Biotemplated Morpho Butterfly Wings for Tunable Structurally Colored Photocatalysts.
Rodríguez, Robin E; Agarwal, Sneha P; An, Shun; Kazyak, Eric; Das, Debashree; Shang, Wen; Skye, Rachael; Deng, Tao; Dasgupta, Neil P
2018-02-07
Morpho sulkowskyi butterfly wings contain naturally occurring hierarchical nanostructures that produce structural coloration. The high aspect ratio and surface area of these wings make them attractive nanostructured templates for applications in solar energy and photocatalysis. However, biomimetic approaches to replicate their complex structural features and integrate functional materials into their three-dimensional framework are highly limited in precision and scalability. Herein, a biotemplating approach is presented that precisely replicates Morpho nanostructures by depositing nanocrystalline ZnO coatings onto wings via low-temperature atomic layer deposition (ALD). This study demonstrates the ability to precisely tune the natural structural coloration while also integrating multifunctionality by imparting photocatalytic activity onto fully intact Morpho wings. Optical spectroscopy and finite-difference time-domain numerical modeling demonstrate that ALD ZnO coatings can rationally tune the structural coloration across the visible spectrum. These structurally colored photocatalysts exhibit an optimal coating thickness to maximize photocatalytic activity, which is attributed to trade-offs between light absorption and catalytic quantum yield with increasing coating thickness. These multifunctional photocatalysts present a new approach to integrating solar energy harvesting into visually attractive surfaces that can be integrated into building facades or other macroscopic structures to impart aesthetic appeal.
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne
2013-01-01
Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is warranted and could potentially lead to the development of improved diagnostic and therapeutic tools. PMID:23308195
NASA Astrophysics Data System (ADS)
Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo
2015-01-01
The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic
Kirchhausen, Tom; Owen, David; Harrison, Stephen C.
2014-01-01
Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation. PMID:24789820
Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.
2013-05-01
HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.
Park, Haesung; Shin, Dongheok; Kang, Gumin; Baek, Seunghwa; Kim, Kyoungsik; Padilla, Willie J
2011-12-22
Based on conventional colloidal nanosphere lithography, we experimentally demonstrate novel graded-index nanostructures for broadband optical antireflection enhancement including the near-ultraviolet (NUV) region by integrating residual polystyrene antireflective (AR) nanoislands coating arrays with silicon nano-conical-frustum arrays. This is a feasible optimized integration method of two major approaches for antireflective surfaces: quarter-wavelength AR coating and biomimetic moth's eye structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gribniak, V.; Arnautov, A. K.; Norkus, A.; Tamulenas, V.; Gudonis, E.; Sokolov, A.
2016-07-01
The capacity of steel fibers to ensure the structural integrity of reinforced concrete specimens coated with CFRP sheets was investigated. Test data for four ties and eight beams reinforced with steel or glass-FRP bars are presented. Experiments showed that the fibers significantly increased the cracking resistance and altered the failure character from the splitting of concrete to the debonding of the external sheets, which noticeably increased the load-carrying capacity of the strengthened specimens.
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan
2003-02-01
Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.
Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E
2018-05-18
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.
Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.
2018-01-01
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626
van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan
2015-01-01
Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.
NASA Astrophysics Data System (ADS)
Ataya, B. A.; Osovitskiĭ, A. N.
1992-02-01
A numerical method was used to investigate the emission of TE-polarized light from a graded-index corrugated waveguide coated with a metal or semiconductor and either with or without a buffer layer. The main emission characteristics of these systems were analyzed. In the case of metallized dielectric structures an optimal corrugation depth was established for which the emitted power is a maximum. It was found that when the parameters of a structure with a buffer layer were correctly chosen and a highly reflective metal coating was used, practically all the power in the waveguide wave could be emitted along a specified direction. A structure with a buffer layer and an aluminum coating was investigated experimentally.
Yuan, Ruixia; Wu, Shiqi; Yu, Peng; Wang, Baohui; Mu, Liwen; Zhang, Xiguang; Zhu, Yixing; Wang, Bing; Wang, Huaiyuan; Zhu, Jiahua
2016-05-18
Multifunctional coatings are in urgent demand in emerging fields. In this work, nanocomposite coatings with extraordinary self-cleaning, antiwear, and anticorrosion properties were prepared on aluminum substrate by a facile spraying technique. Core-shell structured polyaniline/functionalized carbon nanotubes (PANI/fCNTs) composite and nanosized silica were synergistically integrated into ethylene tetrafluoroethylene (ETFE) matrix to construct lotus-leaf-like structures, and 1H,1H,2H,2H- perfluorooctyltriethoxysilane (POTS) was used to decrease the surface energy. The composite coating with 6 wt % PANI/fCNTs possesses superamphiphobic property, with contact angles of 167°, 163°, and 159° toward water, glycerol, and ethylene glycol, respectively. This coating demonstrates stable nonwetting performance over a wide temperature range (<400 °C), as well as outstanding self-cleaning ability to prevent contamination by sludge, concentrated H2SO4, and ethylene glycol. Superamphiphobic surface property could be maintained even after 45 000 times abrasion or bending test for 30 times. The coating displayed strong adhesive ability (grade 1 according to the GB/T9286) on the etched aluminum plate. The superamphiphobic surface could be retained after immersion in 1 mol/L HCl and 3.5 wt % NaCl solutions for 60 and 90 d, respectively. It should be noted that this coating reveals significantly improved anticorrosion performance as compared to the bare ETFE coating and ETFE composite coating without PANI/fCNTs. Such coatings with integrated functionalities offer promising self-cleaning and anticorrosion applications under erosive/abrasive environment.
Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings
NASA Astrophysics Data System (ADS)
Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell
2018-05-01
Ti is one of the most commonly used materials for biomedical applications. However, there are two issues associated with the use of it, namely its bio-inertness and high elastic modulus compared to the elastic modulus of the natural bone. Both of these hurdles could potentially be overcome by introducing a number of pores in the structure of the Ti implant to match the properties of the bone as well as improve the mechanical integration between the bone and implant, and subsequently coating it with a biologically active ceramic coating to promote chemical integration. Hence, in this study we investigated the usage of cyclic voltammetry in PEO treatment of porous Ti parts with different amount of porosity produced by both Metal Injection Moulding (MIM) and MIM in combination with a space holder. It was found that porous samples with higher porosity and open pores develop much thicker surface layers that penetrate through the inner structure of the samples forming a network of surface and subsurface coatings. The results are of potential benefit in producing surface engineered porous samples for biomedical applications which do not only address the stress shielding problem, but also improve the chemical integration.
Development and fabrication of an autoclave molded PES/Quartz sandwich radome
NASA Astrophysics Data System (ADS)
Stanton, Leonard E.; Levin, Stephen D.
1993-04-01
A cohesively bonded, thermoplastic composite sandwich radome for a leading edge supersonic aircraft has been built using autoclave processing with PES/Quartz prepreg and a PES coated honeycomb core. Processes were developed for solvent removal, thermoplastic laminate consolidation, surface etching to improve adhesion, honeycomb coating and forming, and ultrasound testing of bond integrity. Environmental testing was also conducted to verify the structural integrity of the radome for its intended application.
Fluorescence microscopy for the characterization of structural integrity
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; Leonhardt, Todd A.
1991-01-01
The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.
NASA Astrophysics Data System (ADS)
Hou, Peng-Fei; Zhang, Yang
2017-09-01
Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.
DOT National Transportation Integrated Search
2017-12-01
The performance of pavement interface bonds affects the integrity of pavement structures. In current practice, tack coats are used to ensure sufficient bonding between asphalt concrete (AC) layers as well as AC and concrete or aggregate base layers. ...
Fullerene C60 coated silicon nanowires as anode materials for lithium secondary batteries.
Arie, Arenst Andreas; Lee, Joong Kee
2012-04-01
A Fullerene C60 film was introduced as a coating layer for silicon nanowires (Si NWs) by a plasma assisted thermal evaporation technique. The morphology and structural characteristics of the materials were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM observations showed that the shape of the nanowire structure was maintained after the C60 coating and the XPS analysis confirmed the presence of the carbon coating layer. The electrochemical characteristics of C60 coated Si NWs as anode materials were examined by charge-discharge tests and electrochemical impedance measurements. With the C60 film coating, Si NW electrodes exhibited a higher initial coulombic efficiency of 77% and a higher specific capacity of 2020 mA h g(-1) after the 30th cycle at a current density of 100 microA cm(-2) with cut-off voltage between 0-1.5 V. These improved electrochemical characteristics are attributed to the presence of the C60 coating layer which suppresses side reaction with the electrolyte and maintains the structural integrity of the Si NW electrodes during cycle tests.
Smart Coatings for Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.
2016-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.
Rocket thrust chamber thermal barrier coatings
NASA Technical Reports Server (NTRS)
Batakis, A. P.; Vogan, J. W.
1985-01-01
A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.
Life modeling of thermal barrier coatings for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, R. A.
1989-01-01
Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) Program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized. The materials and structural aspects of thermal barrier coatings have been successfully integrated under the HOST program to produce models which may now or in the near future be used in design. Efforts on this program continue at Pratt and Whitney Aircraft where their model is being extended to the life prediction of physical vapor deposited thermal barrier coatings.
Coated columbium thermal protection systems: An assessment of technological readiness
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1973-01-01
Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.
Polymer coating for immobilizing soluble ions in a phosphate ceramic product
Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.
2000-01-01
A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.
Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2015-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.
Zhou, Zuoxin; Cunningham, Eoin; Lennon, Alex; McCarthy, Helen O; Buchanan, Fraser; Clarke, Susan A; Dunne, Nicholas
2017-06-01
Powder-based inkjet three-dimensional printing (3DP) to fabricate pre-designed 3D structures has drawn increasing attention. However there are intrinsic limitations associated with 3DP technology due to the weak bonding within the printed structure, which significantly compromises its mechanical integrity. In this study, calcium sulphate ceramic structures demonstrating a porous architecture were manufactured using 3DP technology and subsequently post-processed with a poly (ε-caprolactone) (PCL) coating. PCL concentration, immersion time, and number of coating layers were the principal parameters investigated and improvement in compressive properties was the measure of success. Interparticle spacing within the 3DP structures were successfully filled with PCL material. Consequently the compressive properties, wettability, morphology, and in vitro resorption behaviour of 3DP components were significantly augmented. The average compressive strength, Young׳s modulus, and toughness increased 217%, 250%, and 315%, following PCL coating. Addition of a PCL surface coating provided long-term structural support to the host ceramic material, extending the resorption period from less than 7 days to a minimum of 56 days. This study has demonstrated that application of a PCL coating onto a ceramic 3DP structure was a highly effective approach to addressing some of the limitations of 3DP manufacturing and allows this advanced technology to be potentially used in a wider range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro
2012-01-01
The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant. PMID:22359461
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
High performance EUV multilayer structures insensitive to capping layer optical parameters.
Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L
2008-09-15
We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.
Corrosion Control in the Aerospace Industry
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.
2016-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..
Munday, Jeremy N; Atwater, Harry A
2011-06-08
We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes.
Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel
2010-05-24
Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.
Coated foams, preparation, uses and articles
Duchane, D.V.; Barthell, B.L.
1982-10-21
Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.
Li, Bo; Han, Yong; Qi, Kai
2014-10-22
A novel bilayer coating (HT24h) was fabricated on magnesium using microarc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of narrow interrod spaced hydroxyapatite (HA) nanorods and an inner layer of MgO containing Mg(OH)2/HA-sealing-pores. The hydrothermal formation mechanism of HA nanorods on MAO-formed MgO was explored. Also, evolution of structure and bonding integrity of HT24h coating with immersion in physiological saline (PS) for 0-90 days, corrosion resistance and cytocompatibility of the coating were investigated, together with MgO containing Mg(OH)2-sealing-pores (HT2h) and porous MgO (MAO) coatings. Corrosion resistance was identified by three-point bending and electrochemical tests in PS, while cytocompatibility was determined by MTT, live/dead staining, and vinculin-actin-nucleus tricolor staining assays of hFOB1.19 cells. Immersion tests indicate that cracking rather than delamination is a common feature in most areas of the coatings up to day 90 and degradation is the reason for thinning in thickness of the coatings. MAO and HT2h coatings exhibit a significant thinning due to fast degradation of MgO. However, HT24h coating shows a quite small thinning, owing to the fact that the HA nanorods underwent quite slow degradation while the underlying MgO only underwent conversion to Mg(OH)2 without dissolution of the Mg(OH)2. Scratch tests reveal that HT24h coating still retains relatively high bonding integrity, although the failure position changes from the MgO interior to a point between the HA and MgO layers after 90 days of immersion. HT24h coating appears far more effective than MAO and HT2h coatings in reducing degradation and maintaining the mechanical integrity of Mg, as well as enhancing the mitochondrial activity, adhesion, and proliferation of osteoblasts.
Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay
2015-07-01
Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.
Ballweg, Thomas; Gellermann, Carsten; Mandel, Karl
2015-11-11
Active silica nanoparticle-based raspberry-like container depots for agents such as antimicrobial substances are presented. The nano raspberry-containers are integrated into coatings in a way that they form a mole-hill structure; i.e., they are partly standing out of the coating. As an application example, it is demonstrated that the containers can be filled with antimicrobially active agents such as nano ZnO or Ag or organic molecules such as thymol. It is demonstrated that the containers can be partly chopped-off via abrasion by rubbing over the surface. This mechanism proves to be an attractive approach to render surfaces refreshable. A first proof of principle for antimicrobial activity of the intact containers in the coatings and the abrasion treated, chopped-off (and thereby reactivated) containers is demonstrated.
Mechanical Characteristics of SiC Coating Layer in TRISO Fuel Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Hosemann; J. N. Martos; D. Frazer
2013-11-01
Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grainmore » structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production.« less
Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian
2017-08-28
The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian
The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano-array catalysts with great potential to be scaled up readily and cost-effectively. The tunability of the structure and catalytic performance could be achieved through morphology and geometry adjustment and guest atoms and defect manipulation, as well as composite nano-array catalyst manufacture. Excellent stabilities under various conditions were also present compared to conventional wash-coated catalysts.« less
Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process
NASA Astrophysics Data System (ADS)
Levy, Galit Katarivas; Aghion, Eli
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.
Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan
2011-04-01
The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.
Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite
NASA Astrophysics Data System (ADS)
Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying
2011-06-01
Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.
In-space fabrication of thin-film structures
NASA Technical Reports Server (NTRS)
Lippman, M. E.
1972-01-01
A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.
1991-08-01
mill 3 dp Chromic Anodizing plus Polyurethane Fuel Coating 2 ep Sulfuric Acid Anodizing 1 Alloys other than aluminums require independent evaluation...generators for recircula- aluminum . During manufactur- tion. After peening, the ing, the iron is removed anodic coating and paint were prior to the...Growth Retardation in Aluminum Alloys . . 310 Quality Nondestructive Evaluation, and the ". .. IP’ Process
Beam Technologies for Integrated Processing
1992-03-01
Ohki et al., 1988). Initially, they were used in ion Table 3-3 Ceramic Materials Produced by CVD Coating Chemical Mixture Deposition Temp. (* C ) Method...inner coating , deposited from tungsten hexafluoride, providing strength and creep resistance , and the outer layer, deposited from the chloride, has a (110...1971. Structure and Mechanical Properties of Co - deposited Pyrolytic C -SiC Alloys. Journal of the American Ceramic Society 54:605. Kashu, S., M. Nagase
Symposium Z: Materials Challenges for Energy Storage Across Multiple Scales
2015-04-02
materials significantly improve the conductivity of the S and effectively buffer the structural strain/stress caused by the large volume change during...UNCD coating provide effective conduction channels for both electrons and Li-ions and protect the integrity of SiNWs by featuring electrochemical...approach circumvents the need to apply coatings to the carbon or for thermal infusion of the sulfur into a porous carbon host. Preliminary thermodynamic
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANI,SEETHAMBAL S.; FLEMING,JAMES G.; WALRAVEN,JEREMY A.
Two major problems associated with Si-based MEMS (MicroElectroMechanical Systems) devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors present a CVD (Chemical Vapor Deposition) process that selectively coats MEMS devices with tungsten and significantly enhances device durability. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable. This selective deposition process results in a very conformal coating and can potentially address both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through the siliconmore » reduction of WF{sub 6}. The self-limiting nature of the process ensures consistent process control. The tungsten is deposited after the removal of the sacrificial oxides to minimize stress and process integration problems. The tungsten coating adheres well and is hard and conducting, which enhances performance for numerous devices. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release adhered parts that are contacted over small areas such as dimples. The wear resistance of tungsten coated parts has been shown to be significantly improved by microengine test structures.« less
Kandola, Baljinder K.; Luangtriratana, Piyanuch; Duquesne, Sophie; Bourbigot, Serge
2015-01-01
Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE) composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m2 heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min. PMID:28793500
NASA Astrophysics Data System (ADS)
Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin
2017-10-01
Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.
In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.
Kannan, M Bobby; Orr, Lynnley
2011-08-01
The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert
2008-01-01
The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.
Advances in Hot-Structure Development
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Glass, David E.
2006-01-01
The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic airframe concepts, including structural arrangement, load paths, thermal-structural wall design, thermal accommodation features, and integration of major components, optimize thermalstructural configurations, and validate concepts through a building block test program and generate data to improve and validate analytical and design tools.
Effect of 2D WS2 Addition on Cold-Sprayed Aluminum Coating
NASA Astrophysics Data System (ADS)
Loganathan, Archana; Rengifo, Sara; Hernandez, Alexander Franco; Emirov, Yusuf; Zhang, Cheng; Boesl, Benjamin; Karthikeyan, Jeganathan; Agarwal, Arvind
2017-10-01
Tungsten disulfide (WS2) has excellent solid lubrication properties due to its 2D layered structure. This study focuses on depositing Al-2 wt.% WS2 composite coating by cold spray technique. The effect of WS2 addition on the microstructure, mechanical and tribological properties of the composite coatings is examined in the as-deposited and heat-treated conditions. After heat treatment, the coating density increased to 99% with improved intersplat bonding. The microhardness of the heat-treated Al-2 wt.% WS2 coating increased by 56% as compared to the as-sprayed coating. The wear resistance of heat-treated Al-2 wt.% WS2 coating improved by 75% with a synergistic reduction in the coefficient of friction (COF) by 51%. Transmission electron microscopy investigation reveals the presence of layered WS2 within aluminum splats with a strong interface. This study shows that cold spraying can be effectively used to integrate 2D layered WS2 as a solid lubricant in the metallic coatings.
Method of forming a continuous polymeric skin on a cellular foam material
Duchane, David V.; Barthell, Barry L.
1985-01-01
Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.
Organic emitters: Light-emitting fabrics
NASA Astrophysics Data System (ADS)
Ortí, Enrique; Bolink, Henk J.
2015-04-01
Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.
Yan, Jun; Sun, Ji-Feng; Chu, Paul K; Han, Yong; Zhang, Yu-Mei
2013-09-01
Strontium-containing hydroxyapatites (Sr-HA) combine the desirable bone regenerative properties of hydroxyapatites (HA) with anabolic and anti-catabolic effects of strontium cations. In the present work, a series of Sr(y)HA [Sr(y)Ca(10-y)(PO4)6(OH)2; y = 0, 0.5, 1, 2] coatings on titanium are produced by micro-arc oxidation (MAO), and the effects of the in vivo osseointegration ability of the coatings are investigated by using a rabbit model. All samples are subjected to biomechanical, surface elemental, micro-CT and histological analysis after 4 and 12 weeks of healing. The obtained results show that the MAO-formed coatings exhibit a microporous network structure composed of Sr(y)HA/Sr(y)HA-Sr(x)Ca(1-x)TiO3/Sr(x)Ca(1-x)TiO3-TiO2 multilayers, in which the outer Sr(y)HA and intermediate Sr(y)HA-Sr(x)Ca(1-x)TiO3 layers have a nanocrystalline structure. All Sr-HA coated implants induce marked improvements in the behavior of bone formation, quantity and quality of bone tissue around the implants than the control HA implant and in particular, the 20%Sr-HA coating promotes early bone formation as identified by polyfluorochrome sequential labeling. The bone-to-implant contact is increased by 46% (p < 0.05) and the pull-out strength is increased by 103% over the HA group (p < 0.01). Extensive areas of mineralized tissue densely deposit on the 20%Sr-HA coating after biomechanical testing, and the greatest improvement of bone microarchitecture are observed around the 20%Sr-HA implant. The identified biological parameters successfully demonstrate the osteoconductivity of 20%Sr-HA surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The study demonstrates the immense potential of 20%Sr-HA coatings in dental and orthopedic applications. Copyright © 2012 Wiley Periodicals, Inc.
3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam
Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun
2016-01-01
A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652
NASA Astrophysics Data System (ADS)
Amare, Belachew N.
Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating. During this project it was found that stiffness response to increase and remain stable to a certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine coating materials if micro-channel cooling system is implemented.
Microsample Characterization of Coatings for Grcop-84 for High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Hemker, Kevin
2003-01-01
A multidisciplinary Johns Hopkins University-NASA Glenn team is undertaking a collaborative research program to elucidate and model the thermal stability and mechanical integrity of candidate coatings for GRCop-84. GRCop-84 is a high conductivity, high strength copper alloy that was recently developed at NASA Glenn for use in high temperature, high heat flux applications. With potential applications in rocket motor combustion chamber liners, nozzle ramps and other actively cooled structures, this new material offers great potential for decreasing weight and increasing reliability of third generation reusable launch vehicles. Current emphasis has turned toward the development of environmentally resistant and thermal barrier coatings for this alloy. Metallic coatings such as NiCrAlY and Cu-8-30%Cr have shown promise in: prohibiting blanching, reducing dog-house failures, increasing operating temperatures and decreasing cooling requirements. The focus of this research program is to develop a fundamental understanding of the substrate-coating interactions that occur during thermal cycling (inter-diffusion, viscoplasticity, morphological evolution, crack formation, etc.) and to derive a science-based protocol for future coating selection, optimization and reliability assurance. The microsample tensile testing approach adopted for this study allows us to characterize small-scale and highly scale-specific coatings and properties in a way not possible by conventional means. In addition to providing much needed design data, the integration of microsample testing with detailed microstructural observations provides a mechanistic foundation for coating optimization and life prediction modeling.
Optimization of sensor introduction into laminated composite materials
NASA Astrophysics Data System (ADS)
Schaaf, Kristin; Nemat-Nasser, Sia
2008-03-01
This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.
Shinde, A.; Li, G.; Zhou, L.; ...
2016-09-09
Solar fuel generators entail a high degree of materials integration, and efficient photoelectrocatalysis of the constituent reactions hinges upon the establishment of highly functional interfaces. Our recent application of high throughput experimentation to interface discovery for solar fuels photoanodes has revealed several surprising and promising mixed-metal oxide coatings for BiVO 4. Furthermore, when using sputter deposition of composition and thickness gradients on a uniform BiVO 4 film, we systematically explore photoanodic performance as a function of the composition and loading of Fe–Ce oxide coatings. This combinatorial materials integration study not only enhances the performance of this new class of materialsmore » but also identifies CeO 2 as a critical ingredient that merits detailed study. A heteroepitaxial CeO 2(001)/BiVO4(010) interface is identified in which Bi and V remain fully coordinated to O such that no surface states are formed. Ab initio calculations of the integrated materials and inspection of the electronic structure reveals mechanisms by which CeO 2 facilitates charge transport while mitigating deleterious recombination. Our results support the observations that addition of Ce to BiVO 4 coatings greatly enhances photoelectrocatalytic activity, providing an important strategy for developing a scalable solar fuels technology.« less
NASA Astrophysics Data System (ADS)
Orgon, Casey Roy
Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.
Terahertz Technology: A Boon to Tablet Analysis
Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.
2009-01-01
The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288
NASA Astrophysics Data System (ADS)
Kawai, Y.; Alton, G. D.; Bilheux, J.-C.
2005-12-01
An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Liu, Rui; Mahurin, Shannon Mark
A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk-shell Au{at}Carbon nanocomposites. The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au{at}C nanocomposites are catalytically active.
Mechanical testing of advanced coating system, volume 1
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Nagy, A.; Popelar, C. F.
1990-01-01
The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.
Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng
2017-01-01
Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782
NASA Technical Reports Server (NTRS)
Price, H. G., Jr.; Schacht, R. L.; Quentmeyer, R. J.
1973-01-01
An experimental investigation of the structural integrity and effective thermal conductivity of three metallic-ceramic composite coatings was conducted. These coatings were plasma sprayed onto the combustion side of water-cooled, 12.7-centimeter throat diameter, hydrogen-oxygen rocket thrust chambers operating at 2.07 to 4.14 meganewtons per square meter chamber pressure. The metallic-ceramic composites functioned for six to 17 cycles and for as long as 213 seconds of rocket operations and could have probably provided their insulating properties for many additional cycles. The effective thermal conductivity of all the coatings was in the range of 0.7472 to 4.483 w/(m)(K), which makes the coatings a very effective thermal barrier. Photomicrographic studies of cross-sectioned coolant tubes seem to indicate that the effective thermal conductivity of the coatings is controlled by contact resistance between the particles, as a result of the spraying process, and not the thermal conductivity of the bulk materials.
Optical Diagnostics for High-Temperature Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2009-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments, such as in jet turbine engines. Taking advantage of the translucent nature of TBCs, optical diagnostics have been developed that can provide an informed assessment of TBC health that will allow mitigating action to be taken before TBC degradation threatens performance or safety. In particular, rare-earth-doped luminescent sublayers have been integrated into the TBC structure to produce luminescence that monitors TBC erosion, delamination, and temperature gradients. Erosion monitoring of TBC-coated specimens is demonstrated by utilizing visible luminescence that is excited from a sublayer that is exposed by erosion. TBC delamination monitoring is achieved in TBCs with a base rare-earth-doped luminescent sublayer by the reflectance-enhanced increase in luminescence produced in regions containing buried delamination cracks. TBC temperature monitoring is demonstrated using the temperature-dependent decay time for luminescence originating from the specific coating depth associated with a rare-earth-doped luminescent sublayer. The design and implementation of these TBCs with integrated luminescent sublayers is discussed, including co-doping strategies to produce more penetrating near-infrared luminescence. It is demonstrated that integration of the rare-earth-doped sublayers is achieved with no reduction in TBC life. In addition, results for multilayer TBCs designed to also perform as radiation barriers are also presented.
Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model
Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen
2015-01-01
Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057
Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822
2004-09-30
nanoparticles that consist of a polymer coated ?-Fe2O3 superparamagnetic core and CdSe/ZnS quantum dots (QDs) shell. A single layer of QDs was bound to the...Fe2O3) with polymer coating, the scale bar is 20 nm; b) A TEM image of QDs magnetic beads core-shell nanoparticles. The scale bar is 20 nm. c) A High...common practice in microfluidic/GMR sensor integration is using hybrid approaches by adding-on polymer based fluidic structures (such as PDMS fluidic
Material Characterization for Composite Materials in Load Bearing Wave Guides
2012-03-01
ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical
Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M
2018-04-17
The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al 2 O 3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al 2 O 3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fuel processing in integrated micro-structured heat-exchanger reactors
NASA Astrophysics Data System (ADS)
Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.
Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.
Syed, Junaid Ali; Tang, Shaochun; Meng, Xiangkang
2017-06-30
The wetting characteristic of a metal surface can be controlled by employing different coating materials and external stimuli, however, layer number (n) modulated surface swapping between hydrophobicity and hydrophilicity in a multilayer structure to achieve prolonged anti-corrosion ability was not taken into consideration. In this study, we proposed a layer-by-layer (LbL) spin assembled polyaniline-silica composite/tetramethylsilane functionalized silica nanoparticles (PSC/TMS-SiO 2 ) coating with the combined effect of super-hydrophobicity and enhanced anti-corrosion ability. Interestingly, the hierarchical integration of two coating materials with inherently different surface roughness and energy in a multilayer structure allows the wetting feature to swap from hydrophobic to hydrophilic state by modulating n with decreasing hydrophilicity. The samples with odd n (TMS-SiO 2 surface) are hydrophobic while the samples with even n (PSC surface) exhibits the hydrophilic character. The TMS-SiO 2 content was optimized to achieve super-hydrophobic coating with significantly high water contact angle (CA) 153° ± 2° and small sliding angle (SA) 6° ± 2°. Beside its self-cleaning behavior, the electro-active PSC/TMS-SiO 2 coating also exhibits remarkably enhanced corrosion resistance against aggressive media. The corrosion resistance of the coating was remained stable even after 240 h of exposure, this enhancement is attributed to super-hydrophobicity and anodic shift in corrosion potential.
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.
2011-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.
Blatnik, Jay; Luebke, Lanette; Simonet, Stephanie; Nelson, Megan; Price, Race; Leek, Rachael; Zeng, Leyong; Wu, Aiguo; Brown, Eric
2012-02-01
Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.
Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2013-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.
NASA Astrophysics Data System (ADS)
Raşoga, O.; Sima, L.; Chiriţoiu, M.; Popescu-Pelin, G.; Fufǎ, O.; Grumezescu, V.; Socol, M.; Stǎnculescu, A.; Zgurǎ, I.; Socol, G.
2017-09-01
The aim of our research was to synthesize and investigate the physico-chemical and biological features of composite coatings based on poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and commercial calcium phosphates (CaPs), hydroxyapatite and β-tricalcium phosphate, obtained by means of matrix assisted pulsed laser evaporation (MAPLE) technique. In this respect, laser fluence and dropcast studies were performed for pristine polymer and PHBV-CaPs composites. The microstructure of the synthesized coatings was investigated by scanning electron microscopy, while for the chemical structure and functional integrity we performed Fourier transform infrared spectroscopy comparative analysis. By using the X-ray diffraction measurements we experimentally evaluated the crystalline nature of the obtained composite materials, while relevant data regarding the hydrophilic/hydrophobic behavior of the synthesized coatings were obtained by performing static CA measurements. The biocompatibility of PHBV/CaPs coatings was evaluated by performing cellular adhesion and differentiation in vitro assays on mesenchymal stem cells.
Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho
2013-07-01
Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J
2015-01-01
In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958
NASA Astrophysics Data System (ADS)
Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, A.; Sampath, S.; Liu, X.; Hannula, S.-P.
2014-08-01
Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.
Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites
NASA Technical Reports Server (NTRS)
Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.
1995-01-01
Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.
High-quality quantum-dot-based full-color display technology by pulsed spray method
NASA Astrophysics Data System (ADS)
Chen, Kuo-Ju; Chen, Hsin-Chu; Tsai, Kai-An; Lin, Chien-Chung; Tsai, Hsin-Han; Chien, Shih-Hsuan; Cheng, Bo-Siao; Hsu, Yung-Jung; Shih, Min-Hsiung; Kuo, Hao-Chung
2013-03-01
We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology.
NASA Astrophysics Data System (ADS)
Mortley, Aba; Bonin, H. W.; Bui, V. T.
2008-05-01
The present work proposes applying polyurethane coatings as an additional barrier in the design of Canadian nuclear waste disposal containers. The goal of the present research is to investigate the physico-mechanical integrity of a natural castor oil-based polyurethane (COPU) to be used as a coating material in pH-radiation-temperature environments. As the first part to these inquiries, the present paper investigates the effect of a mixed radiation field supplied by a SLOWPOKE-2 nuclear research reactor on COPUs that differ only by their isocyanate structure. FTIR, DSC, DMA, WAXS, and MALDI are used to characterize the changes that occur as a result of radiation and to relate these changes to polymer structure and composition. The COPUs used in the present work have demonstrated sustained physico-mechanical properties up to accumulated doses of 2.0 MGy and are therefore suitable for end-uses in radiation environments such as those expected in the deep geological repository.
Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan
2017-12-01
Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke
2014-03-01
A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. Copyright © 2013 Elsevier B.V. All rights reserved.
Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu
2017-08-25
Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.
Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure
NASA Astrophysics Data System (ADS)
Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong
2018-03-01
Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.
Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.
Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu
2016-06-22
A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.
Ro, Kyung Won; Chang, Woo-Jin; Kim, Ho; Koo, Yoon-Mo; Hahn, Jong Hoon
2003-09-01
Capillary electrochromatography (CEC) and preconcentration of neutral compounds have been realized on poly(dimethylsiloxane) (PDMS) microchips. The channels are coated with polyelectrolyte multilayers to avoid absorption of hydrophobic analytes into PDMS. The structures of a microchip include an injector and a bead chamber with integrated frits, where the particles of the stationary phase are completely retained. Dimensions of the frit structures are 25 micro mx20 micro m, and the space between the structures is 3 micro m. A neutral compound, BODIPY, that is strongly absorbed into native PDMS, is successfully and selectively retained on octadecylsilane-coated silica beads in the bead chamber with a concentration enhancement of up to 100 times and eluted with elution buffer solution containing 70% acetonitrile. Preconcentrations and CEC separations of coumarins have been conducted with the same device and achieved complete separations in less than 50 s.
Development of improved high temperature coatings for IN-792 + HF
NASA Technical Reports Server (NTRS)
Profant, D. D.; Naik, S. K.
1981-01-01
The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.
NASA Astrophysics Data System (ADS)
Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.
2010-04-01
In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.
Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R
2011-03-01
A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.
Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants
Uddin, M S; Hall, Colin; Murphy, Peter
2015-01-01
Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches are required to leverage the benefit of Mg-based alloys. Hybrid treatments combining innovative biomimetic coating and mechanical processing would be regarded as a potentially promising way to tackle the corrosion problem. Synergetic cutting-burnishing integrated with cryogenic cooling may be another encouraging approach in this regard. More studies focusing on rigorous testing, evaluation and characterisation are needed to assess the efficacy of the methods. PMID:27877829
Vladescu, Alina; Vranceanu, Diana M; Kulesza, Slawek; Ivanov, Alexey N; Bramowicz, Mirosław; Fedonnikov, Alexander S; Braic, Mariana; Norkin, Igor A; Koptyug, Andrey; Kurtukova, Maria O; Dinu, Mihaela; Pana, Iulian; Surmeneva, Maria A; Surmenev, Roman A; Cotrut, Cosmin M
2017-12-01
Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependent on several factors including deposition temperature, electrolyte pH and concentrations, applied potential. All of these factors directly influence the morphology, stoichiometry, crystallinity, electrochemical behaviour, and particularly the coating thickness. Coating structure together with surface micro- and nano-scale topography significantly influence early stages of the implant bio-integration. The aim of this study is to analyse the effect of pH modification on the morphology, corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite prepared by ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes with pH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale (~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosive attack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity results indicated that both coatings have a greater capacity of biomineralization, compared to the uncoated Ti64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and high biomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.
Surface dynamics and mechanics in liquid crystal polymer coatings
NASA Astrophysics Data System (ADS)
Liu, Danqing; Broer, Dirk J.
2015-03-01
Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.
Launch Pad Coatings for Smart Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.
2010-01-01
Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.
Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M
2008-10-01
Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; p<0.001) increase in percent surface area coating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (p<0.01). A direct comparison of mineralized versus DBW coated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.
Lee, Whitaik David; Gawri, Rahul; Pilliar, Robert M; Stanford, William L; Kandel, Rita A
2017-10-15
Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Laser induced hierarchical calcium phosphate structures.
Kurella, Anil; Dahotre, Narendra B
2006-11-01
The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.
Chemorheology of in-mold coating for compression molded SMC applications
NASA Astrophysics Data System (ADS)
Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.
2015-05-01
In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.
[The genetic control of mouse coat color and its applications in genetics teaching].
Xing, Wanjin; Morigen, Morigen
2014-10-01
Mice are the most commonly used mammalian model. The coat colors of mice are typical Mendelian traits, which have various colors such as white, black, yellow and agouti. The inheritance of mouse coat color is usually stated as an example only in teaching the knowledge of recessive lethal alleles. After searched the related literatures and summarized the molecular mechanisms of mouse coat color inheritance, we further expanded the application of this example into the introduction of the basic concepts of alleles and Mendelian laws, demonstration of the gene structure and function, regulation of gene expression, gene interaction, epigenetic modification, quantitative genetics, as well as evolutionary genetics. By running this example through the whole genetics-teaching lectures, we help the student to form a systemic and developmental view of genetic analysis. At the same time, this teaching approach not only highlights the advancement and integrity of genetics, but also results in a good teaching effect on inspiring the students' interest and attracting students' attention.
Design of Multi-Resonant Cavities Based on Metal-Coated Dielectric Nanocylinders
NASA Astrophysics Data System (ADS)
Dong, Junyuan; Yu, Guanxia; Fu, Jingjing; Luo, Min; Du, Wenwen
2018-06-01
In this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.
Wei, Chengzhuo; Xu, Qi; Chen, Zeqi; Rao, Weida; Fan, Lingling; Yuan, Ye; Bai, Zikui; Xu, Jie
2017-08-01
A novel all-solid-state yarn supercapacitor (YSC) has been fabricated by using the cotton yarns coated with polypyrrole (PPy) nanotubes. The interconnected network structure of PPy can increase the surface area as well as the electrode/electrolyte interface area, thus resulting in improved electrochemical performance. For the proposed YSC, a high areal-specific capacitance of 74.0mFcm -2 and a desirable energy density of 7.5μWhcm -2 are achieved. The flexibility of the YSC demonstrates that it is suitable for the integration as flexible power sources in wearable electronic textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Subsonic Rotary Wing Project - Structures and Materials Discipline
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Johnson, Susan M.
2008-01-01
The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.
Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong
2018-08-15
Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.
A biomimetic functionalization approach to integration of carbon nanoutbes into biological systems
NASA Astrophysics Data System (ADS)
Chen, Xing; Tam, Un Chong; Bertozzi, Carolyn; Zettl, Alex
2006-03-01
Due to their remarkable structural, electrical, and mechanical properties, carbon nanotubes (CNTs) have potential applications in biology ranging from imaging and tissue engineering. To realize these applications, however, new strategies for controlling the interaction between CNTs and biological systems such as proteins and cells are required. Here we describe a biomimetic approach to functionalize CNTs and therefore render them biocompatibility in order to facilitate their integration into biological systems. CNTs were coated with synthetic gycopolymers that mimic cell surface mucin gycoproteins. The functionalized CNTs were soluble in water, resisted non-specific protein binding and bound specifically to biomolecules. The coated CNTs could then be integrated onto mammalian cell surface by virtue of glycan-receptor interactions. Furthermore, the functionalized CNTs are non-toxic to cells. This strategy offers new opportunities for development of biosensor to probe biological processes. References: 1. X. Chen, G. S. Lee, A. Zettl, C. R. Bertozzi, Angewandte Chemie-International Edition 43, 6111 (2004). 2. X. Chen, U. C. Tam, J. L. Czlapanski, G. S. Lee, D. Rabuka, A. Zettl, C. R. Bertozzi, submitted.
On the scattering of elastic waves from a non-axisymmetric defect in a coated pipe.
Duan, Wenbo; Kirby, Ray; Mudge, Peter
2016-02-01
Viscoelastic coatings are often used to protect pipelines in the oil and gas industry. However, over time defects and areas of corrosion often form in these pipelines and so it is desirable to monitor the structural integrity of these coated pipes using techniques similar to those used on uncoated pipelines. A common approach is to use ultrasonic guided waves that work on the pulse-echo principle; however, the energy in the guided waves can be heavily attenuated by the coating and so significantly reduce the effective range of these techniques. Accordingly, it is desirable to develop a better understanding of how these waves propagate in coated pipes with a view to optimising test methodologies, and so this article uses a hybrid SAFE-finite element approach to model scattering from non-axisymmetric defects in coated pipes. Predictions are generated in the time and frequency domain and it is shown that the longitudinal family of modes is likely to have a longer range in coated pipes when compared to torsional modes. Moreover, it is observed that the energy velocity of modes in a coated pipe is very similar to the group velocity of equivalent modes in uncoated pipes. It is also observed that the coating does not induce any additional mode conversion over and above that seen for an uncoated pipe when an incident wave is scattered by a defect. Accordingly, it is shown that when studying coated pipes one need account only for the attenuation imparted by the coating so that one may normally neglect the effect of coating on modal dispersion and scattering. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.
2017-07-01
Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-01-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.
Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L
2013-10-22
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-10-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin
2016-12-01
A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe2O3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe2O3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe2O3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe2O3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.
Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.
Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza
2016-06-01
Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Milhoan, James D.; Pham, Vuong T.; Sherborne, William D.
1993-01-01
Thermal tests of Orbiter thermal protection system (TPS) tiles, which were coated with borosilicate glass slurries fabricated at Kennedy Space Center (KSC), were performed in the Radiant Heat Test Facility and the Atmospheric Reentry Materials & Structures Evaluation Facility at Johnson Space Center to verify tile coating integrity after exposure to multiple entry simulation cycles in both radiant and convective heating environments. Eight high temperature reusable surface insulation (HRSI) tiles and six low temperature reusable surface insulation (LRSI) tiles were subjected to 25 cycles of radiant heat at peaked surface temperatures of 2300 F and 1200 F, respectively. For the LRSI tiles, an additional cycle at peaked surface temperature of 2100 F was performed. There was no coating crack on any of the HRSI specimens. However, there were eight small coating cracks (less than 2 inches long) on two of the six LRSI tiles on the 26th cycle. There was practically no change on the surface reflectivity, physical dimensions, or weight of any of the test specimens. There was no observable thermal-chemical degradation of the coating either. For the convective heat test, eight HRSI tiles were tested for five cycles at a surface temperature of 2300 F. There was no thermal-induced coating crack on any of the test specimens, almost no change on the surface reflectivity, and no observable thermal-chemical degradation with an exception of minor slumping of the coating under painted TPS identification numbers. The tests demonstrated that KSC's TPS slurries and coating processes meet the Orbiter's thermal specification requirements.
Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.
2018-06-01
Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.
NASA Astrophysics Data System (ADS)
Yang, Jun
Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.
NASA Astrophysics Data System (ADS)
Yin, Zhangzhang
Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Current protection measurement employs substantial use of chromate and high VOC organics, both of which are identified as environment and health hazards. The approach of this study is to utilize a combination of organofunctional silanes and a compatible inhibitor integrated into high-performance waterborne resins. First, an extensive pigment screening has been done to find replacements for chromates using the testing methodology for fast corrosion inhibition evaluation and pigment. Zinc phosphate and calcium zinc phosphomolybdate were found to have the best overall performance on Al alloys. Some new corrosion inhibitors were synthesized by chemical methods or modified by plasma polymerization for use in the coatings. Low-VOC, chromate-free primers (superprimer) were developed using these pigments with silane and acrylic-epoxy resins. The developed superprimer demonstrated good corrosion inhibition on aluminum substrates. The functions of inhibitor and silane in the coating were investigated. Both silane and inhibitor are critical for the performance of the superprimer. Silane was found to improve the adhesion of the coating to the substrate and also facilitate corrosion prevention. Addition of zinc phosphate to the coating improved the resistance of a scratched area against corrosion. The microstructure of the acrylic-epoxy superprimer coating was studied. SEM/EDAX revealed that the superprimer has a self-assembled stratified double-layer structure which accounts for the strong anti-corrosion performance of the zinc phosphate pigment. Zinc phosphate leaches out from the coating to actively protect the scratched area. The leaching of pigment was confirmed in the ICP-MS analysis and the leaching rate was measured. Coating-metal interface and the scribe of coated panels subjected to corrosion test was studied. ToF-SIMS studies confirmed the presence of silane at the interface and the hydrolysis of the silane. The abundant presence of silane was believed to improve the adhesion and also facilitate the corrosion prevention. The protection mechanism of the acrylic-epoxy superprimer was proposed. The self-assembled double-layer structure of the acrylic-epoxy superprimer consist of a less-penetrable hydrophobic layer (epoxy-dominated) on the top and a hydrophilic layer (acrylic-dominated) accommodating the inhibitors underneath. This unique structure of the acrylic-epoxy accounts for the good protection of the coating. Furthermore, the inhibition mechanism of zinc phosphate was explored and compared to those which have been reported. Based on the protection mechanism of the superprimer, electrodeposition was explored in order to achieve a more organized coating with a better engineered metal/coating interface. The electrodeposited coatings were found to have higher barrier property and anticorrosion performance.
NASA Technical Reports Server (NTRS)
1985-01-01
Corrosion protection for the Statue of Liberty's interior structure is provided by a coating called IC 531, manufactured by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at KSC. Inorganic Coatings has an exclusive to this high ratio potassium silicate formula. The coating is water based, nontoxic, nonflammable, and bonds to steel in 30 minutes. Tests on a variety of coated structures have been very positive.
Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G
2017-01-01
COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666
Palmquist, A; Jarmar, T; Hermansson, L; Emanuelsson, L; Taylor, A; Taylor, M; Engqvist, H; Thomsen, P
2009-10-01
The purpose of this study was to compare the integration in bone of uncoated free form fabricated cobalt chromium (CoCr) implants to the same implant with a calcium aluminate coating. The implants of cylindrical design with a pyramidal surface structure were press-fit into the limbs of New Zealand white rabbits. After 6 weeks, the rabbits were sacrificed, and samples were retrieved and embedded. Ground sections were subjected to histological analysis and histomorphometry. The section counter part was used for preparing an electron transparent transmission electron microscopy sample by focused ion beam milling. Calcium aluminate dip coating provided a significantly greater degree of bone contact than that of the native CoCr. The gibbsite hydrate formed in the hardening reaction of the calcium aluminate was found to be the exclusive crystalline phase material in direct contact with bone. (c) 2009 Wiley Periodicals, Inc.
Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V
NASA Astrophysics Data System (ADS)
Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.
2005-06-01
Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.
Integrated photonics using colloidal quantum dots
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.
2009-11-01
Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.
Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam
2016-01-01
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758
Liquid Galvanic Coatings for Protection of Imbedded Metals
NASA Technical Reports Server (NTRS)
MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)
2003-01-01
Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.
NASA Astrophysics Data System (ADS)
Dennis, Robert Vincent, III
The field of nanocomposites is a burgeoning area of research due to the interest in the remarkable properties which can be achieved through their use in a variety of applications, including corrosion resistant coatings. Lightweighting is of increasing importance in the world today due to the ever growing push towards energy efficiency and the green movement and in recent years there has been a vast amount of research performed in the area of developing lightweight nanocomposites for corrosion inhibition. Many new composite materials have been developed through the use of newly developed nanomaterials (including carbonaceous and metallic constituents) and their specialized incorporation in the coating matrix materials. We start with a general review on the development of hybrid nanostructured composites for corrosion protection of base metals from a sustainability perspective in Chapter 1. This review demonstrates the ever swelling requirements for a paradigm shift in the way that we protect metals against corrosion due to the costs and environmental concerns that exist with currently used technology. In Chapter 2, we delve into the much required understanding of graphene oxide and reduced graphene oxide through near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements to elucidate information about the electronic structure upon incorporation of nitrogen within the structure. For successful integration of the carbonaceous nanomaterials into a composite coating, a full swath of knowledge is necessary. Within this work we have shown that upon chemical defunctionalization of graphene oxide to reduced graphene oxide by means of hydrazine treatment, nitrogen is incorporated into the structure in the form of a pyrazole ring. In Chapter 3, we demonstrate that by way of in situ polymerization, graphene and multiwalled carbon nanotubes can be incorporated within a polymer (polyetherimide, PEI) matrix. Two systems have been developed including graphene and multiwalled carbon nanotubes that act synergistically at a concentration of 2 wt.% each along with graphene at 20 wt.%. The in situ polymerization technique allows for well dispersed carbon nanomaterials within the polymer matrix, which is always a necessary requirement for success as a multifunctional composite coating. After testing in harsh corrosive brine environments these coatings outperformed the polymer by itself and even Zn galvanized steel, lowering the estimated corrosion rate by several orders of magnitude. Chapter 4 displays the possible uses of functionalized carbon nanomaterials in the design of a nanocomposite for corrosion resistance. In this work we establish a method of crosslinking and curing of the polymer matrix using the carbon nanofiller materials as a curing agent through the knowledge partially developed from work outlined in Chapter 2. Here we have used the native functional groups (hydroxyls and carboxylic acids) on graphene oxide and oxidized multiwalled carbon nanotubes to initiate the curing reaction with a well-known commercially available and commonly used epoxy resin. This technology allows for the chemical integration of the nanofiller within the polymer matrix, ensuring excellent dispersion, and also removing the need for often toxic curing agents. The nanocomposites created here have also been tested for their corrosion resistant properties. Concluding with Chapter 5, we exploit some of our previous work on the development of nanostructured magnesium for use in corrosion resistant coatings based on Mg-rich primer technology. It was shown that Mg nanoplatelets allow for a much increased surface area for interaction with the polymer matrix, leading to excellent property enhancement at a significantly reduced pigment volume concentration and coating thickness. These enhancements lead to less material being used, lighter/thinner coatings, and improved performance. These nano Mg-rich primer formulations were shown to protect the underlying steel substrates from corrosion upon breakdown, in the form of a scratch to the metal surface, of the coating; preferentially oxidizing before the iron in steel. The coatings also were found to reduce the corrosion rate by up to 4 orders of magnitude.
Iskandar, Maria Emil; Aslani, Arash; Liu, Huinan
2013-08-01
Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Although its biodegradability is an attractive property, rapid degradation of Mg in the physiological environments imposes a major obstacle that limits the translation of Mg-based implants to clinical applications. Therefore, the objective of this study was to develop a nanostructured hydroxyapatite (nHA) coating on polished Mg substrates to mediate the rapid degradation of Mg while improving its integration with bone tissue for orthopedic applications. The nHA coatings were deposited on polished Mg using the patented transonic particle acceleration (Spire Biomedical) process. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction (XRD) analysis, respectively. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating the samples in phosphate buffered saline and revised simulated body fluid, under standard cell culture conditions. Rat bone marrow stromal cells (BMSCs) were harvested and cultured with nHA-coated and non-coated Mg samples to determine cytocompatibility. The degradation results suggested that the nHA coatings decreased Mg degradation. Improved BMSC adhesion was observed on the surfaces of the nHA-coated and non-coated Mg samples, in comparison with the cells on the culture plate surrounding the Mg samples. In conclusion, nHA coatings showed promise for improving the biodegradation and cytocompatibility properties of Mg-based orthopedic implants and should be further studied. Copyright © 2013 Wiley Periodicals, Inc.
Broadband metamaterial as an "invisible" radiative cooling coat
NASA Astrophysics Data System (ADS)
Huang, Yijia; Pu, Mingbo; Zhao, Zeyu; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-01-01
In this paper, we propose a compact planar device in infrared (3- 12 μm) that has a high emission range from 5 μm to 8 μm while simultaneously serving as a broadband mirror for the rest wavelengths by engineering its thermal emission characteristics. The structure utilizes a random-stacked multilayer to reduce the thickness required for ideal spectrum engineering. In addition, it is also convenient to fabricate and scale up. All the features above makes it an ;invisible; radiative cooling coat by taking advantage of the atmospheric transparency window. We believe that this device may fundamentally enable new technological possibilities for stealth techniques by integrating the device with traditional cloaking methods.
Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium
NASA Technical Reports Server (NTRS)
Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.
1992-01-01
Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Douglas W.
High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less
High-Frequency Testing of Composite Fan Vanes With Erosion-Resistant Coating Conducted
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Naik, Subhash; Otten, Kim D.; Perusek, Gail P.
2003-01-01
The mechanical integrity of hard, erosion-resistant coatings were tested using the Structural Dynamics Laboratory at the NASA Glenn Research Center. Under the guidance of Structural Mechanics and Dynamics Branch personnel, fixturing and test procedures were developed at Glenn to simulate engine vibratory conditions on coated polymer-matrix- composite bypass vanes using a slip table in the Structural Dynamics Laboratory. Results from the high-frequency mechanical bench testing, along with concurrent erosion testing of coupons and vanes, provided sufficient confidence to engine-endurance test similarly coated vane segments. The knowledge gained from this program will be applied to the development of oxidation- and erosion-resistant coatings for polymer matrix composite blades and vanes in future advanced turbine engines. Fan bypass vanes from the AE3007 (Rolls Royce America, Indianapolis, IN) gas turbine engine were coated by Engelhard (Windsor, CT) with compliant bond coatings and hard ceramic coatings. The coatings were developed collaboratively by Glenn and Allison Advanced Development Corporation (AADC)/Rolls Royce America through research sponsored by the High-Temperature Engine Materials Technology Project (HITEMP) and the Higher Operating Temperature Propulsion Components (HOTPC) project. High-cycle fatigue was performed through high-frequency vibratory testing on a shaker table. Vane resonant frequency modes were surveyed from 50 to 3000 Hz at input loads from 1g to 55g on both uncoated production vanes and vanes with the erosion-resistant coating. Vanes were instrumented with both lightweight accelerometers and strain gauges to establish resonance, mode shape, and strain amplitudes. Two high-frequency dwell conditions were chosen to excite two strain levels: one approaching the vane's maximum allowable design strain and another near the expected maximum strain during engine operation. Six specimens were tested per dwell condition. Pretest and posttest inspections were performed optically at up to 60 magnification and using a fluorescent-dye penetrant. Accumulation of 10 million cycles at a strain amplitude of two to three times that expected in the engine (approximately 670 Hz and 20g) led to the development of multiple cracks in the coating that were only detectable using fluorescent-dye penetrant inspection. Cracks were prevalent on the trailing edge and on the convex side of the midsection. No cracking or spalling was evident using standard optical inspection at up to 60 magnification. Further inspection may reveal whether these fine cracks penetrated the coating or were strictly on the surface. The dwell condition that simulated actual engine conditions produced no obvious surface flaws even after up to 80 million cycles had been accumulated at strain amplitudes produced at approximately 1500 Hz and 45g.
Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L
2018-04-10
Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.
THE COATINGS GUIDE: AN INTEGRATED TOOL FOR COATINGS DECISIONS
The Coatings Guide, formerly known as the Coatings Alternative Guide (CAGE), is a free Internet pollution prevention tool designed to help small-business coaters of metal and plastic substrates identify alternatives as potential drop-in replacements for existing operations. As sh...
Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara
2018-06-10
There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.
Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi
2017-02-15
We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)
2015-01-01
A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247
Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.
Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen
2016-12-01
Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.
Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview
NASA Technical Reports Server (NTRS)
Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie
2016-01-01
Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs will be necessary. A second generation of EBCs incorporates rare earth silicates which have extremely favorable resistance against environmental attack and a higher temperature capability. Performance data for this class of EBCs is more limited and especially field data are not as extensive as for the first generation EBCs. Extensive laboratory, rig and engine testing, including testing of EBC coated SiC-SiC CMCs in actual field applications is in progress. The development of next generation EBCs with even higher temperature capability than the second generation EBC is also underway. This paper will discuss the current status of EBC technology and future direction based on literature survey.
Hong, Guo; Schutzius, Thomas M; Zimmermann, Severin; Burg, Brian R; Zürcher, Jonas; Brunschwiler, Thomas; Tagliabue, Giulia; Michel, Bruno; Poulikakos, Dimos
2015-01-14
In situ assembly of high thermal conductivity materials in severely confined spaces is an important problem bringing with it scientific challenges but also significant application relevance. Here we present a simple, affordable, and reproducible methodology for synthesizing such materials, composed of hierarchical diamond micro/nanoparticle scaffolds and an ethylenediamine coating. An important feature of the assembly process is the utilization of ethylenediamine as an immobilizing agent to secure the integrity of the microparticle scaffolds during and after each processing step. After other liquid components employed in the scaffolds assembly dry out, the immobilization agent solidifies forming a stable coated particle scaffold structure. Nanoparticles tend to concentrate in the shell and neck regions between adjacent microparticles. The interface between core and shell, along with the concentrated neck regions of nanoparticles, significantly enhance the thermal conductivity, making such materials an excellent candidate as thermal underfills in the electronics industry, where efficient heat removal is a major stumbling block toward increasing packing density. We show that the presented structures exhibit nearly 1 order of magnitude improvement in thermal conductivity, enhanced temperature uniformity, and reduced processing time compared to commercially available products for electronics cooling, which underpins their potential utility.
NASA Astrophysics Data System (ADS)
Chen, Wei-Kun; Bai, Ching-Yuan; Liu, Chung-Ming; Lin, Chao-Sung; Ger, Ming-Der
2010-06-01
The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H 2SO 4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr 2O 3, Cr(OH) 3, Al 2O 3, Al(OH) 3, ZrO 2, Zr(OH) 4, AlF 3, and ZrF 4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.
NASA Astrophysics Data System (ADS)
Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre
2018-03-01
This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
Lan, Hangzhen; Salmi, Leo D; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa
2018-09-18
New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe 2 O 3 ) film or aluminum oxide (Al 2 O 3 ) film above terephthalic acid (H 2 BDC) or trimesic acid (H 3 BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J; McLaughlin, Russell L.
2008-01-01
Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy
2014-08-19
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133 55–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one constructmore » of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.« less
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej
2014-01-01
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Amir, Norlaili Binti; Ahmad, Faiz; Syahirah Rodzhan, N.
2017-08-01
This research is carried out in order to study the synergistic effect of aluminium trihydrate and basalt fibres on the properties of fire resistant intumescent coatings. Intumescent fire retardant coatings were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder along with curing agent. Furthermore, individual and combinations of aluminium trihydrate and basalt fibres was incorporated in the formulations to analyse mechanical and chemical properties of the coatings. Char expansion was observed using furnace test, thermogravimetric analysis was used to determine residual weight, X-Ray Diffraction was performed to investigate compounds present in the char, shear test was conducted to determine char strength and scanning electron microscopy analysis was performed to observe morphology of the burnt char. From the microscopic investigation it was concluded that the dense structure of the char increased the char integrity by adding basalt and aluminium trihydrate as fillers. X-Ray Diffraction results shows the presence boron phosphate, and boric acid which enhanced the thermal performance of the coating up to 800°C. From the Thermogravimetric analysis it was concluded that the residual weight of the char was increased up to 34.9 % for IC-B2A4 which enhanced thermal performance of intumescent coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
NASA Technical Reports Server (NTRS)
Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.
1995-01-01
Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.
Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.
Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian
2017-10-18
The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao
2018-01-01
Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.
Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.
Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J
2012-12-03
We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.
USAF Corrosion Prevention and Control Enterprise - Sustainability Links
2014-11-18
projects and $84M Example of potential synergy: From FY05-14, the DoD Corrosion Program funded 21 projects on hexavalent chromium reduction OSD...coatings, effects on structural integrity, environmental effects, etc Some topics of interest Inhibitor mechanisms for mg-rich primer (non- chrome ...approach Financial and engineering resources are limited Potential costs of corrosion are significant Supporting replacements for hexavalent
Method for adhering a coating to a substrate structure
Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey
2015-02-17
A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Hu; D Samanta; S Parelkar
Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less
Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita
2011-01-01
This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15– 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 μm was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo. PMID:21552358
Evaluation of vibrated fluidized bed techniques in coating hemosorbents.
Morley, D B
1991-06-01
A coating technique employing a vibrated fluidized bed was used to apply an ultrathin (2 microns) cellulose nitrate coating to synthetic bead activated charcoal. In vitro characteristics of the resulting coated sorbent, including permeability to model small and middle molecules, and mechanical integrity, were evaluated to determine the suitability of the process in coating granular sorbents used in hemoperfusion. Initial tests suggest the VFB-applied CN coating is both highly uniform and tightly adherent and warrants further investigation as a hemosorbent coating.
Integrated Glass Coating Manufacturing Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brophy, Brenor
2015-09-30
This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces
NASA Technical Reports Server (NTRS)
Dussinger, Peter M.; Lindemuth, James E.
1997-01-01
The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.
Laminated rare earth structure and method of making
Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA
2002-07-30
A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.
Architecture and assembly of the Bacillus subtilis spore coat.
Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J
2014-01-01
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.
Architecture and Assembly of the Bacillus subtilis Spore Coat
Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.
2014-01-01
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism. PMID:25259857
A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection
Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan
2016-01-01
A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%. PMID:27941636
A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.
Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan
2016-12-08
A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung,K.; Yoon, W.; McBreen, J.
2007-01-01
Synchrotron based in situ X-ray diffraction technique has been used to study the mechanism of capacity fading of LiCoO2 cycled to a higher voltage above the normal 4.2 V limit and to investigate the mechanism of capacity retention improvement by ZrO2 surface coating on LiCoO2. It was found that the capacity fading of LiCoO2 cycled at higher voltage limit is closely related to the increased polarization rather than the bulk crystal structure damage. The capacity of uncoated LiCoO2 sample dropped to less than 70 mAh g-1 when charged to 4.8 V after high voltage cycling. However, when the voltage limitmore » was further increased to 8.35 V, the capacity was partially restored and the corresponding structural changes were recovered to the similar level as seen in fresh sample. This indicates that the integrity of the bulk crystal structure of LiCoO2 was not seriously damaged during cycling to 4.8 V. The increased polarization seems to be responsible for the fading capacity and the uncompleted phase transformation of LiCoO2. The polarization-induced capacity fading can be significantly improved by ZrO2 surface coating. It was proposed that the effect of ZrO2-coating layer on the capacity retention during high voltage cycling is through the formation of protection layer on the surface of LiCoO2 particles, which can reduce the decomposition of the electrolyte at higher voltages.« less
Thermal stability and adhesion of low-emissivity electroplated Au coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.
We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnarmore » grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.« less
Characterization of osseointegrative phosphatidylserine and cholesterol orthopaedic implant coatings
NASA Astrophysics Data System (ADS)
Rodgers, William Paul, III
Total joint arthroplasties are one of the most successful surgeries available today for improving patients' quality of life. Increasing demand is driven largely by an ageing population and an increased occurrence of obesity. Current patient options have significant shortcomings. Nearly a third of patients require a revision surgery before the implant is 15 years old, and those who have revision surgeries are at an increased risk of requiring additional reoperations. A recent implant technology that has shown to be effective at improving bone to implant integration is the use of phosphatidylserine (DOPS) coatings. These coatings are challenging to analyze and measure due to their highly dynamic, soft, rough, thick, and optically diffractive properties. Previous work had difficulty investigating pertinent parameters for these coating's development due in large part to a lack of available analytical techniques and a dearth of understanding of the micro- and nano-structural configuration of the coatings. This work addresses the lack of techniques available for use with DOPS coatings through the development of original methods of measurement, including the use of scanning white light interferometry and nanoindentation. These techniques were then applied for the characterization of DOPS coatings and the study of effects from several factors: 1. influence of adding calcium and cholesterol to the coatings, 2. effects of composition and roughness on aqueous contact angles, and 3. impact of ageing and storage environment on the coatings. Using these newly developed, highly repeatable quantitative analysis methods, this study sheds light on the microstructural configuration of the DOPS coatings and elucidates previously unexplained phenomena of the coatings. Cholesterol was found to supersaturate in the coatings at high concentration and phase separate into an anhydrous crystalline form, while lower concentrations were found to significantly harden the coatings. Morphological and microstructural changes were detected in the coatings over the course of as little as two weeks that were dependent on the storage environment. The understanding gained paves the path for focused future research effort. Additionally, the methods and techniques developed for the analysis of DOPS coatings have a broader application for the analysis of other problematic biological materials and surfaces.
Axisymmetric problem of fretting wear for a foundation with a nonuniform coating and rough punch
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.; Kazakov, K. E.
2018-05-01
The axisymmetric contact problem with fretting wear for an elastic foundation with a longitudinally nonuniform (surface nonuniform) coating and a rigid punch with a rough foundation has been solved for the first time. The case of linear wear is considered. The nonuniformity of the coating and punch roughness are described by a different rapidly changing functions. This strong nonuniformity arises when coatings are deposited using modern additive manufacturing technologies. The problem is reduced the solution of an integral equation with two different integral operators: a compact self-adjoint positively defined operator with respect to the coordinate and the non-self-adjoint integral Volterra operator with respect to time. The solution is obtained in series using the projection method of the authors. The efficiency of the proposed approach for constructing a high-accuracy approximate solution to the problem (with only a few expansion terms retained) is demonstrated.
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2004-08-31
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2003-10-14
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Evaluation of epoxy-coated reinforcing steel.
DOT National Transportation Integrated Search
1993-01-01
Virginia's first installation of epoxy-coated reinforcing steel, which was opened to traffic in 1977, was evaluated during construction and through 13 years of service. It was apparent at the time of construction that the integrity of the coating app...
NASA Astrophysics Data System (ADS)
Jiang, Chaoping; Chen, Hong; Wang, Gui; Chen, Yongnan; Xing, Yazhe; Zhang, Chunhua; Dargusch, Matthew
2017-04-01
Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.
Metallographic techniques for evaluation of thermal barrier coatings
NASA Technical Reports Server (NTRS)
Brindley, William J.; Leonhardt, Todd A.
1990-01-01
The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.
NASA Technical Reports Server (NTRS)
Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.
1994-01-01
A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.
Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad
2018-08-01
Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.
Glass sample preparation and performance investigations
NASA Astrophysics Data System (ADS)
Johnson, R. Barry
1992-04-01
This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.
Mahfuz, Hassan; Powell, Felicia; Granata, Richard; Hosur, Mahesh; Khan, Mujib
2011-01-01
Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). POSS is a nanostructured inorganic-organic hybrid particle with a cubic structure having silicon atoms at the core and linked to oxygen atoms. The advantage of using POSS is that the silicon atoms can be linked to a substituent that can be almost any chemical group known in organic chemistry. Cubic silica cores are ‘hard particles’ and are about 0.53 nm in diameter. The peripheral organic unit is a sphere of about 1–3 nm in diameter. Further, cubic structure of POSS remains intact during the polymerization process and therefore with appropriate functional groups, if installed on the fiber surface, would provide a stable and strong F/M interface. Two POSS systems with two different functional groups; namely, octaisobutyl and trisilanolphenyl have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and to fabricate layered composites with vinyl ester resin. Interlaminar shear and low velocity impact tests have indicated around 17–38% improvement in mechanical properties with respect to control samples made without the POSS coating. Saltwater and hygrothermal tests at various environmental conditions have revealed that coating with POSS reduces water absorption by 20–30% and retains the composite properties. PMID:28824160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J; Haslam, J; Wong, F
2007-09-19
The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoingmore » corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.« less
Micro/nanoreservoirs for controlled release of active species in smart functional coatings =
NASA Astrophysics Data System (ADS)
Maia, Frederico Calheiros
This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.
Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating
Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian
2013-01-01
Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910
NASA Astrophysics Data System (ADS)
Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.
2018-01-01
Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.
NASA Astrophysics Data System (ADS)
Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.
2016-03-01
Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d
Stent Coating Integrity of Durable and Biodegradable Coated Drug Eluting Stents.
Yazdani, Saami K; Sheehy, Alexander; Pacetti, Stephen; Rittlemeyer, Brandon; Kolodgie, Frank D; Virmani, Renu
2016-10-01
Coatings consisting of a polymer and drug are widely used in drug-eluting stents (DES) and are essential in providing programmable drug release kinetics. Among other factors, stent coating technologies can influence blood compatibility, affect acute and sub-acute healing, and potentially trigger a chronic inflammatory response. The aim of this study was to investigate the short-term (7 and 28 days) and long-term (90 and 180 days) coating integrity of the Xience Prime Everolimus-Eluting Stent (EES), Resolute Zotarolimus-Eluting Stent (ZES), Taxus Paclitaxel-Eluting Stent (PES), and Nobori Biolimus A9-Eluting Stent (BES) in a rabbit ilio-femoral stent model. Stented arteries (n = 48) were harvested and the tissue surrounding the implanted stents digested away with an enzymatic solution. Results demonstrated that the majority of struts of EES were without any coating defects with a few struts showing minor defects. Similarly, for the ZES, most of the struts were without coating defects at all time points except at 180 days. The majority of PES demonstrated mostly webbing and uneven coating. In the BES group, the majority of strut coating showed polymer cracking. Overall, the EES and ZES had fewer coating defects than the PES and BES. Coating defects, however increase over time for the ZES, whereas the percent of coating irregularities remained constant for the EES. These results provide, for the first time, a comparison of the long-term durability of these drug-eluting stent coatings in vivo. © 2016, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zia-ul-Mustafa, M.; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad
2015-07-01
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A
2016-02-01
SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nacre biomimetic design--a possible approach to prepare low infrared emissivity composite coatings.
Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang
2013-01-01
Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic-inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Copyright © 2012 Elsevier B.V. All rights reserved.
Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability
NASA Astrophysics Data System (ADS)
Mandal, Paranjayee
Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2 and M0S2. This mechanism is believed to be the key-factor for low friction properties of Mo-W-C coating and presence of graphitic carbon particles further benefits the friction behaviour. It is observed that low friction is achieved mostly due to formation of WS2 at ambient temperature, whereas formation of both WS2 and M0S2 significantly decreases the friction of Mo-W-C coating at high temperature. This further indicates importance of combined Mo and W doping over single-metal doping into carbon-based coatings.Isothermal oxidation tests indicate that Mo-W-C coating preserves it's as-deposited graphitic nature up to 500°C, whereas local delamination of DLC coating leads to substrate exposure and loss of its diamond-like structure at the same temperature. Further, thermo-gravimetric tests confirm excellent thermal stability of Mo-W-C coating compared to DLC. Mo-W-C coating resists oxidation up to 800°C and no coating delamination is observed due to retained coating integrity and its strong adhesion with substrate. On the other hand, state-of-the-art DLC coating starts to delaminate beyond 380°C.The test results confirm that Mo-W-C coating sustains high working temperature and simultaneously maintains improved tribological properties during boundary lubricated condition at ambient and high temperature. Thus Mo-W-C coating is a suitable candidate for low friction and high temperature wear resistant applications compared to commercially available state-of-the-art DLC coatings.
NASA Astrophysics Data System (ADS)
Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.
2018-03-01
The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.
Static and dynamic oxidation of Ti-14Al-21Nb and coatings
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Sankaran, S. N.; Clark, R. K.; Wallace, T. A.
1989-01-01
The oxidation of Ti-14Al-21Nb (wt pct) was studied under static conditions at 649 to 1093 C for as long as 120 hr, and under simulated hypersonic flight (dynamic oxidation) conditions at 982 C for as many as 16 half-hour cycles. Under simulated hypersonic flight conditions heavy oxidation and spalling of the oxide was observed. It was concluded that titanium aluminides used in hypersonic applications must have oxidation-protective coatings. In this preliminary study coatings about 1 micron thick were applied by sputter deposition, from solutions, and from sol-gels. It was found that, because of cracks and porosity, the sputter-deposited coatings did not have sufficient film integrity to shield the alloy. Some of the coatings applied from sol-gels demonstrated film integrity in 1 hr exposures at 982 C.
NASA Astrophysics Data System (ADS)
Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.
2015-10-01
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.
Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu
2018-04-01
Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia
2010-04-01
In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng
2012-02-01
The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.
2016-12-01
System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations
Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya
2018-02-14
The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.
Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.
Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado
2017-04-01
Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.
Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning
NASA Astrophysics Data System (ADS)
Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo
2018-07-01
In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.
Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip
Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao
2010-01-01
This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459
Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip.
Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao
2010-01-01
This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm(2). The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.
Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application
NASA Astrophysics Data System (ADS)
Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa
2015-04-01
In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip
2018-03-01
Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.
NASA Astrophysics Data System (ADS)
Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.
2013-03-01
We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.
Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research
NASA Technical Reports Server (NTRS)
Merutka, J. P.
1981-01-01
Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.
NASA Astrophysics Data System (ADS)
Mohan, Arun Ram
Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor for the deposition of metal and metal oxide functional coatings by MOCVD. Alumina was chosen as a candidate for metal oxide coating because of its thermal and phase stability. Platinum was chosen as a candidate to utilize the oxygen spillover process to maintain a self-cleaning surface by oxidizing the deposits formed during thermal stressing. Two metal organic precursors, aluminum trisecondary butoxide and aluminum acetylacetonate, were used as precursors to coat tubes of varying diameters. The morphology and uniformity of the coatings were characterized by electron microscopy and energy-dispersive x-ray spectroscopy. The coating was characterized by x-ray photoelectron spectroscopy to obtain the surface chemical composition. This is the first study conducted to examine the application of MOCVD to coat internal surfaces of tubes with varying diameters. In the third part of the study, the metal oxide coatings, alumina from aluminum acetylacetonate, alumina from aluminum trisecondary butoxide, zirconia from zirconium acetylacetonate, tantalum oxide from tantalum pentaethoxide and the metal coating, platinum from platinum acetylacetonate were deposited by MOCVD on AISI304. The chemical composition and the surface acidity of the coatings were characterized by x-ray photoelectron spectroscopy. The morphology of the coatings was characterized by electron microscopy. The coated substrates were tested in the presence of heated Jet-A in a flow reactor to evaluate their effectiveness in inhibiting the solid deposit formation. All coatings inhibited the formation of metal sulfides and the carbonaceous solid deposits formed by metal catalysis. The coatings also delayed the accumulation of solid carbonaceous deposits. In particular, it has been confirmed that the surface acidity of the metal oxide coatings affects the formation of carbonaceous deposits. Bimolecular addition reactions promoted by the Bronsted acid sites appear to lead to the formation of carbonaceous solid deposits depending on the surface acidity of the coatings. In the last part of the study, the residual carbon was incorporated in the zirconia coating by deposition with and without oxygen. As carbon surface is less active towards coke deposition, presence of residual carbon in the coating was expected to reduce its activity towards carbon deposition. The residual carbon in the coating was characterized by Raman spectroscopy and thermal analysis. However, it has been observed that residual carbon in the coating beyond a certain concentration compromises the integrity of the coating during the process of cooling the substrate from deposition temperature to room temperature. It has been found that residual carbon in the zirconia coating does not appear to affect the activity of the surface towards carbon deposition.
Medicine Delivery Device with Integrated Sterilization and Detection
NASA Technical Reports Server (NTRS)
Sheam, Michael J.; Greer, Harold F.; Manohara, Harish
2013-01-01
Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. Nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely hig-hsurface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL s ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization or identification of the medicine itself. This constrained volume that is located immediately prior to delivery into a patient, ensures that the medicine delivery device is inherently sterile.
Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.
Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin
2018-05-09
Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.
NASA Astrophysics Data System (ADS)
Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning
2018-04-01
This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.
Parnell, Charlette M; Chhetri, Bijay; Brandt, Andrew; Watanabe, Fumiya; Nima, Zeid A; Mudalige, Thilak K; Biris, Alexandru S; Ghosh, Anindya
2016-08-16
Platinum electrodes are commonly used electrocatalysts for oxygen reduction reactions (ORR) in fuel cells. However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures. During ORR, a peak potential at 0.433 V was recorded, which is a significant shift compared to the uncoated material's -0.303 V (both versus SHE). All the materials reduced oxygen in a wide pH range via a four-electron pathway. Rotating disk electrode and rotating ring disk electrode studies of the polydopamine-coated material revealed ORR occurring via 4.14 and 4.00 electrons, respectively. A rate constant of 6.33 × 10(6) mol(-1)s(-1) was observed for the polydopamine-coated material-over 4.5 times greater than the uncoated nanocomposite and superior to those reported for similar carbon-supported metal catalysts. Simply integrating an inexpensive bioinspired polymer coating onto the Mn-graphene nanocomposite increased ORR performance significantly, with a peak potential shift of over +730 mV. This indicates that the material can reduce oxygen at a higher rate but with lower energy usage, revealing its excellent potential as an ORR electrocatalyst in fuel cells.
Phenomenological modeling of abradable wear in turbomachines
NASA Astrophysics Data System (ADS)
Berthoul, Bérenger; Batailly, Alain; Stainier, Laurent; Legrand, Mathias; Cartraud, Patrice
2018-01-01
Abradable materials are widely used as coatings within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize energy efficiency. However, rubbing occurrences between blade tips and coating liners may lead to high blade vibratory levels and endanger their structural integrity through fatigue mechanisms. Accordingly, there is a need for a better comprehension of the physical phenomena at play and for an accurate modeling of the interaction, in order to predict potentially unsafe events. To this end, this work introduces a phenomenological model of the abradable coating removal based on phenomena reported in the literature and accounting for key frictional and wear mechanisms including plasticity at junctions, ploughing, micro-rupture and machining. It is implemented within an in-house software solution dedicated to the prediction of full three-dimensional blade/abradable coating interactions within an aircraft engine low pressure compressor. Two case studies are considered. The first one compares the results of an experimental abradable test rig and its simulation. The second one deals with the simulation of interactions in a complete low-pressure compressor. The consistency of the model with experimental observations is underlined, and the impact of material parameter variations on the interaction and wear behavior of the blade is discussed. It is found that even though wear patterns are remarkably robust, results are significantly influenced by abradable coating material properties.
NASA Astrophysics Data System (ADS)
Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat
2015-03-01
Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.
NASA Astrophysics Data System (ADS)
Goudarzi, Mona; Batmanghelich, Farhad; Afshar, Abdollah; Dolati, Abolghasem; Mortazavi, Golsa
2014-05-01
Hydroxyapatite (HA) coatings in and onto anodized TiO2 nanotube arrays were presented and prepared by electrophoretic deposition technique (EPD). Coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). EPD proved to be an innovative and versatile technique to coat HA on and into nanotubular structures of TiO2 with enhanced adhesion between nanotubes and HA particles provided by mechanical interlocking. After EPD of HA on TiO2 layer, samples were sintered at 400 °C, 600 °C and 800 °C for 2 h in an Ar atmosphere. Effect of EPD processing parameters on thickness of the deposits and rate of deposition was elucidated for HA coatings on the nanotubular TiO2 structures. It was shown that higher applied voltages increase deposition rate and thickness of the coatings. Potentiodynamic polarization measurements proved corrosion protection caused by both HA coating and nanotubular TiO2 structure in simulated body fluid (SBF). Effect of sintering temperature on adhesion strength of HA coatings on TiO2 nanotubes and their composition were also studied.
Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan
2017-10-30
Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers
NASA Astrophysics Data System (ADS)
Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.
2009-05-01
We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.
Ceramic Honeycomb Structures and Method Thereof
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.
1989-01-01
The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.
A Novel Method for Remediation of PCBs in Weathered Coatings
NASA Technical Reports Server (NTRS)
Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.; Aitken, Brian S.; Captain, James; Devor, Robert W.
2006-01-01
Polychlorinated biphenyls (PCBs) are a group of synthetic aromatic compounds with the general formula C 12H1oCl that were historically used in industrial paints, caulking material and adhesives, as their properties enhanced structural integrity, reduced flammability and boosted antifungal properties. Although the United States Environmental Protection Agency (USEPA) has banned the manufacture of PCBs since 1979, they have been found in at least 500 of the 1,598 National Priorities List (Superfund) sites identified by the USEPA. Prior to the USEPA's ban on PCB production, PCBs were commonly used as additives in paints and asphalt-based adhesives that were subsequently applied to a variety of structures. Government facilities constructed as early as 1930 utilized PCB-containing binders or PCB-containing paints, which are now leaching into the environment and posing ecological and worker health concerns. To date, no definitive in situ, non-destructive method is available for the removal of PCBs found in weathered coatings or on painted structures/equipment. The research described in this paper involves the laboratory development and field-scale deployment of a new and innovative solution for the removal and destruction of PCBs found in painted structures or within the binding or caulking material on structures. The technology incorporates a Bimetallic Treatment System (BTS) that extracts and degrades only the PCBs found on the facilities, leaving the structure virtually unaltered.
NASA Astrophysics Data System (ADS)
Varghese, B.; Gamet, E.; Jamon, D.; Neveu, S.; Berthod, L.; Shavdina, O.; Reynaud, S.; Verrier, I.; Veillas, C.; Royer, F.
2016-02-01
Periodic structuration of magnetic material is a way to enhance the magneto-optical behavior of optical devices like isolators. It is useful to reduce the footprint of such integrated devices or to improve their features. However, the structuration and/or integration of efficient magnetic materials on photonic platforms is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. A novel wafer-scale approach is to incorporate that material into an already structured template through a single step deposition at low temperature. Using the dip-coating method, a magneto-optical thin film (~300nm) of CoFe2O4 nanoparticles in silica matrix prepared by sol-gel technique was coated on a 1D and 2D TiO2 subwavelength gratings. Such gratings were realized by the patterning of TiO2 films obtained by a sol-gel process. It was confirmed by Scanning Electron Microscope images that the magneto-optical composite completely occupies the voids of the 2D structuration showing a good compatibility between both materials. This composite shows a specific Faraday rotation of about 200°cm-1 at 1,5μm for 1% of volume fraction of nanoparticles. Spectral studies of the transmission and the reflection of a 1D TiO2 grating filled with the MO composite have evidenced the presence of a guided-mode optical resonance at 1,55μm. The position of this resonance was confirmed by numerical simulations, as well as its quite low efficiency. Based on simulations results, one can conclude that an increase of the grating depth is required to improve the efficiency of the resonance.
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
Comparative static curing versus dynamic curing on tablet coating structures.
Gendre, Claire; Genty, Muriel; Fayard, Barbara; Tfayli, Ali; Boiret, Mathieu; Lecoq, Olivier; Baron, Michel; Chaminade, Pierre; Péan, Jean Manuel
2013-09-10
Curing is generally required to stabilize film coating from aqueous polymer dispersion. This post-coating drying step is traditionally carried out in static conditions, requiring the transfer of solid dosage forms to an oven. But, curing operation performed directly inside the coating equipment stands for an attractive industrial application. Recently, the use of various advanced physico-chemical characterization techniques i.e., X-ray micro-computed tomography, vibrational spectroscopies (near infrared and Raman) and X-ray microdiffraction, allowed new insights into the film-coating structures of dynamically cured tablets. Dynamic curing end-point was efficiently determined after 4h. The aim of the present work was to elucidate the influence of curing conditions on film-coating structures. Results demonstrated that 24h of static curing and 4h of dynamic curing, both performed at 60°C and ambient relative humidity, led to similar coating layers in terms of drug release properties, porosity, water content, structural rearrangement of polymer chains and crystalline distribution. Furthermore, X-ray microdiffraction measurements pointed out different crystalline coating compositions depending on sample storage time. An aging mechanism might have occur during storage, resulting in the crystallization and the upward migration of cetyl alcohol, coupled to the downward migration of crystalline sodium lauryl sulfate within the coating layer. Interestingly, this new study clearly provided further knowledge into film-coating structures after a curing step and confirmed that curing operation could be performed in dynamic conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Protective coatings for composite tubes in space applications
NASA Technical Reports Server (NTRS)
Dursch, Harry W.; Hendricks, Carl L.
1987-01-01
Protective coatings for graphite/epoxy (Gr/Ep) tubular structures for a manned Space Station truss structure were evaluated. The success of the composite tube truss structure depends on its stability to long-term exposure to the low earth orbit (LEO) environment, with particular emphasis placed on atomic oxygen. Concepts for protectively coating Gr/Ep tubes include use of inorganic coated metal foils and electroplating. These coatings were applied to Gr/Ep tubes and then subjected to simulated LEO environment to evaluate survivability of coatings and coated tubes. Evaluation included: atomic oxygen resistance, changes in optical properties and adhesion, abrasion resistance, surface preparation required, coating uniformity, and formation of microcracks in the Gr/Ep tubes caused by thermal cycling. Program results demonstrated that both phosphoric and chromic acid anodized Al foil provided excellent adhesion to Gr/Ep tubes and exhibited stable optical properties when subjected to simulated LEO environment. The SiO2/Al coatings sputtered onto Al foils also resulted in an excellent protective coating. Electroplated Ni exhibited unacceptable adhesion loss to Gr/Ep tubes during atomic oxygen exposure.
Protective coatings for composite tubes in space applications
NASA Technical Reports Server (NTRS)
Dursch, Harry W.; Hendricks, Carl L.
1987-01-01
Protective coatings for graphite/epoxy (Gr/Ep) tubular structures for a Manned Space Station truss structure were evaluated. The success of the composite tube truss structure depends on its stability to long-term exposure to the Low Earth Orbit (LEO) environment with particular emphasis placed on atomic oxygen. Concepts for protectively coating Gr/Ep tubes include use of inorganic coated metal foils and electroplating. These coatings were applied to Gr/Ep tubes and then subjected to simulated LEO environmnet to evaluate survivability of coatings and coated tubes. Evaluation included: atomic oxygen resistance, changes in optical properties and adhesion, abrasion resistancem surface preparation required, coating uniformity, and formation of microcracks in the Gr/Ep tubes caused by thermal cycling. Program results demonstrated that both phosphoric and chromic acid anodized Al foil provided excellent adhesion to Gr/Ep tubes and exhibited stable optical properties when subjected to simulated LEO environment. The SiO2/Al coatings speuttered onto Al foils also resulted in an excellent protective coating. Electroplated Ni exhibited unaccepatble adhesion loss to Gr/Ep tubes during atomic oxygen exposure.
Fine Structure Study of the Plasma Coatings B4C-Ni-P
NASA Astrophysics Data System (ADS)
Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.
2017-12-01
The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.
Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt
NASA Astrophysics Data System (ADS)
Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong
2013-10-01
Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.
NASA Astrophysics Data System (ADS)
Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.
2015-06-01
In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.
Performance of LI-1542 reusable surface insulation system in a hypersonic stream
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Shideler, J. L.; Weinstein, I.
1976-01-01
The thermal and structural performance LI-1542 reusable surface insulation (RSI) tiles was investigated. The test panel was designed to represent part of the surface structure on a space shuttle orbiter fuselage along a 1250 K isotherm. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1820 K, Reynolds numbers of 2 millon and 5 million per meter, and dynamic pressures of 26 and 65 kPa. The RSI tiles demonstrated good thermal protection and structural integrity. High temperatures were caused by misalinement in tile height, offset the tile longitudinal alinement, and leakage around thermal seals when differential pressure existed across the panel. The damage tolerance of LI-1542 RSI appeared high. The tile coating crazed early in the test program, but this did not effect the tile integrity. Erosion of the tile edges occurred at forward-facing steps and at the ends of longitudinal gaps because of particle impacts and flow shear.
NASA Astrophysics Data System (ADS)
Aborkin, A. V.; Sobol'kov, A. V.; Elkin, A. I.; Arkhipov, V. E.
2018-01-01
The method of cold gas-dynamic spraying of mechanically synthesized powders based on a nanocrystalline AlMg2 matrix reinforced with graphene-like structures and micro-sized corundum particles was used for obtaining hybrid coatings. A feature of the formed coatings is the presence of a two-level micro- and nanocomposite structure. It was found that an increase in the content of corundum microdimensional particles in the mixture from 10 to 30% by weight contributes to an increase in the thickness of the coating obtained at the same time by a factor of 2 from 140 to 310 μm. Further increase in the content of a mixture of micron-sized corundum particles to 50% by weight leads to a decrease in the thickness of the coating formed to 40 μm. The resulting coatings correspond to a high microhardness, varying depending on the composition in the range from 1.7 GPa to 3.2 GPa. The high hardness of the coatings is due to the increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which increases the strength of fixing micro-sized corundum particles therein, improving the characteristics of the heterogeneous coating as a whole.
NASA Astrophysics Data System (ADS)
Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng
2018-04-01
In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.
NASA Astrophysics Data System (ADS)
Davidov, D. I.; Kazantseva, N. V.; Vinogradova, N. I.; Ezhov, I. V.
2017-12-01
Investigation of the structure and chemical composition of the protective coating of the first stage IN738 gas turbine blade after standard regenerative heat treatment was done. It was found the degradation of microstructure and chemical composition of both the blade feather and its protective coating. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the protective coating. Cracks on the boundary between the blade feather and the protective coating were found by scanning electron microscopy. The carbide transformation and sigma phase were found in the structure of the blade feather. Based upon the structural and chemical composition studies, it is concluded that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not provide full structure regeneration.
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion miscroscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching, and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
NASA Astrophysics Data System (ADS)
Iskandar, Maria Emil
Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that nHA-coatings show promise for controlling the biodegradation of Mg-based orthopedic implants and devices. Cell studies indicated significantly improved BMSC adhesion on the surfaces of the nHA-coated and non-coated Mg samples, in comparison to the cells surrounding the Mg samples. These results indicated that the nHA-coated and non-coated Mg samples promote cell activity on the surface. However, cell experiments must be repeated on a larger number of samples with extensive short and long term cell studies, to achieve more verifiable results.
Method for partially coating laser diode facets
NASA Technical Reports Server (NTRS)
Dholakia, Anil R. (Inventor)
1990-01-01
Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.
Bioactive Ca-P coating with self-sealing structure on pure magnesium.
Gan, Junjie; Tan, Lili; Yang, Ke; Hu, Zhuangqi; Zhang, Qiang; Fan, Xinmin; Li, Yangde; Li, Weirong
2013-04-01
Bioactive coatings containing Ca and P with self-sealing structures were fabricated on the surface of pure magnesium using micro-arc oxidation technique (MAO) in a specific calcium hydroxide based electrolyte system. Coatings were prepared at three applied voltages, i.e. 360, 410 and 450 V, and the morphology, chemical composition, corrosion resistance and the degradation properties in Hank's solution of the MAO-coated samples with three different applied voltages were investigated. It was found that all the three coatings showed similar surface morphologies that the majority of micro-pores were filled with compound particles. Both the porous structures and the compound particles were found to contain consistent chemical compositions which were mainly composed of O, Mg, F, Ca and P. Electrochemical tests showed a significant increase in corrosion resistance for the three coatings, meanwhile the coating obtained at 450 V exhibited the superior corrosion resistance owing to the largest coating thickness. The long term immersion tests in Hank's solution also revealed an effective reduction in corrosion rate for the MAO coated samples, and the pH values of the coated samples always maintained a lower level. Besides, all the three coatings were subjected to a mild and uniform degradation, while the coating obtained at 360 V showed a relatively obvious degradation characteristic and appreciable Ca and P contents on the surfaces of the three coatings were observed after immersion in Hank's solution. The results of the present study confirmed that the MAO coatings containing bioactive Ca and P elements with self-sealing structures could significantly enhance the corrosion resistance of magnesium substrate in Hanks' solution with great potential for medical application.
Integrated TiN coated porous silicon supercapacitor with large capacitance per foot print
NASA Astrophysics Data System (ADS)
Grigoras, Kestutis; Grönberg, Leif; Ahopelto, Jouni; Prunnila, Mika
2017-05-01
We have fabricated a micro-supercapacitor with porous silicon electrodes coated with TiN by atomic layer deposition technique. The coating provides an efficient surface passivation and high electrical conductivity of the electrodes, resulting in stable and almost ideal electrochemical double layer capacitor behavior with characteristics comparable to the best carbon based micro-supercapacitors. Stability of the supercapacitor is verified by performing 50 000 voltammetry cycles with high capacitance retention obtained. Silicon microfabrication techniques facilitate integration of both supercapacitor electrodes inside the silicon substrate and, in this work, such in-chip supercapacitor is demonstrated. This approach allows realization of very high capacitance per foot print area. The in-chip micro-supercapacitor can be integrated with energy harvesting elements and can be used in wearable and implantable microdevices.
Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin
2015-09-16
Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
NASA Astrophysics Data System (ADS)
Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie
2018-04-01
Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.
Integration Of Thin-Film Coatings Into Optical Systems
NASA Astrophysics Data System (ADS)
Matteucci, John; Baumeister, Philip
1980-09-01
These remarks are directed to professional lens designers, optical systems engineers and fabricators. You are the thoroughly capable experts who configure and construct optical systems that image superbly over vast areas. Many of the systems contain optical coatings that perform some of the functions shown in Figure 1. They serve to enhance the radiant reflectance of a surface, to reduce the Fresnel losses to low values, to alter the state of polarization of the flux, to divide beams into various channels, or to isolate some part of the electromagnetic spectrum. Figure 2 depicts a procedure that is sometimes used to select coatings. Here they are not specified until after the optical system design is frozen. In essence, coatings are allocated the same level of importance as the shade of paint on the exterior of the instrument. Not infrequently disaster lurks in this approach because the coatings are unattainable or they impact the optical system in some unexpected manner. The strategy shown in Figure 3 is safer. Here, the coating selection is integrated into the optical design. If the coatings are difficult (and, hence, costly) to produce, then compromises are investigated that lessen the overall cost of the system.
NASA Technical Reports Server (NTRS)
Ahmad, Anees
1990-01-01
The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.
Nazarov, Denis V.; Zemtsova, Elena G.; Valiev, Ruslan Z.; Smirnov, Vladimir M.
2015-01-01
In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD), chemical etching and atomic layer deposition (ALD). For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions) and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD). Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material. PMID:28793716
Laccase-based biocathodes: Comparison of chitosan and Nafion.
El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K
2016-09-21
Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feldshtein, E.; Kardapolava, M.; Dyachenko, O.
2018-05-01
In the present paper, the bonding strength of Fe-based self-fluxing alloy coating deposited by plasma spraying, gluing and laser remelting and alloying on the steel substrate have been investigated. When flame melting, a globular structure is formed. Against the background of the solid solution carbide-boride phases are clearly distinguishable, between which the Fe-Fe2B and Fe-FeB eutectic colonies are situated. Laser remelting leads to the formation of metastable structures, reinforced with dendrites, consisting of alloyed Fe-α and Fe-γ. At the low laser beam speeds the coating is melted completely with the formation of a cast structure with the dendrites. When the laser beam speed is increased, the dendritic structure gets fragmented. Structures of coatings alloyed with B4C and remelted by the laser beam vary with the increase of the spot speed. The bonding strength of coating without subsequent remelting decreases by 4-5 times in comparison with remelted. The bonding strength of the reinforced glue coating has adhesive and adhesive-cohesive character. When the load increases in the coating, microcracks develop, which gradually spread to the center of the bonding surface. For plasma coatings after laser remelting without additional alloying, the maximum bonding strength is observed with the minimum laser beam speed. With increasing the laser beam speed it decreases almost 1.5 times. In glue coatings reinforced with B4C particulates by laser remelting, the bonding strength is lower by 1.2-1.4 times in comparison with plasma coating.
Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)
Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter
2014-01-01
The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564
NASA Astrophysics Data System (ADS)
Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac
2018-06-01
The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.
Glass sample preparation and performance investigations. [solar x-ray imager
NASA Technical Reports Server (NTRS)
Johnson, R. Barry
1992-01-01
This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.
Nanostructured silicon membranes for control of molecular transport.
Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J
2010-11-01
A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865
Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen
2011-01-01
This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.
Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Gustavo; Shutthanandan, V.; Thevuthasan, Suntharampillai
2014-05-05
Titanium nitride (TiNx) coatings were grown by magnetron sputtering onto Si(1 0 0) substrates by varying time of deposition to produce coatings with variable thickness (dTiN) in the range of 20-120 nm. TiNx coatings were characterized by studying their structure, composition, and mechanical properties. Nuclear reaction analysis (NRA) combined with Rutherford backscattering spectrometry (RBS) analyses indicate that the grown coatings were stoichiometric TiN. Grazing incidence X-ray diffraction (GIXRD) measurements indicate that the texturing of TiN coatings changes as a function of dTiN. The (1 1 1) and (0 0 2) peaks appear initially; (1 1 1) becomes intense while (0more » 0 2) disappears with increasing dTiN. Dense, columnar grain structure was evident for all the coatings in electron microscopy analyses. The residual stress for TiN coatings with dTiN~120 nm was 1.07 GPa in compression while thinner samples exhibit higher values of stress.« less
Surface topographical effects on the structural growth of thick sputtered metal and alloy coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface structure of the nodules are characterized. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish (i.e., scratches, inclusions, etc.) act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Effect of power and type of substrate on calcium-phosphate coating morphology and microhardness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulyashova, Ksenia, E-mail: kseniya@ispms.tsc.ru; Glushko, Yurii, E-mail: glushko@ispms.tsc.ru; Sharkeev, Yurii, E-mail: sharkeev@ispms.tsc.ru
2015-10-27
As known, the influence of the different sputtering process parameters and type of substrate on structure of the deposited coating is important to identify, because these parameters are significantly affected on structure of coating. The studies of the morphology and microhardness of calcium-phosphate (CaP) coatings formed and obtained on the surface of titanium, zirconium, titanium and niobium alloy for different values of the power of radio frequency discharge are presented. The increase in the radio frequency (rf) magnetron discharge leads to the formation of a larger grain structure of the coating. The critical depths of indentation for coatings determining themore » value of their microhardness have been estimated. Mechanical properties of the composite material on the basis of the bioinert substrate metal and CaP coatings are superior to the properties of the separate components that make up this composite material.« less
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil
2018-01-01
Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.
NASA Astrophysics Data System (ADS)
Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi
2014-07-01
Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.
In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less
Fernández-Pradas, J M; Clèries, L; Sardin, G; Morenza, J L
2002-05-01
Calcium phosphate coatings were deposited by pulsed laser ablation with a radiation of 355 nm from a Nd:YAG laser. All the coatings were obtained at the same conditions, but deposition was stopped after different number of pulses to get coatings with different thickness. The influence of thickness in the structural and mechanical properties of the coatings was investigated. Coatings structure was characterised by scanning electron microscopy, grazing incidence X-ray diffractometry and Raman spectroscopy. The mechanical properties were evaluated by scratch test. The morphology of the coatings is dominated by the presence of droplets. The coatings are composed mainly of hydroxyapatite, alpha tricalcium phosphate and amorphous calcium phosphate. Thinner coatings withstand higher loads of failure in the scratch test.
Alt, Volker; Bitschnau, Achim; Böhner, Felicitas; Heerich, Katharina Elisabeth; Magesin, Erika; Sewing, Andreas; Pavlidis, Theodoros; Szalay, Gabor; Heiss, Christian; Thormann, Ulrich; Hartmann, Sonja; Pabst, Wolfgang; Wenisch, Sabine; Schnettler, Reinhard
2011-03-01
Antimicrobial coatings are of interest as a means to improve infection prophylaxis in cementless joint arthroplasty. However, those coatings must not interfere with the essential bony integration of the implants. Gentamicin-hydroxyapatite (gentamicin-HA) and gentamicin-RGD (arginine-glycine-aspartate)-HA coatings have recently been shown to significantly reduce infection rates in a rabbit infection prophylaxis model. The purpose of the current study was to investigate the in vitro elution kinetics and in vivo effects of gentamicin-HA and gentamicin-RGD-HA coatings on new bone formation, implant integration and biocompatibility in a rabbit model. In vitro elution testing showed that 95% and 99% of the gentamicin was released after 12 and 24 h, respectively. The in vivo study comprised 45 rabbits in total, with six animals for each of the gentamicin-HA, gentamicin-RGD-HA group and control pure HA coating groups for the 4 week time period, and nine animals for each of the three groups for the 12 week observation period. A 2.0 mm steel K-wire with one of the coatings under test was placed in the intramedullary canal of the tibia. After 4 and 12 weeks the tibiae were harvested and three different areas (proximal metaphysis, shaft area, distal metaphysis) were assessed by quantitative and qualitative histology for new bone formation, direct implant-bone contact and the formation of multinucleated giant cells. The results exhibited high standard deviations in all subgroups. There was a trend towards better bone formation and better direct implant contact in the pure HA coating group compared with both gentamicin coatings after 4 and 12 weeks, which was, however, not statistically significant. The number of multinucleated giant cells did not differ significantly between the three groups at both time points. In summary, both gentamicin coatings with 99% release of gentamicin within 24 h revealed good biocompatibility and bony integration, which was not statistically significant different compared with pure HA coating. Limitations of the study are the high standard deviation of the results and the limited number of animals per time point. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai
1993-12-07
Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.
Nanoarchitecture Control Enabled by Ionic Liquids
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.
2017-04-01
Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.
Launch Vehicle Stage Adapter Move
2017-08-24
A NASA KAMAG transporter moves the Space Launch System’s launch vehicle stage adapter (LVSA) to an area where spray-on foam insulation will be applied. The LVSA recently completed manufacturing on a 30 foot welding tool at NASA’s Marshall Space Flight Center in Huntsville, Al. The LVSA will be coated with insulation that will protect it during it’s trip to space. The LVSA provides structural support and connects the core stage and the interim cryogenic propulsion stage during the first integrated flight of SLS and Orion.
Mechanical design of SERT 2 thruster system
NASA Technical Reports Server (NTRS)
Zavesky, R. J.; Hurst, E. B.
1972-01-01
The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.
Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants
NASA Astrophysics Data System (ADS)
Wang, Y.; Khor, K. A.; Cheang, P.
1998-03-01
Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.
NASA Astrophysics Data System (ADS)
Kania, H.; Liberski, P.
2012-05-01
In this article the authors have analysed the current knowledge about the influence of alloy additions used in galvanizing baths. The optimum concentration of Al, Ni, Bi and Sn addition has been established. Some tests have been conducted to determine the synergistic effect of the addition of AlNiBiSn to a zinc bath upon the structure and growth kinetics of coatings. The structure of the coatings obtained on steel with low silicon contents and on Sandelin steel as well as their chemical composition have been revealed. It has been established that the addition of AlNiBiSn helps to reduce excessive growth of coating on Sandelin steel. The chemical composition and the structure of the coating on Sandelin steel are similar to the chemical composition and structure obtained on steel with regular silicon contents.
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)
1983-01-01
A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.
Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less
Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
NASA Astrophysics Data System (ADS)
Kulu, P.; Pihl, T.
2002-12-01
Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.
A functional probe with bowtie aperture and bull's eye structure for nanolithograph
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi
2012-10-01
The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.
Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.
The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less
Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seoung-Bum; Wang, Yikai; Xu, Jiagang
Polyvinylidene fluoride (PVDF) is the most popular binder in commercial lithium-ion batteries but is incompatible with a silicon (Si) anode because it fails to maintain the mechanical integrity of the Si electrode upon cycling. Here in this paper, an alucone coating synthesized by molecular layer deposition has been applied on the laminated electrode fabricated with PVDF to systematically study the sole impact of the surface modification on the electrochemical and mechanical properties of the Si electrode, without the interference of other functional polymer binders. The enhanced mechanical properties of the coated electrodes, confirmed by mechanical characterization, can help accommodate themore » repeated volume fluctuations, preserve the electrode structure during electrochemical reactions, and thereby, leading to a remarkable improvement of the electrochemical performance. Owing to the alucone coating, the Si electrodes achieve highly reversible cycling performance with a specific capacity of 1490 mA h g -1 (0.90 mA h cm -2) as compared to 550 mA h g -1 (0.19 mA h cm -2) observed in the uncoated Si electrode. This research elucidates the important role of surface modification in stabilizing the cycling performance and enabling a high level of material utilization at high mass loading. It also provides insights for the future development of Si anodes.« less
Systematic Investigation of the Alucone-Coating Enhancement on Silicon Anodes
Son, Seoung-Bum; Wang, Yikai; Xu, Jiagang; ...
2017-09-26
Polyvinylidene fluoride (PVDF) is the most popular binder in commercial lithium-ion batteries but is incompatible with a silicon (Si) anode because it fails to maintain the mechanical integrity of the Si electrode upon cycling. Here in this paper, an alucone coating synthesized by molecular layer deposition has been applied on the laminated electrode fabricated with PVDF to systematically study the sole impact of the surface modification on the electrochemical and mechanical properties of the Si electrode, without the interference of other functional polymer binders. The enhanced mechanical properties of the coated electrodes, confirmed by mechanical characterization, can help accommodate themore » repeated volume fluctuations, preserve the electrode structure during electrochemical reactions, and thereby, leading to a remarkable improvement of the electrochemical performance. Owing to the alucone coating, the Si electrodes achieve highly reversible cycling performance with a specific capacity of 1490 mA h g -1 (0.90 mA h cm -2) as compared to 550 mA h g -1 (0.19 mA h cm -2) observed in the uncoated Si electrode. This research elucidates the important role of surface modification in stabilizing the cycling performance and enabling a high level of material utilization at high mass loading. It also provides insights for the future development of Si anodes.« less
NASA Astrophysics Data System (ADS)
Siantar, Edwin
The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to provide better protection to the underlying base metal than alumina (Al2O3 3TiO2) coating.
Buried nanoantenna arrays: versatile antireflection coating.
Kabiri, Ali; Girgis, Emad; Capasso, Federico
2013-01-01
Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun
2016-02-01
Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.
Evaluation of metallized paint coatings for composite spacecraft structures
NASA Technical Reports Server (NTRS)
Brzuskiewicz, John E.
1990-01-01
The extreme temperature excursions of composite spacecraft structures in LEO must be minimized through the use of thermal-control coatings. Attention is presently given to tests of silicone resin coatings which were pigmented with either leafing aluminum or combinations of leafing aluminum with silicate-treated zinc oxide pigment. Atomic oxygen, UV/vacuum, and outgassing screening tests were conducted on several such coating formulations in order to characterize the performance characteristics of this coating concept. Performance was found to depend on pigment volume concentration.
Joint Test Plan for Gas Dynamic Spray Technology Demonstration
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2008-01-01
Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Active metal oxides and polymer hybrids as biomaterials
NASA Astrophysics Data System (ADS)
Jarrell, John D.
Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We show that silver doping improved the photoactivity of oxide coatings, but hindered activity of a specific hybrid. Doped titanium oxide and polymer hybrid coatings have potential for improving soft tissue integration of medical implants and wound healing by modulating cell proliferation, attachment, inflammation and providing controlled delivery of bioactive and antimicrobial compounds and photon induced electro-chemical activity.
NASA Astrophysics Data System (ADS)
Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie
2012-01-01
The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.
Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.
Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M
2000-01-01
An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.
Cavin family proteins and the assembly of caveolae
Kovtun, Oleksiy; Tillu, Vikas A.; Ariotti, Nicholas; Parton, Robert G.; Collins, Brett M.
2015-01-01
ABSTRACT Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein–protein and protein–lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins. PMID:25829513
NASA Technical Reports Server (NTRS)
Fitzgerald, B.
1973-01-01
The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.
NASA Technical Reports Server (NTRS)
Barton, K. J.; Yurkewycz, R.; Harada, Y.; Daniels, I.
1981-01-01
Coating trials were undertaken to evaluate the application of rhenium to carbon-carbon composite sheet by plasma spraying. Optimum spray parameters and coating thickness were identified for production of coatings free from continuous defects and with adequate adherence to the substrate. A tungsten underlayer was not beneficial and possibly detracted from coating integrity. Stress calculations indicated that the proposed operating cycle of the rocket engine would not cause spalling of the rhenium coating. Calculations indicated that permeation of gases through the coating would not be significant during the expected life of the thrust chamber. The feasibility of applying rhenium coatings by laser melting was also studied. Poor wetting of the composite surface by the liquid rhenium precluded production of uniform coatings. Borate/carborate fluxes did not improve wetting characteristics.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.
Gledhill, H C; Turner, I G; Doyle, C
2001-06-01
The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karimian, Majid; Idris, M. H.; Ourdjini, A.
2011-01-17
The paper presents the result of an experimental investigation conducted on medium aluminum silicon alloy casting- LM6, using no-vacuum assisted lost foam casting process. The study is directed for establishing the relationship between the flask vibrations times developed for molded sample on the casting integrity, surface penetration and coating inclusion defects of the casting. Four different flask vibration times namely 180, 120, 90 and 60 sec. were investigated. The casting integrity was investigated in terms of fulfilling in all portions and edges. The surface penetration was measured using optical microscope whilst image analyzer was used to quantify the percentage ofmore » coating inclusion in the casting. The results show that vibration time has significant influence on the fulfilling as well as the internal integrity of the lost foam casting. It was found that the lower vibration time produced comparatively sound casing.« less
Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate
Stan, Gheorghe; Adams, George G.
2016-01-01
In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338
Reflection/suppression coatings for 900 - 1200 A radiation
NASA Technical Reports Server (NTRS)
Edelstein, Jerry
1989-01-01
The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.
Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings
NASA Astrophysics Data System (ADS)
Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang
2018-06-01
CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.
Innovative approaches for converting a wood hydrolysate to high-quality barrier coatings.
Ryberg, Yingzhi Zhu; Edlund, Ulrica; Albertsson, Ann-Christine
2013-08-28
An advanced approach for the efficient and controllable production of softwood hydrolysate-based coatings with excellent oxygen-barrier performance is presented. An innovative conversion of the spray-drying technique into a coating applicator process allowed for a fast and efficient coating process requiring solely aqueous solutions of softwood hydrolysate, even without additives. Compared to analogous coatings prepared by manual application, the spray-drying produced coatings were more homogeneous and smooth, and they adhered more strongly to the substrate. The addition of glyoxal to the aqueous softwood hydrolysate solutions prior to coating formation allowed for hemicellulose cross-linking, which improved both the mechanical integrity and the oxygen-barrier performance of the coatings. A real-time scanning electron microscopy imaging assessment of the tensile deformation of the coatings allowed for a deeper understanding of the ability of the coating layer itself to withstand stress as well as the coating-to-substrate adhesion.
Demonstration of pharmaceutical tablet coating process by injection molding technology.
Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L
2018-01-15
We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.
2012-01-01
Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for assessing the feasibility of developing the next generation fiber optic senor system that could be retrofitted onto existing subsea pipeline structures.
Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K
2009-04-01
This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2018-01-01
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro. PMID:29614022
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2018-04-03
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.
Pulse Current Electrodeposition and Anticorrosion Performance of Ni-W-Mica Composite Coatings
NASA Astrophysics Data System (ADS)
Yang, Qiangbin; He, Yi; Fan, Yi; Li, Han; Xu, Wei; Zhan, Yingqing
2017-03-01
Ni-W-mica composite coatings were prepared on C45 steel via pulse electrodeposition from a Watts bath containing mica. The mica particles were co-deposited into the Ni-W coating matrix, and the structures, morphologies and mechanical performances of the coatings were investigated. Scanning electron microscopy and energy dispersive x-ray spectroscopy revealed that a small amount of mica caused the Ni-W-mica coating to form of a compact and uniform surface structure. The electrochemical behaviors of the coatings were evaluated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy in 3.5 wt.% NaCl solutions at pH 7 and under typical engineering application environments. The results revealed that the addition of mica to the Ni-W coating could improve the corrosion resistance of the coating.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
Quality control of fireproof coatings for reinforced concrete structures
NASA Astrophysics Data System (ADS)
Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander
2017-10-01
The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.
Tang, Xiling; Remmel, Kurtis; Lan, Xinwei; Deng, Jiangdong; Xiao, Hai; Dong, Junhang
2009-09-15
Small size fiber optic devices integrated with chemically sensitive photonic materials are emerging as a new class of high-performance optical chemical sensor that have the potential to meet many analytical challenges in future clean energy systems and environmental management. Here, we report the integration of a proton conducting perovskite oxide thin film with a long-period fiber grating (LPFG) device for high-temperature in situ measurement of bulk hydrogen in fossil- and biomass-derived syngas. The perovskite-type Sr(Ce(0.8)Zr(0.1))Y(0.1)O(2.95) (SCZY) nanocrystalline thin film is coated on the 125 microm diameter LPFG by a facile polymeric precursor route. This fiber optic sensor (FOS) operates by monitoring the LPFG resonant wavelength (lambda(R)), which is a function of the refractive index of the perovskite oxide overcoat. At high temperature, the types and population of the ionic and electronic defects in the SCZY structure depend on the surrounding hydrogen partial pressure. Thus, varying the H(2) concentration changes the SCZY film refractive index and light absorbing characteristics that in turn shifts the lambda(R) of the LPFG. The SCZY-coated LPFG sensor has been demonstrated for bulk hydrogen measurement at 500 degrees C for its sensitivity, stability/reversibility, and H(2)-selectivity over other relevant small gases including CO, CH(4), CO(2), H(2)O, and H(2)S, etc.
Method of depositing a coating on Si-based ceramic composites
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Lau, Yuk-Chiu (Inventor); Spitsberg, Irene (Inventor); Henry, Arnold T. (Inventor)
2004-01-01
A process of depositing a coating system suitable for use as an environmental barrier coating on various substrate materials, particularly those containing silicon and intended for high temperature applications such as the hostile thermal environment of a gas turbine engine. The process comprises depositing a first coating layer containing mullite, and preferably a second coating layer of an alkaline earth aluminosilicate, such as barium-strontium-aluminosilicate (BSAS), by thermal spraying while maintaining the substrate at a temperature of 800.degree. C. or less, preferably 500.degree. C. or less, by which a substantially crack-free coating system is produced with desirable mechanical integrity.
Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete
NASA Technical Reports Server (NTRS)
Curran, Joseph John; Curran, Jerry; MacDowell, Louis
2004-01-01
Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).
NASA Astrophysics Data System (ADS)
Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.
2018-02-01
Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.
NASA Astrophysics Data System (ADS)
Fox-Rabinovich, G. S.; Veldhuis, S. C.; Dosbaeva, G. K.; Yamamoto, K.; Kovalev, A. I.; Wainstein, D. L.; Gershman, I. S.; Shuster, L. S.; Beake, B. D.
2008-04-01
The development of effective hard coatings for high performance dry machining, which is associated with high stress/temperatures during friction, is a major challenge. Newly developed synergistically alloyed nanocrystalline adaptive Ti0.2Al0.55Cr0.2Si0.03Y0.02N plasma vapor deposited hard coatings exhibit excellent tool life under conditions of high performance dry machining of hardened steel, especially under severe and extreme cutting conditions. The coating is capable of sustaining cutting speeds as high as 600 m/min. Comprehensive investigation of the microstructure and properties of the coating was performed. The structure of the coating before and after service has been characterized by high resolution transmission electron microscopy. Micromechanical characteristics of the coating have been investigated at elevated temperatures. Oxidation resistance of the coating has been studied by using thermogravimetry within a temperature range of 25-1100 °C in air. The coefficient of friction of the coatings was studied within a temperature range of 25-1200 °C. To determine the causes of excellent tool life and improved wear behavior of the TiAlCrSiYN coatings, its surface structure characteristics after service have been investigated by using x-ray photoelectron spectroscopy and extended energy-loss fine spectroscopy. One of the major features of this coating is the dynamic formation of the protective tribo-oxide films (dissipative structures) on the surface during friction with a sapphire and mullite crystal structure. Aluminum- and silicon-rich tribofilms with dangling bonds form on the surface as well. These tribofilms act in synergy and protect the surface so efficiently that it is able to sustain extreme operating conditions. Moreover, the Ti0.2Al0.55Cr0.2Si0.03Y0.02N coating possesses some features of a complex adaptive behavior because it has a number of improved characteristics (tribological adaptability, ultrafine nanocrystalline structure, hot hardness and plasticity, and oxidation stability) that work synergistically as a whole. Due to the complex adaptive behavior, this coating represents a higher ordered system that has an ability to achieve unattainable wear resistance under strongly intensifying and extreme tribological conditions.
NASA Astrophysics Data System (ADS)
Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin
2018-01-01
The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.
Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador
2017-01-11
Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.
Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2015-05-21
Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.
Increased Alignment in Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2007-01-01
Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru
In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less
Structure and microhardness of the plasma sprayed composite coatings after combined treatment
NASA Astrophysics Data System (ADS)
Ivannikov, A. Yu; Kalita, V. I.; Komlev, D. I.; Radyuk, A. A.; Bagmutov, V. P.; Zakharov, I. N.; Parshev, S. N.; Denisevich, D. S.
2018-04-01
The principal aim of this study was to evaluate the effect of combination of electromechanical treatment (EMT) and ultrasonic treatment on structure and microhardness of air plasma sprayed composite coatings from Ni–20Cr alloy and R6M5 high speed steel (HSS). The results of the microstructural studies showed fundamental changes of the treated by the EMT plasma sprayed coating with the formation of nanostructured crystalline phases. As a consequence of the coating thus formed, the number of pores in the coating structure reduced from 10.0±1.5% to 2.0±0.5%, the surface microhardness increased from 3100±500 MPa to 7900±400 MPa. Additional ultrasonic treatment on the selected mode decreased surface waviness, which was formed on the surface of the plasma sprayed composite coatings after the EMT. The obtained results revealed the high potential of the combined treatment for post-treatment of the plasma sprayed coatings.
Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings
NASA Astrophysics Data System (ADS)
Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua
2010-07-01
Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.
NASA Astrophysics Data System (ADS)
Rubio, Ernesto Javier
High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results obtained on the thermal oxidation behavior indicate that the YSH coatings exhibit initial mass gain in the first 6 hours and sustained structure for extended hours of thermal treatment.
Deposition of dual-layer coating on Ti6Al4V
NASA Astrophysics Data System (ADS)
Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.
2017-03-01
Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.
Concept and clinical application of the resin-coating technique for indirect restorations.
Nikaido, Toru; Tagami, Junji; Yatani, Hirofumi; Ohkubo, Chikahiro; Nihei, Tomotaro; Koizumi, Hiroyasu; Maseki, Toshio; Nishiyama, Yuichiro; Takigawa, Tomoyoshi; Tsubota, Yuji
2018-03-30
The resin-coating technique is one of the successful bonding techniques used for the indirect restorations. The dentin surfaces exposed after cavity preparation are coated with a thin film of a coating material or a dentin bonding system combined with a flowable composite resin. Resin coating can minimize pulp irritation and improve the bond strength between a resin cement and tooth structures. The technique can also be applied to endodontically treated teeth, resulting in prevention of coronal leakage of the restorations. Application of a resin coating to root surface provides the additional benefit of preventing root caries in elderly patients. Therefore, the coating materials have the potential to reinforce sound tooth ("Super Tooth" formation), leading to preservation of maximum tooth structures.
NASA Astrophysics Data System (ADS)
Lee, D.
1995-09-01
The JET KOTE coating process is a high-velocity oxyfuel process used to form coatings of high quality and density. Coatings can be produced from carbide-bearing composite, alloyed metallic, nonmetallic, intermetallic, or pure metal powders. The coatings are used for wear and/or corrosion resistance in the aircraft, chemical, oil and gas, and steel manufacturing industries, as well as in other demanding fields. Many applications, especially in the petrochemical field, require thick coatings. Coatings must be applied economically, without loss of integrity. Thickness limitations are thought to be due to coating stress, which results in coating cracks and/or delamination and ultimately in failure. This paper examines the effects of operating parameters and techniques on the physical properties of thick coatings produced from Stelcar JK117, a tungsten carbide/17 % Co composite powder. Special emphasis is placed on those parameters which are economically desirable to achieve high deposition rates.
NASA Technical Reports Server (NTRS)
Frazer, Robert E. (Inventor)
1982-01-01
Production of strong lightweight membrane structure by applying a thin reflective coating such as aluminum to a rotating cylinder, applying a mesh material such as nylon over the aluminum coating, coating the mesh overlying the aluminum with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum, and applying an emissivity increasing material such as chromium and silicon monoxide to the polymer film to disperse such material colloidally into the growing polymer film, or applying such material to the final polymer film, and removing the resulting membrane structure from the cylinder. Alternatively, such membrane structure can be formed by etching a substrate in the form of an organic film such as a polyimide, or a metal foil, to remove material from the substrate and reduce its thickness, applying a thin reflective coating such as aluminum on one side of the substrate and applying an emissivity increasing coating such as chromium and silicon monoxide on the reverse side of the substrate.
Hydrothermal performance of catalyst supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.
A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
NASA Astrophysics Data System (ADS)
Wang, Shubin; Zheng, Yu
2014-02-01
Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.
One-step synthesis and patterning of aligned polymer nanowires on a substrate
Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Morber, Jenny R [Atlanta, GA; Liu, Jin [Danbury, CT
2011-11-08
In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.
Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying
2016-01-01
The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy
NASA Astrophysics Data System (ADS)
Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.
2017-05-01
The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.
Catalytic thermal barrier coatings
Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh
2009-06-02
A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.
NASA Astrophysics Data System (ADS)
Fayomi, O. S. I.; Anawe, P. A. L.; Inegbenebor, A. O.; Udoye, N. E.
2018-05-01
Zinc based coatings modified with aluminium and tin inclusions were electrodeposited in chloride zinc sulfate electrolytes containing a metallic powder of titanium. It was found that presence of these particulates is suitable to obtain ZnAlSn-Ti composites coating that could help increase the microhardnesss characteristics and wear properties. The hardness and wear properties of the deposited coatings were examined with diamond base micro-hardness tester and CETR reciprocating sliding tester respectively. The structural properties were examined with the help of scanning electron microscope. It was observed that structural coating surface impact on the hardness propagation with increases from 33.4 to 299 kgf mm-2 (HVN40), and shows a considerably higher wear resistance from 2.351g/min to 0.002g/min. It is obvious that plastic deformation of the working steel structure is dependent on protective coating and the concentration of the individual particulate.
A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
CJ Larkin; JD Edington; BJ Close
2006-02-21
Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.
Ploss, Martin; Kuhn, Andreas
2011-09-26
Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage
2011-01-01
Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062
Zircon-Based Ceramics Composite Coating for Environmental Barrier Coating
NASA Astrophysics Data System (ADS)
Suzuki, M.; Sodeoka, S.; Inoue, T.
2008-09-01
Studies on plasma spraying of zircon (ZrSiO4) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly adhesive coating. In this study, several amounts of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria-stabilized zirconia (YSZ), glassy silica, whereas the one prepared from monolithic zircon powder was composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1200 °C, silica and zirconia formed zircon in all coatings. However, coatings with higher amounts of yttria exhibited lower amounts of zircon. This resulted in the less open porosity of the coating at elevated temperature. These yttria-added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating pealed off.
NASA Technical Reports Server (NTRS)
Wang, N. N.
1974-01-01
The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.
Metasurface optical antireflection coating
Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; ...
2014-12-15
Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. In conclusion, the demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less
NASA Astrophysics Data System (ADS)
Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.
2018-05-01
We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.
The durability of ceramic coated dental instruments.
Rawlings, R D; Robinson, P B; Rogers, P S
1995-09-01
This study investigates the hardness, structure, composition, and thickness of coatings on two dental instruments and the changes which occurred when the instruments were subjected to conditions that closely match their clinical use. One group of instruments had a titanium nitride coating that was approximately 8 micrometers thick and had a hardness of 19.5 GN/m2. The coating on the other instrument was alumina (aluminium oxide) and contained some microcracks even when new; this coating was thicker (approximately 30 micrometers) and had a hardness less than the titanium nitride coating (15.8 GN/m2). The results showed that the titanium nitride coating was structurally superior compared with the aluminium oxide coating. Laboratory wear tests against composite resin showed that the wear resistance of titanium nitride was superior to that of stainless steel whether assessed in terms of weight or volume loss.
Epoxy-based broadband antireflection coating for millimeter-wave optics.
Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William
2013-11-20
We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.
Calcium phosphate-based coatings on titanium and its alloys.
Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H
2008-04-01
Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.
Molecular sorting by electrical steering of microtubules in kinesin-coated channels.
van den Heuvel, Martin G L; de Graaff, Martijn P; Dekker, Cees
2006-05-12
Integration of biomolecular motors in nanoengineered structures raises the intriguing possibility of manipulating materials on nanometer scales. We have managed to integrate kinesin motor proteins in closed submicron channels and to realize active electrical control of the direction of individual kinesin-propelled microtubule filaments at Y junctions. Using this technique, we demonstrate molecular sorting of differently labeled microtubules. We attribute the steering of microtubules to electric field-induced bending of the leading tip. From measurements of the orientation-dependent electrophoretic motion of individual, freely suspended microtubules, we estimate the net applied force on the tip to be in the picoNewton range and we infer an effective charge of 12 e- per tubulin dimer under physiological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave, V., E-mail: vdaditya1000@gmail.com; Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com
Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. Themore » gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.« less
Phase analysis of plasma-sprayed zirconia-yttria coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Berndt, C. C.; Herman, H.
1983-01-01
Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.
Song, Xiaocun; Zhou, Jixue; Liu, Hongtao; Yang, Yuansheng
2018-01-01
Electrical connection of dissimilar metals will lead to galvanic corrosion. Therefore, overall surface treatment is necessary for the protection of dissimilar metal welded parts. However, serious unbalanced reactions may occur during overall surface treatment, which makes it difficult to prepare integral coating. In this paper, an overall ceramic coating was fabricated by plasma electrolytic oxidation to wrap the 6061–7075 welded part integrally. Moreover, the growth mechanism of the coating on different areas of the welded part was studied based on the dielectric breakdown theory. The reaction sequence of each area during the treatment was verified through specially designed dielectric breakdown tests. The results showed that the high impedance overall of ceramic coating can inhibit the galvanic corrosion of the 6061–7075 welded part effectively. PMID:29301306
Stray light suppression of optical and mechanical system for telescope detection
NASA Astrophysics Data System (ADS)
Wang, Lei; Ma, Wenli
2013-09-01
During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.
NASA Astrophysics Data System (ADS)
Hao, Shengzhi; Zhao, Limin; He, Dongyun
2013-10-01
The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.
Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin
2018-04-24
Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.
Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K
2016-05-01
A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings
NASA Astrophysics Data System (ADS)
Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.
Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.
Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun
2012-12-24
TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.
High temperature corrosion-resistant protective coatings in stationary gas turbines
NASA Technical Reports Server (NTRS)
Gruenling, H. W.
1977-01-01
Methods currently used to deposit protective coatings in gas turbines are reviewed, and the structure of the respective coatings is examined. The corrosion behavior of such coatings is discussed on the basis of experimental data. General trends in the preparation of protective coatings are noted.
Scanning electron microscope investigation of the structural growth in thick sputtered coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1975-01-01
Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.
Chrome-free Samarium-based Protective Coatings for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo
The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.
Novel self-sensing carbon nanotube-based composites for rehabilitation of structural steel members
NASA Astrophysics Data System (ADS)
Ahmed, Shafique; Doshi, Sagar; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer
2016-02-01
Fatigue and fracture are among the most critical forms of damage in metal structures. Fatigue damage can initiate from microscopic defects (e.g., surface scratches, voids in welds, and internal defects) and initiate a crack. Under cyclic loading, these cracks can grow and reach a critical level to trigger fracture of the member which leads to compromised structural integrity and, in some cases, catastrophic failure of the entire structure. In our research, we are investigating a solution using carbon nanotube-based sensing composites, which have the potential to simultaneously rehabilitate and monitor fatigue-cracked structural members. These composites consist of a fiber-reinforced polymer (FRP) layer and a carbon nanotube-based sensing layer, which are integrated to form a novel structural self-sensing material. The sensing layer is composed of a non-woven aramid fabric that is coated with carbon nanotubes (CNT) to form an electrically conductive network that is extremely sensitive to detecting deformation as well as damage accumulation via changes in the resistance of the CNT network. In this paper, we introduce the sensing concept, describe the manufacturing of a model sensing prototype, and discuss a set of small-scale laboratory experiments to examine the load-carrying capacity and damage sensing response.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.
2015-05-01
Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers
NASA Astrophysics Data System (ADS)
Liu, Q.; Wu, K.-T.; Kobayashi, M.; Jen, C.-K.; Mrad, N.
2008-08-01
Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol-gel spray technique for aircraft environments and for temperatures ranging from -80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented.
Photonic emitters and circuits based on colloidal quantum dot composites
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew
2009-02-01
We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.
NASA Astrophysics Data System (ADS)
Risicato, Jean-Vincent; Kelly, Fern; Soulat, Damien; Legrand, Xavier; Trümper, Wolfgang; Cochrane, Cedric; Koncar, Vladan
2015-02-01
This paper focuses on the design and one shot manufacturing process of complex shaped composite parts based on the overbraiding of commingled yarns. The commingled yarns contain thermoplastic fibres used as the matrix and glass fibres as the reinforcement material. This technology reduces the flow path length for the melted thermoplastic and aims to improve the impregnation of materials with high viscosity. The tensile strength behaviour of the material was firstly investigated in order to evaluate the influence of the manufacturing parameters on flat structured braids that have been consolidated on a heating press. A good compatibility between the required geometry and the braiding process was observed. Additionally, piezo-resistive sensor yarns, based on glass yarns coated with PEDOT: PSS, have been successfully integrated within the composite structure. The sensor yarns have been inserted into the braided fabric, before consolidation. The inserted sensors provide the ability to monitor the structural health of the composite part in a real time. The design and manufacture of the complete complex shaped part has then been successfully achieved.
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
NASA Astrophysics Data System (ADS)
Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.
2016-04-01
Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.
Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool
NASA Astrophysics Data System (ADS)
Chayeuski, V. V.; Zhylinski, V. V.; Rudak, P. V.; Rusalsky, D. P.; Višniakov, N.; Černašėjus, O.
2018-07-01
This work deals with the features of the structure of combined ZrC/Ni-ultradisperse diamonds (UDD) coating synthesized by electroplating and cathode arc evaporation physical vapor deposition (CAE-PVD) techniques on the tungsten carbide WC - 2 wt% Co on cutting inserts to improve tool life. The microstructure, phase composition, and micro-scratch test analysis of the ZrC/Ni-UDD coating were studied. The ZrC/Ni-UDD coating consists of separate phases of zirconium carbide ZrC, α-Ni, and Ni-UDD phase. The surface morphology of the coating shows a pattern with pits, pores, and particles. Separated nanodiamond particles are present in the pores of the combined coating. Therefore, the structure of the bottom layer of Ni-UDD affects the morphology of the surface of the ZrC/Ni-UDD coating. The obtained value of the critical loads on the scratch track of the coating in 26 N proves a sufficiently high value of the adhesion strength of the intermediate Ni-UDD-layer with hard alloy of WC-Co substrate. Due to their unique structure ZrC/Ni-UDD-coatings can be used to increase the durability period of a wood-cutting milling tool for cutting chipboard by CNC machines.
NASA Astrophysics Data System (ADS)
Li, Jun-Sheng; Zhang, Chang-Rui; Li, Bin
2011-06-01
Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 °C-1000 °C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 °C, the deposition rate reached a maximum (2.5 μm/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 °C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 °C, while hexagonal BN coatings were deposited above 1100 °C. A penetration of carbon element from the fibers to the coatings was observed.
Carroll, Alicia Monroe; Plomp, Marco; Malkin, Alexander J.; Setlow, Peter
2008-01-01
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a “rind” that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon. PMID:18689521
a Study of Nanocomposite Coatings on the Surface of Ship Exhaust Pipe
NASA Astrophysics Data System (ADS)
Shen, Yan; Sahoo, Prasanta K.; Pan, Yipeng
In order to improve the high temperature oxidation resistance of exhaust pipes, the nanocomposite coatings are carried out on the surface of exhaust pipe by pulsed current electrodeposition technology, and the microstructure and oxidation behavior of the nanocomposite coatings are investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and oxidation resistance of nanocomposite coatings in presence of attapulgite and cerium oxide CeO2. The results show that the amount of the attapulgite-CeO2 has significant influence on the structural properties of nanocomposite coatings. The surface of coating becomes more compact and smooth with the increase of the amount of the attapulgite and CeO2. Furthermore, the anti-oxidation performances of the nanocomposite coatings formed with attapulgite and CeO2 were both better than those of the composite coatings formed without attapulgite and CeO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
NASA Astrophysics Data System (ADS)
Upadhyaya, A. S.; Bandyopadhyay, P. K.
2012-11-01
In state of art technology, integrated devices are widely used or their potential advantages. Common system reduces weight as well as total space covered by its various parts. In the state of art surveillance system integrated SWIR and night vision system used for more accurate identification of object. In this system a common optical window is used, which passes the radiation of both the regions, further both the spectral regions are separated in two channels. ZnS is a good choice for a common window, as it transmit both the region of interest, night vision (650 - 850 nm) as well as SWIR (0.9 - 1.7 μm). In this work a broad band anti reflection coating is developed on ZnS window to enhance the transmission. This seven layer coating is designed using flip flop design method. After getting the final design, some minor refinement is done, using simplex method. SiO2 and TiO2 coating material combination is used for this work. The coating is fabricated by physical vapour deposition process and the materials were evaporated by electron beam gun. Average transmission of both side coated substrate from 660 to 1700 nm is 95%. This coating also acts as contrast enhancement filter for night vision devices, as it reflect the region of 590 - 660 nm. Several trials have been conducted to check the coating repeatability, and it is observed that transmission variation in different trials is not very much and it is under the tolerance limit. The coating also passes environmental test for stability.
Evaluation of selected thermal control coatings for long-life space structures
NASA Technical Reports Server (NTRS)
Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.
1992-01-01
Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.
Can deformation of a polymer film with a rigid coating model geophysical processes?
NASA Astrophysics Data System (ADS)
Volynskii, A. L.; Bazhenov, S. L.
2007-12-01
The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.
NASA Astrophysics Data System (ADS)
Aborkin, A. V.; Alymov, M. I.; Arkhipov, V. E.; Khrenov, D. S.
2018-02-01
Heterogeneous coatings have been deposited by the cold gas-dynamic spraying of mechanically synthesized AMg2/graphite + Al2O3 powders. A specific feature of the coatings formed is the existence of a two-level micro-and nanocomposite structure. It has been established that an increase in the content of microsized Al2O3 particles in the mixture from 10 to 30 wt % produces a twofold increase in the thickness of the coating deposited for the same time period from 140 to 310 μm. A further growth in the content of microsized Al2O3 particles in the mixture up to 50 wt % leads to a decrease in the thickness of the coating formed to 40 μm. The manufactured coatings have a high microhardness ranging from 1.7 to 3.2 GPa depending on their composition. The high microhardness of these coatings is caused by an increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which strengthens the immobilization of microsized Al2O3 particles in it, thus improving the properties of the heterogeneous coating as a whole.
Emission dynamics of hybrid plasmonic gold/organic GaN nanorods
NASA Astrophysics Data System (ADS)
Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.
2017-12-01
We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.
Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.
Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P
2017-12-15
We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...
2012-04-18
This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less
NASA Astrophysics Data System (ADS)
Verevkin, Yu K.; Klimov, A. Yu; Gribkov, B. A.; Petryakov, V. N.; Koposova, E. V.; Olaizola, Santiago M.
2008-11-01
By using the interference of pulsed radiation and a complete lithographic cycle, phase masks on quartz and antireflection structures on quartz and silicon are produced. The transmission of radiation through a corrugated vacuum—solid interface is calculated by solving rigorously an integral equation with the help of a computer program for parameters close to experimental parameters. The results of measurements are in good agreement with calculations. The methods developed in the paper can be used for manufacturing optical and semiconductor devices.
Development of Integrated and Flexible Ultrasonic Transducers for Aerospace Applications
NASA Astrophysics Data System (ADS)
Wu, Kuo-Ting
2011-12-01
High temperature (HT) integrated (IUTs) and flexible ultrasonic transducers (FUTs) for potential aerospace applications in the area of nondestructive testing (NDT) and structural health monitoring (SHM) are developed. The main merits are that IUTs can be fabricated on-site and FUTs are feasible and attractive for on-site installation. The piezoelectric composite films of these HT ultrasonic transducers (HTUTs) are made by sol-gel spray fabrication. Lead-zirconate titanate composite (PZT-c), bismuth titanate composite (BIT-c), or lithium niobate composite (LiNbO3-c) films were coated onto metallic substrates with planar and curved surfaces and investigated as IUTs. Their maximum operating temperatures were demonstrated at up to 150°C, 400°C, and 800°C, respectively. PZT-c or BIT-c films were coated onto 75 mum or 38 mum thick metallic membranes and were investigated as FUTs. They can be bonded onto flat or curved surfaces for NDT and SHM. An FUT made of BIT-c film coated onto a stainless steel membrane glued onto a steel plate was performed at up to 300°C. Besides being coated onto metallic materials, sol-gel sprayed composite films were also coated onto graphite/epoxy (Gr/Ep) plates as IUTs and 50 mum thick polyimide films as FUTs for the thickness and delamination evaluation. Using acoustic mode conversion techniques, HTUTs for shear (S) wave, surface acoustic wave (SAW), and plate acoustic wave (PAW), have been developed. HT ultrasonic probes simultaneously producing one longitudinal (L) and two orthogonally polarized S waves were demonstrated in metallic and Plexiglas probes. The potential applications of these probes were discussed. Also applying mode conversion approaches, HT symmetrical, anti-symmetrical, and shear horizontal (SH) PAWs UTs for NDT and SHM were developed. The results showed that the SH PAWs may be the best candidate for NDT and SHM purposes for plate structures. Generation and detection of guided acoustic waves for NDT were demonstrated by using IUTs or FUTs with metallic wedges, mechanical gratings or interdigital transducers as well. The experiments with these three approaches were performed at up to 300°C. Furthermore, two non-contact ultrasonic measurement techniques by sol-gel sprayed composite films were presented in this thesis. One is using lasers to generate ultrasound and IUTs as receivers, and the other is using induction-based non-contact ultrasonic measurement technique with IUTs. NDT of bonded composite patches on aluminum plates was performed using laser generated ultrasound and IUT receivers. The induction-based ultrasonic measurement of a Gr/Ep composite plate rotated at 1000 rpm was demonstrated. The IUTs and FUTs developed in this thesis are able to provide signals with good signal-to-noise ratios at elevated temperature on structures and parts having a curved surface. They are light weight and miniature in size. They may be used for real-time, in situ, nondestructive local and global (large area) damage detection and assessment in aerospace NDT and SHM applications.
NASA Astrophysics Data System (ADS)
Bai, Xuebing; Li, Jinlong; Zhu, Lihui; Wang, Liping
2018-01-01
The copper-doped TiSiN coatings were deposited on 316L stainless steel by reactive co-sputtering in multi-arc ion plating. The surface morphology and structure of the coating were analyzed by scanning electron microcopies, X-ray diffraction and X-ray photoelectron spectroscopy. The hardness was tested using Nano-indentation. The influence of the copper content in the coatings on the structure and mechanical properties of TiSiN-Cu coatings was investigated. Antifouling behaviors of the coatings were evaluated by analyzing adhesion and propagation of P. tricornutum, N. closterium, and Chlorella sp. The TiSiN-Cu coatings had a unique structure of amorphous Si3N4 and nanocrystalline nc-TiN/nc-Cu. The Cu-TiSiN coatings can inhibit effectively attachment and colonization of the algae on the surface. When the copper content increases from 6.75 at.% to 25.15 at.%, the coatings show an obvious decrease in hardness, significantly increase in the surface roughness and greatly weaken in antifouling properties. When the copper content is 6.75 at.%, the coating has the highest hardness with 30 GPa, and the best reduction ratio with 89%, 93% and 57% attachment of P. triceratium, N. closterium and Chlorella sp., respectively. The TiSiN-Cu coating with a copper dosage of 6.75 at.% has the excellent mechanical properties and capability of killing effectively microalgae.
Chen, Kuan; Chang, Hao Han R; Shalviri, Alireza; Li, Jason; Lugtu-Pe, Jamie Anne; Kane, Anil; Wu, Xiao Yu
2017-11-01
Water-soluble polymers are often used as pore formers to tailor permeability of film-forming hydrophobic polymers on coated dosage forms. However, their addition to a coating formulation could significantly increase the viscosity thus making the coating process difficult. Moreover, the dissolution of pore formers after oral administration could compromise film integrity resulting in undesirable, inconsistent release profiles. Therefore, a non-leaching, pH-responsive nanoparticulate pore former is proposed herein to preserve film integrity and maintain pH-dependent permeability. Poly(methacrylic acid)-polysorbate 80-grafted-starch terpolymer nanoparticles (TPNs) were incorporated within an ethylcellulose (EC) film (TPN-EC) by casting or spray coating. TPNs at 10%wt (pore former level) only increased viscosity of EC coating suspension slightly while conventional pore formers increased the viscosity by 490-11,700%. Negligible leaching of TPNs led to superior mechanical properties of TPN-EC films compared to Eudragit® L-EC films. As pH increased from 1.2 to 6.8, TPN-EC films with 10% pore former level exhibited an 8-fold higher diltiazem permeability compared to Eudragit® L-EC films. The pH-dependent drug release kinetics of diltiazem HCl beads coated with TPN-EC films was tunable by adjusting the pore former level. These results suggest that the TPNs are promising pH-sensitive nanoparticulate pore formers in EC-coated dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.
Remotely Triggered Scaffolds for Controlled Release of Pharmaceuticals
Roach, Paul; McGarvey, David J.; Lees, Martin R.; Hoskins, Clare
2013-01-01
Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide) (pNiPAM). Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol) thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH) quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05) and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds) due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold. PMID:23603890
Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang
2018-02-16
Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu
2014-06-25
A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.
NASA Astrophysics Data System (ADS)
Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto
2018-05-01
In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.
NASA Astrophysics Data System (ADS)
Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.
2015-12-01
Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.
Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan
2016-01-01
Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide
2017-07-13
The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.
Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Tayebi, Lobat
2015-04-01
A reduction in the degradation rate of magnesium (Mg) and its alloys is in high demand to enable these materials to be used in orthopedic applications. For this purpose, in this paper, a biocompatible polymeric layer reinforced with a bioactive ceramic made of polycaprolactone (PCL) and bioactive glass (BG) was applied on the surface of Mg scaffolds using dip-coating technique under low vacuum. The results indicated that the PCL-BG coated Mg scaffolds exhibited noticeably enhanced bioactivity compared to the uncoated scaffold. Moreover, the mechanical integrity of the Mg scaffolds was improved using the PCL-BG coating on the surface. The stable barrier property of the coatings effectively delayed the degradation activity of Mg scaffold substrates. Moreover, the coatings induced the formation of apatite layer on their surface after immersion in the SBF, which can enhance the biological bone in-growth and block the microcracks and pore channels in the coatings, thus prolonging their protective effect. Furthermore, it was shown that a three times increase in the concentration of PCL-BG noticeably improved the characteristics of scaffolds including their degradation resistance and mechanical stability. Since bioactivity, degradation resistance and mechanical integrity of a bone substitute are the key factors for repairing and healing fractured bones, we suggest that PCL-BG is a suitable coating material for surface modification of Mg scaffolds. Published by Elsevier B.V.
Structural Characterization of Sputter-Deposited 304 Stainless Steel+10 wt pct Al Coatings
NASA Astrophysics Data System (ADS)
Seelam, Uma Maheswara Rao; Suryanarayana, C.; Heinrich, Helge; Ohkubo, Tadakatsu; Hono, Kazuhiro; Cheruvu, N. S.
2012-08-01
An SS304 + 10 wt pct Al (with a nominal composition of Fe-18Cr-8Ni-10Al by wt pct and corresponding to Fe-17Cr-6Ni-17Al by at. pct) coating was deposited on a 304-type austenitic stainless steel (Fe-18Cr-8Ni by wt pct) substrate by the magnetron sputter-deposition technique using two targets: 304-type stainless steel (SS304) and Al. The as-deposited coatings were characterized by X-ray diffraction, transmission electron microscopy, and three-dimensional (3-D) atom probe techniques. The coating consists of columnar grains with α ferrite with the body-centered cubic (bcc) (A2) structure and precipitates with a B2 structure. It also has a deposition-induced layered structure with two alternative layers (of 3.2 nm wavelength): one rich in Fe and Cr, and the other enriched with Al and Ni. The layer with high Ni and Al contents has a B2 structure. Direct confirmation of the presence of B2 phase in the coating was obtained by electron diffraction and 3-D atom probe techniques.
Obrosov, Aleksei; Sutygina, Alina N.; Volinsky, Alex A.; Manakhov, Anton; Weiß, Sabine; Kashkarov, Egor B.
2017-01-01
In the current study, the properties of the CrxN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrxN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr2N and fcc-CrN structure to approximately stoichiometric Cr2N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistance due to the presence of cubic phase with higher packing density in comparison to the hexagonal structure. After hydrogenation, no changes in phase composition were observed; however, a small amount of hydrogen is accumulated in the coatings. An increase of coating hardness and elastic modulus was observed after hydrogen exposure. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient up to 20%–30%. The best value of 0.25 was reached for hydrogen exposed CrxN coating deposited at 300 mPa. PMID:28772923
NASA Astrophysics Data System (ADS)
Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman
2006-10-01
Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.
Effect of proteins and their conformation change during brushite transformation to hydroxyapatite
NASA Astrophysics Data System (ADS)
Xie, Jing
2000-10-01
Hydroxyapatite (HA, Ca5(PO4)3OH) coatings on metallic orthopedic implant are being used to achieve implant integration. However, HA is stable in physiological solutions, other more reactive calcium phosphate ceramics (CPC) such as brushite (CaHPO4·2H 2O) have been found to release calcium and phosphate ions during their transformation to HA. The release of these ions may induce faster bone growth and enhance implant integration. This work examines the biocompatibility of the CPC phases that form during the transformation process. Since biocompatibility is associated with cellular response, which in turn is initiated by protein adsorption, this work focuses on the mutual effect between protein adsorption and CPC transformation. The first part of the study is focused on the influence of protein adsorption on transformation kinetics and chemistry. Brushite coated samples immersed in protein free and proteinaceous physiological solutions were retrieved after different exposures times. These were examined using XRD, EDS and FTIR/reflectance. Results show that the presence of Bovine Serum Albumin (BSA) in physiological solution retards the transformation, but the presence of Fibronectin (FN) accelerates the transformation to HA. Interestingly, neither BSA nor FN alters the transformation chemistry. Due to the limitations of the techniques used, this part of the work does not monitor the effect of transformation on adsorbed proteins but only the effect of adsorbed protein on the transforming calcium phosphate coating. The second part of the work examines in situ conformational changes of adsorbed proteins during the CPC transformation using FTIR/ATR. Protein adsorbed on different surfaces such as germanium, CPC, zinc selenide and titanium shows different conformation indicated by the Amide I and II absorption bands in the infrared spectra. During the transformation of brushite to HA, both BSA and FN show a continuous change in conformation, which suggests that the transformation of CPC coating influences adsorbed protein structure.
Effect of surface topography on structural growth of thick sputtered films
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1974-01-01
Primarily thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica, glass, and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. These nodules do not disappear after full annealing. Further, they have undesirable effects on mechanial properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.
Strong thin membrane structure. [solar sails
NASA Technical Reports Server (NTRS)
Frazer, R. E. (Inventor)
1979-01-01
A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.
Chemical vapor deposition of Ta{sub 2}O{sub 5} corrosion resistant coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D.W.; Stinton, D.P.
1992-12-31
Silicon carbide and silicon nitride heat engine components are susceptible to hot corrosion by molten Na{sub 2}SO{sub 4} which forms from impurities present in fuel and the environment. Chemically vapor deposited Ta{sub 2}O{sub 5} coatings are being developed as a means to protect components from reaction with these salts and preserve their structural properties. Investigations to optimize the structure of the coating have revealed that the deposition conditions dramatically affect the coating morphology. Coatings deposited at high temperatures are typically columnar in structure; high concentrations of the reactant gases produce oxide powders on the substrate surface. Ta{sub 2}O{sub 5} depositedmore » at low temperatures consists of grains that are finer and have significantly less porosity than that formed at high temperatures. Samples of coatings which have been produced by CVD have successfully completed preliminary testing for resistance to corrosion by Na{sub 2}SO{sub 4}.« less
Carbon-coated nanoparticle superlattices for energy applications
NASA Astrophysics Data System (ADS)
Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng
2016-07-01
Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.
Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings
NASA Astrophysics Data System (ADS)
Krawiec, H.; Vignal, V.; Latkiewicz, M.; Herbst, F.
2018-01-01
The structure and the corrosion behaviour in the Ringer's solution of Co-Mo/TiO2 nano-composite coatings have been investigated. They consist of aggregates of TiO2 nanoparticles uniformly distributed in a Co-Mo alloy matrix (crystallite size of about 2 nm). Both nodular (thickness less than 20 μm) and globular structures (thickness greater than 20 μm) have been observed using field-emission scanning electron microscopy. Under potentiostatic control (in Ringer's solution), oxidation of the coating first occurs followed by (with increasing applied potential) both oxidation and selective dissolution of Co. At the OCP value, Co is oxidized in the form of Co2+-based compounds (CoO, Co(OH)2 or α-CoMoO4) in the coating. This process only occurs in the outermost part of the coating. Therefore, the bulk properties of the coating are not affected after long-term ageing in the Ringer's solution at OCP.
NASA Astrophysics Data System (ADS)
Fomin, Aleksandr A.; Egorov, Ivan S.; Shelkunov, Andrey Yu.
2018-04-01
As a result of heat treatment of titanium in the high-temperature range (1000-1200 °C), a layer of rutile (TiO2) is formed on the surface, the hardness of which can reach 60 GPa. The production of the coating includes an intensive growth of the crystals, spontaneous scale delamination (up to 100 μm thick) and formation of a submicrometric porous-crystalline structure of a superhard thin coating (about 0.5-1.5 μm thick). Preliminary tests have shown that the resulting coatings of the system "steel substrate - Ti+TiO2" can be used as tool coatings in the treatment of structural steel (0.4-0.5 wt.% carbon content), as well as chromium steel 40Cr13 (0.4 wt.% carbon content, chromium - about 13 wt.%) with a hardness within 45 HRC. These coatings are also characterized by biocompatibility, which was previously proved by in vitro and in vivo tests.
NASA Astrophysics Data System (ADS)
Guo, Xiaotong; Niu, Yunsong; Chen, Minghui; Sun, Wenyao; Zhu, Shenglong; Wang, Fuhui
2018-01-01
Thick Ta(N) coating of 51 μm has been successfully obtained by DCMS technology. Ta(N) is a kind of distorted Ta matrix, which is inter-soluble with N-defect lattice structure, forming the disabled bcc structure. From the XRD and XPS investigations, the composition of Ta(N) coating is consisted of bcc-Ta and bcc-TaN0.06, while that of Ta coating mainly contains β-Ta phase. It can be concluded from wear test, nanoindentation test and SEM observations, wear resistance of Ta(N) coating is much better than that of Ta coating, due to its high hardness, H/E, H3/E2 value and low COF value. The wear mechanism of Ta coating is the compound fatigue and abrasive wear, while that of Ta(N) coating is transformed into adhesive wear mechanism. The secondary adhesion of the plastic deformation for the Ta(N) coating can reinforce the coated surface, to improve the load-bearing and anti-wear capacities, and thus improve the wear resistance.
NASA Astrophysics Data System (ADS)
Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu
2009-01-01
CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.
Integrated self-organization of transitional ER and early Golgi compartments.
Glick, Benjamin S
2014-02-01
COPII coated vesicles bud from an ER domain termed the transitional ER (tER), but the mechanism that clusters COPII vesicles at tER sites is unknown. tER sites are closely associated with early Golgi or pre-Golgi structures, suggesting that the clustering of nascent COPII vesicles could be achieved by tethering to adjacent membranes. This model challenges the prevailing view that COPII vesicles are clustered by a scaffolding protein at the ER surface. Although Sec16 was proposed to serve as such a scaffolding protein, recent data suggest that rather than organizing COPII into higher-order structures, Sec16 acts at the level of individual COPII vesicles to regulate COPII turnover. A plausible synthesis is that tER sites are created by tethering to Golgi membranes and are regulated by Sec16. Meanwhile, the COPII vesicles that bud from tER sites are thought to nucleate new Golgi cisternae. Thus, an integrated self-organization process may generate tER-Golgi units. © 2014 WILEY Periodicals, Inc.
Semiconductor activated terahertz metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hou-Tong
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
Semiconductor activated terahertz metamaterials
Chen, Hou-Tong
2014-08-01
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beardsley, M B
2008-03-26
The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.
NASA Astrophysics Data System (ADS)
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Perovskite solar cells in N-I-P structure with four slot-die-coated layers
Burkitt, Daniel; Searle, Justin
2018-01-01
The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes. PMID:29892402
NASA Astrophysics Data System (ADS)
Donkov, N.; Zykova, A.; Safonov, V.; Kolesnikov, D.; Goncharov, I.; Yakovin, S.; Georgieva, V.
2014-05-01
Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.
NASA Astrophysics Data System (ADS)
Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai
2013-12-01
Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.
NASA Astrophysics Data System (ADS)
Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao
2016-02-01
A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
NASA Astrophysics Data System (ADS)
Xiong, Xin-Bo; Huang, Jian-Feng; Zeng, Xie-Rong; Liang, Ping; Zou, Ji-Zhao
2012-06-01
A hydroxyapatite (HA) coating was achieved on H2O2-treated carbon/carbon (C/C) composite through hydrothermally treating and induction heating deposited CaHPO4 coating in an ammonia solution under ultrasonic water bath. Then, this HA coating was placed in a NH4F solution and hydrothermally treated again to fabricate fluorinated hydroxyapatite (FHA) coatings for 24 h at 353, 373, 393 and 413 K, respectively. The structure, morphology and chemical composition of the HA and FHA coatings were characterized by SEM, XRD, EDS and FTIR, and the adhesiveness and chemical stability of these FHA coatings were examined by a scratch test and an immersion test, respectively. The results showed that the as-prepared FHA coatings contained needle-like or stripe-like crystals, different from those of the HA coating. As the fluoridation temperature rose, the adhesiveness of the FHA coating first increased from 34.8 to 40.9 N at a temperature between 353 and 393 K, and then decreased to 24.2 N at 413 K, while the dissolution rate of the FHA coating decreased steadily. The reasons for the property variation of the FHA coatings were proposed by analyzing the morphology, composition and structure of the coatings.
Influence of the cooling method on the structure of 55AlZn coatings
NASA Astrophysics Data System (ADS)
Mendala, J.
2011-05-01
In metallization processes, metals or metal alloys are used which have a low melting point and good anticorrosion properties. Moreover, they must form durable intermetallic compounds with iron or its alloys. The most common hot-dip metallization technology involves galvanizing, however, molten multi-component metal alloys are used as well. An addition of aluminium to the zinc bath causes an increase in corrosion resistance of the obtained coatings. The article presents results of tests of obtaining coatings by the batch hot-dip method in an 55AlZn bath. Kinetics of the coating growth in the tested alloys were determined in the changeable conditions of bath temperature, dip time and type of cooling. The structure of coatings and their phase composition were revealed. As a result of the tests performed, it has been found that an increase in total thickness of the coatings as a function of the dipping time at a constant temperature is almost of a parabolic nature, whereas an increase in the transient layer is of a linear nature. The structure was identified by the XRD analysis and the morphology of the coatings was tested by means of SEM. It has been found that the cooling process with the use of higher rates of cooling causes a size reduction of the structure in the outer layer and a reduction of thickness of both the intermediate diffusion layer and the whole coating by ca. 25 %.
Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.
2015-01-01
Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.
2013-12-23
the CnC drive, building and integration of the plasma head, installation of gas distribution system, and control systems for the machine. The machine...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 antimicrobial coatings, atmospheric pressure plasma liquid deposition...polyester fabric using Triton Systems novel atmospheric pressure plasma deposition process (Invexus™). It is envisioned that these new antimicrobial
Electromagnetic properties of ice coated surfaces
NASA Technical Reports Server (NTRS)
Dominek, A.; Walton, E.; Wang, N.; Beard, L.
1989-01-01
The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.
Understanding the corrosion behavior of amorphous multiple-layer carbon coating
NASA Astrophysics Data System (ADS)
Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang
2018-04-01
The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.
Amorphous metal formulations and structured coatings for corrosion and wear resistance
Farmer, Joseph C.
2014-07-15
A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
Amorphous metal formulations and structured coatings for corrosion and wear resistance
Farmer, Joseph C [Tracy, CA
2011-12-13
A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.
NASA Astrophysics Data System (ADS)
Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.
2017-03-01
Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-06
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
NASA Astrophysics Data System (ADS)
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-01
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g‑1, demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g‑1. These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
Medicine Delivery Device with Integrated Sterilization and Detection
NASA Technical Reports Server (NTRS)
Shearn, Michael J.; Greer, Harold F.; Manohara, Harish
2013-01-01
Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. The application of semiconductor processing techniques and technologies to the problems of fluid manipulation and delivery has enabled the integration of chemical, electrical, and mechanical manipulation of samples all within a single microfluidic device. This approach has been successfully applied at JPL to the automated processing, detection, and analysis of minute quantities (parts per trillion level) of biomaterials to develop instruments for in situ exploration or extraterrestrial bodies. The same nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely high-surface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL's ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization or identification of the medicine itself. This constrained volume that is located immediately prior to delivery into a patient, ensures that the medicine delivery device is inherently sterile. An additional benefit to integrating a high-surface-area template within the fluid channel of a medicine delivery device is that one can envision a number of different functional coatings that could facilitate the capture and analysis of either microbial contaminants or the medicine itself. For example, one could attach antibodies or some other binding agent with a specific affinity to the silicon nanotip template. Once a target molecule or microbe is bound to the high-surface- area template, one could use an optical analytical technique such as fluorescence or adsorption to determine the identity and potentially the concentration of the species of interest. By illuminating the bound species from the back, it may also be possible to probe only the molecules with an evanescent wave, making detection of the species from the front side of the device much simpler.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Fei; Jiang, Chuanhai, E-mail: chuanhaijiang1963@163.com; Zhao, Yuantao
2015-05-15
Highlights: • The novel NiCo–Zr coatings were prepared by electro-deposition. • Surface morphology, crystal structure, grain size and microstrain were examined. • Texture, residual stress and corrosion resistance were investigated. • Addition of Co increased the hardness and corrosion resistance of the coatings. - Abstract: In this study, the NiCo–Zr composite coatings were prepared from the electrolytes with different Co{sup 2+} concentrations by electrodeposition method. The effects of Co contents on the crystal structure, surface morphology, grain size, microstrain and residual stress were examined by X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) andmore » atomic force microscope (AFM). The corrosion resistance of the composite coatings was also examined by the potentiodynamic polarization and electrochemical impedance (EIS) measurements. The results revealed that the crystal structures of the coatings were dependent on the Co contents and addition of Co content of 58 wt% resulted in the formation of hexagonal (hcp) Co. The increasing Co contents in the NiCo–Zr composite coatings resulted in the smoother and more compact surface, decreased the grain size and increased the microstrain. The micro-hardness and residual stress also increased with increasing Co contents. The addition of Co increased the corrosion resistance of the NiCo–Zr composite coatings compared with the Ni–Zr coating while the corrosion resistance of the NiCo–Zr composite coatings decreased as the Co contents increased.« less
NASA Astrophysics Data System (ADS)
Park, Seon-Yeong; Choe, Han-Cheol
2018-02-01
In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.
Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro
2016-01-01
Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758
Microstructure and corrosion resistance of sputter-deposited titanium-chromium alloy coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landolt, D.; Robyr, C.; Mettraux, P.
1998-10-01
Titanium, chromium, and titanium-chromium alloy coatings were sputter-deposited to study their corrosion behaviors in relation to microstructure and composition. Silicon substrates were used to study the effect of alloying on intrinsic corrosion resistance of the coating materials, and brass substrates were used to study the effect of alloying on the penetrating porosity of the coatings. Corrosion behavior was characterized using linear sweep voltammetry. The crystal structure of the coatings was examined by x-ray diffraction (XRD) and the microstructure by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to estimate the real surface area of the coatings. Results showedmore » alloying of titanium with chromium greatly influenced microstructure of the coatings. Alloying led to deposits of higher apparent density and, in some cases, to an x-ray amorphous structure. Alloy coatings showed significantly lower corrosion currents than the constituting metals. The effect was attributed to a smoother surface topography. When corrected of differences in real surface area, the intrinsic corrosion rate of the alloy coatings did not differ significantly from that of the constituting metals. Alloy coatings deposited on brass exhibited a lower porosity than titanium or chromium metal coatings produced under identical conditions.« less
Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability
NASA Technical Reports Server (NTRS)
Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.
2015-01-01
Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.
Protective Coatings for Metals
NASA Technical Reports Server (NTRS)
Ruggieri, D. J.; Rowe, A. P.
1986-01-01
Report evaluates protective coatings for metal structures in seashore and acid-cloud environments. Evaluation result of study of coating application characteristics, repair techniques, and field performance. Products from variety of manufacturers included in study. Also factory-coated panels and industrial galvanized panels with and without topcoats.
The application of epoxy resin coating in grounding grid
NASA Astrophysics Data System (ADS)
Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.
2018-01-01
Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.
Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu
2014-04-09
Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter.
Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Itai, Shigeru
2015-03-15
Multiple-unit tablets consisting of polymer-coated microgranules and excipients have a number of advantageous pharmaceutical properties. Polymer-coated microgranules are known to often lose their functionality because of damage to the polymer coating caused by tableting, and the mechanism of polymer coating damage as well as the structural changes of excipients upon tableting had been investigated but without in-situ visualization and quantitative analysis. To elucidate the mechanism of coating damage, the internal structures of multiple-unit tablets were investigated by X-ray computed microtomography using synchrotron X-rays. Cross sectional images of the tablets with sub-micron spatial resolution clearly revealed that void spaces remained around the compressed excipient particles in the tablets containing an excipient composed of cellulose and lactose (Cellactose(®) 80), whereas much smaller void spaces remained in the tablets containing an excipient made of sorbitol (Parteck(®) SI 150). The relationships between the void spaces and the physical properties of the tablets such as hardness and disintegration were investigated. Damage to the polymer coating in tablets was found mainly where polymer-coated microgranules were in direct contact with each other in both types of tablets, which could be attributed to the difference in hardness of excipient particles and the core of the polymer-coated microgranules. Copyright © 2015 Elsevier B.V. All rights reserved.
Fumed metallic oxides and conventional pigments for glossy inkjet paper
NASA Astrophysics Data System (ADS)
Lee, Hyunkook
Product development activity in the area of inkjet printing papers has accelerated greatly to meet the rapidly growing market for inkjet papers. Advancements in inkjet printing technology have also placed new demands on the paper substrate due to faster printing rates, greater resolution through increased drop volumes, and colorants added to the ink. To meet these requirements, papermakers are turning to pigmented size press formulations or pigmented coating systems. For inkjet coating applications, both the internal porosity of the pigment particles as well as the packing porosity of the coating affect print quality and dry time. Pores between the pigment particles allow for rapid diffusion of ink fluids into the coating structure, while also providing capacity for ink fluid uptake. Past research has shown the presence of coating cracks to increase the microroughness of the papers, consequently reducing the gloss of the silica/polyvinyl alcohol based coating colors. Coating cracks were not observed, at the same level of magnification, in the scanning electron microscopy images of alumina/polyvinyl alcohol coated papers. Studies are therefore needed to understand the influence of coating cracking on the microroughening of silica/polyvinyl alcohol based coatings and consequences to coating and ink gloss. Since micro roughening is known to be linked to shrinkage of the coating layer, studies are needed to determine if composite pigments can be formulated, which would enable the coating solids of the formulations to be increased to minimize the shrinkage of coating layer during drying. Coating solids greater than 55% solids are needed to reduce the difference between application solids and the coating's immobilization solids point in order to reduce shrinkage. The aim of this research was to address the above mentioned needed studies. Studies were performed to understand the influence of particle packing on gloss and ink jet print quality. Composite pigment structures were built using well-characterized pigments to determine the influence of particle size and particle size distribution on coating application solids, coatings immobilization solids on coating gloss and print attributes. This research consists of five articles which have all been accepted for publication: (1) Influence of Pigment Particles on the Gloss and Printability of Inkjet Coated Papers, (2) Influence of Silica and Alumina Oxide Pigments on Coating Structure and Print Quality of Inkjet Papers, (3) Production of a Single Coated Glossy Inkjet Paper Using Conventional Coating and Calendering Methods, (4) Influence of Pigment Particle Size and Packing Volume on the Printability of Glossy Inkjet Paper Coatings-Part I, and (5) Influence of Pigment Selection on Printability of Glossy Inkjet Paper Coatings-Part II.
Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran
2017-10-01
In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun
2013-05-01
Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.
A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.
Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi
2011-01-01
A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.
Structural & oxidation behavior of TiN & AlxTi1-xN coatings deposited by CA-PVD technique
NASA Astrophysics Data System (ADS)
Thorat, Nirmala; Mundotia, Rajesh; Varma, Ranjana; Kale, Ashwin; Mhatre, Umesh; Patel, Nainesh
2018-04-01
Coatings with thermal stability at elevated temperatures are prerequisite for various high speed machining and high temperature applications. The present work compares the oxidation behavior of the AlxTi1-xN coating prepared with different Al composition. Coated samples were tested at different temperatures in the range of 400 - 800 C to study their oxidation behavior. Percentage weight gain of all the samples were evaluated using high accuracy weighing balance. The depth of oxide layers were studied using Calo-test instrument. The XRD analysis was carried out to specify the phase structure. Higher oxidation rate was observed for TiN coating at all the oxidation temperatures. Oxidation rate was higher for Al13Ti87N and Al70Ti30N coatings compared to Al60Ti40N and Al50Ti50N coatings which exhibits better oxygen diffusion barrier at all the temperature.
Thermally stable silica-coated hydrophobic gold nanoparticles.
Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu
2009-01-01
We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.
NASA Astrophysics Data System (ADS)
Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.
2017-06-01
The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.
Structure and properties of TiSiCN coatings with different bias voltages by arc ion plating
NASA Astrophysics Data System (ADS)
Xie, Xinming; Li, Jinlong; Dong, Minpeng; Zhang, Henghua; Wang, Liping
2018-03-01
TiSiCN coatings were deposited on 316 L steel using the multi-arc ion plating system. All the coatings had the same total thickness of approximately 1.6 µm. The TiSiCN coatings were deposited under the mixture constant flow of N2 and C2H2 but varying bias. Information about structures, composition and properties were characterized by scanning electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, nanoindentation and ball-on-plate wear tests. The results show that all of the coatings consist of a TiCN nano-crystal phase and an Si3N4 amorphous phase. With an increase in the bias, the film becomes denser and exhibits better tribological behavior and mechanical properties. Moreover, the bonding strength between the coatings and the substrate increased and the resistance to thermal shock intensified when the coatings were made at a higher bias voltage.
Xue, Gang; Song, Wen-qi; Li, Shu-chao
2015-01-01
In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.
Huang, Jingda; Lyu, Shaoyi
2017-01-01
It is a challenge for a superhydrophobic coating to overcome the poor robustness and the rough surface structure that is usually built using inorganic particles that are difficult to degrade. In this study, a robust superhydrophobic coating is facilely prepared by using commercial biodegradable lignin-coated cellulose nanocrystal (L-CNC) particles after hydrophobic modification to build rough surface structures, and by choosing two different adhesives (double-sided tape and quick-setting epoxy) to support adhesion between the L-CNC particles and the substrates. In addition to excellent self-cleaning and water repellence properties, the resulting coatings show outstanding mechanical strength and durability against sandpaper abrasion, finger-wipe, knife-scratch, water jet, UV radiation, high temperature, and acidic and alkali solutions, possessing a wide application prospect. PMID:28906449
NASA Astrophysics Data System (ADS)
Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.
2017-12-01
The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.
NASA Astrophysics Data System (ADS)
Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.
2018-05-01
The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.
Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying
NASA Astrophysics Data System (ADS)
Danroc, J.; Lacombe, J.
The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES
NASA Astrophysics Data System (ADS)
Muradov, A. D.; Mukashev, K. M.; Yar-Mukhamedova, G. Sh.; Korobova, N. E.
2017-11-01
The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1-5 μm. The surface coatings contained 80-97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using Cu K α radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δɛ = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.
NASA Astrophysics Data System (ADS)
Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.
2017-02-01
Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.
Positron lifetime spectroscopy for investigation of thin polymer coatings
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe
1993-01-01
In the aerospace industry, applications for polymer coatings are increasing. They are now used for thermal control on aerospace structures and for protective insulating layers on optical and microelectronic components. However, the effectiveness of polymer coatings depends strongly on their microstructure and adhesion to the substrates. Currently, no technique exists to adequately monitor the quality of these coatings. We have adapted positron lifetime spectroscopy to investigate the quality of thin coatings. Results of measurements on thin (25-micron) polyurethane coatings on aluminum and steel substrates have been compared with measurements on thicker (0.2-cm) self-standing polyurethane discs. In all cases, we find positron lifetime groups centered around 560 psec, which corresponds to the presence of 0.9-A(exp 3) free-volume cells. However, the number of these free-volume cells in thin coatings is larger than in thick discs. This suggests that some of these cells may be located in the interfacial regions between the coatings and the substrates. These results and their structural implications are discussed in this report.
Dawson, Terence J; Maloney, Shane K
2017-04-01
Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s -1 ) and high (6 m s -1 ) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased. An increase in reflectance in the thinnest coats was not the sole reason for the limited rise in HL-SR. Higher reflectance should increase the depth of penetrance of solar radiation, thus increasing HL-SR. But in M. antilopinus and Macropus rufus, which had the highest of coat reflectances, penetrance was relatively shallow. This effect appears due to high fibre density (M. rufus) and major modifications in the fibre structure (M. antilopinus). The differing adaptations likely relate to the habitats of these species, desert in the case of M. rufus and monsoon tropical woodland with M. antilopinus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianjun, E-mail: jjchern@pku.edu.cn; Sun, Chengwei; Gong, Qihuang
A submicron asymmetric dielectric-coated metal slit with a Fabry–Perot (FP) nano-resonator is experimentally fabricated to realize an ultra-small on-chip polarization splitter. In the hybrid plasmonic structure, both of the transverse-electric (TE) and transverse-magnetic (TM) modes can be efficiently generated on the front metal surface. Based on the quite different resonant conditions and the different field confinements of the two orthogonal polarization modes in the FP resonator, the TM and TE modes are generated to propagate in the opposite directions along the metal surface. In this device, there are no coupling waveguide regions, and the excitation and the splitting of themore » TE and TM modes are integrated into the same asymmetric nano-slit. This considerably shrinks the device dimension to only about 850 nm (about one wavelength). In such a submicron asymmetric slit, the measured extinction ratios for the two opposite directions can reach up to (η{sub L}/η{sub R}){sup TM} ≈ 1:14 and (η{sub L}/η{sub R}){sup TE} ≈ 11:1 at λ = 820 nm. This on-chip submicron polarization splitter is of importance in highly integrated photonic circuits.« less
Meric, Zeynep; Mehringer, Christian; Karpstein, Nicolas; Jank, Michael P M; Peukert, Wolfgang; Frey, Lothar
2015-09-14
In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.
NASA Astrophysics Data System (ADS)
Hoh, H. J.; Xiao, Z. M.; Luo, J.
2010-09-01
An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.
NASA Astrophysics Data System (ADS)
Kamas, T.; Tekkalmaz, M.
2017-04-01
The cataphoretic electro-coating is one of the most common methods that are used against corrosion as a primary coating layer. The cataphoretic electro-coating is commonly utilized technique especially in protecting of automobile components in automotive industry. This coating method has many advantages such as high corrosion resistance, ability of homogeneous and complete coating of components in any geometry, less pollution, and less risk of ignition. In this study, some specimens in the form of steel sheets coated by the cataphoretic electro-coating method are examined using electro-mechanical impedance spectroscopy (EMIS) method. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. EMIS method has been utilized as a dynamic descriptor of PWAS and the structure on which it is bonded. EMIS of PWAS-structure couple is a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. To simulate the actual EMIS measurements in the present work, two-dimensional and three-dimensional coupled field finite element models are created for both uncoated and coated steel plates in a commercial FEA software, ANSYS®. The EMIS values of the specimens in certain sizes and coated in different thickness are going to be simulated in broad-band of frequency spectra. The thickness of the coating layer and coating time are of paramount importance for the corrosion resistance. The coating layer thickness and the corresponding coating period will be optimized by analyses of the values obtained from the 2D and 3D EMIS simulations.
Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces
NASA Astrophysics Data System (ADS)
Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao
2014-07-01
A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.
Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas
2007-02-01
Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.
Development of porcelain enamel passive thermal control coatings
NASA Technical Reports Server (NTRS)
Levin, H.; Lent, W. E.; Buettner, D. H.
1973-01-01
A white porcelain enamel coating was developed for application to high temperature metallic alloy substrates on spacecraft. The coating consists of an optically opacifying zirconia pigment, a lithia-zirconia-silica frit, and an inorganic pigment dispersant. The coating is fired at 1000 to 1150 C to form the enamel. The coating has a solar absorptance of 0.22 and a total normal emittance of 0.82 for a 0.017 cm thick coating. The coating exhibits excellent adhesion, cleanability, and integrity and is thermal shock resistant to 900 C. Capability to coat large panels has been demonstrated by successful coating of 30 cm x 30 cm Hastelloy X alloy panels. Preliminary development of low temperature enamels for application to aluminum and titanium alloy substrates was initiated. It was determined that both leaded and leadless frits were feasible when applied with appropriate mill fluxes. Indications were that opacification could be achieved at firing temperatures below 540 C for extended periods of time.
Plant virus directed fabrication of nanoscale materials and devices
2015-03-26
stringent coating processes as well as yield novel materials with unique conductive and mesoscale structures (Fowler et al., 2001; Niu et al., 2007a...steel and then coated by ELD with conductive nickel or cobalt. Several fabrication methods including atomic layer deposition, sputtering, electro...novel columnar nanowire structure that when coatedwith conductive nickel provides a forest of nanoscale electrodes that can be coated with silicon by
Yew, M C; Ramli Sulong, N H; Yew, M K; Amalina, M A; Johan, M R
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
Yew, M. C.; Ramli Sulong, N. H.; Yew, M. K.; Amalina, M. A.; Johan, M. R.
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength. PMID:25136687
NASA Astrophysics Data System (ADS)
Su, Yongyao; Tian, Liangliang; Hu, Rong; Liu, Hongdong; Feng, Tong; Wang, Jinbiao
2018-05-01
To improve the practical property of (Ti,Al)N coating on a high-speed steel (HSS) substrate, a series of sputtering currents were used to obtain several (Ti,Al)N coatings using a magnetron sputtering equipment. The phase structure, morphology, and components of (Ti,Al)N coatings were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy, respectively. The performance of (Ti,Al)N coatings, adhesion, hardness, and wear resistance was tested using a scratch tester, micro/nanohardness tester, and tribometer, respectively. Based on the structure-property relationships of (Ti,Al)N coatings, the results show that both the Al content and deposition temperature of (Ti,Al)N coatings increased with sputtering current. A high Al content helped to improve the performance of (Ti,Al)N coatings. However, the HSS substrate was softened during the high sputtering current treatment. Therefore, the optimum sputtering current was determined as 2.5 A that effectively increased the hardness and wear resistance of (Ti,Al)N coating.
Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings
Kong, Dejun; Song, Renguo
2018-01-01
Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555
Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.
He, Xing; Kong, Dejun; Song, Renguo
2018-01-26
Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.
The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő
2018-05-01
57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.
NASA Astrophysics Data System (ADS)
Mardare, L.; Benea, L.
2017-06-01
The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.
NASA Astrophysics Data System (ADS)
Dubinskii, N. A.
2007-09-01
The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.
Investigation of coatings of austenitic steels produced by supersonic laser deposition
NASA Astrophysics Data System (ADS)
Gorunov, A. I.; Gilmutdinov, A. Kh.
2017-02-01
The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.
Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang
2017-06-01
The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.
Membrane-spacer assembly for flow-electrode capacitive deionization
NASA Astrophysics Data System (ADS)
Lee, Ki Sook; Cho, Younghyun; Choo, Ko Yeon; Yang, SeungCheol; Han, Moon Hee; Kim, Dong Kook
2018-03-01
Flow-electrode capacitive deionization (FCDI) is a desalination process designed to overcome the limited desalination capacity of conventional CDI systems due to their fixed electrodes. Such a FCDI cell system is comprised of a current collector, freestanding ion-exchange membrane (IEM), gasket, and spacer for flowing saline water. To simplify the cell system, in this study we combined the membrane and spacer into a single unit, by coating the IEM on a porous ceramic structure that acts as the spacer. The combination of membrane with the porous structure avoids the use of costly freestanding IEM. Furthermore, the FCDI system can be readily scaled up by simply inserting the IEM-coated porous structures in between the channels for flow electrodes. However, coating the IEM on such porous ceramic structures can cause a sudden drop in the treatment capacity, if the coated IEM penetrates the ceramic pores and prevents these pores from acting as saline flow channels. To address this issue, we blocked the larger microscale pores on the outer surface with SiO2 and polymeric multilayers. Thus, the IEM is coated only onto the top surface of the porous structure, while the internal pores remain empty to function as water channels.
In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants.
Moreau, David; Villain, Arthur; Bachy, Manon; Proudhon, Henry; Ku, David N; Hannouche, Didier; Petite, Hervé; Corté, Laurent
2017-08-01
Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.
Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy
NASA Astrophysics Data System (ADS)
Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.
2011-05-01
Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuya; Takaoka, Toshimitsu; Fukui, Hidetoshi; Haruta, Yasuyuki; Yamashita, Tomoya; Kitagawa, Seiichiro
2016-03-01
In general, thin-film coating process is widely applied on optical lens surface as anti-reflection function. In normal production process, at first lens is manufactured by molding, then anti-reflection is added by thin-film coating. In recent years, instead of thin-film coating, sub-wavelength structures adding on surface of molding die are widely studied and development to keep anti-reflection performance. As merits, applying sub-wavelength structure, coating process becomes unnecessary and it is possible to reduce man-hour costs. In addition to cost merit, these are some technical advantages on this study. Adhesion of coating depends on material of plastic, and it is impossible to apply anti-reflection function on arbitrary surface. Sub-wavelength structure can solve both problems. Manufacturing method of anti-reflection structure can be divided into two types mainly. One method is with the resist patterning, and the other is mask-less method that does not require patterning. What we have developed is new mask-less method which is no need for resist patterning and possible to impart an anti-reflection structure to large area and curved lens surface, and can be expected to apply to various market segments. We report developed technique and characteristics of production lens.
Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan
2015-07-01
Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.
Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.
Ni, C. Z.; White, C. A.; Mitchell, R. S.; Wickersham, J.; Kodandapani, R.; Peabody, D. S.; Ely, K. R.
1996-01-01
There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine. PMID:8976557
Crystal structure of the coat protein from the GA bacteriophage: model of the unassembled dimer.
Ni, C Z; White, C A; Mitchell, R S; Wickersham, J; Kodandapani, R; Peabody, D S; Ely, K R
1996-12-01
There are four groups of RNA bacteriophages with distinct antigenic and physicochemical properties due to differences in surface residues of the viral coat proteins. Coat proteins also play a role as translational repressor during the viral life cycle, binding an RNA hairpin within the genome. In this study, the first crystal structure of the coat protein from a Group II phage GA is reported and compared to the Group I MS2 coat protein. The structure of the GA dimer was determined at 2.8 A resolution (R-factor = 0.20). The overall folding pattern of the coat protein is similar to the Group I MS2 coat protein in the intact virus (Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993, J Mol Biol 234:620-639) or as an unassembled dimer (Ni Cz, Syed R, Kodandapani R. Wickersham J, Peabody DS, Ely KR, 1995, Structure 3:255-263). The structures differ in the FG loops and in the first turn of the alpha A helix. GA and MS2 coat proteins differ in sequence at 49 of 129 amino acid residues. Sequence differences that contribute to distinct immunological and physical properties of the proteins are found at the surface of the intact virus in the AB and FG loops. There are six differences in potential RNA contact residues within the RNA-binding site located in an antiparallel beta-sheet across the dimer interface. Three differences involve residues in the center of this concave site: Lys/Arg 83, Ser/Asn 87, and Asp/Glu 89. Residue 87 was shown by molecular genetics to define RNA-binding specificity by GA or MS2 coat protein (Lim F. Spingola M, Peabody DS, 1994, J Biol Chem 269:9006-9010). This sequence difference reflects recognition of the nucleotide at position -5 in the unpaired loop of the translational operators bound by these coat proteins. In GA, the nucleotide at this position is a purine whereas in MS2, it is a pyrimidine.
Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.
Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan
2018-05-01
Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value ( P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits' scalded skin crusting time ( P < 0.01), significantly shortened the rabbit skin burns from the scab time ( P < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change ( P < 0.01, P < 0.05). The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.
On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti
NASA Astrophysics Data System (ADS)
Chaia, N.; Portebois, L.; Mathieu, S.; David, N.; Vilasi, M.
2017-02-01
To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF2 as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V3Si, V5Si3, V6Si5 and VSi2) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10-9 to 10-13 cm2 s-1. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi2 layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum.
Sheng, Weiqin; Zhu, Guobin; Kaplan, David L; Cao, Chuanbao; Zhu, Hesun; Lu, Qiang
2015-03-20
Hierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures. When tested as anode materials for lithium-ion batteries, these hollow carbon-coated particles exhibit high capacity (900 mAh g(-1)), excellent cycle stability (180 cycles) and rate performance due to their unique hierarchical hollow structure and carbon coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathwara, Nishit, E-mail: nishit-25@live.in; Metallurgical & Materials Engineering Department, Indus University, Ahmedabad-382115; Jariwala, C., E-mail: chetanjari@yahoo.com
High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varyingmore » process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.« less
NASA Astrophysics Data System (ADS)
Sathwara, Nishit; Jariwala, C.; Chauhan, N.; Raole, P. M.; Basa, D. K.
2015-08-01
High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varying process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.
Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.
Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas
2013-12-05
Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Sprayable Phase Change Coating Thermal Protection Material
NASA Technical Reports Server (NTRS)
Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj
2005-01-01
NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce the launch and processing costs of a reusable space vehicle to an affordable level, refurbishment costs must be substantially reduced. A key component of such a cost effective approach is the use of a reusable, phase change, thermal protection coating.
Evaluation of Chitosan-Starch-Based Edible Coating To Improve the Shelf Life of Bod Ljong Cheese.
Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei
2015-07-01
The objective of this work was to evaluate the effectiveness of antimicrobial edible coatings to improve the quality of Bod ljong cheese throughout 25 days of storage. Coatings were prepared using chitosan, water chestnut starch, and glycerol as a base matrix, together with several combinations of antimicrobial substances: Cornus officinalis fruit extract (COFE), pine needle essential oil (PNEO), and nisin. Application of coating on cheese decreased water loss, lipid oxidation, changes in headspace gas composition, and color. Moreover, the edible coatings with COFE or PNEO had increased antimicrobial activity and did not permit growth of microorganisms. COFE and PNEO are manufactured from food-grade materials so they can be consumed as an integral part of the cheese, which represents a competitive advantage over nonedible coatings.
NASA Astrophysics Data System (ADS)
Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di
2016-09-01
Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, B.; École Polytechnique Fédérale de Lausanne, NXMM Laboratory, IMX, CH-1015 Lausanne; Rauscher, P.
The performance and degree of efficiency of industrial transformers are directly influenced by the magnetic properties of high-permeability steel laminations (HPSLs). Industrial transformer cores are built of stacks of single HPSLs. While the insulating coating on each HPSL reduces eddy-current losses in the transformer core, the coating also induces favorable inter-granular tensile stresses that significantly influence the underlying magnetic domain structure. Here, we show that the neutron dark-field image can be used to analyze the influence of the coating on the volume and supplementary surface magnetic domain structures. To visualize the stress effect of the coating on the bulk domainmore » formation, we used an uncoated HPSL and stepwise increased the applied external tensile stress up to 20 MPa. We imaged the domain configuration of the intermediate stress states and were able to reproduce the original domain structure of the coated state. Furthermore, we were able to visualize how the applied stresses lead to a refinement of the volume domain structure and the suppression and reoccurrence of supplementary domains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eres, Gyula
Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Structure-Property Relationships of Architectural Coatings by Neutron Methods
NASA Astrophysics Data System (ADS)
Nakatani, Alan
2015-03-01
Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.
Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P
2018-08-01
The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang
2017-04-01
A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.
Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates
NASA Astrophysics Data System (ADS)
Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.
2006-12-01
Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).
NASA Technical Reports Server (NTRS)
Grugel, Richard N. (Inventor)
2004-01-01
A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.
Composite starch-based coatings applied to strawberries (Fragaria ananassa).
García, M A; Martino, M N; Zaritzky, N E
2001-08-01
Starch-based coatings were used to the extend storage life of strawberries (Fragaria ananassa) stored at 0 degree C and 84.8% relative humidity. Effects of coating formulation (including starch type, plasticizer, lipid and antimicrobial agent) were analysed with respect to fruit quality. Plasticizer addition was necessary for film and coating integrity to avoid pores and cracks. Plasticizer presence reduced weight losses and maintained surface colour of fruits. Amylomaize coatings showed lower water vapour and gas permeabilities and decreased weight losses for longer periods than corn starch ones. Coatings with sorbitol showed lower permeabilities than glycerol ones. Coatings with antimicrobial agents decreased microbial counts, extending storage life of coated fruits by 10 to 14 days in comparison to the control. The addition of 2 g/l sunflower oil to the formulations decreased the water vapour permeability of starch-based films, maintained the surface colour of coated fruits and controlled effectively fruit weight losses during storage. Lipid addition minimized the effects of starch and plasticizer types. Composite starch-based coatings showed selective gas permeability (CO2 higher than O2) which helps to delay senescence of fruits.
Major, L; Janusz, M; Lackner, J M; Kot, M; Dyner, M; Major, B
2017-10-01
Recently, to reduce the residual stress and increase the mechanical properties of a-C:H coatings, metallic nanoparticles have been implanted into their structure. In the present work, to improve the properties of the coating, metallic nanoparticles, including Cu, Nb, Ta, Zr, AgPt and Ag, were inserted into the a-C:H structure. The applied biological and mechanical analysis allowed the optimal biotribological parameters to be indicated for the potential application as protective coatings for metallic medical tools. Wear mechanisms operating at the small length of the designed biotribological coating, such as a-C:H implanted by Zr nanoparticles, were studied by means of transmission electron microscopy (TEM). The TEM analysis confirmed very good coating adhesion to the metallic substrate. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Tran, Phong A; Fox, Kate; Tran, Nhiem
2017-01-01
Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta 2 O 5 in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment. Copyright © 2016 Elsevier Inc. All rights reserved.
Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
NASA Astrophysics Data System (ADS)
He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei
2008-09-01
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.
Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures
2010-02-01
Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry
Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M
2017-02-01
In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen
2014-05-01
We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.
NASA Astrophysics Data System (ADS)
Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro
2000-06-01
We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.
Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian
2015-10-01
Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.
Glass and glass-ceramic photonic systems
NASA Astrophysics Data System (ADS)
Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio
2017-02-01
The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.
Effect of polymer coating on the osseointegration of CP-Ti dental implant
NASA Astrophysics Data System (ADS)
Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar
2018-05-01
Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.
Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J.; McLaughlin, Russell L.
2008-01-01
Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation. Due to the fact that the technology lends itself to a bide variety of processes, several site demonstrations were organized in order to allow for greater evaluation of the laser systems across NASA. The project consisted of an introductory demonstration and a more in-depth evaluation at Wright-Patterson Air Force Base. Additionally, field demonstrations occurred at Glenn Research Center and Kennedy Space Center. During these demonstrations several NASA specific applications were evaluated, including the removal of coatings within Orbiter tile cavities and Teflon from Space Shuttle Main Engine gaskets, removal of heavy grease from Solid Rocket Booster components and the removal of coatings on weld lines for Shuttle and general ground service equipment for non destructive evaluation (NDE). In addition, several general industry applications such as corrosion removal, structural coating removal, weld-line preparation and surface cleaning were evaluated. This included removal of coatings and corrosion from surfaces containing lead-based coatings and applications similar to launch-structure maintenance and Crawler maintenance. During the project lifecycle, an attempt was made to answer process specific concerns and questions as they arose. Some of these initially unexpected questions concerned the effects lasers might have on substrates used on flight equipment including strength, surface re-melting, substrate temperature and corrosion resistance effects. Additionally a concern was PPE required for operating such a system including eye, breathing and hearing protection. Most of these questions although not initially planned, were fully explored as a part of this project. Generally the results from tesng were very positive. Corrosion was effectively removed from steel, but less successfully from aluminum alloys. Coatings were able to be removed, with varying results, generally dark, matte and thin coatings were easier to remove. Steel and aluminum panels were able to be cleaned for welding, with no known deleterious effects and weld-lines were able to have coatings removed in critical areas for NDE while saving time as compared to other methods.
NASA Astrophysics Data System (ADS)
Matikainen, V.; Koivuluoto, H.; Vuoristo, P.; Schubert, J.; Houdková, Š.
2018-04-01
Thermally sprayed hard metal coatings are the industrial standard solution for numerous demanding applications to improve wear resistance. In the aim of improving coating quality by utilising finer particle size distributions, several approaches have been studied to control the spray temperature. The most viable solution is to use the modern high velocity air-fuel (HVAF) spray process, which has already proven to produce high-quality coatings with dense structures. In HVAF spray process, the particle heating and acceleration can be efficiently controlled by changing the nozzle geometry. In this study, fine WC-10Co4Cr and Cr3C2-25NiCr powders were sprayed with three nozzle geometries to investigate their effect on the particle temperature, velocity and coating microstructure. The study demonstrates that the particle melting and resulting carbide dissolution can be efficiently controlled by changing the nozzle geometry from cylindrical to convergent-divergent. Moreover, the average particle velocity was increased from 780 to over 900 m/s. The increase in particle velocity significantly improved the coating structure and density. Further evaluation was carried out to resolve the effect of particle in-flight parameters on coating structure and cavitation erosion resistance, which was significantly improved in the case of WC-10Co4Cr coatings with the increasing average particle velocity.