable and third party organizations.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Spectroscopic investigation of nitrogen-functionalized carbon materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis
2016-04-07
Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan throughmore » the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.« less
NASA Astrophysics Data System (ADS)
Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Shim, Hee Sang
2013-11-01
Denting is a phenomenon that a steam generator tube is distorted by a volume expansion of corrosion products of the tube support and tubesheet materials adjacent to the tube. Although denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable concern in the crevice region of the top of tubesheet. This paper provides a new technology to prevent denting by cladding the secondary surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material was cladded onto the surface of an SA508 tubesheet to a thickness of about 9 mm. The corrosion rates of the original SA508 tubesheet and the Alloy 690 clad material were measured in acidic and alkaline simulated environments. Using Alloy 690 cladding, the corrosion rate of the tubesheet within a magnetite sludge pile decreased by a factor of 680 in 0.1 M NiCl2 solution at 300 °C, and by a factor of 58 in 2 M NaOH solution at 315 °C. This means that denting can drastically be prevented by cladding the secondary tubesheet surface with corrosion resistant materials.
Greiderer, Andreas; Rainer, Matthias; Najam-ul-Haq, Muhammad; Vallant, Rainer M; Huck, Christian W; Bonn, Günther K
2009-07-01
Graphitic nanofibres (GNFs), 100-200 nm in diameter and 5-20 microm in length have been modified in order to yield different affinities (Cu2+ and Fe3+ loaded immobilized metal affinity chromatography (IMAC) as well as cation and anion exchange materials) for the extraction of a range of biomolecules by their inherited hydrophobicity and the hydrophilic chemical functionalities, obtained by derivatization. Modified GNFs have for the first time been employed as carrier materials for protein profiling in material-enhanced laser desorption/ionization (MELDI) for the enrichment and screening of biofluids. For that purpose, the derivatized GNF materials have comprehensively been characterized regarding surface area, structural changes during derivatization, IMAC, as well as ion exchange and protein-loading capacity and recovery. GNF derivatives revealed high protein-binding capacity (2,000 microg ml(-1) for insulin) and ideal sensitivities, resulting in a detection limit of 50 fmol microl(-1) (for insulin), which is crucial for the detection of low abundant species in biological samples. Compared to other MELDI carrier materials, sensitivity was enhanced on GNF derivatives, which might be ascribed to the fact that GNFs support desorption and ionization mechanisms and by absorbing laser energy in addition to matrix.
Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush
2018-01-01
Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil–5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir–Hinshelwood or Eley–Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested. PMID:29600136
Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin
2018-01-01
Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.
Ceramic susceptor for induction bonding of metals, ceramics, and plastics
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1991-01-01
A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.
Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT
2011-01-18
A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
Preparation and analysis of particulate metal deposits
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, D.; Heinemann, K.
1985-01-01
Small particles and clusters of palladium were grown by deposition from the vapor phase under ultrahigh vacuum conditions. Amorphous and crystalline support films of Al2O3 and ultrathin amorphous carbon films were used as substrate materials. The growth of the metal deposit was monitored in situ by scanning transmission diffraction of energy-filtered 100 kV electrons and high resolution transmission electron microscopy (TEM) analysis was performed in a separate instrument. It was established by in situ TEM, however, that the transfer of specimens in this case did not unduly affect the size and distribution of deposit particles. It was found that the cleanness, stoichiometry, crystallinity and structural perfection of the support surface play an essential role in determining the crystalline perfection and structure of the particles. The smallest palladium clusters reproducibly prepared contained not more than six atoms but size determinations below 1 nm average particle diameter are very problematic with conventional TEM. Palladium particles grown on carbon supports feature an impurity-stabilized mosaic structure.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mesostructured silica and aluminosilicate carriers for oxytetracycline delivery systems.
Berger, D; Nastase, S; Mitran, R A; Petrescu, M; Vasile, E; Matei, C; Negreanu-Pirjol, T
2016-08-30
Oxytetracycline delivery systems containing various MCM-type silica and aluminosilicate with different antibiotic content were developed in order to establish the influence of the support structural and textural properties and aluminum content on the drug release profile. The antibiotic molecules were loaded into the support mesochannels by incipient wetness impregnation method using a drug concentrated aqueous solution. The carriers and drug-loaded materials were investigated by small- and wide-angle XRD, FTIR spectroscopy, TEM and N2 adsorption-desorption isotherms. Faster release kinetics of oxytetracycline from uncalcined silica and aluminosilicate supports was observed, whereas higher drug content led to lower delivery rate. The presence of aluminum into the silica network also slowed down the release rate. The antimicrobial assays performed on Staphylococcus aureus clinical isolates showed that the oxytetracycline-loaded materials containing MCM-41-type mesoporous silica or aluminosilicate carriers inhibited the bacterial development. Copyright © 2016 Elsevier B.V. All rights reserved.
The well-designed hierarchical structure of Musa basjoo for supercapacitors
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-01-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials. PMID:26842714
The well-designed hierarchical structure of Musa basjoo for supercapacitors.
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-04
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
The well-designed hierarchical structure of Musa basjoo for supercapacitors
NASA Astrophysics Data System (ADS)
Zheng, Kaiwen; Fan, Xiaorong; Mao, Yingzhu; Lin, Jingkai; Dai, Wenxuan; Zhang, Junying; Cheng, Jue
2016-02-01
Application of biological structure is one of the hottest topics in the field of science and technology. The unimaginable and excellent architectures of living beings supporting their vital activities have attracted the interests of worldwide researchers. An intriguing example is Musa basjoo which belongs to the herb, while appears like a tree. The profound mystery of structure and potential application of Musa basjoo have not been probed. Here we show the finding of the hierarchical structure of Musa basjoo and the outstanding electrochemical performance of the super-capacitors fabricated through the simple carbonization of Musa basjoo followed by KOH activation. Musa basjoo has three layers of structure: nanometer-level, micrometer-level and millimeter-level. The nanometer-level structure constructs the micrometer-level structure, while the micrometer-level structure constructs the millimeter-level structure. Based on this hierarchical structure, Musa basjoo reduces the unnecessary weight and therefore supports its huge body. The super-capacitors derived from Musa basjoo display a high specific capacitance and a good cycling stability. This enlightening work opens a window for the applications of the natural structure and we hope that more and more people could pay attention to the bio-inspired materials.
Fluidizable particulate materials and methods of making same
Gupta, Raghubir P.
1999-01-01
The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.
High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Koch, L. C.; Pagel, L. L.
1978-01-01
The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.
Ogawa, Takashi; Gang, Geun Won; Thieu, Minh Thu; Kwon, Hyuksang; Ahn, Sang Jung; Ha, Tai Hwan; Cho, Boklae
2017-05-01
Utilization of graphene-supporting films and low-voltage scanning transmission electron microscopy (LV-STEM) in scanning electron microscopy (SEM) is shown to be an effective means of observing unstained nanobio materials. Insulin amyloid fibrils, which are implicated as a cause of type II diabetes, are formed in vitro and observed without staining at room temperature. An in-lens cold field-emission SEM, equipped with an additional homemade STEM detector, provides dark field (DF)-STEM images in the low energy range of 5-30keV, together with secondary electron (SE) images. Analysis based on Lenz's theory is used to interpret the experimental results. Graphene films, where the fibrils are deposited, reduce the background level of the STEM images compared with instances when conventional amorphous carbon films are used. Using 30keV, which is lower than that for conventional TEM (100-300keV), together with low detection angles (15-55mrad) enhances the signals from the fibrils. These factors improve image quality, which enables observation of thin fibrils with widths of 7-8nm. STEM imaging clearly reveals a twisted-ribbon structure of a fibril, and SE imaging shows an emphasized striped pattern of the fibril. The LV-STEM in SEM enables acquisition of two types of images of an identical fibril in a single instrument, which is useful for understanding the structure. This study expands the application of SEM to other systems of interest, which is beneficial to a large number of users. The method in this study can be applied to the observation of various nanobio materials and analysis of their native structures, thus contributing to research in materials and life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less
In situ x-ray diffraction studies of a new LiMg{sub 0.125}Ni{sub 0.75}O{sub 2} cathode material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.Q.; Sun, X.; McBreen, J.
A Synchrotron x-ray source was used for In Situ x-ray diffraction studies during charge on a new LiMg{sub 0.125}Ti{sub 0.125}Ni{sub 0.75} cathode material synthesized by FMC Corp. It had been demonstrated by Gao that this new material has superior thermal stability than LiNiO{sub 2} and LiCo{sub 0.2}Ni{sub 0.8}O{sub 2} at over-charged state. In this current paper, studies on the relationship between the structural changes and thermal stability at over-charged state for these materials are presented. For the first time, the thermal stability of these materials are related to their structural changes during charge, especially to the formation and lattice constantmore » change of a hexagonal phase (H3). The spectral evidence support the hypothesis that the improvement of thermal stability is obtained by suppressing the formation of H3 phase and reducing the shrinkage of its lattice constant c when charged above 4.3 V.« less
Syracuse University's Center for Instructional Development; Its Role, Organization, and Procedures.
ERIC Educational Resources Information Center
Diamond, Robert M.
A brief report on the Syracuse University Center for Instructional Development is presented which describes the Center's organizational structure and operational procedures. The center combines support services for video, audio, graphics and photographic preparation of materials for instructional use; a research and evaluation unit to assess…
Microparticles with hierarchical porosity
Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim
2012-12-18
The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.
Soft container for explosive nuts
NASA Technical Reports Server (NTRS)
Glenn, D. C.; Drummond, W. E.; Miller, G.
1981-01-01
Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.
Infant Statistical-Learning Ability Is Related to Real-Time Language Processing
ERIC Educational Resources Information Center
Lany, Jill; Shoaib, Amber; Thompson, Abbie; Estes, Katharine Graf
2018-01-01
Infants are adept at learning statistical regularities in artificial language materials, suggesting that the ability to learn statistical structure may support language development. Indeed, infants who perform better on statistical learning tasks tend to be more advanced in parental reports of infants' language skills. Work with adults suggests…
Hadfield poses with MSL FLSS in the Node 2
2012-12-23
ISS034-E-010603 (28 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, poses with a Materials Science Laboratory (MSL) Furnace Launch Support Structure (FLSS) in the Destiny laboratory of the International Space Station. NASA astronaut Tom Marshburn, flight engineer, uses a computer in the background.
Structural considerations for fabrication and mounting of the AXAF HRMA optics
NASA Technical Reports Server (NTRS)
Cohen, Lester M.; Cernoch, Larry; Mathews, Gary; Stallcup, Michael
1990-01-01
A methodology is described which minimizes optics distortion in the fabrication, metrology, and launch configuration phases. The significance of finite element modeling and breadboard testing is described with respect to performance analyses of support structures and material effects in NASA's AXAF X-ray optics. The paper outlines the requirements for AXAF performance, optical fabrication, metrology, and glass support fixtures, as well as the specifications for mirror sensitivity and the high-resolution mirror assembly. Analytical modeling of the tools is shown to coincide with grinding and polishing experiments, and is useful for designing large-area polishing and grinding tools. Metrological subcomponents that have undergone initial testing show evidence of meeting force requirements.
Vacuum plasma spray applications on liquid fuel rocket engines
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.
1992-01-01
The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.
Solid State Division progress report for period ending March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1997-12-01
This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.
A regularization approach to hydrofacies delineation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, Brendt; Tartakovsky, Daniel
2009-01-01
We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.
Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.
1987-04-21
Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.
Using Ultrasonic Lamb Waves To Measure Moduli Of Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1995-01-01
Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.
Microwave plasma CVD of NANO structured tin/carbon composites
Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA
2012-07-17
A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.
Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
Neidlinger, Hermann H.; Schissel, Paul O.; Orth, Richard A.
1987-01-01
Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.
Use of lunar regolith as a substrate for plant growth
NASA Technical Reports Server (NTRS)
Ming, D. W.; Henninger, D. L.
1994-01-01
Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (1) soils or solid-support substrates for plant growth, (2) sources for extraction of essential, plant-growth nutrients, (3) substrates for microbial populations in the degradation of wastes, (4) sources of O2 and H2, which may be used to manufacture water, (5) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (6) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, C. D.; Shen, N.; Rubenchik, A.
2015-06-30
Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage
Beddoes, Charlotte M.; Whitehouse, Michael R.; Briscoe, Wuge H.; Su, Bo
2016-01-01
Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour. PMID:28773566
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.
Beddoes, Charlotte M; Whitehouse, Michael R; Briscoe, Wuge H; Su, Bo
2016-06-03
Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.
Composite TiO2/clays materials for photocatalytic NOx oxidation
NASA Astrophysics Data System (ADS)
Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.
2014-11-01
TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.
Negotiating energy dynamics through embodied action in a materially structured environment
NASA Astrophysics Data System (ADS)
Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Flood, Virginia J.; McKagan, Sarah B.; Robertson, Amy D.; Seeley, Lane; Wittmann, Michael C.; Vokos, Stamatis
2013-12-01
We provide evidence that a learning activity called Energy Theater engages learners with key conceptual issues in the learning of energy, including disambiguating matter flow and energy flow and theorizing mechanisms for energy transformation. A participationist theory of learning, in which learning is indicated by changes in speech and behavior, supports ethnographic analysis of learners’ embodied interactions with each other and the material setting. We conduct detailed analysis to build plausible causal links between specific features of Energy Theater and the conceptual engagement that we observe. Disambiguation of matter and energy appears to be promoted especially by the material structure of the Energy Theater environment, in which energy is represented by participants, while objects are represented by areas demarcated by loops of rope. Theorizing mechanisms of energy transformation is promoted especially by Energy Theater’s embodied action, which necessitates modeling the time ordering of energy transformations.
A new fun and robust version of an fMRI localizer for the frontotemporal language system.
Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina
2017-07-01
A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.
Sutter, B; Ming, D W; Clearfield, A; Hossner, L R
2003-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.
NASA Technical Reports Server (NTRS)
Sutter, B.; Ming, D. W.; Clearfield, A.; Hossner, L. R.
2003-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
Structural Evolution of Schreibersite, Fe3P, at High Pressure
NASA Astrophysics Data System (ADS)
Howard, J.; Sinogeikin, S.; Nicol, M.; Tschauner, O.
2007-12-01
Fe3P schreibersite is an abundant mineral in iron meteorites. Previous work [Scott et. al., Geophys. Res. Lett. (2007) 34, L06302/1-5] reported a phase transition occurred in a powder sample of Fe3P schreibersite above 17 GPa at ambient temperature, but did not identify the structure of this high pressure phase. This high pressure phase is not quenchable to ambient pressure, however, the transition and its reversion may induce characteristic twinning in schreibersite crystals, which may be identified in meteoritic material and, thus, help to constrain shock pressures for iron meteorites. By using a diamond anvil cell with a methanol/ethanol pressure medium to generate pressure, the structure of single crystal Fe3P was studied by X-ray diffraction up to 30 GPa (at room temperature) at end station 16 ID-B of the Advanced Photon Source. Our experiment indicates that the phase transition occurs around 10 GPa and appears to suggest that the material twins during compression. Acknowledgement: The authors thank the HPCAT team for their help, and U.S. DOE Cooperative Agreement No. FC08-06NA27684 with UNLV for supporting the work. Portions of this work were performed at HPCAT (Sector 16), APS, ANL. HPCAT facility is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. The APS is supported by the U. S. DOE-BES under Contract No. W-31-109-Eng-38.
Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment
Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...
2015-07-08
Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less
Plate-impact loading of cellular structures formed by selective laser melting
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Maw, J. R.; Chapman, D. J.; Eakins, D. E.; McShane, G.
2014-03-01
Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers.
Wang, Deli; Wang, Jie; He, Huan; ...
2015-12-30
Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of Co xFe 3–xO 4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, wemore » directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less
NASA Astrophysics Data System (ADS)
Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming
2017-09-01
Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.
[Decellularized fish skin: characteristics that support tissue repair].
Magnússon, Skúli; Baldursson, Baldur Tumi; Kjartansson, Hilmar; Thorlacius, Guðný Ella; Axelsson, Ívar; Rolfsson, Óttar; Petersen, Pétur Henry; Sigurjónsson, Guðmundur Fertram
2015-12-01
Acellular fish skin of the Atlantic cod (Gadus morhua) is being used to treat chronic wounds. The prevalence of diabetes and the comorbidity of chronic wounds is increasing globally. The aim of the study was to assess the biocompatibility and biological characteristics of acellular fish skin, important for tissue repair. The structure of the acellular fish skin was examined with microscopy. Biocompatibility of the graft was conducted by a specialized certified laboratory. Protein extracts from the material were analyzed using gel electrophoresis. Cytokine levels were measured with an enzyme linked immunosorbent assay (ELISA). Angiogenic properties were assessed with a chick chorioallantoic membrane (chick CAM) assay. The structure of acellular fish skin is porous and the material is biocompatible. Electrophoresis revealed proteins around the size 115-130 kDa, indicative of collagens. The material did not have significant effect on IL-10, IL-12p40, IL-6 or TNF-α secretion from monocytes or macrophages. Acellular fish skin has significant effect on angiogenesis in the chick CAM assay. The acellular fish skin is not toxic and is not likely to promote inflammatory responses. The graft contains collagen I, promotes angiogenesis and supports cellular ingrowth. Compared to similar products made from mammalian sources, acellular fish skin does not confer a disease risk and contains more bioactive compounds, due to less severe processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jie; Wu, Jianzhong; Wu, Zexing
In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less
Wang, Jie; Wu, Jianzhong; Wu, Zexing; ...
2017-05-17
In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.
Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less
NASA Astrophysics Data System (ADS)
Zhang, B.; Yu, S.
2018-03-01
In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.
Chaudhari, Nitin K; Chaudhari, Sudeshna; Yu, Jong-Sung
2014-11-01
Well-dispersed cube-like iron oxide (α-Fe2O3) nanoparticles (NPs) supported on ordered multimodal porous carbon (OMPC) are synthesized for the first time by a facile and efficient glycine-assisted hydrothermal route. The effect of OPMC support on growth and formation mechanism of the Fe2O3 NPs is discussed. OMPC as a supporting material plays a pivotal role of controlling the shape, size, and dispersion of the Fe2O3 NPs. As-synthesized α-Fe2O3/OMPC composites reveal significant improvement in the performance as electrode material for supercapacitors. Compared to the bare Fe2O3 and OMPC, the composite exhibits excellent cycling stability, rate capability, and enhanced specific capacitances of 294 F g(-1) at 1.5 A g(-1), which is twice that of OMPC (145 F g(-1)) and about four times higher than that of bare Fe2O3 (85 F g(-1)). The improved electrochemical performance of the composite can be attributed to the well-defined structure, high conductivity, and hierarchical porosity of OMPC as well as the unique α-Fe2O3 NPs with cube-like morphology well-anchored on the OMPC support, which makes the composite a promising candidate for supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stress Transfer and Structural Failure of Bilayered Material Systems
NASA Astrophysics Data System (ADS)
Prieto-Munoz, Pablo Arthur
Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.
Research and education on fiber-based materials for nanofluidics at Clemson University
NASA Astrophysics Data System (ADS)
Kornev, Konstantin G.
2007-11-01
Advanced materials and the science and engineering related to their design, process, test and manufacture represents one of the fast growing sectors of the Materials Science and Engineering field. Awareness of existing process, performance, manufacturing or recycle-ability issues and limitations, often dictates the next generation of advances needed to improve existing or create new materials. To compete in this growing science and technology area, trained experts must possess strong academic skills in their discipline as well as advanced communication, networking and cultural teamwork experience. Clemson's School of Materials Science and Engineering (MSE), is continuing to expand our program to focus on unique capabilities which support local, regional and national needs in advanced materials. Specifically, MSE at Clemson is evolving to highlight intrinsic strengths in research and education areas related to optical materials, advanced fibers and composites (based on inorganic, organic and natural fibers), biomaterials and devices, and architectural and restoration material science (including the conservation and preservation of maritime structures). Additionally, we continue to invest in our expertise in materials design and fabrication, which has historically supported our well known programs in ceramics and textiles. In addition to a brief review of the School's forward-looking challenges to remain competitive among strong southeast regional materials science programs, this presentation will also highlight recent technical advances in fiber-based materials for nanofluidic applications. Specifically we will present recent results on design of fiber-based nanofluidics for sensor applications and we will discuss some physical phenomena associated with liquid transport at nanoscale.
Fergason, Robin L.; Gaddis, Lisa R.; Rogers, A. D.
2014-01-01
The Valles Marineris canyon system on Mars is of enduring scientific interest in part due to the presence of interior mounds that contain extensive layering and water-altered minerals, such as crystalline gray hematite and hydrated sulfates. The presence of hematite and hydrated sulfate minerals is important because their host rock lithologies provide information about past environments that may have supported liquid water and may have been habitable. This work further defines the association and relationship between hematite-bearing materials and low albedo (presumably aeolian) deposits and layered materials, identifies physical characteristics that are strongly correlated with the presence of hematite, and refines hypotheses for the origin and post-emplacement modification (including transport) of these hematite-bearing and associated materials. There are only three regions surrounding Candor Mensa where hematite has been identified, even though morphologic properties are similar throughout the entire mensa. Three possible explanations for why hematite is only exposed in these regions include: (1) the topographic structure of the mensa walls concentrates hematite at the base of the layered deposits, influencing the ability to detect hematite from orbit; (2) the presence of differing amounts of “dark mantling material” and hematite-free erosional sediment; (3) the potential fracturing of the mensa and the influence of these structures on fluid flow and subsequent digenesis. The observations of hematite-bearing materials in this work support the hypothesis that hematite is eroding from a unit in the Candor Mensa interior layered deposits (ILD) and is being concentrated as a lag deposit adjacent to the lower layers of Candor Mensa and at the base in the form of dark aeolian material. Due to the similar geologic context associated with hematite-bearing and ILD materials throughout the Valles Marineris canyon system, the insight gained from studying these materials surrounding Candor Mensa can likely be applicable to similar layered deposits throughout Valles Marineris.
United States Research and Development effort on ITER magnet tasks
Martovetsky, Nicolai N.; Reierson, Wayne T.
2011-01-22
This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.
Application of NASTRAN to TFTR toroidal field coil structures
NASA Technical Reports Server (NTRS)
Chen, S. J.; Lee, E.
1978-01-01
The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.
A cellular glass substrate solar concentrator
NASA Technical Reports Server (NTRS)
Bedard, R.; Bell, D.
1980-01-01
The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.
Topological sound in active-liquid metamaterials
NASA Astrophysics Data System (ADS)
Souslov, Anton
Active liquids can flow spontaneously even in the absence of an external drive. Recently, such liquids have been experimentally realized using molecular, colloidal, or macroscopic self-propelled constituents. Using active liquids as a building material, we lay out design principles for artificial structures termed topological active metamaterials. Such metamaterials break time-reversal symmetry and can be designed using periodic lattices composed of annular channels filled with a spontaneously flowing active liquid. We show that these active metamaterials support topologically protected sound modes that propagate unidirectionally (without backscattering) along either sample edges or domain walls, and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.
NASA Technical Reports Server (NTRS)
Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using the Contour Crafting process. This process, conceived initially for rapid development of cementitious structures on Earth, also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and imported binder material or binders developed from in situ materials. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. These binder materials have resulted from extensive evaluation and include both "imported" binder materials that might be launched from Earth as well as some binder materials that can theoretically also be derived from existing regolith materials. They were chosen to 1) reduce penetrating radiation as much as possible, primarily with hydrogen-bearing polymers, 2) attempt to provide an air-tight structure, 3) sufficiently mix and adsorb to regolith grains for strength, 4) maximize tolerance to day-night thermal cycling, 5) possibly increase electrical conductivity to dissipate any accumulated static charge, and 6) ease their application on planetary surfaces (specifically, the accommodation of reduced atmosphere and lack of heat sinks). Some of these materials have been tested with respect to radiation mitigation, micrometeorite resistance, and resistance to larger, slower-traveling pieces of regolith impinging on the surface, simulating nearby launch and landing activities. Conceptual designs for a Continuous Feedstock Delivery/Mixing System (CFDMS) will also be presented and future planned activities will be discussed as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Colby, Robert J.; Vurpillot, F.
2014-03-26
Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less