New agents with antimycobacterial activity.
Marco-Contelles, José; Gómez-Sánchez, Elena
2005-11-01
In this paper, we report that a series of structurally simple a-halogenoacetamides show potent and excellent antimycobacterial activities against drug-sensitive Mycobacterium tuberculosis H(37)Rv and drug-resistant M. avium.
Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors.
Wang, Shouming; Beck, Richard; Burd, Andrew; Blench, Toby; Marlin, Frederic; Ayele, Tenagne; Buxton, Stuart; Dagostin, Claudio; Malic, Maja; Joshi, Rina; Barry, John; Sajad, Mohammed; Cheung, Chiming; Shaikh, Shaheda; Chahwala, Suresh; Chander, Chaman; Baumgartner, Christine; Holthoff, Hans-Peter; Murray, Elizabeth; Blackney, Michael; Giddings, Amanda
2010-02-25
On the basis of our understanding on the binding interactions of the benzothiophene template within the FIXa active site by X-ray crystallography and molecular modeling studies, we developed our SAR strategy by targeting the 4-position of the template to access the S1 beta and S2-S4 sites. A number of highly selective and potent factor Xa (FXa) and FIXa inhibitors were identified by simple switch of functional groups with conformational changes toward the S2-S4 sites.
Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo
2009-11-26
Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.
Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P
2018-06-01
During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Al-Qawasmeh, Raed A; Huthail, Basil B; Sinnokrot, Mutasem O; Semreen, Mohammad H; Odeh, Raed A; Abu-Zarga, Musa H; Tarazi, Hamadeh; Yousef, Imad A; Al-Tel, Taleb H
2016-01-01
The emergence of drug-resistant bacteria in clinical practice has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We previously described a set of imidazopyridine antibacterial leads that contain a core composed of benzimidazole and a central phthalic acid linker. These compounds showed potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. In this respect, we conducted a systematic exploration of new disubstituted imidazole functionalities on quinoline 4-position as the central linker, to determine the factors that direct the potent antibacterial activity. We found that some of the newly synthesized compounds possessed more potent activity compared to currently available medications. The newly synthesized compounds were screened against several clinical isolates and Staphylococcus aureus, including the methicillinresistant (MRSA) and the methicillin-sensitive (MSAA). The goal of this work is to undertake rigorous testing of new hybrid scaffolds of quinoline flanked by diaryl imidazoles and their structure-activity against a range of bacterial strains. Described herein is the account of the modification of the central linker region, the imidazole functionality, and substituents at the 4-position of the quinoline, and their effect on the antibacterial potency of the resulting derivatives. Our efforts here have been driven by previous reports on the applications of Pfitzinger cyclization protocol. This complexity-generating reaction transforms a relatively simple substrate, into a more complex products with the potential for diversification via functionalization of the resultant acid. We identified compounds that possess potent and broad-spectrum antibacterial activities against clinical isolates and drug resistant strains. Structure-Activity relationships of these compounds were further explored to determine the crucial structural features needed to enhance their antibacterial activity. In this respect, it was found that, hydrophobic and electron-withdrawing moieties, such as halogens, were required on each end of the isoquinoline-based bisaryl imidazole hybrid motifs to produce broad-spectrum activity against the tested strains. Thus, molecules containing halophenyl or pyridyl arms were found more potent than molecules containing thiophene and/or electron-releasing groups on the phenyl arms, which showed much less antibacterial activity against the tested strains. In summary, 4-(4,5-diphenyl-1H-imidazol-2-yl)-2-phenylquinoline systems can be assembled efficiently through the Pfitzinger ring expansion- condensation strategy. This approach appears to hold considerable synthetic utility. The particular value of such a synthetic route resides on the conciseness and efficiency through which imidazo-quinoline construction can be synthesized from structurally simple and accessible acetophenone precursors.
Zou, Li-Wei; Li, Yao-Guang; Wang, Ping; Zhou, Kun; Hou, Jie; Jin, Qiang; Hao, Da-Cheng; Ge, Guang-Bo; Yang, Ling
2016-04-13
Human carboxylesterase 2 (hCE2), one of the major carboxylesterases in the human intestine and various tumour tissues, plays important roles in the oral bioavailability and treatment outcomes of ester- or amide-containing drugs or prodrugs, such as anticancer agents CPT-11 (irinotecan) and LY2334737 (gemcitabine). In this study, 18β-glycyrrhetinic acid (GA), the most abundant pentacyclic triterpenoid from natural source, was selected as a reference compound for the development of potent and specific inhibitors against hCE2. Simple semi-synthetic modulation on GA was performed to obtain a series of GA derivatives. Structure-activity relationship analysis brought novel insights into the structure modification of GA. Converting the 11-oxo-12-ene of GA to 12-diene moiety, and C-3 hydroxyl and C-30 carboxyl group to 3-O-β-carboxypropionyl and ethyl ester respectively, led to a significant enhancement of the inhibitory effect on hCE2 and the selectivity over hCE1. These exciting findings inspired us to design and synthesize the more potent compound 15 (IC50 0.02 μM) as a novel and highly selective inhibitor against hCE2, which was 3463-fold more potent than the parent compound GA and demonstrated excellent selectivity (>1000-fold over hCE1). The molecular docking study of compound 15 and the active site of hCE1 and hCE2 demonstrated that the potent and selective inhibition of compound 15 toward hCE2 could partially be attributed to its relatively stronger interactions with hCE2 than with hCE1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia
2017-11-01
A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.
Homeopathic potentization based on nanoscale domains.
Czerlinski, George; Ypma, Tjalling
2011-12-01
The objectives of this study were to present a simple descriptive and quantitative model of how high potencies in homeopathy arise. The model begins with the mechanochemical production of hydrogen and hydroxyl radicals from water and the electronic stabilization of the resulting nanodomains of water molecules. The life of these domains is initially limited to a few days, but may extend to years when the electromagnetic characteristic of a homeopathic agent is copied onto the domains. This information is transferred between the original agent and the nanodomains, and also between previously imprinted nanodomains and new ones. The differential equations previously used to describe these processes are replaced here by exponential expressions, corresponding to simplified model mechanisms. Magnetic stabilization is also involved, since these long-lived domains apparently require the presence of the geomagnetic field. Our model incorporates this factor in the formation of the long-lived compound. Numerical simulation and graphs show that the potentization mechanism can be described quantitatively by a very simplified mechanism. The omitted factors affect only the fine structure of the kinetics. Measurements of pH changes upon absorption of different electromagnetic frequencies indicate that about 400 nanodomains polymerize to form one cooperating unit. Singlet excited states of some compounds lead to dramatic changes in their hydrogen ion dissociation constant, explaining this pH effect and suggesting that homeopathic information is imprinted as higher singlet excited states. A simple description is provided of the process of potentization in homeopathic dilutions. With the exception of minor details, this simple model replicates the results previously obtained from a more complex model. While excited states are short lived in isolated molecules, they become long lived in nanodomains that form coherent cooperative aggregates controlled by the geomagnetic field. These domains either slowly emit biophotons or perform specific biochemical work at their target.
Müller, Christa E.
2013-01-01
Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenyl)phenol), the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB) receptors. We now investigated the structure-activity relationships of (tetrahydro)magnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl)-4-hexylphenol (61a, K i CB1∶0.00957 µM; K i CB2∶0.0238 µM), and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl)-4-pentylphenol (60, K i CB1∶0.362 µM; K i CB2∶0.0371 µM), which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies. PMID:24204944
Patocka, J
2001-01-01
Cyanobacteria, formerly called "blue-green algae", are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera of Cyanobacteria are known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches
NASA Astrophysics Data System (ADS)
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-05-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches.
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-05-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
Discovery of a small-molecule inhibitor of Dvl-CXXC5 interaction by computational approaches
NASA Astrophysics Data System (ADS)
Ma, Songling; Choi, Jiwon; Jin, Xuemei; Kim, Hyun-Yi; Yun, Ji-Hye; Lee, Weontae; Choi, Kang-Yell; No, Kyoung Tai
2018-04-01
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl-CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide-ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl-CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl-CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl-CXXC5 interaction. Overall, CXXC5-Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl-CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl-CXXC5 interaction disruptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteron, Jose M.; Marco, Maria; Esquivias, Jorge
2012-02-27
Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model,more » can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.« less
An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown.
Høiberg, Hans Christian; Sparvath, Steffen M; Andersen, Veronica L; Kjems, Jørgen; Andersen, Ebbe S
2018-05-26
The fields of DNA and RNA nanotechnology have established nucleic acids as valuable building blocks for functional nanodevices with applications in nanomedicine. Here, a simple method for designing and assembling a 3D scaffolded RNA origami wireframe structure with intrinsic functioning small interfering RNAs (siRNAs) embedded is introduced. Uniquely, the method uses an mRNA fragment as scaffold strand, which is folded by sequence-complementarity of nine shorter synthetic strands. High-yield production of the intended 3D structure is verified by transmission electron microscopy (TEM). Production of functional siRNAs is facilitated by incorporating recognition sites for Dicer at selected locations in the structure, and efficient silencing of a target reporter gene is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rethinking natural altruism: Simple reciprocal interactions trigger children’s benevolence
Cortes Barragan, Rodolfo; Dweck, Carol S.
2014-01-01
A very simple reciprocal activity elicited high degrees of altruism in 1- and 2-y-old children, whereas friendly but nonreciprocal activity yielded little subsequent altruism. In a second study, reciprocity with one adult led 1- and 2-y-olds to provide help to a new person. These results question the current dominant claim that social experiences cannot account for early occurring altruistic behavior. A third study, with preschool-age children, showed that subtle reciprocal cues remain potent elicitors of altruism, whereas a fourth study with preschoolers showed that even a brief reciprocal experience fostered children’s expectation of altruism from others. Collectively, the studies suggest that simple reciprocal interactions are a potent trigger of altruism for young children, and that these interactions lead children to believe that their relationships are characterized by mutual care and commitment. PMID:25404334
Automating the application of smart materials for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.
2015-03-01
The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of successmore » when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.« less
Automating the application of smart materials for protein crystallization.
Khurshid, Sahir; Govada, Lata; El-Sharif, Hazim F; Reddy, Subrayal M; Chayen, Naomi E
2015-03-01
The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as `smart materials') for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.
Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M
2011-07-01
A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Patten, Shunmoogum A.; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary A.B.; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J. Alexander
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease. PMID:29202456
Patten, Shunmoogum A; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary Ab; La Fontaine, Alexandre; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J Alexander; Drapeau, Pierre
2017-11-16
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.
Forging a potent vaccine adjuvant: CpG ODN/cationic peptide nanorings.
Gungor, Bilgi; Yagci, Fuat Cem; Gursel, Ihsan; Gursel, Mayda
Type I interferon inducers may potentially be engineered to function as antiviral and anticancer agents, or alternatively, vaccine adjuvants, all of which may have clinical applications. We recently described a simple strategy to convert a Toll-like receptor 9 (TLR9) agonist devoid of interferon α (IFNα) stimulating activity into a robust Type I interferon inducer with potent vaccine adjuvant activity.
Mancini, Ines; Guella, Graziano; Frostin, Maryvonne; Hnawia, Edouard; Laurent, Dominique; Debitus, Cecile; Pietra, Francesco
2006-12-04
Reported here is the first polyarsenic compound ever found in nature. Denominated arsenicin A, it was isolated along a bioassay-guided fractionation of the organic extract of the poecilosclerid sponge Echinochalina bargibanti collected from the north-eastern coast of New Caledonia. In defining an adamantine-type polyarsenic structure for this compound, deceptively simple NMR spectra were complemented by extensive mass spectral analysis. However, it was only the synthesis of a model compound that provided the basis to discriminate structure 4 from other spectrally compatible structures for arsenicin A; to this end, a comparative ab initio simulation of IR spectra for the natural and the synthetic compounds was decisive. Arsenicin A is endowed with potent bactericidal and fungicidal activities on human pathogenic strains. All this may revive pharmacological interest in arsenic compounds while prompting us to rethink the arsenic cycle in nature.
Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.
Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John
2014-03-01
A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.
Agatonovic-Kustrin, Snezana; Morton, David W; Yusof, Ahmad P
2016-04-15
The aim of this study was to: (a) develop a simple, high performance thin layer chromatographic (HPTLC) method combined with direct 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to rapidly assess and compare free radical scavenging activity or anti-oxidant activity for major classes of polyphenolics present in wines; and (b) to investigate relationship between free radical scavenging activity to the total polyphenolic content (TPC) and total antioxidant capacity (TAC) in the wine samples. The most potent free radical scavengers that we tested for in the wine samples were found to be resveratrol (polyphenolic non-flavonoid) and rutin (flavonoid), while polyphenolic acids (caffeic acid and gallic acid) although present in all wine samples were found to be less potent free radical scavengers. Therefore, the total antioxidant capacity was mostly affected by the presence of resveratrol and rutin, while total polyphenolic content was mostly influenced by the presence of the less potent free radical scavengers gallic and caffeic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zheng, Suqing; Santosh Laxmi, Y R; David, Emilie; Dinkova-Kostova, Albena T; Shiavoni, Katherine H; Ren, Yanqing; Zheng, Ying; Trevino, Isaac; Bumeister, Ronald; Ojima, Iwao; Wigley, W Christian; Bliska, James B; Mierke, Dale F; Honda, Tadashi
2012-05-24
Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.
Fragment-based approaches to the discovery of kinase inhibitors.
Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc
2014-01-01
Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.
Onda, Yuichi; Masuda, Yuichi; Yoshida, Masahito; Doi, Takayuki
2017-08-10
We have demonstrated design, synthesis, and biological evaluation of apratoxin A mimetics. In the first generation, the moCys moiety was replaced with seven simple amino acids as their 3D structures can be similar to that of apratoxin A. Apratoxins M1-M7 were synthesized using solid-phase peptide synthesis and solution-phase macrolactamization. Apratoxin M7, which contains a piperidinecarboxylic acid moiety, exhibited potent cytotoxicity against HCT-116 cells. In the second generation, substitution of each amino acid residue in the tripeptide Tyr(Me)-MeAla-MeIle moiety in apratoxin M7 led to the development of the highly potent apratoxin M16 possessing biphenylalanine (Bph) instead of Tyr(Me), which exhibited an IC 50 value of 1.1 nM against HCT-116 cells. Moreover, compared to apratoxin A, apratoxin M16 exhibited a similarly high level of growth inhibitory activity against various cancer cell lines. The results indicate that apratoxin M16 could be a potential candidate as an anticancer agent.
Giannini, Giuseppe; Vesci, Loredana; Battistuzzi, Gianfranco; Vignola, Davide; Milazzo, Ferdinando M; Guglielmi, Mario Berardino; Barbarino, Marcella; Santaniello, Mosè; Fantò, Nicola; Mor, Marco; Rivara, Silvia; Pala, Daniele; Taddei, Maurizio; Pisano, Claudio; Cabri, Walter
2014-10-23
A systematic study of medicinal chemistry aimed at identifying a new generation of HDAC inhibitors, through the introduction of a thiol zinc-binding group (ZBG) and of an amide-lactam in the ω-position of the polyethylene chain of the vorinostat scaffold, allowed the selection of a new class of potent pan-HDAC inhibitors (pan-HDACis). Simple, highly versatile, and efficient synthetic approaches were used to synthesize a library of these new derivatives, which were then submitted to a screening for HDAC inhibition as well as to a preliminary in vitro assessment of their antiproliferative activity. Molecular docking into HDAC crystal structures suggested a binding mode for these thiol derivatives consistent with the stereoselectivity observed upon insertion of amide-lactam substituents in the ω-position. ST7612AA1 (117), selected as a drug candidate for further development, showed an in vitro activity in the nanomolar range associated with a remarkable in vivo antitumor activity, highly competitive with the most potent HDAC inhibitors, currently under clinical trials. A preliminary study of PK and metabolism is also illustrated.
Matralis, Alexios N; Kourounakis, Angeliki P
2014-03-27
Because atherosclerosis is an inflammatory process involving a series of pathological events such as dyslipidemia, oxidative stress, and blood clotting mechanisms, we hereby report the synthesis and evaluation of novel compounds in which antioxidant, anti-inflammatory, and squalene synthase (SQS) inhibitory/hypolipidemic activities are combined in simple molecules through design. The coupling of two different pharmacophores afforded compounds 1-12, whose biological profile was markedly improved compared to those of parent lead structures (i.e., the hypolipidemic 2-hydroxy-2-aryl-(benzo)oxa(or thia)zine and the antioxidant phenothiazine). Most derivatives strongly inhibited in vitro microsomal lipid and LDL peroxidation, exhibiting potent free-radical scavenging activity. They further significantly inhibited SQS activity and showed remarkable antidyslipidemic activity in vivo in animal models of acute and high-fat-induced hyperlipidemia. Finally, several compounds showed anti-inflammatory activity in vitro, inhibiting cycloxygenase (COX-1/2) activity. The multimodal properties of the new compounds and especially their combined antioxidant/SQS/COX inhibitory activity render them interesting lead compounds for further evaluation against atherosclerosis.
Kadigamuwa, Chamila C; Mapa, Mapa S T; Wimalasena, Kandatege
2016-09-19
We have recently reported that simple lipophilic cationic cyanines are specific and potent dopaminergic toxins with a mechanism of toxicity similar to that of the Parkinsonian toxin MPP(+). In the present study, a group of fluorescent lipophilic cyanines have been used to further exploit the structure-activity relationship of the specific dopaminergic toxicity of cyanines. Here, we report that all cyanines tested were highly toxic to dopaminergic MN9D cells with IC50s in the range of 60-100 nM and not toxic to non-neuronal HepG2 cells parallel to that previously reported for 2,2'- and 4,4'-cyanines. All cyanines nonspecifically accumulate in the mitochondria of both MN9D and HepG2 cells at high concentrations, inhibit the mitochondrial complex I with the inhibition potencies similar to the potent complex I inhibitor, rotenone. They increase the reactive oxygen species (ROS) production specifically in dopaminergic cells causing apoptotic cell death. These and other findings suggest that the complex I inhibition, the expression of low levels of antioxidant enzymes, and presence of high levels of oxidatively labile radical propagator, dopamine, could be responsible for the specific increase in ROS production in dopaminergic cells. Thus, the predisposition of dopaminergic cells to produce high levels of ROS in response to mitochondrial toxins together with their inherent greater demand for energy may contribute to their specific vulnerability toward these toxins. The novel findings that cyanines are an unusual class of potent mitochondrial toxins with specific dopaminergic toxicity suggest that their presence in the environment could contribute to the etiology of PD similar to that of MPP(+) and rotenone.
Chen, Dawei; Chen, Ridao; Wang, Ruishan; Li, Jianhua; Xie, Kebo; Bian, Chuancai; Sun, Lili; Zhang, Xiaolin; Liu, Jimei; Yang, Lin; Ye, Fei; Yu, Xiaoming; Dai, Jungui
2015-10-19
The catalytic promiscuity of the novel benzophenone C-glycosyltransferase, MiCGT, which is involved in the biosynthesis of mangiferin from Mangifera indica, was explored. MiCGT exhibited a robust capability to regio- and stereospecific C-glycosylation of 35 structurally diverse druglike scaffolds and simple phenolics with UDP-glucose, and also formed O- and N-glycosides. Moreover, MiCGT was able to generate C-xylosides with UDP-xylose. The OGT-reversibility of MiCGT was also exploited to generate C-glucosides with simple sugar donor. Three aryl-C-glycosides exhibited potent SGLT2 inhibitory activities with IC50 values of 2.6×, 7.6×, and 7.6×10(-7) M, respectively. These findings demonstrate for the first time the significant potential of an enzymatic approach to diversification through C-glycosidation of bioactive natural and unnatural products in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumar, Rakesh; Maurya, Ranjana; Saran, Shweta
2018-02-23
Prostate cancer (PC) is one of the leading cancers in men, raising a serious health issue worldwide. Due to lack of suitable biomarker, their inhibitors and the platform for testing those inhibitors result in poor prognosis of PC. AMP-activated protein kinase (AMPK) is a highly conserved protein kinase found in eukaryotes that is involved in growth and development, and also acts as a therapeutic target for PC. The aim of the present study is to identify novel potent inhibitors of AMPK and propose a simple cellular model system for understanding its biology. Structural modelling and MD simulations were performed to construct and refine the 3D models of Dictyostelium and human AMPK. Binding mechanisms of different drug compounds were studied by performing molecular docking, molecular dynamics and MM-PBSA methods. Two novel drugs were isolated having higher binding affinity over the known drugs and hydrophobic forces that played a key role during protein-ligand interactions. The study also explored the simple cellular model system for drug screening and understanding the biology of a therapeutic target by performing in vitro experiments.
Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami
2016-02-26
Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.
Guandalini, Luca; Martino, Maria Vittoria; Di Cesare Mannelli, Lorenzo; Bartolucci, Gianluca; Melani, Fabrizio; Malik, Ruchi; Dei, Silvia; Floriddia, Elisa; Manetti, Dina; Orlandi, Francesca; Teodori, Elisabetta; Ghelardini, Carla; Romanelli, Maria Novella
2015-04-15
A series of 2-phenyl- or 3-phenyl piperazines, structurally related to DM235 and DM232, two potent nootropic agents, have been prepared and tested in the mouse passive-avoidance test, to assess their ability to revert scopolamine-induced amnesia. Although the newly synthesized molecules were less potent than the parent compounds, some useful information has been obtained from structure-activity relationships. A small but significant enantioselectivity has been found for the most potent compound 5a. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ab Initio Design of Potent Anti-MRSA Peptides based on Database Filtering Technology
Mishra, Biswajit; Wang, Guangshun
2012-01-01
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed.1 This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g. amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database2 by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 minutes. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. A combination of our ab initio design with database screening3 led to yet another peptide with enhanced potency. Because of simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well. PMID:22803960
Ab initio design of potent anti-MRSA peptides based on database filtering technology.
Mishra, Biswajit; Wang, Guangshun
2012-08-01
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed. This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when the most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g., amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 min. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. Our ab initio design combined with database screening led to yet another peptide with enhanced potency. Because of the simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well.
Healy, Zachary R; Liu, Hua; Holtzclaw, W David; Talalay, Paul
2011-07-01
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine with keto-enol tautomerase activity, rises rapidly in response to inflammation and is elevated in many chronic diseases. Isothiocyanates, such as sulforaphane from broccoli, are very potent inactivators of MIF tautomerase activity. A simple rapid method for determining this activity in tissues and body fluids may therefore be valuable for assessing severity of inflammation and efficacy of intervention. Existing spectrophotometric assays of MIF, based on conversion of methyl L-dopachrome to methyl 5,6-dihydroxyindole-2-carboxylate and associated loss of absorption at 475 nm, lack sensitivity. Assay sensitivity and efficiency were markedly improved by reducing the nonenzymatic rate, by lowering pH to 6.2, replacing phosphate (which catalyzes the reaction) with Bis-Tris buffer, and converting to a microtiter plate format. A structure-potency study of MIF tautomerase inactivation by isothiocyanates showed that sulforaphane, benzyl, n-hexyl, and phenethyl isothiocyanates were especially potent. MIF tautomerase could be readily quantified in human urine concentrated by ultrafiltration. This activity comprised: (i) a heat-labile, sulforaphane-inactivated macromolecular fraction (presumably MIF) that was concentrated during ultrafiltration; (ii) a flow-through fraction, with constant activity during filtration, that was heat stable and insensitive to sulforaphane. Administration of the sulforaphane precursor glucoraphanin to human volunteers almost completely abolished urinary tautomerase activity, which recovered over many hours. A simple, rapid, quantitative MIF tautomerase assay has been developed as a potential biomarker for assessing inflammatory severity and effectiveness of intervention. An improved assay for measuring MIF tautomerase activity and its applications are described. ©2011 AACR
Biological evaluation of some uracil derivatives as potent glutathione reductase inhibitors
NASA Astrophysics Data System (ADS)
Güney, Murat; Ekinci, Deniz; Ćavdar, Huseyin; Şentürk, Murat; Zilbeyaz, Kani
2016-04-01
Discovery of glutathione reductase (GR) inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, GR inhibitory capacities of some uracil derivatives (UDCs) (1-4) were reported. Some commercially available molecules (5-6) were also tested for comparison reasons. The novel UDCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low nanomolar concentrations with IC50 values ranging from 2.68 to 166.6 nM as compared with well-known agents.
Song, Wei; Kaufman, Dan S; Shen, Wei
2016-03-01
Although endothelial cells (ECs) have been derived from human pluripotent stem cells (hPSCs), large-scale generation of hPSC-ECs remains challenging and their functions are not well characterized. Here we report a simple and efficient three-stage method that allows generation of approximately 98 and 9500 ECs on day 16 and day 34, respectively, from each human embryonic stem cell (hESC) input. The functional properties of hESC-ECs derived in the presence and absence of a TGFβ-inhibitory molecule SB431542 were characterized and compared with those of human umbilical vein endothelial cells (HUVECs). Confluent monolayers formed by SB431542 + hESC-ECs, SB431542 - hESC-ECs, and HUVECs showed similar permeability to 10,000 Da dextran, but these cells exhibited striking differences in forming tube-like structures in 3D fibrin gels. The SB431542 + hESC-ECs were most potent in forming tube-like structures regardless of whether VEGF and bFGF were present in the medium; less potent SB431542 - hESC-ECs and HUVECs responded differently to VEGF and bFGF, which significantly enhanced the ability of HUVECs to form tube-like structures but had little impact on SB431542 - hESC-ECs. This study offers an efficient approach to large-scale hPSC-EC production and suggests that the phenotypes and functions of hPSC-ECs derived under different conditions need to be thoroughly examined before their use in technology development. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 678-687, 2016. © 2015 Wiley Periodicals, Inc.
Matsuda, Hideaki; Hirata, Noriko; Kawaguchi, Yoshiko; Yamazaki, Miho; Naruto, Shunsuke; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kubo, Michinori
2005-07-01
Melanogenesis stimulation activities of seven ethanolic extracts obtained from Umbelliferae plants used as Chinese crude drugs, namely the roots of Angelica dahurica BENTH. et HOOK., A. biserrata SHEN et YUAN, Notopterygium incisum TING, Heracleum lanatum MICHX., and H. candicans WALL., and the fruits of Cinidium monnieri (L.) CUSSON and C. formosanum YABE, were examined by using cultured murine B16 melanoma cells. Among them, the extract (5, 25 microg/ml) of H. lanatum showed a potent stimulatory effect on melanogenesis with significant enhancement of cell proliferation in a dose-dependent manner. The melanogenesis stimulatory effects of sixteen coumarins (1-16) isolated from the seven Umbelliferae crude drugs were also examined. Among them, linear-furocoumarins [psoralen (1), xanthotoxin (2), bergapten (3), and isopimpinellin (4)] and angular-furocoumarin [sphondin (13)] exhibited potent melanogenesis stimulation activity. From the view point of structure-activity relationships, it may be assumed that a linear-furocoumarin ring having a hydrogen and/or methoxyl group at 5 and 8 positions such as 1, 2, 3 and 4 was preferable for the melanogenesis stimulation activity. The introduction of a prenyl group into the furocoumarin ring was disadvantageous. Coumarin derivatives having a simple coumarin ring were inactive.
Hayashi, Yoshiki; Takeno, Haruka; Chinen, Takumi; Muguruma, Kyohei; Okuyama, Kohei; Taguchi, Akihiro; Takayama, Kentaro; Yakushiji, Fumika; Miura, Masahiko; Usui, Takeo; Hayashi, Yoshio
2014-10-09
A new benzophenone-diketopiperazine-type potent antimicrotubule agent was developed by modifying the structure of the clinical candidate plinabulin (1). Although the right-hand imidazole ring with a branched alkyl chain at the 5-position in 1 was critical for the potency of the antimicrotubule activity, we successfully substituted this moiety with a simpler 2-pyridyl structure by converting the left-hand ring from a phenyl to a benzophenone structure without decreasing the potency. The resultant compound 6b (KPU-300) exhibited a potent cytotoxicity, with an IC50 value of 7.0 nM against HT-29 cells, by strongly binding to tubulin (K d = 1.3 μM) and inducing microtubule depolymerization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, P.C.; Bremer, M.E.; Rao, T.S.
1990-01-01
Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of ({sup 3}H)-(+)3-PPP (IC{sub 50} = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of ({sup 3}H)-(+)3-PPP with an IC{sub 50} of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909asmore » sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.« less
Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane
NASA Astrophysics Data System (ADS)
Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun
2013-04-01
We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.
Kaieda, Akira; Takahashi, Masashi; Takai, Takafumi; Goto, Masayuki; Miyazaki, Takahiro; Hori, Yuri; Unno, Satoko; Kawamoto, Tomohiro; Tanaka, Toshimasa; Itono, Sachiko; Takagi, Terufumi; Hamada, Teruki; Shirasaki, Mikio; Okada, Kengo; Snell, Gyorgy; Bragstad, Ken; Sang, Bi-Ching; Uchikawa, Osamu; Miwatashi, Seiji
2018-02-01
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Meimei; Yang, Fafu; Kang, Jie; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing
2016-11-29
In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.
Study of magnetization switching for MRAM based memory technologies
NASA Astrophysics Data System (ADS)
Pham, Huy
Amphibian alkaloids are attractive targets for synthesis due to their biological activity. An important class of amphibian alkaloids is the 2,5-disubstituted pyrrolidine-based family of compounds. There are many synthetic approaches for the preparation of the trans-2,5-disubstituted pyrrolidines, but methods for the construction of the cis-2,5-pyrrolidines are limited. Therefore, it was desired to develop an enantioselective approach for the preparation of cis-2,5-disubsituted pyrrolidines. (+)-Tropin-2-one derived from cocaine was used as starting material to exploit the inherent stereochemistry for construction of the cis-pyrrolidine ring. This permitted the unequivocal assignment of the absolute configuration of the target pyrrolidine. The structurally simple pyrrolidine alkaloid, 225H, was selected as a target to develop a general synthetic approach. The enantioselective synthesis of 225H was achieved in nine steps and good overall yield. The search for potent cannabinoid receptor partial agonist ligands as potential marijuana addiction therapeutic agents has led to an investigation of the synthesis of diaryl ether hybrid analogues of BAY 59-3074. A series of 2-(3-alkyl-5-hydroxyphenoxy)-6-(trifluoromethyl)benzonitriles, 3-(2-cyano-3-(trifluoromethyl)phenoxy)phenylalkanoates, and (3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitriles were synthesized and evaluated in vitro for CB1 affinity. The olivetol diaryl ether analogue was the most potent ligand of the alkyl series, but the diaryl ester analogues exhibited modest affinity for CB1 receptors. The most potent compound of the series was the 2-(3-(benzyloxy)phenoxy)-6-(trifluoromethyl)benzonitrile. Keywords. amphibian alkaloids, enantioselective synthesis, pyrrolidine, cannabinoid receptor, marijuana.
Healy, Zachary R.; Liu, Hua; Holtzclaw, W. David; Talalay, Paul
2011-01-01
Background Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine with keto-enol tautomerase activity, rises rapidly in response to inflammation, and is elevated in many chronic diseases. Isothiocyanates, such as sulforaphane from broccoli, are very potent inactivators of MIF tautomerase activity. A simple rapid method for determining this activity in tissues and body fluids may therefore be valuable for assessing severity of inflammation and efficacy of intervention. Methods Existing spectrophotometric assays of MIF, based on conversion of methyl L-dopachrome to methyl 5,6-dihydroxyindole-2-carboxylate and associated loss of absorption at 475 nm, lack sensitivity. Assay sensitivity and efficiency were markedly improved by reducing the nonenzymatic rate, by lowering pH to 6.2, replacing phosphate (which catalyzes the reaction) with Bis-Tris buffer, and converting to a microtiter plate format. Results A structure-potency study of MIF tautomerase inactivation by isothiocyanates showed that sulforaphane, benzyl, n-hexyl, and phenethyl isothiocyanates were especially potent. MIF tautomerase could be readily quantified in human urine concentrated by ultrafiltration. This activity comprised: (i) a heat-labile, sulforaphane-inactivated macromolecular fraction (presumably MIF) that was concentrated during ultrafiltration; (ii) a flow-through fraction, with constant activity during filtration, that was heat-stable, and insensitive to sulforaphane. Administration of the sulforaphane precursor glucoraphanin to human volunteers almost completely abolished urinary tautomerase activity, which was recovered over many hours. Conclusions A simple, rapid, quantitative MIF tautomerase assay has been developed as a potential biomarker for assessing inflammatory severity and effectiveness of intervention. Impact An improved assay for measuring MIF tautomerase activity and its applications are described. PMID:21602309
Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-11-15
A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).
Discovery and Structure Enabled Synthesis of 2,6-Diaminopyrimidin-4-one IRAK4 Inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seganish, W. Michael; Fischmann, Thierry O.; Sherborne, Brad
2015-08-13
We report the identification and synthesis of a series of aminopyrimidin-4-one IRAK4 inhibitors. Through high throughput screening, an aminopyrimidine hit was identified and modified via structure enabled design to generate a new, potent, and kinase selective pyrimidin-4-one chemotype. This chemotype is exemplified by compound 16, which has potent IRAK4 inhibition activity (IC50 = 27 nM) and excellent kinase selectivity (>100-fold against 99% of 111 tested kinases), and compound 31, which displays potent IRAK4 activity (IC50 = 93 nM) and good rat bioavailability (F = 42%).
Multimodular biocatalysts for natural product assembly
NASA Astrophysics Data System (ADS)
Schwarzer, Dirk; Marahiel, Mohamed A.
2001-03-01
Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.
NASA Astrophysics Data System (ADS)
Nallayan, W. Andrew; Vijayakumar, K. R.; Rasheed, Usama Tariq
2017-05-01
High performance polymer composite laminates that are used in Aerospace and Electronics industries requires laminates that are structurally rigid besides exhibiting high stiffness and good di electrical properties. They are required to be transparent to EM waves in order to transmit the signal with almost zero transmission loss. Response of the laminates under different loadings could hence establish a potent material combination with high structural strengths that could be used in sectors dealing with Signal transmissions. The results thus acquired can be used as a database for choosing relatively better materials for Radome and their advanced versions in the coming decades. To augment this, thin laminates with 4 plies with simple stacking configurations of 0/90/0/90 degrees as applicable to a cross plied laminates were fabricated with cyanate ester modified epoxy resin and 1200GSM E glass unidirectional fiber. Flexural and Impact strength were the properties identified for the accessing the structural responses of the Laminate as against room and oven curing conditions. FESEM images were applied to validate the experimental findings.
Vontzalidou, Argyro; Zoidis, Grigoris; Chaita, Eliza; Makropoulou, Maria; Aligiannis, Nektarios; Lambrinidis, George; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros
2012-09-01
The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hill, Christopher K.; Hartwig, John F.
2017-12-01
Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.
C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors.
Liger, François; Bouhours, Pascale; Ganem-Elbaz, Carine; Jolivalt, Claude; Pellet-Rostaing, Stéphane; Popowycz, Florence; Paris, Jean-Marc; Lemaire, Marc
2016-02-04
An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 μg mL(-1) (1 and 1.5 μm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong
2018-05-01
New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.
De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo
2014-05-01
Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca(2+) elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. S-(+) evodiamine was more efficacious and potent than R-(-) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. © 2013 The British Pharmacological Society.
Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L
2002-01-07
A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhide, Rajeev S.; Keon, Alec; Weigelt, Carolyn
2017-11-01
The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.
Khanfar, Mohammad A; Banat, Fahmy; Alabed, Shada; Alqtaishat, Saja
2017-02-01
High expression of Nek2 has been detected in several types of cancer and it represents a novel target for human cancer. In the current study, structure-based pharmacophore modeling combined with multiple linear regression (MLR)-based QSAR analyses was applied to disclose the structural requirements for NEK2 inhibition. Generated pharmacophoric models were initially validated with receiver operating characteristic (ROC) curve, and optimum models were subsequently implemented in QSAR modeling with other physiochemical descriptors. QSAR-selected models were implied as 3D search filters to mine the National Cancer Institute (NCI) database for novel NEK2 inhibitors, whereas the associated QSAR model prioritized the bioactivities of captured hits for in vitro evaluation. Experimental validation identified several potent NEK2 inhibitors of novel structural scaffolds. The most potent captured hit exhibited an [Formula: see text] value of 237 nM.
Structural Basis for the Potent and Selective Inhibition of Casein Kinase 1 Epsilon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alexander M.; Zhao, Huilin; Huang, Xin
2012-10-29
Casein kinase 1 epsilon (CK1ε) and its closest homologue CK1δ are key regulators of diverse cellular processes. We report two crystal structures of PF4800567, a potent and selective inhibitor of CK1ε, bound to the kinase domains of human CK1ε and CK1δ as well as one apo CK1ε crystal structure. These structures provide a molecular basis for the strong and specific inhibitor interactions with CK1ε and suggest clues for further development of CK1δ inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentles, Robert G.; Sheriff, Steven; Beno, Brett R.
Structure based rationales for the activities of potent N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide inhibitors of the hepatitis C viral polymerase are described herein. These compounds bind to the hepatitis C virus non-structural protein 5B (NS5B), and co-crystal structures of select examples from this series with NS5B are reported. Comparison of co-crystal structures of a potent analog with both NS5B genotype 1a and genotype 1b provides a possible explanation for the genotype-selectivity observed with this compound class and suggests opportunities for the further optimization of the series.
Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.
1998-01-01
Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518
Stachybotrys: An unusual mold associated with water-damaged buildings.
Jarvis, B; Hinkley, S; Nielsen, K
2000-03-01
Chemical analyses of extracts of cultures ofS. chartarum show that this fungus has two chemotypes: producers of the potent cytotoxic macrocyclic trichothecenes (e. g. satratoxins) and those that produce the diterpenoid atranones and the simple trichothecenes, trichodermol and trichodermin. All isolates ofS. chartarum produce the immunosuppressant spirocyclic drimanes.
Simple Laboratory Exercise for Induction of Beta-Mannanase from "Aspergillus niger"
ERIC Educational Resources Information Center
Mulimani, V. H.; Naganagouda, K.
2010-01-01
This laboratory experiment was designed for Biochemistry, Biotechnology, Microbiology, and Food Technology students of undergraduate and postgraduate courses. The experiment shows the advantages of using agricultural waste, copra mannan as potent inducer of [beta]-mannanase. The students were able to compare the enzyme induction by commercial…
Computer-assisted design in perceptual-motor skills research
NASA Technical Reports Server (NTRS)
Rogers, C. A., Jr.
1974-01-01
A categorization was made of independent variables previously found to be potent in simple perceptual-motor tasks. A computer was then used to generate hypothetical factorial designs. These were evaluated in terms of literature trends and pragmatic criteria. Potential side-effects of machine-assisted research strategy were discussed.
Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman
2009-08-15
A series of dicationic diaryl ethers have been synthesized and evaluated for in vitro antibacterial activities, including drug resistant bacterial strains. Most of these compounds have shown potent antibacterial activities. Several compounds, such as piperidinyl and thiomorpholinyl compounds 9e and 9l, improved the antimicrobial selectivity and kept potent anti-MRSA and anti-VRE activity. The most potent bis-indole diphenyl ether 19 exhibited anti-MRSA MIC value of 0.06 microg/mL and enhanced antimicrobial selectivity.
Dordal, Alberto; Lipkin, Mike; Macritchie, Jackie; Mas, Josep; Port, Adriana; Rose, Sally; Salgado, Leonardo; Savic, Vladimir; Schmidt, Wolfgang; Serafini, Maria Teresa; Spearing, William; Torrens, Antoni; Yeste, Sandra
2005-08-15
The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.
A new series of potent benzodiazepine gamma-secretase inhibitors.
Churcher, Ian; Ashton, Kate; Butcher, John W; Clarke, Earl E; Harrison, Timothy; Lewis, Huw D; Owens, Andrew P; Teall, Martin R; Williams, Susie; Wrigley, Jonathan D J
2003-01-20
A new series of benzodiazepine-containing gamma-secretase inhibitors with potential use in the treatment of Alzheimer's disease is disclosed. Structure-activity relationships of the pendant hydrocinnamate side-chain which led to the preparation of highly potent inhibitors are described.
Unwalla, Ray; Mousseau, James J; Fadeyi, Olugbeminiyi O; Choi, Chulho; Parris, Kevin; Hu, Baihua; Kenney, Thomas; Chippari, Susan; McNally, Christopher; Vishwanathan, Karthick; Kilbourne, Edward; Thompson, Catherine; Nagpal, Sunil; Wrobel, Jay; Yudt, Matthew; Morris, Carl A; Powell, Dennis; Gilbert, Adam M; Chekler, Eugene L Piatnitski
2017-07-27
In an effort to find new and safer treatments for osteoporosis and frailty, we describe a novel series of selective androgen receptor modulators (SARMs). Using a structure-based approach, we identified compound 7, a potent AR (ARE EC 50 = 0.34 nM) and selective (N/C interaction EC 50 = 1206 nM) modulator. In vivo data, an AR LBD X-ray structure of 7, and further insights from modeling studies of ligand receptor interactions are also presented.
Arnatt, Christopher K; Zhang, Yan
2013-07-01
G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β 2 -adrenergic receptors (β 2 AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications.
Arnatt, Christopher K.; Zhang, Yan
2015-01-01
G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β2-adrenergic receptors (β2AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications. PMID:26229572
Witschel, Matthias C; Rottmann, Matthias; Schwab, Anatol; Leartsakulpanich, Ubolsree; Chitnumsub, Penchit; Seet, Michael; Tonazzi, Sandro; Schwertz, Geoffrey; Stelzer, Frank; Mietzner, Thomas; McNamara, Case; Thater, Frank; Freymond, Céline; Jaruwat, Aritsara; Pinthong, Chatchadaporn; Riangrungroj, Pinpunya; Oufir, Mouhssin; Hamburger, Matthias; Mäser, Pascal; Sanz-Alonso, Laura M; Charman, Susan; Wittlin, Sergio; Yuthavong, Yongyuth; Chaiyen, Pimchai; Diederich, François
2015-04-09
Several of the enzymes related to the folate cycle are well-known for their role as clinically validated antimalarial targets. Nevertheless for serine hydroxymethyltransferase (SHMT), one of the key enzymes of this cycle, efficient inhibitors have not been described so far. On the basis of plant SHMT inhibitors from an herbicide optimization program, highly potent inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) SHMT with a pyrazolopyran core structure were identified. Cocrystal structures of potent inhibitors with PvSHMT were solved at 2.6 Å resolution. These ligands showed activity (IC50/EC50 values) in the nanomolar range against purified PfSHMT, blood-stage Pf, and liver-stage P. berghei (Pb) cells and a high selectivity when assayed against mammalian cell lines. Pharmacokinetic limitations are the most plausible explanation for lack of significant activity of the inhibitors in the in vivo Pb mouse malaria model.
Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S
2018-06-14
Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.
Vibhute, Amol M; Pushpanandan, Poornenth; Varghese, Maria; Koniecnzy, Vera; Taylor, Colin W; Sureshan, Kana M
2016-11-03
Inositol 1,4,5-trisphosphate receptors (IP 3 Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca 2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP 3 R. Adenophostin A (AdA) is a potent agonist of IP 3 R and since some dimeric analogs of IP 3 R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca 2+ through type 1 IP 3 R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin.
Liu, Feng; Chen, Xin; Allali-Hassani, Abdellah; Quinn, Amy M.; Wasney, Gregory A.; Dong, Aiping; Barsyte, Dalia; Kozieradzki, Ivona; Senisterra, Guillermo; Chau, Irene; Siarheyeva, Alena; Kireev, Dmitri B.; Jadhav, Ajit; Herold, J. Martin; Frye, Stephen V.; Arrowsmith, Cheryl H.; Brown, Peter J.; Simeonov, Anton; Vedadi, Masoud; Jin, Jian
2010-01-01
SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template led to the discovery of 8 (UNC0224) as a potent and selective G9a inhibitor. A high resolution X-ray crystal structure of the G9a-8 complex, the first co-crystal structure of G9a with a small molecule inhibitor, was obtained. The co-crystal structure validated our binding hypothesis and will enable structure-based design of novel inhibitors. 8 is a useful tool for investigating the biology of G9a and its roles in chromatin remodeling. PMID:19891491
Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.
Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R
2017-07-13
We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
Naik, P K; Singh, T; Singh, H
2009-07-01
Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.
Liu, Jinbing; Wu, Fengyan; Chen, Changhong
2015-11-15
Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan
2016-12-01
Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Banik, Milon; Patra, Mousumi; Dutta, Debanjan; Mukherjee, Riya; Basu, Tarakdas
2018-05-09
A simple method of synthesis of stable bimetallic copper-silver nanoparticle (Cu@Ag NP) was developed by successive reduction of Cu(NO3)2 and AgNO3, using hydrazine hydrate as the reducing agent and gelatine and Poly-vinyl pyrrolidone (PVP) as the capping agents. The round-shaped particles were of core-shell structure with a core of Cu0 atoms surrounded by a shell of Ag0 atoms. The size and the mol. wt. of the NPs were (100 ± 10) nm and (820 ± 157) Kd respectively; the particles were crystalline in nature and 90% of the precursors Cu(NO3)2 and AgNO3 were converted to the NPs. The particles were more toxic to cancer cells than normal cells; the dose of the NPs (4.6 µg/ml), that killed 90% of the human liver cancer cells HepG2, killed only 32.5% of the normal liver cells WRL68. Therefore, the NP may be developed as a potent anti-cancer drug in future. The more detailed study on the cytotoxicity of Cu@AgNP revealed that the particles caused cell cycle arrest in G2 / M phase, depolarization of mitochondrial membrane potential, translocation of phosphatidyl serine residues from inner to outer leaflets of cell membrane and DNA degradation in the HepG2 cells; these phenomena confirmed that the NP-induced cell death was apoptotic in nature. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barsanti, Paul A.; Aversa, Robert J.; Jin, Xianming
A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit 1 led to a novel series of highly potent and selective tetrahydropyrazolo[1,5-a]pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs. Detailed DMPK studies involving cyanide and GSH as trapping agents during microsomal incubations, in addition to deuterium-labeled compounds as mechanistic probes uncovered the molecular basis for the observed CYP3A4 TDI in the series.
Potent antitumor activity of a urokinase-activated engineered anthrax toxin
NASA Astrophysics Data System (ADS)
Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.
2003-01-01
The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.
The discovery of thienopyridine analogues as potent IkappaB kinase beta inhibitors. Part II.
Wu, Jiang-Ping; Fleck, Roman; Brickwood, Janice; Capolino, Alison; Catron, Katrina; Chen, Zhidong; Cywin, Charles; Emeigh, Jonathan; Foerst, Melissa; Ginn, John; Hrapchak, Matt; Hickey, Eugene; Hao, Ming-Hong; Kashem, Mohammed; Li, Jun; Liu, Weimin; Morwick, Tina; Nelson, Richard; Marshall, Daniel; Martin, Leslie; Nemoto, Peter; Potocki, Ian; Liuzzi, Michel; Peet, Gregory W; Scouten, Erika; Stefany, David; Turner, Michael; Weldon, Steve; Zimmitti, Clare; Spero, Denise; Kelly, Terence A
2009-10-01
An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency. The most potent analogues inhibit IKKbeta with IC50s as low as 40 nM, suppress LPS-induced TNF-alpha production in vitro and in vivo, display good kinase selectivity profiles, and are active in a HeLa cell NF-kappaB reporter gene assay, demonstrating that they directly interfere with the NF-kappaB signaling pathway.
Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priestley, E. Scott; De Lucca, Indawati; Zhou, Jinglan
A 6-amidinotetrahydroquinoline screening hit was driven to a structurally novel, potent, and selective FVIIa inhibitor through a combination of library synthesis and rational design. An efficient gram-scale synthesis of the active enantiomer BMS-593214 was developed, which required significant optimization of the key Povarov annulation. Importantly, BMS-593214 showed antithrombotic efficacy in a rabbit arterial thrombosis model. A crystal structure of BMS-593214 bound to FVIIa highlights key contacts with Asp 189, Lys 192, and the S2 pocket.
Gyu-Shik Kim; Huadong Zeng; Jeffrey T. Rhule; Ira A. Weinstock; Craig L. Hill
1999-01-01
Potently antiviral polyniobotungstates have been structurally characterized; the dimer A-[alpha]-[Si2Nb6W18O77]8â cleaves cleanly to the monomer A-[alpha]-[SiNb3W9O40]7â within 1 min in aqueous solution buffered at physiological (neutral) pH establishing that the monomer and not the dimer is pharmacologically relevant.
Yang, Sheng-Ping; Zhang, Xiao-Wei; Ai, Jing; Gan, Li-She; Xu, Jin-Biao; Wang, Ying; Su, Zu-Shang; Wang, Lu; Ding, Jian; Geng, Mei-Yu; Yue, Jian-Min
2012-09-27
Eucalyptin A (1), together with two known compounds 2 and 3 exhibiting potent inhibition on HGF/c-Met axis, was discovered from the fruits of Eucalyptus globulus. 1 possessed an unprecedented carbon framework of phloroglucinol-coupled sesquiterpenoid, and its structure was elucidated by spectroscopic method and ECD calculation. A brief structure-activity relationship discussion indicated that the coupling of a phloroglucinol and a sesquiterpenoid is essential for the activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parai, Maloy Kumar; Huggins, David J.; Cao, Hong
2012-09-11
A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and Cmore » and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.« less
Butini, Stefania; Pickering, Darryl S; Morelli, Elena; Coccone, Salvatore Sanna; Trotta, Francesco; De Angelis, Meri; Guarino, Egeria; Fiorini, Isabella; Campiani, Giuseppe; Novellino, Ettore; Schousboe, Arne; Christensen, Jeppe K; Gemma, Sandra
2008-10-23
(S)-CPW399 ((S)-1) is a potent and excitotoxic AMPA receptor partial agonist. Modifying the cyclopentane ring of (S)-1, we developed two of the most potent and selective functional antagonists (5 and 7) for kainate receptor (KA-R) subunit iGluR5. Derivatives 5 and 7, with their unique pharmacological profile, may lead to a better understanding of the different roles and modes of action of iGluR1-5 subunits, paving the way for the synthesis of new potent, subunit selective iGluR5 modulators.
Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw
2014-01-01
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Farndon, Joshua J; Ma, Xiaofeng; Bower, John F
2017-10-11
We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.
Wang, Beilei; Deng, Yuanxin; Chen, Yongfei; Yu, Kailin; Wang, Aoli; Liang, Qianmao; Wang, Wei; Chen, Cheng; Wu, Hong; Hu, Chen; Miao, Weili; Hur, Wooyoung; Wang, Wenchao; Hu, Zhenquan; Weisberg, Ellen L; Wang, Jinhua; Ren, Tao; Wang, Yinsheng; Gray, Nathanael S; Liu, Qingsong; Liu, Jing
2017-09-08
Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (k inact /K i ) of 0.01 μM -1 s -1 . Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC 50 < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Huang, Boshi; Wang, Xueshun; Liu, Xinhao; Chen, Zihui; Li, Wanzhuo; Sun, Songkai; Liu, Huiqing; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong
2017-08-15
Crystallographic overlap studies and pharmacophoric analysis indicated that diarylpyrimidine (DAPY)-based HIV-1 NNRTIs showed a similar binding mode and pharmacophoric features as indolylarylsulfones (IASs), another class of potent NNRTIs. Thus, a novel series of DAPY-IAS hybrid derivatives were identified as newer NNRTIs using structure-based molecular hybridization. Some target compounds exhibited moderate activities against HIV-1 IIIB strain, among which the two most potent inhibitors possessed EC 50 values of 1.48μM and 1.61μM, respectively. They were much potent than the reference drug ddI (EC 50 =76.0μM) and comparable to 3TC (EC 50 =2.54μM). Compound 7a also exhibited the favorable selectivity index (SI=80). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships, molecular modeling studies, and in silico calculation of physicochemical properties of these new inhibitors were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong
2018-01-19
Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.
Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong in Vivo Antitumor Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Haibin; Aguilar, Angelo; Chen, Jianfang
Bcl-2 and Bcl-xL are key apoptosis regulators and attractive cancer therapeutic targets. We have designed and optimized a class of small-molecule inhibitors of Bcl-2 and Bcl-xL containing a 4,5-diphenyl-1H-pyrrole-3-carboxylic acid core structure. A 1.4 {angstrom} resolution crystal structure of a lead compound, 12, complexed with Bcl-xL has provided a basis for our optimization. The most potent compounds, 14 and 15, bind to Bcl-2 and Bcl-xL with subnanomolar K{sub i} values and are potent antagonists of Bcl-2 and Bcl-xL in functional assays. Compounds 14 and 15 inhibit cell growth with low nanomolar IC{sub 50} values in multiple small-cell lung cancer cellmore » lines and induce robust apoptosis in cancer cells at concentrations as low as 10 nM. Compound 14 also achieves strong antitumor activity in an animal model of human cancer.« less
Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold.
Liu, Jian; Peng, Xia; Dai, Yang; Zhang, Wei; Ren, Sumei; Ai, Jing; Geng, Meiyu; Li, Yingxia
2015-07-28
Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy. Based on the structure of AZD4547 and NVPBGJ-398, we designed novel 1H-indazol-3-amine scaffold derivatives by utilizing scaffold hopping and molecular hybridization strategies. Consequently, twenty-eight new compounds were synthesized and evaluated for their inhibitory activity against FGFR1. Compound 7n bearing a 6-(3-methoxyphenyl)-1H-indazol-3-amine scaffold was first identified as a potent FGFR1 inhibitor, with good enzymatic inhibition (IC50 = 15.0 nM) and modest cellular inhibition (IC50 = 642.1 nM). The crystal structure of 7n bound to FGFR1 was obtained, which might provide a new basis for potent inhibitor design. Further structural optimization revealed that compound 7r stood out as the most potent FGFR1 inhibitor with the best enzyme inhibitory (IC50 = 2.9 nM) and cellular activity (IC50 = 40.5 nM).
Dmt and opioid peptides: a potent alliance.
Bryant, Sharon D; Jinsmaa, Yunden; Salvadori, Severo; Okada, Yoshio; Lazarus, Lawrence H
2003-01-01
The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance. Copyright 2003 Wiley Periodicals, Inc.
Prabhu, Dhamodharan; Vidhyavathi, Ramasamy; Jeyakanthan, Jeyaraman
2017-02-01
Serratia marcescens is an opportunistic pathogen responsible for the respiratory and urinary tract infections in humans. The antibiotic resistance mechanism of S. marcescens is mediated through aminoglycoside modification enzyme that transfer adenyl group from substrate to antibiotic through regiospecific transfers for the inactivation of antibiotics. Streptomycin 3 ″ -adenylyltransferase acts on the 3' position of the antibiotic and considered as a novel drug target to overcome bacterial antibiotic resistance. Till now, there is no experimentally solved crystal structure of Streptomycin 3″-adenylyltransferase in S. marcescens. Hence, the present study was initiated to construct the three dimensional structure of Streptomycin 3″-adenylyltransferase in order to understand the binding mechanism. The modeled structure was subjected to structure-based virtual screening to identify potent compounds from the five chemical structure databases. Furthermore, different computational methods such as molecular docking, molecular dynamics simulations, ADME toxicity assessment, free energy and density functional theory calculations predicted the structural, binding and pharmacokinetic properties of the best five compounds. Overall, the results suggested that stable binding confirmation of the five potent compounds were mediated through hydrophobic, π-π stacking, salt bridges and hydrogen bond interactions. The identified compounds could pave way for the development of anti-pathogenic agents as potential drug entities. Copyright © 2016 Elsevier Ltd. All rights reserved.
2-Aminobenzimidazoles as potent Aurora kinase inhibitors.
Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard
2009-09-01
This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.
Crawford, Terry D; Audia, James E; Bellon, Steve; Burdick, Daniel J; Bommi-Reddy, Archana; Côté, Alexandre; Cummings, Richard T; Duplessis, Martin; Flynn, E Megan; Hewitt, Michael; Huang, Hon-Ren; Jayaram, Hariharan; Jiang, Ying; Joshi, Shivangi; Kiefer, James R; Murray, Jeremy; Nasveschuk, Christopher G; Neiss, Arianne; Pardo, Eneida; Romero, F Anthony; Sandy, Peter; Sims, Robert J; Tang, Yong; Taylor, Alexander M; Tsui, Vickie; Wang, Jian; Wang, Shumei; Wang, Yongyun; Xu, Zhaowu; Zawadzke, Laura; Zhu, Xiaoqin; Albrecht, Brian K; Magnuson, Steven R; Cochran, Andrea G
2017-07-13
The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao,J.; Chang, C.; Cheney, D.
In the search of Factor Xa (FXa) inhibitors structurally different from the pyrazole-based series, we identified a viable series of enantiopure cis-(1R,2S)-cycloalkyldiamine derivatives as potent and selective inhibitors of FXa. Among them, cyclohexyldiamide 7 and cyclopentyldiamide 9 were the most potent neutral compounds, and had good anticoagulant activity comparable to the pyrazole-based analogs. Crystal structures of 7-FXa and 9-FXa illustrate binding similarities and differences between the five- and the six-membered core systems, and provide rationales for the observed SAR of P1 and linker moieties.
Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action
2014-01-01
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled. PMID:25815138
Gong, Hua; Weinstein, David S; Lu, Zhonghui; Duan, James J-W; Stachura, Sylwia; Haque, Lauren; Karmakar, Ananta; Hemagiri, Hemalatha; Raut, Dhanya Kumar; Gupta, Arun Kumar; Khan, Javed; Camac, Dan; Sack, John S; Pudzianowski, Andrew; Wu, Dauh-Rurng; Yarde, Melissa; Shen, Ding-Ren; Borowski, Virna; Xie, Jenny H; Sun, Huadong; D'Arienzo, Celia; Dabros, Marta; Galella, Michael A; Wang, Faye; Weigelt, Carolyn A; Zhao, Qihong; Foster, William; Somerville, John E; Salter-Cid, Luisa M; Barrish, Joel C; Carter, Percy H; Dhar, T G Murali
2018-01-15
We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Y max in the PXR assay for long term preclinical pharmacokinetic (PK) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Towards New Antifolates Targeting Eukaryotic Opportunistic Infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Bolstad, D; Bolstad, E
2009-01-01
Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison ofmore » the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.« less
A simple and robust vector-based shRNA expression system used for RNA interference.
Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi
2013-01-01
RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.
D'Erasmo, Michael P; Smith, William B; Munoz, Alberto; Mohandas, Poornima; Au, Andrew S; Marineau, Jason J; Quadri, Luis E N; Bradner, James E; Murelli, Ryan P
2014-08-15
7,9-Diaryl-1,6,8-trioxaspiro[4.5]dec-3-en-2-ones are a recently described group of spirocyclic butenolides that can be generated rapidly and as a single diastereomer through a cascade process between γ-hydroxybutenolides and aromatic aldehydes. The following outlines our findings that these spirocycles are potently cytotoxic and have a dramatic structure-function profile that provides excellent insight into the structural features required for this potency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural Biology and Molecular Modeling in the Design of Novel DPP-4 Inhibitors
NASA Astrophysics Data System (ADS)
Scapin, Giovanna
Inhibition of dipeptidyl peptidase IV (DPP-4) is a promising new approach for the treatment of type 2 diabetes. DPP-4 is the enzyme responsible for inactivating the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP), two hormones that play important roles in glucose homeostasis. The potent, orally bioavailable and highly selective small molecule DPP-4 inhibitor sitagliptin has been approved by the FDA as novel drug for the treatment of type 2 diabetes. The comparison between the binding mode of sitagliptin (a β-amino acid) and that of a second class of inhibitors (α-amino acid-based) initially led to the successful identification and design of structurally diverse and highly potent DPP-4 inhibitors. Further analysis of the crystal structure of sitagliptin bound to DPP-4 suggested that the central β-amino butanoyl moiety could be replaced by a rigid group. This was confirmed by molecular modeling, and the resulting cyclohexylamine analogs were synthesized and found to be potent DPP-4 inhibitors. However, the triazolopyrazine was predicted to be distorted in order to fit in the binding pocket, and the crystal structure showed that multiple conformations exist for this moiety. Additional molecular modeling studies were then used to improve potency of the cyclohexylamine series. In addition, a 3-D QSAR method was used to gain insight for reducing off-target DPP-8/9 activities. Novel compounds were thus synthesized and found to be potent DPP-4 inhibitors. Two compounds in particular were designed to be highly selective against off-target "DPP-4 Activity- and/or Structure Homologues" (DASH) enzymes while maintaining potency against DPP-4.
Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis
2016-12-22
HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.
La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano
2008-07-10
New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC
Identification of pyrrolo[2,3-d]pyrimidines as potent HCK and FLT3-ITD dual inhibitors.
Koda, Yasuko; Kikuzato, Ko; Mikuni, Junko; Tanaka, Akiko; Yuki, Hitomi; Honma, Teruki; Tomabechi, Yuri; Kukimoto-Niino, Mutsuko; Shirouzu, Mikako; Shirai, Fumiyuki; Koyama, Hiroo
2017-11-15
A series of novel pyrrolo[2,3-d]pyrimidines were synthesized by introducing 15 different amino acids to 7-cyclohexyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine. Compounds with potent activities against HCK and FLT3-ITD were evaluated in viability studies with acute myeloid leukemia cell line MV4-11. Our structure activity relationship analyses lead to the identification of compound 31, which exhibited potent HCK and FLT3-ITD inhibition and activity against the MV4-11 cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Kyeong; Lee, Jee-Hyun; Boovanahalli, Shanthaveerappa K; Choi, Yongseok; Choo, Soo-Jin; Yoo, Ick-dong; Kim, Dong Hee; Yun, Mi Young; Lee, Gye Won; Song, Gyu-Yong
2010-12-01
We report the synthesis of a novel series of highly potent melanin inhibitors which were obtained through structural modification of an anticancer compound S-(+)-decursinol. The in vitro inhibitory potencies of the newly synthesized compounds were evaluated against α-MSH induced melanin production in B16 murine melanoma cells. Among the compounds evaluated, compounds 2, 3, 6b, 7a, 7b, 8a and 8b emerged as highly potent inhibitors of melanin production. Besides, these compounds demonstrated significantly low cytotoxicity. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Elnagar, Ahmed Y; Wali, Vikram B; Sylvester, Paul W; El Sayed, Khalid A
2010-01-15
Vitamin E (VE) is a generic term that represents a family of compounds composed of various tocopherol and tocotrienol isoforms. Tocotrienols display potent anti-angiogenic and antiproliferative activities. Redox-silent tocotrienol analogues also display potent anticancer activity. The ultimate objective of this study was to develop semisynthetically C-6-modified redox-silent tocotrienol analogues with enhanced antiproliferative and anti-invasive activities as compared to their parent compound. Examples of these are carbamate and ether analogues of alpha-, gamma-, and delta-tocotrienols (1-3). Various aliphatic, olefinic, and aromatic substituents were used. Steric limitation, electrostatic, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) properties were varied at this position and the biological activities of these derivatives were tested. Three-dimensional quantitative structure-activity relationship (3D QSAR) studies were performed using Comparative Molecular Field (CoMFA) and Comparative Molecular Similarity Indices Analyses (CoMSIA) to better understand the structural basis for biological activity and guide the future design of more potent VE analogues. Copyright 2009 Elsevier Ltd. All rights reserved.
Engineering parvovirus-like particles for the induction of B-cell, CD4(+) and CTL responses.
Rueda, P; Martínez-Torrecuadrada, J L; Sarraseca, J; Sedlik, C; del Barrio, M; Hurtado, A; Leclerc, C; Casal, J I
1999-09-01
An antigen delivery system based on hybrid recombinant parvovirus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine (PPV) or canine parvovirus (CPV) expressed in insect cells with the baculovirus system has been developed. PPV:VLPs containing a CD8(+) epitope from the LCMV nucleoprotein evoked a potent CTL response and were able to protect mice against a lethal infection with the virus. Also, PPV:VLPs containing the C3:T epitope from poliovirus elicited a CD4(+)3 log(10) units) against poliovirus. The possibility of combining different types of epitopes in different positions of a single particle to stimulate different branches of the immune system paves the way to the production of more potent vaccines in a simple and cheap way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Peter; Storer, R. Ian; Sabnis, Yogesh A.
By use of a structure-based computational method for identification of structurally novel Janus kinase (JAK) inhibitors predicted to bind beyond the ATP binding site, a potent series of indazoles was identified as selective pan-JAK inhibitors with a type 1.5 binding mode. Optimization of the series for potency and increased duration of action commensurate with inhaled or topical delivery resulted in potent pan-JAK inhibitor 2 (PF-06263276), which was advanced into clinical studies.
Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette
2016-02-11
To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.
Effects of chalcone derivatives on lipoxygenase and cyclooxygenase activities of mouse epidermis.
Nakadate, T; Aizu, E; Yamamoto, S; Kato, R
1985-09-01
The effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis were investigated. The chalcone derivatives which have 3,4-dihydroxycinnamoyl structure in the molecule, such as 3,4-dihydroxychalcone, 3,4,2'-trihydroxychalcone, 3,4,4'-trihydroxychalcone and 3,4,2'4'-tetrahydroxychalcone, potently inhibited epidermal 12-lipoxygenase activity. Although some of them also inhibited cyclooxygenase activity at relatively high concentrations, the inhibitory effects of these chalcone derivatives on 12-lipoxygenase were 10 times or more potent than their effects on cyclooxygenase. The chalcone derivatives which have cinnamoyl or 4-hydroxycinnamoyl structure, instead of 3,4-dihydroxycinnamoyl structure, in the molecule, showed little or no inhibitory effects on either 12-lipoxygenase or cyclooxygenase activities. The inhibitory effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis are dependent on the particular structure, i.e. 3,4-dihydroxycinnamoyl structure, of the chalcone derivatives.
Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.
Kim, Changhoon; Ann, Jihyae; Lee, Sunho; Sun, Wei; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Christoph, Thomas; Lee, Jeewoo
2018-05-23
A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lerner, Christian; Jakob-Roetne, Roland; Buettelmann, Bernd; Ehler, Andreas; Rudolph, Markus; Rodríguez Sarmiento, Rosa María
2016-11-23
A fragment screening approach designed to target specifically the S-adenosyl-l-methionine pocket of catechol O-methyl transferase allowed the identification of structurally related fragments of high ligand efficiency and with activity on the described orthogonal assays. By use of a reliable enzymatic assay together with X-ray crystallography as guidance, a series of fragment modifications revealed an SAR and, after several expansions, potent lead compounds could be obtained. For the first time nonphenolic and small low nanomolar potent, SAM competitive COMT inhibitors are reported. These compounds represent a novel series of potent COMT inhibitors that might be further optimized to new drugs useful for the treatment of Parkinson's disease, as adjuncts in levodopa based therapy, or for the treatment of schizophrenia.
Prat, Maria; Buil, María Antonia; Fernández, Maria Dolors; Tort, Laia; Monleón, Juan Manuel; Casals, Gaspar; Ferrer, Manuel; Castro, Jordi; Gavaldà, Amadeu; Miralpeix, Montserrat; Ramos, Israel; Vilella, Dolors; Huerta, Josep Maria; Espinosa, Sònia; Hernández, Begoña; Segarra, Victor; Córdoba, Mònica
2015-04-15
Novel quaternary ammonium derivatives of (3R)-quinuclidinyl amides have been identified as potent M3 muscarinic antagonists with a long duration of action in an in vivo model of bronchoconstriction. The synthesis, structure-activity relationships and biological evaluation of this series of compounds are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wafo, Pascal; Kamdem, Ramsay S T; Ali, Zulfiqar; Anjum, Shazia; Khan, Shamsun Nahar; Begum, Afshan; Krohn, Karsten; Abegaz, Berhanu M; Ngadjui, Bonaventure T; Choudhary, Muhammad Iqbal
2010-12-17
Duboscic acid (1), a triterpenoid with a unique carbon backbone, was isolated from Duboscia macrocarpa Bocq. It is the first member of a new class of triterpenoids, for which the name "dubosane" is proposed. Duboscic acid has a potent α-glucosidase inhibition, and its structure was unambiguously deduced by a single-crystal X-ray diffraction study.
Novel 5-aryl-1,3-dihydro-indole-2-thiones. potent, orally active progesterone receptor agonists.
Fensome, Andrew; Koko, Marci; Wrobel, Jay; Zhang, Puwen; Zhang, Zhiming; Cohen, Jeffrey; Lundeen, Scott; Rudnick, Kelly; Zhu, Yuan; Winneker, Richard
2003-04-07
During the course of our studies on 3,3-disubstituted-5-aryloxindoles derived progesterone receptor (PR) antagonists we discovered that changing the amide funtionality to a thio-amide resulted in compounds displaying potent PR agonist activity. In this communication, the synthesis, structure activity relationships (SAR) and in vivo activity of various 5-arylthio-oxindoles will be discussed.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.
2014-07-01
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.
Antiviral and Anticancer Optimization Studies of the DNA-binding Marine Natural Product Aaptamine
Bowling, John J.; Pennaka, Hari K.; Ivey, Kelly; Wahyuono, Subagus; Kelly, Michelle; Schinazi, Raymond F.; Valeriote, Frederick A.; Graves, David E.; Hamann, Mark T.
2016-01-01
Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV–vis absorbance titration data, the Kobs for aaptamine was 4.0 (±0.2) × 103 which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives’ whole cell and viral assay results are discussed. PMID:18251774
Vibhute, Amol M.; Pushpanandan, Poornenth; Varghese, Maria; Koniecnzy, Vera; Taylor, Colin W.
2016-01-01
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP3R. Adenophostin A (AdA) is a potent agonist of IP3R and since some dimeric analogs of IP3R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca2+ through type 1 IP3R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin. PMID:28066549
Structure-activity relationships of rationally designed AMACR 1A inhibitors.
Yevglevskis, Maksims; Lee, Guat L; Nathubhai, Amit; Petrova, Yoana D; James, Tony D; Threadgill, Michael D; Woodman, Timothy J; Lloyd, Matthew D
2018-04-30
α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the 'racemisation' reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure-activity relationship study has been performed. This paper describes the first structure-activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC 50 = 400-750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure-activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation. Copyright © 2018 Elsevier Inc. All rights reserved.
Aftab, D T; Ballas, L M; Loomis, C R; Hait, W N
1991-11-01
Phenothiazines are known to inhibit the activity of protein kinase C. To identify structural features that determine inhibitory activity against the enzyme, we utilized a semiautomated assay [Anal. Biochem. 187:84-88 (1990)] to compare the potency of greater than 50 phenothiazines and related compounds. Potency was decreased by trifluoro substitution at position 2 on the phenothiazine nucleus and increased by quinoid structures on the nucleus. An alkyl bridge of at least three carbons connecting the terminal amine to the nucleus was required for activity. Primary amines and unsubstituted piperazines were the most potent amino side chains. We selected 7,8-dihydroxychlorpromazine (DHCP) (IC50 = 8.3 microM) and 2-chloro-9-(3-[1-piperazinyl]propylidene)thioxanthene (N751) (IC50 = 14 microM) for further study because of their potency and distinct structural features. Under standard (vesicle) assay conditions, DHCP was noncompetitive with respect to phosphatidylserine and a mixed-type inhibitor with respect to ATP. N751 was competitive with respect to phosphatidylserine and noncompetitive with respect to ATP. Using the mixed micelle assay, DHCP was a competitive inhibitor with respect to both phosphatidylserine and ATP. DHCP was selective for protein kinase C compared with cAMP-dependent protein kinase, calmodulin-dependent protein kinase type II, and casein kinase. N751 was more potent against protein kinase C compared with cAMP-dependent protein kinase and casein kinase but less potent against protein kinase C compared with calmodulin-dependent protein kinase type II. DHCP was analyzed for its ability to inhibit different isoenzymes of protein kinase C, and no significant isozyme selectivity was detected. These data provide important information for the rational design of more potent and selective inhibitors of protein kinase C.
Sarma, D; Sarma, S; Baruah, A
1999-04-01
A simple protocol for in vitro mass multiplication of Rauvolfia tetraphylla (Apocynaceae) has been developed. The endophytic microflora was controlled by adopting integrated measures. Multiple shoot development was achieved on MS + Kin (0.1-0.2 mg/l) + BAP (0.4-0.5 mg/l) media. Rooting from in vitro shoots occurred on NAA containing media. In vitro flowering was induced in shoot multiplication media.
2012-01-01
treatment applications using solar light as a renewable source of energy. Introduction The need for low cost and efficient water treatment strategies... photocatalysis with nanoparticles (such as titania, TiO2) show tremendous promise as a simple and energy efficient tech- nology for water purification and...which limits the amount of available sunlight that can be used for photocatalysis . To circumvent this issue, methods have been developed to extend
Lu, Wenfeng; Zhang, Dihua; Ma, Haikuo; Tian, Sheng; Zheng, Jiyue; Wang, Qin; Luo, Lusong; Zhang, Xiaohu
2018-05-23
The Hedgehog (Hh) signaling pathway plays a critical role in controlling patterning, growth and cell migration during embryonic development. Aberrant activation of Hh signaling has been linked to tumorigenesis in various cancers, such as basal cell carcinoma (BCC) and medulloblastoma. As a key member of the Hh pathway, the Smoothened (Smo) receptor, a member of the G protein-coupled receptor (GPCR) family, has emerged as an attractive therapeutic target for the treatment and prevention of human cancers. The recent determination of several crystal structures of Smo in complex with different antagonists offers the possibility to perform structure-based virtual screening for discovering potent Smo antagonists with distinct chemical scaffolds. In this study, based on the two Smo crystal complexes with the best capacity to distinguish the known Smo antagonists from decoys, the molecular docking-based virtual screening was conducted to identify promising Smo antagonists from ChemDiv library. A total of 21 structurally novel and diverse compounds were selected for experimental testing, and six of them exhibited significant inhibitory activity against the Hh pathway activation (IC 50 < 10 μM) in a GRE (Gli-responsive element) reporter gene assay. Specifically, the most potent compound (compound 20: 47 nM) showed comparable Hh signaling inhibition to vismodegib (46 nM). Compound 20 was further confirmed to be a potent Smo antagonist in a fluorescence based competitive binding assay. Optimization using substructure searching method led to the discovery of 12 analogues of compound 20 with decent Hh pathway inhibition activity, including four compounds with IC 50 lower than 1 μM. The important residues uncovered by binding free energy calculation (MM/GBSA) and binding free energy decomposition were highlighted and discussed. These findings suggest that the novel scaffold afforded by compound 20 can be used as a good starting point for further modification/optimization and the clarified interaction patterns may also guide us to find more potent Smo antagonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
2012-01-01
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains. PMID:22971934
Discovery of potent and selective small-molecule PAR-2 agonists.
Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger
2008-09-25
Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.
Fragment-Based Drug Discovery of Potent Protein Kinase C Iota Inhibitors.
Kwiatkowski, Jacek; Liu, Boping; Tee, Doris Hui Ying; Chen, Guoying; Ahmad, Nur Huda Binte; Wong, Yun Xuan; Poh, Zhi Ying; Ang, Shi Hua; Tan, Eldwin Sum Wai; Ong, Esther Hq; Nurul Dinie; Poulsen, Anders; Pendharkar, Vishal; Sangthongpitag, Kanda; Lee, May Ann; Sepramaniam, Sugunavathi; Ho, Soo Yei; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Hung, Alvin W
2018-05-24
Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.
Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.
Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong
2014-03-15
Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potent D-peptide inhibitors of HIV-1 entry
Welch, Brett D.; VanDemark, Andrew P.; Heroux, Annie; Hill, Christopher P.; Kay, Michael S.
2007-01-01
During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. PMID:17942675
Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G
2016-08-15
We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.
2014-10-02
Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction ofmore » phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.« less
Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors.
Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing
2013-07-15
Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shaaban, Khaled A; Saunders, Meredith A; Zhang, Yinan; Tran, Tuan; Elshahawi, Sherif I; Ponomareva, Larissa V; Wang, Xiachang; Zhang, Jianjun; Copley, Gregory C; Sunkara, Manjula; Kharel, Madan K; Morris, Andrew J; Hower, James C; Tremblay, Matthew S; Prendergast, Mark A; Thorson, Jon S
2017-01-27
The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6-8] and 11 previously reported bacterial metabolites (1, 3, 9-12a, and 14-18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores.
DOCKING OF STRUCTURALLY RELATED DIOLEPOXIDES OF BENZO(GHI)FLUORANTHENE WITH DNA
Docking of structurally-related diolepoxides of benzo{ghi}fluoranthene and benzo{c}phenanthrene with DNA
Polycyclic aromatic hydrocarbons are a class of chemicals found in the environment. Some class members are potent carcinogens while others with similar structures show litt...
Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O
2007-01-01
Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652
Structure and synthesis of a potent glutamate receptor antagonist in wasp venom.
Eldefrawi, A T; Eldefrawi, M E; Konno, K; Mansour, N A; Nakanishi, K; Oltz, E; Usherwood, P N
1988-01-01
A low molecular weight toxin isolated from the venom of the digger wasp Philanthus triangulum, first noted by T. Piek, is a potent antagonist of transmission at quisqualate-sensitive glutamate synapses of locust leg muscle. This philanthotoxin 433 (PTX-433) has been purified, chemically characterized, and subsequently synthesized along with two closely related analogues. It has a butyryl/tyrosyl/spermine sequence and a molecular weight of 435. Its two analogues, PTX-343 and PTX-334 (the numerals denoting the number of methylenes between the amino groups of the spermine moiety), are also active on the glutamate synapse of the locust leg muscle; PTX-334 was more potent and PTX-343 was less potent than the natural toxin. Such chemicals are useful for studying, labeling, and purifying glutamate receptors and may become models for an additional class of therapeutic drugs and possibly insecticides. Images PMID:2838850
Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi
2003-01-01
Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859
Ogino, Masaki; Fukui, Seiji; Nakada, Yoshihisa; Tokunoh, Ryosuke; Itokawa, Shigekazu; Kakoi, Yuichi; Nishimura, Satoshi; Sanada, Tsukasa; Fuse, Hiromitsu; Kubo, Kazuki; Wada, Takeo; Marui, Shogo
2011-01-01
Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.).
Zhang, Zhen; Zhao, Dongmei; Dai, Yang; Cheng, Maosheng; Geng, Meiyu; Shen, Jingkang; Ma, Yuchi; Ai, Jing; Xiong, Bing
2016-10-23
Tyrosine kinase fibroblast growth factor receptor (FGFR), which is aberrant in various cancer types, is a promising target for cancer therapy. Here we reported the design, synthesis, and biological evaluation of a new series of 6-(2,6-dichloro-3,5-dimethoxyphenyl)-4-substituted-1 H -indazole derivatives as potent FGFR inhibitors. The compound 6-(2,6-dichloro-3,5-dimethoxyphenyl)- N -phenyl-1 H -indazole-4-carboxamide ( 10a ) was identified as a potent FGFR1 inhibitor, with good enzymatic inhibition. Further structure-based optimization revealed that 6-(2,6-dichloro-3,5-dimethoxyphenyl)- N -(3-(4-methylpiperazin-1-yl)phenyl)-1 H -indazole-4-carboxamide ( 13a ) is the most potent FGFR1 inhibitor in this series, with an enzyme inhibitory activity IC 50 value of about 30.2 nM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University of Buffalo, Buffalo, NY 14260; Pace, Jim
The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b,more » f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.« less
The monoamine oxidase inhibition properties of selected structural analogues of methylene blue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delport, Anzelle
The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, themore » present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC{sub 50} = 0.0037 μM), Nile blue (IC{sub 50} = 0.0077 μM) and 1,9-dimethyl methylene blue (IC{sub 50} = 0.018 μM) exhibiting higher potency inhibition compared to MB (IC{sub 50} = 0.07 μM). Nile blue also represents a potent MAO-B inhibitor with an IC{sub 50} value of 0.012 μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. - Highlights: • MB analogues, cresyl violet and Nile blue, are high potency MAO-A inhibitors. • Nile blue also represents a potent MAO-B inhibitor. • Potent MAO-A inhibition should alert to potential serotonin toxicity.« less
Binding Interactions of Agents That Alter α-Synuclein Aggregation
Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.
2015-01-01
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374
Binding Interactions of Agents That Alter α-Synuclein Aggregation.
Sivanesam, K; Byrne, A; Bisaglia, M; Bubacco, L; Andersen, N
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15 N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15 N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15 N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.
Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi
2014-05-16
Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.
Secondary metabolites of cyanobacteria Nostoc sp.
NASA Astrophysics Data System (ADS)
Kobayashi, Akio; Kajiyama, Shin-Ichiro
1998-03-01
Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.
De Colibus, Luigi; Wang, Xiangxi; Tijsma, Aloys; Neyts, Johan; Spyrou, John A B; Ren, Jingshan; Grimes, Jonathan M; Puerstinger, Gerhard; Leyssen, Pieter; Fry, Elizabeth E; Rao, Zihe; Stuart, David I
2015-10-01
The replication of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16), which are the major cause of hand, foot and mouth disease (HFMD) in children, can be inhibited by the capsid binder GPP3. Here, we present the crystal structure of CVA16 in complex with GPP3, which clarifies the role of the key residues involved in interactions with the inhibitor. Based on this model, in silico docking was performed to investigate the interactions with the two next-generation capsid binders NLD and ALD, which we show to be potent inhibitors of a panel of enteroviruses with potentially interesting pharmacological properties. A meta-analysis was performed using the available structural information to obtain a deeper insight into those structural features required for capsid binders to interact effectively and also those that confer broad-spectrum anti-enterovirus activity.
Strontium and barium in aqueous solution and a potassium channel binding site
NASA Astrophysics Data System (ADS)
Chaudhari, Mangesh I.; Rempe, Susan B.
2018-06-01
Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.
Wang, Huiqun; Kellogg, Glen E; Xu, Ping; Zhang, Yan
2018-06-02
Meso-Diaminopimelic acid (meso-2,6-diamino-heptanedioic acid, DAP) is an important component of the cell wall of many bacteria. Meso-diaminopimelate dehydrogenase (m-Ddh) is a critical enzyme in the process of converting tetrahydrodipicolinate to DAP. Here, we are proposing that DAP analogs targeting m-Ddh may be considered as potential antibiotics. Four DAP analogs without significant structural change from DAP have been obtained and their inhibitory potencies against m-Ddh from the P. gingivalis strain W83 show significant differences from that of DAP. However, their inhibitory mechanisms as for how simple structural change influences the inhibitory potency remain unknown. Therefore, we employed molecular modeling methods to obtain insight into the inhibitory mechanisms of DAP and analogs with m-Ddh. The predicted binding mode of DAP was highly consistent with the experimental structural data and disclosed the important roles played by the binding pocket residues. According to our predictions, the isoxazoline ring of compounds 1 and 2 and the double bonds in compounds 3 and 4 had distinct influences on these compounds' binding to m-Ddh. This enriched understanding of the inhibitory mechanisms of DAP and these four analogs to m-Ddh has provided new and relevant information for future rational development of potent inhibitors targeting m-Ddh. Copyright © 2018. Published by Elsevier Inc.
Marco, Esther; Martín-Santamaría, Sonsoles; Cuevas, Carmen; Gago, Federico
2004-08-26
Didemnins and tamandarins are closely related marine natural products with potent inhibitory effects on protein synthesis and cell viability. On the basis of available biochemical and structural evidence and results from molecular dynamics simulations, a model is proposed that accounts for the strong and selective binding of these compounds to human elongation factor eEF1A in the presence of GTP. We suggest that the p-methoxyphenyl ring of these cyclic depsipeptides is inserted into the same pocket in eEF1A that normally lodges either the 3' terminal adenine of aminoacylated tRNA, as inferred from two prokaryotic EF-Tu.GTP.tRNA complexes, or the aromatic side chain of Phe/Tyr-163 from the nucleotide exchange factor eEF1Balpha, as observed in several X-ray crystal structures of a yeast eEF1A:eEF1Balpha complex. This pocket, which has a strong hydrophobic character, is formed by two protruding loops on the surface of eEF1A domain 2. Further stabilization of the bound depsipeptide is brought about by additional crucial interactions involving eEF1A domain 1 in such a way that the molecule fits snugly at the interface between these two domains. In the GDP-bound form of eEF1A, this binding site exists only as two separate halves, which accounts for the much greater affinity of didemnins for the GTP-bound form of this elongation factor. This binding mode is entirely different from those seen in the complexes of the homologous prokaryotic EF-Tu with kirromycin-type antibiotics or the cyclic thiazolyl peptide antibiotic GE2270A. Interestingly, the set of interactions used by didemnins to bind to eEF1A is also distinct from that used by eEF1Balpha or eEF1Bbeta, thus establishing a competition for binding to a common site that goes beyond simple molecular mimicry. The model presented here is consistent with both available biochemical evidence and known structure-activity relationships for these two classes of natural compounds and synthetic analogues and provides fertile ground for future research.
Discovery of potent and selective CDK8 inhibitors through FBDD approach.
Han, Xingchun; Jiang, Min; Zhou, Chengang; Zhou, Zheng; Xu, Zhiheng; Wang, Lisha; Mayweg, Alexander V; Niu, Rui; Jin, Tai-Guang; Yang, Song
2017-09-15
A fragment library screen was carried out to identify starting points for novel CDK8 inhibitors. Optimization of a fragment hit guided by co-crystal structures led to identification of a novel series of potent CDK8 inhibitors which are highly ligand efficient, kinase selective and cellular active. Compound 16 was progressed to a mouse pharmacokinetic study and showed good oral bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemistry, Biochemistry, Pharmacology, and Toxicology of CS and Synthesis of Its Novel Analogs
2007-10-01
fluorine and fluorine -containing groups have been synthesized using microwave irradiation and novel catalysts. The structures and physical properties and...safe, and biologically more potent CS analogs. To this end, the synthesis of a novel group of CS-agents incorporating fluorine and fluorine ...CONCLUSION The new CS-analogs are expected to be more potent than CS. This observation is based on the following considerations. First, fluorine is
Yang, Shyh-Ming; Tang, Yuting; Zhang, Rui; Lu, Huajun; Kuo, Gee-Hong; Gaul, Michael D; Li, Yaxin; Ho, George; Conway, James G; Liang, Yin; Lenhard, James M; Demarest, Keith T; Murray, William V
2013-12-15
A new series of urea-based, 4-bicyclic heteroaryl-piperidine derivatives as potent SCD1 inhibitors is described. The structure-activity relationships focused on bicyclic heteroarenes and aminothiazole-urea portions are discussed. A trend of dose-dependent decrease in body weight gain in diet-induced obese (DIO) mice is also demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aromatase inhibitory activity of 1,4-naphthoquinone derivatives and QSAR study
Prachayasittikul, Veda; Pingaew, Ratchanok; Worachartcheewan, Apilak; Sitthimonchai, Somkid; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2017-01-01
A series of 2-amino(chloro)-3-chloro-1,4-naphthoquinone derivatives (1-11) were investigated for their aromatase inhibitory activities. 1,4-Naphthoquinones 1 and 4 were found to be the most potent compounds affording IC50 values 5.2 times lower than the reference drug, ketoconazole. A quantitative structure-activity relationship (QSAR) model provided good predictive performance (R2CV = 0.9783 and RMSECV = 0.0748) and indicated mass (Mor04m and H8m), electronegativity (Mor08e), van der Waals volume (G1v) and structural information content index (SIC2) descriptors as key descriptors governing the activity. To investigate the effects of structural modifications on aromatase inhibitory activity, the model was employed to predict the activities of an additional set of 39 structurally modified compounds constructed in silico. The prediction suggested that the 2,3-disubstitution of 1,4-naphthoquinone ring with halogen atoms (i.e., Br, I and F) is the most effective modification for potent activity (1a, 1b and 1c). Importantly, compound 1b was predicted to be more potent than its parent compound 1 (11.90-fold) and the reference drug, letrozole (1.03-fold). The study suggests the 1,4-naphthoquinone derivatives as promising compounds to be further developed as a novel class of aromatase inhibitors. PMID:28827987
Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide
2017-01-01
Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652
Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M
1996-09-01
The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues.
Fragment-based discovery of a potent NAMPT inhibitor.
Korepanova, Alla; Longenecker, Kenton L; Pratt, Steve D; Panchal, Sanjay C; Clark, Richard F; Lake, Marc; Gopalakrishnan, Sujatha M; Raich, Diana; Sun, Chaohong; Petros, Andrew M
2017-12-12
NAMPT expression is elevated in many cancers, making this protein a potential target for anticancer therapy. We have carried out both NMR based and TR-FRET based fragment screens against human NAMPT and identified six novel binders with a range of potencies. Co-crystal structures were obtained for two of the fragments bound to NAMPT while for the other four fragments force-field driven docking was employed to generate a bound pose. Based on structural insights arising from comparison of the bound fragment poses to that of bound FK866 we were able to synthetically elaborate one of the fragments into a potent NAMPT inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turning a Substrate Peptide into a Potent Inhibitor for the Histone Methyltransferase SETD8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Russell A.; Zhu, Haizhong; Upadhyay, Anup K.
SETD8 is a histone H4–K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 μM) and selective norleucine containing peptide inhibitor has been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wen-Lian; Hao, Jinsong; Domalski, Martin
In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.
Liang, Guyan; Chen, Xin; Aldous, Suzanne; Pu, Su-Fen; Mehdi, Shujaath; Powers, Elaine; Giovanni, Andrew; Kongsamut, Sathapana; Xia, Tianhui; Zhang, Ying; Wang, Rachel; Gao, Zhongli; Merriman, Gregory; McLean, Larry R; Morize, Isabelle
2012-02-09
A series of compounds with an amidinothiophene P1 group and a pyrrolidinone-sulphonamide scaffold linker was identified as potent inhibitors of human kallikrein 6 by structure-based virtual screening based on the union accessible binding space of serine proteases. As the first series of potent nonmechanism-based hK6 inhibitors, they may be used as tool compounds for target validation. An X-ray structure of a representative compound complexed with hK6, resolved at a resolution of 1.88 Å, revealed that the amidinothiophene moiety bound in the S1 pocket and the pyrrolidinone-sulphonamide linker projected the aromatic tail into the S' pocket.
Hartz, Richard A; Ahuja, Vijay T; Arvanitis, Argyrios G; Rafalski, Maria; Yue, Eddy W; Denhart, Derek J; Schmitz, William D; Ditta, Jonathan L; Deskus, Jeffrey A; Brenner, Allison B; Hobbs, Frank W; Payne, Joseph; Lelas, Snjezana; Li, Yu-Wen; Molski, Thaddeus F; Mattson, Gail K; Peng, Yong; Wong, Harvey; Grace, James E; Lentz, Kimberley A; Qian-Cutrone, Jingfang; Zhuo, Xiaoliang; Shu, Yue-Zhong; Lodge, Nicholas J; Zaczek, Robert; Combs, Andrew P; Olson, Richard E; Bronson, Joanne J; Mattson, Ronald J; Macor, John E
2009-07-23
Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.
Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf
2013-04-25
We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.
The molecular basis of peanut allergy
USDA-ARS?s Scientific Manuscript database
Peanut allergens can trigger a potent and sometimes dangerous immune response in an increasing number of people. The molecular structures of these allergens form the basis for understanding this response. This review describes the currently known peanut allergen structures, and discusses how modif...
O-(Triazolyl)methyl carbamates as a novel and potent class of FAAH inhibitors
Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano
2015-01-01
Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed. O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, we synthesized a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives exploiting the copper-catalyzed [3 + 2] cycloaddition reaction between azides and alkynes (click chemistry). We explored structure-activity relationships within this new class of compounds and identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. PMID:25338703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yujun; Bai, Longchuan; Liu, Liu
We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31more » with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.« less
Kurasawa, Osamu; Oguro, Yuya; Miyazaki, Tohru; Homma, Misaki; Mori, Kouji; Iwai, Kenichi; Hara, Hideto; Skene, Robert; Hoffman, Isaac; Ohashi, Akihiro; Yoshida, Sei; Ishikawa, Tomoyasu; Cho, Nobuo
2017-04-01
Cell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model. The pharmacophore model provided a minimum structural motif of Cdc7 inhibitor, by which preliminary medicinal chemistry efforts identified a dihydrothieno[3,2-d]-pyrimidin-4(1H)-one scaffold having a heteroaromatic hinge-binding moiety. The structure-activity relationship (SAR) studies resulted in the discovery of new, potent, and selective Cdc7 inhibitors 14a, c, e. Furthermore, the high selectivity of 14c, e for Cdc7 over Rho-associated protein kinase 1 (ROCK1) is discussed by utilizing a docking study with Cdc7 and ROCK2 crystal structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nongonierma, Alice B; FitzGerald, Richard J
2018-06-01
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Clerc, Jérôme; Groll, Michael; Illich, Damir J.; Bachmann, André S.; Huber, Robert; Schellenberg, Barbara; Dudler, Robert; Kaiser, Markus
2009-01-01
Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed us to elucidate the structural determinants underlying the proteasomal subsite selectivity and binding affinity of syrbactins. These findings were used successfully in the rational design and synthesis of a syringolin A-based lipophilic derivative, which proved to be the most potent syrbactin-based proteasome inhibitor described so far. With a Ki′ of 8.65 ± 1.13 nM for the chymotryptic activity, this syringolin A derivative displays a 100-fold higher potency than the parent compound syringolin A. In light of the medicinal relevance of proteasome inhibitors as anticancer compounds, the present findings may assist in the rational design and development of syrbactin-based chemotherapeutics. PMID:19359491
Subasinghage, Anusha P; Conlon, J Michael; Hewage, Chandralal M
2010-04-01
Peptide XT-7 (GLLGP(5)LLKIA(10)AKVGS(15)NLL.NH(2)) is a cationic, leucine-rich peptide, first isolated from skin secretions of the frog, Silurana tropicalis (Pipidae). The peptide shows potent, broad-spectrum antimicrobial activity but its therapeutic potential is limited by haemolytic activity (LC(50)=140 microM). The analogue [G4K]XT-7, however, retains potent antimicrobial activity but is non-haemolytic (LC(50)>500 microM). In order to elucidate the molecular basis for this difference in properties, the three dimensional structures of XT-7 and the analogue have been investigated by proton NMR spectroscopy and molecular modelling. In aqueous solution, both peptides lack secondary structure. In a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O mixed solvent system, XT-7 is characterised by a right handed alpha-helical conformation between residues Leu(3) and Leu(17) whereas [G4K]XT-7 adopts a more restricted alpha-helical conformation between residues Leu(6) and Leu(17). A similar conformation for XT-7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micellular media was observed with a helical segment between Leu(3) and Leu(17). However, differences in side chain orientations restricting the hydrophilic residues to a smaller patch resulted in an increased hydrophobic surface relative to the conformation in TFE-H(2)O. Molecular modelling of the structures obtained in our study demonstrates the amphipathic character of the helical segments. It is proposed that the marked decrease in haemolytic activity produced by the substitution Gly(4)-->Lys in XT-7 arises from a decrease in both helicity and hydrophobicity. These studies may facilitate the development of potent but non-toxic anti-infective agents based upon the structure of XT-7. Copyright 2009 Elsevier B.V. All rights reserved.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan; Tidwell, Richard R.; Czarny, Agnieszka; Bajic, Miroslav; Bajic, Marina; Kumar, Arvind; Boykin, David; Perfect, John R.
1998-01-01
Twenty analogues of pentamidine, 7 primary metabolites of pentamidine, and 30 dicationic substituted bis-benzimidazoles were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. A majority of the compounds had MICs at which 80% of the strains were inhibited (MIC80s) comparable to those of amphotericin B and fluconazole. Unlike fluconazole, many of these compounds were found to have potent fungicidal activity. The most potent compound against C. albicans had an MIC80 of ≤0.09 μg/ml, and the most potent compound against C. neoformans had an MIC80 of 0.19 μg/ml. Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. It is clear from the data presented here that further studies on the structure-activity relationships, mechanisms of action and toxicities, and in vivo efficacies of these compounds are warranted to determine their clinical potential. PMID:9756747
Lepidopteran HMG-CoA reductase is a potential selective target for pest control
Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets. PMID:28133568
Lepidopteran HMG-CoA reductase is a potential selective target for pest control.
Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yan; Li, Fengling; Babault, Nicolas
G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18more » (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.
2008-06-30
A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds withmore » subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.« less
Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2014-11-13
Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Linlin; Sun, Xiaodong; Xie, Songbo
Highlights: • DIMEN displays higher anti-proliferative activity than enastron. • DIMEN induced mitotic arrest and apoptosis more significantly than enastron. • DIMEN blocked the conformational change of ADP-binding pocket more effectively. • DIMEN hindered ADP release more potently than enastron. - Abstract: Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreaticmore » and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the “sandwich”-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.« less
Chagarovskiy, Alexey O; Budynina, Ekaterina M; Ivanova, Olga A; Rybakov, Victor B; Trushkov, Igor V; Melnikov, Mikhail Ya
2016-03-14
A convenient general approach to 2-(pyrazol-4-yl)- and 2-(isoxazol-4-yl)ethanols based on the Brønsted acid-initiated reaction of 3-acyl-4,5-dihydrofurans with hydrazines or hydroxylamine was developed. Further transformation of the alcohol moiety in 2-(pyrazolyl)ethanols affording 2-(pyrazolyl)ethylamine as potent bioactive compounds as well as pyrazole-substituted derivatives of antitumor alkaloid crispine A was elaborated.
Ramakrishna, Isai; Ramaraju, Panduga; Baidya, Mahiuddin
2018-02-16
The first catalytic enantioselective nitroso aldol reaction of distal dialdehydes is reported. The reaction is catalyzed by simple l-proline at room temperature and subsequent reduction delivered biologically potent and synthetically versatile N-O bond containing five- and six-membered heterocycles, 1,2-oxazinanes, and isoxazolidines in high yields and excellent enantioselectivities (up to >99% ee). The method was further exploited to prepare chiral 3-hydroxypiperidines and -pyrrolidines that are otherwise difficult to access.
Zhang, Sen; Anjum, Rana; Squillace, Rachel; Nadworny, Sara; Zhou, Tianjun; Keats, Jeff; Ning, Yaoyu; Wardwell, Scott D; Miller, David; Song, Youngchul; Eichinger, Lindsey; Moran, Lauren; Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Wang, Yihan; Mohemmad, Qurish; Jang, Hyun Gyung; Ye, Emily; Narasimhan, Narayana; Wang, Frank; Miret, Juan; Zhu, Xiaotian; Clackson, Tim; Dalgarno, David; Shakespeare, William C; Rivera, Victor M
2016-11-15
Non-small cell lung cancers (NSCLCs) harboring ALK gene rearrangements (ALK + ) typically become resistant to the first-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) crizotinib through development of secondary resistance mutations in ALK or disease progression in the brain. Mutations that confer resistance to second-generation ALK TKIs ceritinib and alectinib have also been identified. Here, we report the structure and first comprehensive preclinical evaluation of the next-generation ALK TKI brigatinib. A kinase screen was performed to evaluate the selectivity profile of brigatinib. The cellular and in vivo activities of ALK TKIs were compared using engineered and cancer-derived cell lines. The brigatinib-ALK co-structure was determined. Brigatinib potently inhibits ALK and ROS1, with a high degree of selectivity over more than 250 kinases. Across a panel of ALK + cell lines, brigatinib inhibited native ALK (IC 50 , 10 nmol/L) with 12-fold greater potency than crizotinib. Superior efficacy of brigatinib was also observed in mice with ALK + tumors implanted subcutaneously or intracranially. Brigatinib maintained substantial activity against all 17 secondary ALK mutants tested in cellular assays and exhibited a superior inhibitory profile compared with crizotinib, ceritinib, and alectinib at clinically achievable concentrations. Brigatinib was the only TKI to maintain substantial activity against the most recalcitrant ALK resistance mutation, G1202R. The unique, potent, and pan-ALK mutant activity of brigatinib could be rationalized by structural analyses. Brigatinib is a highly potent and selective ALK inhibitor. These findings provide the molecular basis for the promising activity being observed in ALK + , crizotinib-resistant patients with NSCLC being treated with brigatinib in clinical trials. Clin Cancer Res; 22(22); 5527-38. ©2016 AACR. ©2016 American Association for Cancer Research.
Silvestri, Romano; Artico, Marino
2005-01-01
Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapierre, Jean-Marc; Eathiraj, Sudharshan; Vensel, David
The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumormore » growth in a human xenograft mouse model of endometrial adenocarcinoma.« less
Wright, Amy E; Roberts, Jill C; Guzmán, Esther A; Pitts, Tara P; Pomponi, Shirley A; Reed, John K
2017-03-24
Two new analogues of the potent antitumor compound leiodermatolide, which we call leiodermatolides B and C, have been isolated from specimens of a deep-water sponge of the genus Leiodermatium collected off Florida. The compounds were purified using standard chromatographic methods, and the structures defined through interpretation of the HRMS and 1D and 2D NMR data. Leiodermatolide B (2) lacks the C-21 hydroxy group found in leiodermatolide and has equal potency as the parent compound, providing a simpler analogue for possible clinical development. It inhibits the proliferation of the AsPC-1 human pancreatic adenocarcinoma cell line with an IC 50 of 43 nM. Leiodermatolide C (3) has a modified macrolide ring and is over 85-fold less potent with an IC 50 of 3.7 μM against the same cell line. These compounds add to the knowledge of the pharmacophore of this class of potent antitumor agents.
Naik, Maruti; Humnabadkar, Vaishali; Tantry, Subramanyam J; Panda, Manoranjan; Narayan, Ashwini; Guptha, Supreeth; Panduga, Vijender; Manjrekar, Praveena; Jena, Lalit Kumar; Koushik, Krishna; Shanbhag, Gajanan; Jatheendranath, Sandesh; Manjunatha, M R; Gorai, Gopinath; Bathula, Chandramohan; Rudrapatna, Suresh; Achar, Vijayashree; Sharma, Sreevalli; Ambady, Anisha; Hegde, Naina; Mahadevaswamy, Jyothi; Kaur, Parvinder; Sambandamurthy, Vasan K; Awasthy, Disha; Narayan, Chandan; Ravishankar, Sudha; Madhavapeddi, Prashanti; Reddy, Jitendar; Prabhakar, Kr; Saralaya, Ramanatha; Chatterji, Monalisa; Whiteaker, James; McLaughlin, Bob; Chiarelli, Laurent R; Riccardi, Giovanna; Pasca, Maria Rosalia; Binda, Claudia; Neres, João; Dhar, Neeraj; Signorino-Gelo, François; McKinney, John D; Ramachandran, Vasanthi; Shandil, Radha; Tommasi, Ruben; Iyer, Pravin S; Narayanan, Shridhar; Hosagrahara, Vinayak; Kavanagh, Stefan; Dinesh, Neela; Ghorpade, Sandeep R
2014-06-26
4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.
Naven, Russell T; Swiss, Rachel; Klug-McLeod, Jacquelyn; Will, Yvonne; Greene, Nigel
2013-01-01
Mitochondrial dysfunction has been implicated as an important factor in the development of idiosyncratic organ toxicity. An ability to predict mitochondrial dysfunction early in the drug development process enables the deselection of those drug candidates with potential safety liabilities, allowing resources to be focused on those compounds with the highest chance of success to the market. A database of greater than 2000 compounds was analyzed to identify structural and physicochemical features associated with the uncoupling of oxidative phosphorylation (herein defined as an increase in basal respiration). Many toxicophores associated with potent uncoupling activity were identified, and these could be divided into two main mechanistic classes, protonophores and redox cyclers. For the protonophores, potent uncoupling activity was often promoted by high lipophilicity and apparent stabilization of the anionic charge resulting from deprotonation of the protonophore. The potency of redox cyclers did not appear to be prone to variations in lipophilicity. Only 11 toxicophores were of sufficient predictive performance that they could be incorporated into a structural-alert model. Each alert was associated with one of three confidence levels (high, medium, and low) depending upon the lipophilicity-activity profile of the structural class. The final model identified over 68% of those compounds with potent uncoupling activity and with a value for specificity above 99%. We discuss the advantages and limitations of this approach and conclude that although structural alert methodology is useful for identifying toxicophores associated with mitochondrial dysfunction, they are not a replacement for the mitochondrial dysfunction assays in early screening paradigms.
The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*
Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut
2015-01-01
Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, L.; Chong, Y.; Hwang, I.
2007-07-13
The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATICmore » in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.« less
Fjellström, Ola; Akkaya, Sibel; Beisel, Hans-Georg; Eriksson, Per-Olof; Erixon, Karl; Gustafsson, David; Jurva, Ulrik; Kang, Daiwu; Karis, David; Knecht, Wolfgang; Nerme, Viveca; Nilsson, Ingemar; Olsson, Thomas; Redzic, Alma; Roth, Robert; Sandmark, Jenny; Tigerström, Anna; Öster, Linda
2015-01-01
Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds. PMID:25629509
Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum.
Firdous, Sadiqa; Ansari, Nida Hassan; Fatima, Itrat; Malik, Abdul; Afza, Nighat; Iqbal, Lubna; Lateef, Mehreen
2012-07-01
Ophiamides A (1) and B (2), two new sphingolipids have been isolated from the n-hexane subfraction of the MeOH extract of the whole plant of Heliotropium ophioglossum along with glycerol monopalmitate (3) and β-sitosterol 3-O-β-D: -glucoside (4) reported for the first time from this species. Their structures were elucidated by spectroscopic techniques including MS and 2D-NMR spectroscopy. Both the compounds 1 and 2 showed potent inhibitory activity against the enzyme urease.
Zhou, Tongliang; Cai, Yuanbo; Liang, Lei; Yang, Lingfei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping
2016-12-01
We reported the synthesis, characterization and biological activity of several copper(II) Schiff base complexes, which exhibit high proteasome inhibitory activities with particular selectivity of β 2 subunit. Structure-activity relationships information obtained from complex Na 2 [Cu(a4s1)] demonstrated that distinct bonding modes in β 2 and β 5 subunits determines its selectivity and potent inhibition for β 2 subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius.
Liu, Jian-Fang; Chen, Wei-Jie; Xin, Ben-Ru; Lu, Jie
2014-06-01
Two new compounds, named as (2R,3S)-pinobanksin-3-cinnamate (1), and 15alpha-hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one (2), were isolated from the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius Linn. Their structures were elucidated on the basis of spectroscopic analysis. Additionally, compound 1 exhibited potent neuroprotective effects on corticosterone-damaged PC12 cells, and compound 2 showed potent cytotoxicity on glioma cell lines.
Burkholder, Timothy P; Cunningham, Brian E; Clayton, Joshua R; Lander, Peter A; Brown, Matthew L; Doti, Robert A; Durst, Gregory L; Montrose-Rafizadeh, Chahrzad; King, Constance; Osborne, Harold E; Amos, Robert M; Zink, Richard W; Stramm, Lawrence E; Burris, Thomas P; Cardona, Guemalli; Konkol, Debra L; Reidy, Charles; Christe, Michael E; Genin, Michael J
2015-04-01
The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J
2007-11-01
A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.
Mesoionic pyrido[1,2-a]pyrimidinones: Discovery of triflumezopyrim as a potent hopper insecticide1.
Zhang, Wenming; Holyoke, Caleb W; Pahutski, Thomas F; Lahm, George P; Barry, James D; Cordova, Daniel; Leighty, Robert M; Singh, Vineet; Vicent, Daniel R; Tong, My-Hanh T; Hughes, Kenneth A; McCann, Stephen F; Henry, Yewande T; Xu, Ming; Briddell, Twyla A
2017-01-01
A novel class of mesoionic pyrido[1,2-a]pyrimidinones has been discovered with exceptional insecticidal activity controlling a number of insect species. In this communication, we report the part of the optimization program which led to the discovery of triflumezopyrim as a highly potent insecticide controlling various hopper species. Our efforts in discovery, synthesis, structure-activity relationship elucidation, and biological activity evaluation are also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.
Richardson, James K.; Eckner, James T.; Allet, Lara; Kim, Hogene; Ashton-Miller, James
2016-01-01
Objective To identify relationships between complex and simple clinical measures of reaction time (RTclin), and indicators of balance in older subjects with and without diabetic peripheral neuropathy (DPN). Design Prospective cohort design. Complex RTclin Accuracy, Simple RTclin Latency, and their ratio were determined using a novel device in 42 subjects (age = 69.1 ± 8.3 yrs), 26 with DPN and 16 without. Dependent variables included unipedal stance time (UST), step width variability and range on an uneven surface, and major fall-related injury over 12 months. Results In the DPN subjects the ratio of Complex RTclin Accuracy:Simple RTclin Latency was strongly associated with longer UST (r/p = .653/.004), and decreased step width variability and range (r/p = −.696/.001 and −.782/<.001, respectively) on an uneven surface. Additionally, the two DPN subjects sustaining major injuries had lower Complex RTclin Accuracy:Simple: RTclin Latency than those without. Conclusions The ratio of Complex RTclin Accuracy:Simple RTclin Latency is a potent predictor of UST and frontal plane gait variability in response to perturbations, and may predict major fall injury in older subjects with DPN. These short latency neurocognitive measures may compensate for lower limb neuromuscular impairments, and provide a more comprehensive understanding of balance and fall risk. PMID:27552354
Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José
2014-01-01
The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer's disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13-15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hAChE and selective irreversible hMAO B inhibitor which might be considered as a promising compound for further development for the treatment of AD.
Rahm, Fredrik; Viklund, Jenny; Trésaugues, Lionel; Ellermann, Manuel; Giese, Anja; Ericsson, Ulrika; Forsblom, Rickard; Ginman, Tobias; Günther, Judith; Hallberg, Kenth; Lindström, Johan; Persson, Lars Boukharta; Silvander, Camilla; Talagas, Antoine; Díaz-Sáez, Laura; Fedorov, Oleg; Huber, Kilian V M; Panagakou, Ioanna; Siejka, Paulina; Gorjánácz, Mátyás; Bauser, Marcus; Andersson, Martin
2018-03-22
Recent literature has both suggested and questioned MTH1 as a novel cancer target. BAY-707 was just published as a target validation small molecule probe for assessing the effects of pharmacological inhibition of MTH1 on tumor cell survival, both in vitro and in vivo. (1) In this report, we describe the medicinal chemistry program creating BAY-707, where fragment-based methods were used to develop a series of highly potent and selective MTH1 inhibitors. Using structure-based drug design and rational medicinal chemistry approaches, the potency was increased over 10,000 times from the fragment starting point while maintaining high ligand efficiency and drug-like properties.
Cruz-López, Olga; Ramírez, Alberto; Navarro, Saúl A; García, María A; Marchal, Juan A; Campos, Joaquín M; Conejo-García, Ana
2017-07-01
Bozepinib is a potent and selective anticancer compound which chemical structure is made up of a benzofused seven-membered ring and a purine moiety. We previously demonstrated that the purine fragment does not exert antiproliferative effect per se. A series of 1-(benzenesulfonyl)-4,1-benzoxazepine derivatives were synthesized in order to study the influence of the benzofused seven-membered ring in the biological activity of bozepinib by means of antiproliferative, cell cycle and apoptosis studies. Our results show that the methyleneoxy enamine sulfonyl function is essential in the antitumor activity of the structures and thus, it is a scaffold suitable for further modification with a view to obtain more potent antitumor compounds.
Kocsis, Bela; Domokos, J; Szabo, D
2016-05-23
Quinolones are potent antimicrobial agents with a basic chemical structure of bicyclic ring. Fluorine atom at position C-6 and various substitutions on the basic quinolone structure yielded fluoroquinolones, namely norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin and numerous other agents. The target molecules of quinolones and fluoroquinolones are bacterial gyrase and topoisomerase IV enzymes. Broad-spectrum and excellent tissue penetration make fluoroquinolones potent agents but their toxic side effects and increasing number of resistant pathogens set limits on their use. This review focuses on recent advances concerning quinolones and fluoroquinolones, we will be summarising chemical structure, mode of action, pharmacokinetic properties and toxicity. We will be describing fluoroquinolones introduced in clinical trials, namely avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and non-fluorinated nemonoxacin. These agents have been proved to have enhanced antibacterial effect even against ciprofloxacin resistant pathogens, and found to be well tolerated in both oral and parenteral administrations. These features are going to make them potential antimicrobial agents in the future.
Panini, Michela; Tozzi, Francesco; Zimmer, Christoph T; Bass, Chris; Field, Linda; Borzatta, Valerio; Mazzoni, Emanuele; Moores, Graham
2017-09-01
Metabolic resistance is an important consideration in the whitefly Bemisia tabaci, where an esterase-based mechanism has been attributed to pyrethroid resistance and over-expression of the cytochrome P450, CYP6CM1, has been correlated to resistance to imidacloprid and other neonicotinoids. In vitro interactions between putative synergists and CYP6CM1, B and Q-type esterases were investigated, and structure-activity relationship analyses allowed the identification of chemical structures capable of acting as inhibitors of esterase and oxidase activities. Specifically, methylenedioxyphenyl (MDP) moieties with a polyether chain were preferable for optimum inhibition of B-type esterase, whilst corresponding dihydrobenzofuran structures were potent for the Q-esterase variation. Potent inhibition of CYP6CM1 resulted from structures which contained an alkynyl chain with a terminal methyl group. Synergist candidates could be considered for field control of B. tabaci, especially to abrogate neonicotinoid resistance. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Amphidinolide B: Total Synthesis, Structural Investigation and Biological Evaluation
Lu, Liang; Zhang, Wei; Nam, Sangkil; Horne, David A.; Jove, Richard
2013-01-01
The total synthesis of amphidinolide B1 and the proposed structure of amphidinolide B2 has been accomplished. Key aspects of this work include the development of a practical, non-transition metal mediated method for the construction of the C13-C15 diene, the identification of α-chelation and dipole minimization models for diastereoselective methyl ketone aldol reactions, the discovery of a spontaneous Horner-Wadsworth-Emmons macrocyclization strategy and the development of a novel late stage method for construction of an allylic epoxide moiety. The originally proposed structure for amphidinolide B2 and diastereomers thereof display potent anti-tumor activities with IC50 values ranging from 3.3 nM to 94.5 nM against human solid and blood tumor cells. Of the different stereoisomers, the proposed structure of amphidinolide B2 is over 12-fold more potent than the C8,9-epimer and C18-epimer in human DU145 prostate cancer cells. These data suggest that the epoxide stereochemistry is a significant factor for anticancer activity. PMID:23406192
Zhou, Huiqing; Kimsey, Isaac J.; Nikolova, Evgenia N.; Sathyamoorthy, Bharathwaj; Grazioli, Gianmarc; McSally, James; Bai, Tianyu; Wunderlich, Christoph H.; Kreutz, Christoph; Andricioaei, Ioan; Al-Hashimi, Hashim M.
2016-01-01
The B-DNA double helix can dynamically accommodate G–C and A–T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G–C+ and A–U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result, N1-methyl adenosine and N1-methyl guanosine, which occur in DNA as a form of alkylation damage, and in RNA as a posttranscriptional modification, have dramatically different consequences. They create G–C+ and A–U Hoogsteen base pairs in duplex DNA that maintain the structural integrity of the double helix, but block base pairing all together and induce local duplex melting in RNA, providing a mechanism for potently disrupting RNA structure through posttranscriptional modifications. The markedly different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help meet the opposing requirements of maintaining genome stability on one hand, and dynamically modulating the structure of the epitranscriptome on the other. PMID:27478929
Rastija, Vesna; Agić, Dejan; Tomiš, Sanja; Nikolič, Sonja; Hranjec, Marijana; Grace, Karminski-Zamola; Abramić, Marija
2015-01-01
A molecular modeling study is performed on series of benzimidazol-based inhibitors of human dipeptidyl peptidase III (DPP III). An eight novel compounds were synthesized in excellent yields using green chemistry approach. This study is aimed to elucidate the structural features of benzimidazole derivatives required for antagonism of human DPP III activity using Quantitative Structure-Activity Relationship (QSAR) analysis, and to understand the mechanism of one of the most potent inhibitor binding into the active site of this enzyme, by molecular dynamics (MD) simulations. The best model obtained includes S3K and RDF045m descriptors which have explained 89.4 % of inhibitory activity. Depicted moiety for strong inhibition activity matches to the structure of most potent compound. MD simulation has revealed importance of imidazolinyl and phenyl groups in the mechanism of binding into the active site of human DPP III.
Li, Xiao; Lu, Xueyi; Chen, Wenmin; Liu, Huiqing; Zhan, Peng; Pannecouque, Christophe; Balzarini, Jan; De Clercq, Erik; Liu, Xinyong
2014-10-01
A series of novel pyrimidinylthioacetanilides were designed, synthesized, and evaluated for their biological activity as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Most of the tested compounds were proved to be effective in inhibiting HIV-1 (IIIB) replication with EC50 ranging from 0.15 μM to 24.2 μM, thereinto compound 15 was the most active lead with favorable inhibitory activity against HIV-1 (IIIB) (EC50=0.15 μM, SI=684). Besides, compound 6 displayed moderate inhibition against the double-mutated HIV-1 strain (K103N/Y181C) (EC50=3.9 μM). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships (SCRs) data, and molecular modeling studies were discussed as well, which may provide valuable insights for further optimizations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vasquez-Martinez, Yesseny; Ohri, Rachana V.; Kenyon, Victor; Holman, Theodore R.; Sepúlveda-Boza, Silvia
2007-01-01
Human lipoxygenase (hLO) isozymes have been implicated in a number of disease states and have attracted much attention with respect to their inhibition. One class of inhibitors, the flavonoids, have been shown to be potent lipoxygenase inhibitors but their study has been restricted to those compounds found in nature, which have limited structural variability. We have therefore carried out a comprehensive study to determine the structural requirements for flavonoid potency and selectivity against platelet 12-hLO, reticulocyte 15-hLO-1 and prostate epithelial 15-hLO-2. We conclude from this study that catechols are essential for high potency, that isoflavones and isoflavanones tend to select against 12-hLO, that isoflavans tend to select against 15-hLO-1, but few flavonoids target 15-hLO-2. PMID:17869117
Bolstad, David B.; Bolstad, Erin S. D.; Frey, Kathleen M.; Wright, Dennis L.; Anderson, Amy C.
2008-01-01
Cryptosporidiosis is an emerging infectious disease that can be life-threatening in an immune-compromised individual and causes gastrointestinal distress lasting up to 2 weeks in an immune-competent individual. There are few therapeutics available for effectively treating this disease. We have been exploring dihydrofolate reductase (DHFR) as a potential target in Cryptosporidium. On the basis of the structure of the DHFR enzyme from C. hominis, we have developed a novel scaffold that led to the discovery of potent (38 nM) and efficient inhibitors of this enzyme. Recently, we have advanced these inhibitors to the next stage of development. Using the structures of both the protozoal and human enzymes, we have developed inhibitors with nanomolar potency (1.1 nM) against the pathogenic enzyme and high levels (1273-fold) of selectivity over the human enzyme. PMID:18834108
Chai, Wei-Ming; Chen, Chih-Min; Gao, Yu-Sen; Feng, Hui-Ling; Ding, Yu-Mei; Shi, Yan; Zhou, Han-Tao; Chen, Qing-Xi
2014-01-08
Proanthocyanidins were isolated from fruit stone of Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.). Their structures were analyzed and elucidated by methods of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). The results demonstrated that these compounds are complicated mixtures of homo- and heteropolymers consisting of procyanidin/procyanidin gallate and prodelphinidin. They possessed structural heterogeneity in monomer units, polymer length, and interflavan linkage (A-type and B-type). Their antityrosinase and antioxidant activity were then investigated. The results revealed that they can inhibit tyrosinase activities, including the monophenolase activity and the diphenolase activity. In addition, proanthocyanidins possessed potent antioxidant activity. Our studies revealed that proanthocyanidins isolated from fruit stone of Chinese hawthorn may be applied in food, agriculture, pharmaceutical, and cosmetic industries.
Synthesis and Biological Evaluation of Botulinum Neurotoxin A Protease Inhibitors
Li, Bing; Pai, Ramdas; Cardinale, Steven C.; Butler, Michelle M.; Peet, Norton P.; Moir, Donald T.; Bavari, Sina; Bowlin, Terry L.
2010-01-01
NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogs have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC50 = 2.5 µM, FRET assay), which is 4.4-fold more potent than the lead structure, and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity. PMID:20155918
Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold.
Ballet, Steven; Feytens, Debby; Wachter, Rien De; Vlaeminck, Magali De; Marczak, Ewa D; Salvadori, Severo; Graaf, Chris de; Rognan, Didier; Negri, Lucia; Lattanzi, Roberta; Lazarus, Lawrence H; Tourwé, Dirk; Balboni, Gianfranco
2009-01-15
Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent mu-selective agonists (Structures 5 and 12) as well as potent and selective delta-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data.
Ju, Jianhua; Rajski, Scott R.; Lim, Si-Kyu; Seo, Jeong-Woo; Peters, Noël R.; Hoffmann, F. Michael; Shen, Ben
2009-01-01
Migrastatin (1), iso-migrastatin (5) and lactimidomycin (7) are all glutarimide-containing polyketides known for their unique structures and cytotoxic activities against human cancer cell lines. Migrastatin, a strong inhibitor of tumor cell migration, has been an important lead in the development of antimetastatic agents. Yet studies of the related 12-membered macrolides iso-migrastatin, lactimidomycin and related analogs have been hampered by their limited availability. We report here the production, isolation, structural characterization and biological activities of iso-migrastatin, lactimidomycin, and 23 related congeners. Our studies showed that, as a family, the glutarimide-containing 12-membered macrolides are extremely potent cell migration inhibitors with some members displaying activity on par or superior to that of migrastatin as exemplified by compounds 5, 7, and 9–12. On the basis of these findings, the structures and activity of this family of compounds as cell migration inhibitors are discussed. PMID:19132897
Xing, Li; McDonald, Joseph J; Kolodziej, Steve A; Kurumbail, Ravi G; Williams, Jennifer M; Warren, Chad J; O'Neal, Janet M; Skepner, Jill E; Roberds, Steven L
2011-03-10
Structure-based virtual screening was applied to design combinatorial libraries to discover novel and potent soluble epoxide hydrolase (sEH) inhibitors. X-ray crystal structures revealed unique interactions for a benzoxazole template in addition to the conserved hydrogen bonds with the catalytic machinery of sEH. By exploitation of the favorable binding elements, two iterations of library design based on amide coupling were employed, guided principally by the docking results of the enumerated virtual products. Biological screening of the libraries demonstrated as high as 90% hit rate, of which over two dozen compounds were single digit nanomolar sEH inhibitors by IC(50) determination. In total the library design and synthesis produced more than 300 submicromolar sEH inhibitors. In cellular systems consistent activities were demonstrated with biochemical measurements. The SAR understanding of the benzoxazole template provides valuable insights into discovery of novel sEH inhibitors as therapeutic agents.
Conformationally constrained opioid ligands: The Dmt-Aba and Dmt-Aia vs. Dmt-Tic scaffold
Ballet, Steven; Feytens, Debby; De Wachter, Rien; De Vlaeminck, Magali; Marczak, Ewa D.; Salvadori, Severo; de Graaf, Chris; Rognan, Didier; Negri, Lucia; Lattanzi, Roberta; Lazarus, Lawrence H.; Tourwé, Dirk; Balboni, Gianfranco
2009-01-01
Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent μ-selective agonists (Structures 5 and 12) as well as potent and selective δ-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data. PMID:19062273
Li, Tianshu; He, Jieyan; Horvath, Gabor; Próchnicki, Tomasz; Latz, Eicke; Takeoka, Shinji
2018-02-01
Cationic lipids containing lysine head groups and ditetradecyl, dihexadecyl or dioctadecyl glutamate hydrophobic moieties with/without propyl, pentyl or heptyl spacers were applied for the preparation of cationic liposomes using a simple bath type-sonicator. The size distribution, zeta potential, cellular internalization, and cytotoxicity of the liposomes were characterized, and the innate immune stimulation, e.g., the NLRP3 inflammasome activation of human macrophages and THP-1 cells, was evaluated by the detection of IL-1β release. Comparatively, L3C14 and L5C14 liposomes, made from the lipids bearing lysine head groups, ditetradecyl hydrophobic chains and propyl or pentyl spacers, respectively, were the most potent to activate the NLRP3 inflammasome. The possible mechanism includes endocytosis of the cationic liposomes and subsequent lysosome rupture without significant inducement of reactive oxygen species production. In summary, we first disclosed the structural effect of cationic liposomes on the NLRP3 inflammasome activation, which gives an insight into the application of nanoparticles for improved immune response. Copyright © 2017 Elsevier Inc. All rights reserved.
Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films
NASA Astrophysics Data System (ADS)
Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn
2015-03-01
Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.
Kanimozhi, K; Basha, S Khaleel; Kumari, V Sugantha; Kaviyarasu, K
2018-07-01
Freeze drying and salt leaching methods were applied to fabricate Chitosan/Poly(vinyl alcohol)/Carboxymethyl cellulose (CPCMC) biomimetic porous scaffolds for soft tissue engineering. The properties of these scaffolds were investigated and compared to those by freeze drying and salt leaching methods respectively. The salt-leached CS/PVA/CMC scaffolds were easily formed into desired shapes with a uniformly distributed and interconnected pore structure with an average pore size. The mechanical strength of the scaffolds increased with the porosity, and were easily modulated by the addition of carboxymethyl cellulose. The morphology of the porous scaffolds observed using a SEM exhibited good porosity and interconnectivity of pores. MTT assay using L929 fibroblast cells demonstrated that the cell viability of the porous scaffold was good. Scaffolds prepared by salt leached method show larger swelling capacity, and mechanical strength, potent antibacterial activity and more cell viability than freeze dried method. It is found that salt leaching method has distinguished characteristics of simple, efficient, feasible and less economic than freeze dried scaffolds.
Selvam, N Clament Sagaya; Narayanan, S; Kennedy, L John; Vijaya, J Judith
2013-10-01
A novel self-assembled pure and Mg doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts showed high crystallinity with a uniform size distribution of the NPs. The degradation of cholorphenols is highly mandatory in today's scenario as they are affecting the environment adversely. Thus, the photocatalytic degradation of 4-chlorophenol (4-CP), a potent endocrine disrupting chemical in aqueous medium was investigated by both pure and Mg-doped ZnO NPs under UV-light irradiation in the present study. The influence of the Mg content on the structure, morphology, PL character and photocatalytic activity of ZnO NPs were investigated systematically. Furthermore,the effect of different parameters such as 4-CP concentration, photocatalyst amount, pH and UV-light wavelength on the resulting photocatalytic activity was investigated.
Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P
2014-07-15
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Acetyl analogs of combretastatin A-4: synthesis and biological studies.
Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses
2011-04-01
The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Item Selection, Evaluation, and Simple Structure in Personality Data
Pettersson, Erik; Turkheimer, Eric
2010-01-01
We report an investigation of the genesis and interpretation of simple structure in personality data using two very different self-reported data sets. The first consists of a set of relatively unselected lexical descriptors, whereas the second is based on responses to a carefully constructed instrument. In both data sets, we explore the degree of simple structure by comparing factor solutions to solutions from simulated data constructed to have either strong or weak simple structure. The analysis demonstrates that there is little evidence of simple structure in the unselected items, and a moderate degree among the selected items. In both instruments, however, much of the simple structure that could be observed originated in a strong dimension of positive vs. negative evaluation. PMID:20694168
Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Qing; Tebben, Andrew; Dyckman, Alaric J.
Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling amore » BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.« less
Fan, Jun; Dai, Yang; Shao, Jingwei; Peng, Xia; Wang, Chen; Cao, Sufen; Zhao, Bin; Ai, Jing; Geng, Meiyu; Duan, Wenhu
2016-06-01
Fibroblast growth factor receptors (FGFRs) are important oncology targets due to the dysregulation of this signaling pathway in a wide variety of human cancers. We identified a series of pyrazolylaminoquinazoline derivatives as potent FGFR inhibitors with low nanomolar potency. The representative compound 29 strongly inhibited FGFR1-3 kinase activity and suppressed FGFR signaling transduction in FGFR-addicted cancer cells; FGFRs-driven cell proliferation was also strongly inhibited regardless of mechanistic complexity implicated in FGFR activation, which further confirmed that 29 was a potent pan-FGFR inhibitor. The flexibility of our structure offered the potential to preserve good affinity for mutant FGFR, which is important for developing TKIs with long-term efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antioxidant phenolic compounds from the rhizomes of Astilbe rivularis.
Hori, Kengo; Wada, Mikiyo; Yahara, Shoji; Watanabe, Takashi; Devkota, Hari Prasad
2018-02-01
The rhizomes of Astilbe rivularis, commonly known as 'Thulo Okhati' are widely used in Nepal as tonic for uterine and menstrual disorders. In our preliminary study, the 70% MeOH extract of the rhizomes showed potent antioxidant activity. Hence, present study was aimed for the isolation of potent antioxidant constituents. Bergenin (1), 11-O-galloylbergenin (2), (+)-catechin (3), (-)-catechin (4), (-)-afzelechin (5), (-)-epiafzelechin (6) and 2-(β-D-glucopyranosyloxy)-4-hydroxylbenzenacetonitrile (7) were isolated from the rhizomes. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these isolated compounds were evaluated for their in vitro antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. 11-O-Galloylbergenin (2), (+)-catechin (3), (-)-catechin (4), (-)-afzelechin (5) and (-)-epiafzelechin (6) showed potent antioxidant activity.
Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.
Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong
2012-03-01
As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.
Design of potent substrate-analogue inhibitors of canine renin
NASA Technical Reports Server (NTRS)
Hui, K. Y.; Siragy, H. M.; Haber, E.
1992-01-01
Through a systematic study of structure-activity relationships, we designed potent renin inhibitors for use in dog models. In assays against dog plasma renin at neutral pH, we found that, as in previous studies of rat renin inhibitors, the structure at the P2 position appears to be important for potency. The substitution of Val for His at this position increases potency by one order of magnitude. At the P3 position, potency appears to depend on a hydrophobic side chain that does not necessarily have to be aromatic. Our results also support the approach of optimizing potency in a renin inhibitor by introducing a moiety that promotes aqueous solubility (an amino group) at the C-terminus of the substrate analogue. In the design of potent dog plasma renin inhibitors, the influence of the transition-state residue 4(S)-amino-3(S)-hydroxy-5-cyclohexylpentanoic acid (ACHPA)-commonly used as a substitute for the scissile-bond dipeptide to boost potency-is not obvious, and appears to be sequence dependent. The canine renin inhibitor Ac-paF-Pro-Phe-Val-statine-Leu-Phe-paF-NH2 (compound 15; IC50 of 1.7 nM against dog plasma renin at pH 7.4; statine, 4(S)-amino-3(S)-hydroxy-6-methylheptanoic acid; paF, para-aminophenylalanine) had a potent hypotensive effect when infused intravenously into conscious, sodium-depleted, normotensive dogs. Also, compound 15 concurrently inhibited plasma renin activity and had a profound diuretic effect.
Structure-Odor Relationship Study on Geraniol, Nerol, and Their Synthesized Oxygenated Derivatives.
Elsharif, Shaimaa Awadain; Buettner, Andrea
2018-03-14
Despite being isomers having the same citrus-like, floral odor, geraniol, 1, and nerol, 3, show different odor thresholds. To date, no systematic studies are at hand elucidating the structural features required for their specific odor properties. Therefore, starting from these two basic structures and their corresponding esters, namely, geranyl acetate, 2, and neryl acetate, 4, a total of 12 oxygenated compounds were synthesized and characterized regarding retention indices (RI), mass spectrometric (MS), and nuclear magnetic resonance (NMR) data. All compounds were individually tested for their odor qualities and odor thresholds in air (OT). Geraniol, the Z-isomer, with an OT of 14 ng/L, was found to be more potent than its E-isomer, nerol, which has an OT of 60 ng/L. However, 8-oxoneryl acetate was the most potent derivative within this study, exhibiting an OT of 8.8 ng/L, whereas 8-oxonerol was the least potent with an OT of 493 ng/L. Interestingly, the 8-oxo derivatives smell musty and fatty, whereas the 8-hydroxy derivatives show odor impressions similar to those of 1 and 3. 8-Carboxygeraniol was found to be odorless, whereas its E-isomer, 8-carboxynerol, showed fatty, waxy, and greasy impressions. Overall, we observed that oxygenation on C-8 affects mainly the odor quality, whereas the E/ Z position of the functional group on C-1 affects the odor potency.
Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua
2017-08-30
Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.
Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast
Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios
2015-01-01
Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496
Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki
2017-01-01
A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.
Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin
2017-01-01
Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Le; Pratt, John K.; Soltwedel, Todd
Members of the BET family of bromodomain containing proteins have been identified as potential targets for blocking proliferation in a variety of cancer cell lines. A two-dimensional NMR fragment screen for binders to the bromodomains of BRD4 identified a phenylpyridazinone fragment with a weak binding affinity (1, Ki = 160 μM). SAR investigation of fragment 1, aided by X-ray structure-based design, enabled the synthesis of potent pyridone and macrocyclic pyridone inhibitors exhibiting single digit nanomolar potency in both biochemical and cell based assays. Advanced analogs in these series exhibited high oral exposures in rodent PK studies and demonstrated significant tumormore » growth inhibition efficacy in mouse flank xenograft models.« less
Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; He, Yu-Min; Kazuma, Kohei; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko
2016-01-01
The methanolic extract and its subfractions from red peony root, the dried roots of Paeonia lactiflora Pallas showed potent antiallergic effects, as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 16 monoterpene derivatives, including 3 new compounds, paeoniflorol (1), 4'-hydroxypaeoniflorigenone (2) and 4-epi-albiflorin (3), together with 13 known ones (4-16). The chemical structures of the new compounds were elucidated on the basis of spectroscopic and chemical evidences. Among the isolated monoterpene derivatives, nine compounds showed potent anti-allergic effects and compound 1 was the most effective. A primary structure-activity relationship of monoterpene derivatives was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Wan, Zheng-Yong; Tao, Yuan; Wang, Ya-Feng; Mao, Tian-Qi; Yin, Hong; Chen, Fen-Er; Piao, Hu-Ri; De Clercq, Erik; Daelemans, Dirk; Pannecouque, Christophe
2015-08-01
A novel series of etravirine-VRX-480773 hybrids were designed using structure-guided molecular hybridization strategy and fusing the pharmacophore templates of etravirine and VRX-480773. The anti-HIV-1 activity and cytotoxicity was evaluated in MT-4 cell cultures. The most active hybrid compound in this series, N-(2-chlorophenyl)-2-((4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl)thio)acetamide 3d (EC50=0.24 , SI>1225), was more potent than delavirdine (EC50=0.66 μM, SI>67) in the anti-HIV-1 in vitro cellular assay. Studies of structure-activity relationships established a correlation between anti-HIV activity and the substitution pattern of the acetanilide group. Copyright © 2015 Elsevier Ltd. All rights reserved.
Innovative computer-aided methods for the discovery of new kinase ligands.
Abuhammad, Areej; Taha, Mutasem
2016-04-01
Recent evidence points to significant roles played by protein kinases in cell signaling and cellular proliferation. Faulty protein kinases are involved in cancer, diabetes and chronic inflammation. Efforts are continuously carried out to discover new inhibitors for selected protein kinases. In this review, we discuss two new computer-aided methodologies we developed to mine virtual databases for new bioactive compounds. One method is ligand-based exploration of the pharmacophoric space of inhibitors of any particular biotarget followed by quantitative structure-activity relationship-based selection of the best pharmacophore(s). The second approach is structure-based assuming that potent ligands come into contact with binding site spots distinct from those contacted by weakly potent ligands. Both approaches yield pharmacophores useful as 3D search queries for the discovery of new bioactive (kinase) inhibitors.
Chen, Yilin; Cass, Shelley L; Kutty, Samuel K; Yee, Eugene M H; Chan, Daniel S H; Gardner, Christopher R; Vittorio, Orazio; Pasquier, Eddy; Black, David StC; Kumar, Naresh
2015-11-15
Phenoxodiol, an analogue of the isoflavone natural product daidzein, is a potent anti-cancer agent that has been investigated for the treatment of hormone dependent cancers. This molecular scaffold was reacted with different primary amines and secondary amines under different Mannich conditions to yield either benzoxazine or aminomethyl substituted analogues. These processes enabled the generation of a diverse range of analogues that were required for structure-activity relationship (SAR) studies. The resulting Mannich bases exhibited prominent anti-proliferative effects against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines. Further cytotoxicity studies against MRC-5 normal lung fibroblast cells showed that the isoflavene analogues were selective towards cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke
2015-11-15
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vunakis, Helen Van; Farrow, John T.; Gjika, Hilda B.; Levine, Lawrence
1971-01-01
Antibodies to D-lysergic acid have been produced in rabbits and guinea pigs and a radioimmunoassay for the hapten was developed. The specificity of this lysergamide-antilysergamide reaction was determined by competitive binding with unlabeled lysergic acid diethylamide (LSD), psychotomimetic drugs, neurotransmitters, and other compounds with diverse structures. LSD and several related ergot alkaloids were potent competitors, three to seven times more potent than lysergic acid itself. The N,N-dimethyl derivatives of several compounds, including tryptamine, 5-hydroxytryptamine, 4-hydroxytryptamine, 5-methoxytryptamine, tyramine, and mescaline, were only about ten times less effective than lysergic acid, even though these compounds lack some of the ring systems of lysergic acid. The pattern of inhibition by related compounds with various substituents suggests that the antibody receptor site recognizes structural features resembling the LSD molecule. In particular, the aromatic nucleus and the dimethylated ethylamine side chain in phenylethylamine and tryptamine derivatives may assume in solution a conformation resembling ring A and the methylated nitrogen in ring C of LSD. Among the tryptamine derivatives, a large percentage of the most potent competitors are also psychotomimetic compounds. PMID:5283939
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatas, Hacer; Li, Yangbing; Liu, Liu
We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5–mixed lineage leukemia (MLL) protein–protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value <1 nM) and inhibits the MLL H3K4 methyltransferase (HMT) activity with an IC50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis formore » their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5–MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.
Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolutionmore » X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.« less
Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna
2007-02-08
To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.
Identification of azabenzimidazoles as potent JAK1 selective inhibitors.
Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael
2016-01-01
We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.
Mitchell, Daniel E; Clarkson, Guy; Fox, David J; Vipond, Rebecca A; Scott, Peter; Gibson, Matthew I
2017-07-26
Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.
Antinociceptive Grayanoids from the Roots of Rhododendron molle.
Li, Yong; Liu, Yun-Bao; Zhang, Jian-Jun; Liu, Yang; Ma, Shuang-Gang; Qu, Jing; Lv, Hai-Ning; Yu, Shi-Shan
2015-12-24
Nine new grayanoids (1-9), together with 11 known compounds, were isolated from the roots of Rhododendron molle. The structures of the new compounds (1-9) were determined on the basis of spectroscopic analysis, including HRESIMS, and 1D and 2D NMR data. Compounds 4, 6, 12, and 14-20 showed significant antinociceptive activities in an acetic acid-induced writhing test. In particular, 14 and 15 were found to be more potent than morphine for both acute and inflammatory pain models and 100-fold more potent than gabapentin in a diabetic neuropathic pain model.
Nakano, Hirofumi; Hasegawa, Tsukasa; Imamura, Riyo; Saito, Nae; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo
2016-05-01
A non-selective inhibitor (1) of FMS-like tyrosine kinase-3 (FLT3) was identified by fragment screening and systematically modified to afford a potent and selective inhibitor 26. We confirmed that 26 inhibited the growth of FLT-3-activated human acute myeloid leukemia cell line MV4-11. Our design strategy enabled rapid development of a novel type of FLT3 inhibitor from the hit fragment in the absence of target-structural information. Copyright © 2016 Elsevier Ltd. All rights reserved.
Madar, David J; Kopecka, Hana; Pireh, Daisy; Yong, Hong; Pei, Zhonghua; Li, Xiaofeng; Wiedeman, Paul E; Djuric, Stevan W; Von Geldern, Thomas W; Fickes, Michael G; Bhagavatula, Lakshmi; McDermott, Todd; Wittenberger, Steven; Richards, Steven J; Longenecker, Kenton L; Stewart, Kent D; Lubben, Thomas H; Ballaron, Stephen J; Stashko, Michael A; Long, Michelle A; Wells, Heidi; Zinker, Bradley A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Polakowski, James; Segreti, Jason; Reinhart, Glenn A; Fryer, Ryan M; Sham, Hing L; Trevillyan, James M
2006-10-19
Dipeptidyl peptidase-IV (DPP-IV) inhibitors are poised to be the next major drug class for the treatment of type 2 diabetes. Structure-activity studies of substitutions at the C5 position of the 2-cyanopyrrolidide warhead led to the discovery of potent inhibitors of DPP-IV that lack activity against DPP8 and DPP9. Further modification led to an extremely potent (Ki(DPP)(-)(IV) = 1.0 nM) and selective (Ki(DPP8) > 30 microM; Ki(DPP9) > 30 microM) clinical candidate, ABT-279, that is orally available, efficacious, and remarkably safe in preclinical safety studies.
Vasilakaki, Sofia; Barbayianni, Efrosini; Leonis, Georgios; Papadopoulos, Manthos G.; Mavromoustakos, Thomas; Gelb, Michael H.; Kokotos, George
2016-01-01
Inhibition of group IIA secreted phospholipase A2 (GIIA sPLA2) has been an important objective for medicinal chemists. We have previously shown that inhibitors incorporating the 2-oxoamide functionality may inhibit human and mouse GIIA sPLA2s. Herein, the development of new potent inhibitors by molecular docking calculations using the structure of the known inhibitor 7 as scaffold, are described. Synthesis and biological evaluation of the new compounds revealed that the long chain 2-oxoamide based on (S)-valine GK241 led to improved activity (IC50 = 143 nM and 68 nM against human and mouse GIIA sPLA2, respectively). In addition, molecular dynamics simulations were employed to shed light on GK241 potent and selective inhibitory activity. PMID:26970660
A Potent and Highly Efficacious Bcl-2/Bcl-xL Inhibitor
McEachern, Donna; Yang, Chao-Yie; Meagher, Jennifer; Stuckey, Jeanne; Wang, Shaomeng
2013-01-01
Our previously reported Bcl-2/Bcl-xL inhibitor, 4, effectively inhibited tumor growth but failed to achieve complete regression in vivo. We have now performed extensive modifications on its pyrrole core structure, which has culminated in the discovery of 32 (BM-1074). Compound 32 binds to Bcl-2 and Bcl-xL proteins with Ki values of < 1 nM and inhibits cancer cell growth with IC50 values of 1-2 nM in four small-cell lung cancer cell lines sensitive to potent and specific Bcl-2/Bcl-xL inhibitors. Compound 32 is capable of achieving rapid, complete and durable tumor regression in vivo at a well-tolerated dose-schedule. Compound 32 is the most potent and efficacious Bcl-2/Bcl-xL inhibitor reported to date. PMID:23448298
A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoguang; Department of Medical Microbiology, Harbin Medical University, Harbin 150086; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811
Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviralmore » activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.« less
Loa, Jacky; Chow, Pierce; Zhang, Kai
2009-05-01
To study anticancer activities of 68 plant polyphenols with different backbone structures and various substitutions and to analyze the structure-activity relationships. Antiproliferative activity of 68 plant polyphenols on human liver cancer cells were screened by the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide method. Structure-activity relationships were analyzed by comparison of their activities with selected structures. Cell cycle progression was assayed by flow cytometry analysis and apoptosis was analyzed by DNA fragment assay. Based on their backbone structures, 68 polyphenols were sub-classed to flavonoids (chalcones, flavanones, flavones and isoflavones), chromones and coumarins. The order of their potency to suppress the human liver cancer cells is chalcones > flavones > chromones > isoflavones > flavanones > coumarins. Chalcones comprise the most potent group with IC(50) values ranging from 21.69 to 197 microM. Top nine most potent chalcones in the group have hydroxylation at 2'-carbon position in B-ring. Flavones ranked second in their potencies. Quercetin, 4-hydroxyflavone and luteolin are three hydroxyflavones with highest potencies in this group. Their IC(50) values are 30.81, 39.29 and 71.17 microM, respectively. Chromones, isoflavones, flavanones and coumarins showed much lower potencies when compared to the first two groups with IC(50) ranges of 61 to >400, 131 to >400, 138 to >400 and 360.85 to >400 microM, respectively. In mechanistic studies, the most potent chalcone, 2,2'-dihydroxychalcone could induce G2/M arrest and then apoptosis of the cancer cells. An analysis of structure-activity relationship showed that following structures are required for their inhibitory potencies on human liver cancer cells: (1) of the six sub-classes of the polyphenols tested, the unique backbone structure of chalcones with a open C-ring; (2) within the chalcone group, hydroxyl substitution at 2'-carbon of B-ring; (3) hydroxyl substitution at 3'-carbon in B-ring of flavones. However, some other structures were found to decrease their potencies: e.g. substitutions by sugar moieties in flavones. These data are valuable for design and modification of new polyphenols, which could be potential antiproliferative agents of cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine
Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivativesmore » was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.« less
Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.
2013-01-01
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424
Combinatorial structures to modeling simple games and applications
NASA Astrophysics Data System (ADS)
Molinero, Xavier
2017-09-01
We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.
Identification and specificity studies of small-molecule ligands for SH3 protein domains.
Inglis, Steven R; Stojkoski, Cvetan; Branson, Kim M; Cawthray, Jacquie F; Fritz, Daniel; Wiadrowski, Emma; Pyke, Simon M; Booker, Grant W
2004-10-21
The Src Homology 3 (SH3) domains are small protein-protein interaction domains that bind proline-rich sequences and mediate a wide range of cell-signaling and other important biological processes. Since deregulated signaling pathways form the basis of many human diseases, the SH3 domains have been attractive targets for novel therapeutics. High-affinity ligands for SH3 domains have been designed; however, these have all been peptide-based and no examples of entirely nonpeptide SH3 ligands have previously been reported. Using the mouse Tec Kinase SH3 domain as a model system for structure-based ligand design, we have identified several simple heterocyclic compounds that selectively bind to the Tec SH3 domain. Using a combination of nuclear magnetic resonance chemical shift perturbation, structure-activity relationships, and site-directed mutagenesis, the binding of these compounds at the proline-rich peptide-binding site has been characterized. The most potent of these, 2-aminoquinoline, bound with Kd = 125 microM and was able to compete for binding with a proline-rich peptide. Synthesis of 6-substituted-2-aminoquinolines resulted in ligands with up to 6-fold improved affinity over 2-aminoquinoline and enhanced specificity for the Tec SH3 domain. Therefore, 2-aminoquinolines may potentially be useful for the development of high affinity small molecule ligands for SH3 domains.
Development of SiO2@TiO2 core-shell nanospheres for catalytic applications
NASA Astrophysics Data System (ADS)
Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.
2018-05-01
Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.
Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir
2010-09-15
A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.
Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity
USDA-ARS?s Scientific Manuscript database
Botulinum neurotoxins (BoNTs) are highly potent oral poisons produced by Clostridium botulinum. BoNTs are secreted along with several auxiliary proteins forming progenitor toxin complexes (PTC). Here, we report the structure of a ~760 kDa 14-subunit PTC using a combination of X-ray crystallography a...
2015-01-01
Structure-guided design was used to generate a series of noncovalent inhibitors with nanomolar potency against the papain-like protease (PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit antiviral activity against SARS-CoV infected Vero E6 cells and broadened specificity toward the homologous PLP2 enzyme from the human coronavirus NL63. Selectivity and cytotoxicity studies established a more than 100-fold preference for the coronaviral enzyme over homologous human deubiquitinating enzymes (DUBs), and no significant cytotoxicity in Vero E6 and HEK293 cell lines is observed. X-ray structural analyses of inhibitor-bound crystal structures revealed subtle differences between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly improved metabolic stability and are viable candidates for advancing to in vivo studies. PMID:24568342
Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M.M.; Hong, X.; Seaman, M.S.
2010-06-18
Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalentmore » forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.« less
Structure-based design of potent histatin analogues.
Brewer, Dyanne; Lajoie, Gilles
2002-04-30
Conformational studies of human salivary peptide, histatin 3 (Hst3), were performed by nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy in a membrane-mimicking environment. The structural information that was obtained was used in the design of peptide analogues with improved antifungal activity. In the presence of increasing concentrations of L-alpha-dimyristoylphosphatidylcholine (L-alpha-DMPC) lipid vesicles, a dramatic increase in a minimum at 198 nm is observed in the CD spectra of Hst3. The NMR data of Hst3 in the presence of L-alpha-DMPC lipid vesicles reveal the proximity of residues Y(10) and S(20), indicating the existence of a more compact structure. Peptide analogues were designed on the basis of this observation, which incorporated a disulfide bond to stabilize an extended loop in this region of the sequence. One of these, peptide 4, was 100 times more potent than Hst5 against Saccharomyces cerevisiae cells. Conformational analysis of peptide 4 revealed a looped structure with charged residues protruding on the outside surface, while a combination of aromatic residues and histidines are packed into an internal core.
Salvador, Lilibeth A.; Taori, Kanchan; Biggs, Jason S.; Jakoncic, Jean; Ostrov, David A.; Paul, Valerie J.; Luesch, Hendrik
2013-01-01
We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. SAR and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B and IL8. Compound 1 exhibited activity comparable to the clinically-approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays. PMID:23350733
Lombardo, Michael N.; G-Dayanandan, Narendran; Wright, Dennis L.; Anderson, Amy C.
2016-01-01
Multidrug-resistant Enterobacteriaceae, notably Escherichia coli and Klebsiella pneumoniae, have become major health concerns worldwide. Resistance to effective therapeutics is often carried by class I and II integrons that can confer insensitivity to carbapenems, extended spectrum beta-lactamases, the antifolate trimethoprim, fluoroquinolones and aminoglycosides. Specifically of interest to the study here, a prevalent gene (dfrA1) coding for an insensitive dihydrofolate reductase (DHFR) confers 190- or 1000-fold resistance to trimethoprim for K. pneumoniae and E. coli, respectively. Attaining inhibition of both the wild-type and resistant forms of the enzyme is critical for new antifolates. For several years, we have been developing the propargyl-linked antifolates (PLAs) as effective inhibitors against trimethoprim-resistant DHFR enzymes. Here, we show that the PLAs are active against both the wild-type and DfrA1 DHFR proteins. We report two high resolution crystal structures of DfrA1 bound to potent PLAs. The structure-activity relationships and crystal structures will be critical in driving the design of broadly active inhibitors against wild-type and resistant DHFR. PMID:27624966
Structural basis of respiratory syncytial virus neutralization by motavizumab
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, Jason S.; Chen, Man; Kim, Albert
2010-04-13
Motavizumab is {approx}tenfold more potent than its predecessor, palivizumab (Synagis), the FDA-approved monoclonal antibody used to prevent respiratory syncytial virus (RSV) infection. The structure of motavizumab in complex with a 24-residue peptide corresponding to its epitope on the RSV fusion (F) glycoprotein reveals the structural basis for this greater potency. Modeling suggests that motavizumab recognizes a different quaternary configuration of the F glycoprotein than that observed in a homologous structure.
Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Zhong, Qiu; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong
2016-03-03
Thirty (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones, featuring a central linear trienone linker and two identical nitrogen-containing heteroaromatic rings, were designed and synthesized as curcumin-based anticancer agents on the basis of their structural similarity to the enol-tautomer of curcumin, in addition to taking advantage of the possibly enhanced pharmacokinetic profiles contributed by the basic nitrogen-containing heteroaromatic rings. Their cytotoxicity and antiproliferative activity were evaluated towards both androgen-dependent and androgen-independent prostate cancer cell lines, as well as HeLa human cervical cancer cells. Among them, the ten most potent analogues are 5- to 36-fold more potent than curcumin in inhibiting cancer cell proliferation. The acquired structure-activity relationship data indicate (i) that (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones represent a potential scaffold for development of curcumin-based agents with substantially improved cytotoxicity and anti-proliferative effect; and (ii) 1-alkyl-1H-imidazol-2-yl and 1-alkyl-1H-benzo[d]imidazole-2-yl serve as optimal heteroaromatic rings for increased in vitro potency of this scaffold. Two of most potent compounds displayed no apparent cytotoxicity toward MCF-10A normal mammary epithelial cells at 1 μM concentration. Treatment of PC-3 prostate cancer cells with the most potent compound led to appreciable cell cycle arrest at a G1/G0 phase and cell apoptosis induction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, V.; Pace, J.; Rosowsky, A.
It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2{prime}-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed nomore » electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2{prime}-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.« less
Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.
1987-05-01
A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less
Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J
2001-10-01
The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.
Zang, Yang-Yang; Li, Yuan-Mei; Yin, Yue; Chen, Shan-Shan; Kai, Zhen-Peng
2017-09-01
In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC 50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q 2 and r 2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox.
Hermant, Paul; Bosc, Damien; Piveteau, Catherine; Gealageas, Ronan; Lam, BaoVy; Ronco, Cyril; Roignant, Matthieu; Tolojanahary, Hasina; Jean, Ludovic; Renard, Pierre-Yves; Lemdani, Mohamed; Bourotte, Marilyne; Herledan, Adrien; Bedart, Corentin; Biela, Alexandre; Leroux, Florence; Deprez, Benoit; Deprez-Poulain, Rebecca
2017-11-09
Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.
Helical Antimicrobial Sulfono- {gamma} -AApeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaqiong; Wu, Haifan; Teng, Peng
Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, aremore » more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar
The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1more » {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.« less
Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig
2017-02-23
Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.
2012-01-01
PI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064. This manuscript discusses the lead optimization for the tricyclic series, which both improved the in vitro potency and addressed a number of ADMET issues including high metabolic clearance mediated by both P450 and aldehyde oxidase (AO), poor permeability, and poor solubility. An empirical scaling tool was developed to predict human clearance from in vitro human liver S9 assay data for tricyclic derivatives that were AO substrates. PMID:24900568
Shah, Sayed Asmat Ali; Akhter, Najeeb; Auckloo, Bibi Nazia; Khan, Ishrat; Lu, Yanbin; Wang, Kuiwu; Wu, Bin
2017-01-01
Nowadays, various drugs on the market are becoming more and more resistant to numerous diseases, thus declining their efficacy for treatment purposes in human beings. Antibiotic resistance is one among the top listed threat around the world which eventually urged the discovery of new potent drugs followed by an increase in the number of deaths caused by cancer due to chemotherapy resistance as well. Accordingly, marine cyanobacteria, being the oldest prokaryotic microorganisms belonging to a monophyletic group, have proven themselves as being able to generate pharmaceutically important natural products. They have long been known to produce distinct and structurally complex secondary metabolites including peptides, polyketides, alkaloids, lipids, and terpenes with potent biological properties and applications. As such, this review will focus on recently published novel compounds isolated from marine cyanobacteria along with their potential bioactivities such as antibacterial, antifungal, anticancer, anti-tuberculosis, immunosuppressive and anti-inflammatory capacities. Moreover, various structural classes, as well as their technological uses will also be discussed. PMID:29125580
Shi, Yan-Hong; Zhu, Shu; Tamura, Takayuki; Kadowaki, Makoto; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko
2016-04-01
The methanolic extract and its subfractions from the dried root of Edulis Superba, a horticultural cultivar of Paeonia lactiflora Pallas, showed potent anti-allergic effect as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 26 compounds, including a new norneolignan glycoside, paeonibenzofuran (1), together with 25 known ones (2-26). The chemical structure of the new compound was elucidated on the basis of spectroscopic and chemical evidences. Among the isolated compounds, mudanpioside E (5) with paeoniflorin-type skeleton and quercetin (16) showed potent inhibitory activity against a degranulation marker, β-hexosaminidase release with IC50 values of 40.34 and 25.05 μM, respectively. A primary structure-activity relationship of these components was discussed.
Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.
Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter
2017-10-01
The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural studies of a bifunctional inhibitor of neprilysin and DPP-IV.
Oefner, Christian; Pierau, Sabine; Schulz, Henk; Dale, Glenn E
2007-09-01
Neutral endopeptidase (NEP) is the major enzyme involved in the metabolic inactivation of a number of bioactive peptides including the enkephalins, substance P, endothelin, bradykinin and atrial natriuretic factor, as well as the incretin hormone glucagon-like peptide 1 (GLP-1), which is a potent stimulator of insulin secretion. The activity of GLP-1 is also rapidly abolished by the serine protease dipeptidyl peptidase IV (DPP-IV), which led to an elevated interest in inhibitors of this enzyme for the treatment of type II diabetes. A dual NEP/DPP-IV inhibitor concept is proposed, offering an alternative strategy for the treatment of type 2 diabetes. Here, the synthesis and crystal structures of the soluble extracellular domain of human NEP (residues 52-749) complexed with the NEP, competitive and potent dual NEP/DPP-IV inhibitor MCB3937 are described.
Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads.
Vadivelan, S; Deeksha, T N; Arun, S; Machiraju, Pavan Kumar; Gundla, Rambabu; Sinha, Barij Nayan; Jagarlapudi, Sarma A R P
2011-03-01
The purpose of this study is to identify novel and potent inhibitors against HIV-1 reverse transcriptase (RT). The crystal structure of the most active ligand was converted into a feature-shaped query. This query was used to align molecules to generate statistically valid 3D-QSAR (r(2) = 0.873) and Pharmacophore models (HypoGen). The best HypoGen model consists of three Pharmacophore features (one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic) and further validated using known RT inhibitors. The designed novel inhibitors are further subjected to docking studies to reduce the number of false positives. We have identified and proposed some novel and potential lead molecules as reverse transcriptase inhibitors using analog and structure based studies. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi
2016-06-03
Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less
Synthesis and in Vitro and in Vivo Evaluation of Phosphoinositide-3-kinase Inhibitors.
Burger, Matthew T; Knapp, Mark; Wagman, Allan; Ni, Zhi-Jie; Hendrickson, Thomas; Atallah, Gordana; Zhang, Yanchen; Frazier, Kelly; Verhagen, Joelle; Pfister, Keith; Ng, Simon; Smith, Aaron; Bartulis, Sarah; Merrit, Hanne; Weismann, Marion; Xin, Xiaohua; Haznedar, Joshua; Voliva, Charles F; Iwanowicz, Ed; Pecchi, Sabina
2011-01-13
Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties. A series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines, which potently inhibit PI3K, were discovered. Within this series a compound, 17, was identified with suitable pharmacokinetic (PK) properties, which allowed for the establishment of a PI3K PK/pharmacodynamic-efficacy relationship as determined by in vivo inhibition of AKT(Ser473) phosphorylation and tumor growth inhibition in a mouse A2780 tumor xenograft model.
Synthesis and in Vitro and in Vivo Evaluation of Phosphoinositide-3-kinase Inhibitors
2010-01-01
Phospoinositide-3-kinases (PI3K) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. A series of 2-morpholino, 4-substituted, 6-(3-hydroxyphenyl) pyrimidines have been reported as potent inhibitors of PI3Ks. Herein, we describe the structure-guided optimization of these pyrimidines with a focus on replacing the phenol moiety, while maintaining potent target inhibition and improving in vivo properties. A series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines, which potently inhibit PI3K, were discovered. Within this series a compound, 17, was identified with suitable pharmacokinetic (PK) properties, which allowed for the establishment of a PI3K PK/pharmacodynamic−efficacy relationship as determined by in vivo inhibition of AKTSer473 phosphorylation and tumor growth inhibition in a mouse A2780 tumor xenograft model. PMID:24900252
Aguilar, Angelo; Lu, Jianfeng; Liu, Liu; Du, Ding; Bernard, Denzil; McEachern, Donna; Przybranowski, Sally; Li, Xiaoqin; Luo, Ruijuan; Wen, Bo; Sun, Duxin; Wang, Hengbang; Wen, Jianfeng; Wang, Guangfeng; Zhai, Yifan; Guo, Ming; Yang, Dajun; Wang, Shaomeng
2017-04-13
We previously reported the design of spirooxindoles with two identical substituents at the carbon-2 of the pyrrolidine core as potent MDM2 inhibitors. In this paper we describe an extensive structure-activity relationship study of this class of MDM2 inhibitors, which led to the discovery of 60 (AA-115/APG-115). Compound 60 has a very high affinity to MDM2 (K i < 1 nM), potent cellular activity, and an excellent oral pharmacokinetic profile. Compound 60 is capable of achieving complete and long-lasting tumor regression in vivo and is currently in phase I clinical trials for cancer treatment.
Youssef, Diaa T A; Shaala, Lamiaa A; Mohamed, Gamal A; Badr, Jihan M; Bamanie, Faida H; Ibrahim, Sabrin R M
2014-04-01
In our search for bioactive metabolites from marine organisms, we have investigated the polar fraction of the organic extract of the Red Sea sponge Theonella swinhoei. Successive chromatographic separations and final HPLC purification of the potent antifungal fraction afforded a new bicyclic glycopeptide, theonellamide G. The structure of the peptide was determined using extensive 1D and 2D NMR and high-resolution mass spectral determinations. The absolute configuration of theonellamide G was determined by chemical degradation and 2D NMR spectroscopy. Theonellamide G showed potent antifungal activity towards wild and amphotericin B-resistant strains of Candida albicans with IC₅₀ of 4.49 and 2.0 μM, respectively. Additionally, it displayed cytotoxic activity against the human colon adenocarcinoma cell line (HCT-16) with IC₅₀ of 6.0 μM. These findings provide further insight into the chemical diversity and biological activities of this class of compounds.
Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang
2018-01-20
PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Li, Ning; Wang, Li-Jun; Jiang, Bo; Li, Xiang-Qian; Guo, Chuan-Long; Guo, Shu-Ju; Shi, Da-Yong
2018-05-10
Diabetes is a fast growing chronic metabolic disorder around the world. Dipeptidyl peptidase-4 (DPP-4) is a new promising target during type 2 diabetes glycemic control. Thus, a number of potent DPP-4 inhibitors were developed and play a rapidly evolving role in the management of type 2 diabetes in recent years. This article reviews the development of synthetic and natural DPP-4 inhibitors from 2012 to 2017 and provides their physico-chemical properties, biological activities against DPP-4 and selectivity over dipeptidyl peptidase-8/9. Moreover, the glucose-lowering mechanisms and the active site of DPP-4 are also discussed. We also discuss strategies and structure-activity relationships for identifying potent DPP-4 inhibitors, which will provide useful information for developing potent DPP-4 drugs as type 2 diabtes treatments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Guo, Jiubiao; Wang, Jinglin; Gao, Shan; Ji, Bin; Waichi Chan, Edward; Chen, Sheng
2015-11-20
Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs.
Discovery of potent and selective rhodanine type IKKβ inhibitors by hit-to-lead strategy.
Song, Hyeseung; Lee, Yun Suk; Roh, Eun Joo; Seo, Jae Hong; Oh, Kwang-Seok; Lee, Byung Ho; Han, Hogyu; Shin, Kye Jung
2012-09-01
Regulation of NF-κB activation through the inhibition of IKKβ has been identified as a promising target for the treatment of inflammatory and autoimmune disease such as rheumatoid arthritis. In order to develop novel IKKβ inhibitors, we performed high throughput screening toward around 8000 library compounds, and identified a hit compound containing rhodanine moiety. We modified the structure of hit compound to obtain potent and selective IKKβ inhibitors. Throughout hit-to-lead studies, we have discovered optimized compounds which possess blocking effect toward NF-κB activation and TNFα production in cell as well as inhibition activity against IKKβ. Among them, compound 3q showed the potent inhibitory activity against IKKβ, and excellent selectivity over other kinases such as p38α, p38β, JNK1, JNK2, and JNK3 as well as IKKα. Copyright © 2012 Elsevier Ltd. All rights reserved.
Computational design of environmental sensors for the potent opioid fentanyl
Bick, Matthew J.; Greisen, Per J.; Morey, Kevin J.; ...
2017-09-19
Here, we describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We also use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment.
Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Longenecker, Kenton; Pireh, Daisy; Stewart, Kent D; Backes, Bradley J; Lai, Chunqiu; Lubben, Thomas H; Ballaron, Stephen J; Beno, David W A; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M
2007-04-19
Dipeptidyl peptidase IV (DPP4) inhibitors are emerging as a new class of therapeutic agents for the treatment of type 2 diabetes. They exert their beneficial effects by increasing the levels of active glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are two important incretins for glucose homeostasis. Starting from a high-throughput screening hit, we were able to identify a series of piperidinone- and piperidine-constrained phenethylamines as novel DPP4 inhibitors. Optimized compounds are potent, selective, and have good pharmacokinetic profiles.
Discovery of a highly potent series of TLR7 agonists.
Jones, Peter; Pryde, David C; Tran, Thien-Duc; Adam, Fiona M; Bish, Gerwyn; Calo, Frederick; Ciaramella, Guiseppe; Dixon, Rachel; Duckworth, Jonathan; Fox, David N A; Hay, Duncan A; Hitchin, James; Horscroft, Nigel; Howard, Martin; Laxton, Carl; Parkinson, Tanya; Parsons, Gemma; Proctor, Katie; Smith, Mya C; Smith, Nicholas; Thomas, Amy
2011-10-01
The discovery of a series of highly potent and novel TLR7 agonist interferon inducers is described. Structure-activity relationships are presented, along with pharmacokinetic studies of a lead molecule from this series of N9-pyridylmethyl-8-oxo-3-deazapurine analogues. A rationale for the very high potency observed is offered. An investigation of the clearance mechanism of this class of compounds in rat was carried out, resulting in aldehyde oxidase mediated oxidation being identified as a key component of the high clearance observed. A possible solution to this problem is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computational design of environmental sensors for the potent opioid fentanyl
Morey, Kevin J; Antunes, Mauricio S; La, David; Sankaran, Banumathi; Reymond, Luc; Johnsson, Kai; Medford, June I
2017-01-01
We describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment. PMID:28925919
Hagiwara, Kehau; Garcia Hernandez, Jaaziel E; Harper, Mary Kay; Carroll, Anthony; Motti, Cherie A; Awaya, Jonathan; Nguyen, Hoang-Yen; Wright, Anthony D
2015-02-27
From the organic extract of a deep-water Hawaiian sponge Dactylospongia sp., a new potent antioxidant and antimicrobial meroterpenoid, puupehenol (1), was isolated. The structure of 1 was determined using spectroscopic techniques ((1)H and (13)C NMR, MS, IR, UV, [α]D). The known compound puupehenone (2) was also isolated and suggested as a probable artifact of the isolation procedures. Complete unambiguous (1)H and (13)C NMR data are provided for compounds 1 and 2. Bioassays performed with 1 and 2 showed them both to be very effective antioxidants and to have antimicrobial properties.
Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuercher, William J.; Buckholz, Richard G.; Campobasso, Nino
2010-08-12
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
Computational design of environmental sensors for the potent opioid fentanyl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bick, Matthew J.; Greisen, Per J.; Morey, Kevin J.
Here, we describe the computational design of proteins that bind the potent analgesic fentanyl. Our approach employs a fast docking algorithm to find shape complementary ligand placement in protein scaffolds, followed by design of the surrounding residues to optimize binding affinity. Co-crystal structures of the highest affinity binder reveal a highly preorganized binding site, and an overall architecture and ligand placement in close agreement with the design model. We also use the designs to generate plant sensors for fentanyl by coupling ligand binding to design stability. The method should be generally useful for detecting toxic hydrophobic compounds in the environment.
Discovery of tertiary sulfonamides as potent liver X receptor antagonists.
Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M
2010-04-22
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
Glutamyl-gamma-boronate inhibitors of bacterial Glu-tRNA(Gln) amidotransferase.
Decicco, C P; Nelson, D J; Luo, Y; Shen, L; Horiuchi, K Y; Amsler, K M; Foster, L A; Spitz, S M; Merrill, J J; Sizemore, C F; Rogers, K C; Copeland, R A; Harpel, M R
2001-09-17
Analogues of glutamyl-gamma-boronate (1) were synthesized as mechanism-based inhibitors of bacterial Glu-tRNA(Gln) amidotransferase (Glu-AdT) and were designed to engage a putative catalytic serine nucleophile required for the glutaminase activity of the enzyme. Although 1 provides potent enzyme inhibition, structure-activity studies revealed a narrow range of tolerated chemical changes that maintained activity. Nonetheless, growth inhibition of organisms that require Glu-AdT by the most potent enzyme inhibitors appears to validate mechanism-based inhibitor design of Glu-AdT as an approach to antimicrobial development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng
2010-09-30
Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by twomore » such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.« less
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs
Wang, Guangshun
2013-01-01
Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells. PMID:24276259
Novel inhibitors of IMPDH: a highly potent and selective quinolone-based series.
Watterson, Scott H; Carlsen, Marianne; Dhar, T G Murali; Shen, Zhongqi; Pitts, William J; Guo, Junqing; Gu, Henry H; Norris, Derek; Chorba, John; Chen, Ping; Cheney, Daniel; Witmer, Mark; Fleener, Catherine A; Rouleau, Katherine; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J
2003-02-10
A series of novel quinolone-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.
2014-01-01
Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671
Lagisetty, Pallavi; Vilekar, Prachi; Sahoo, Kaustuv; Anant, Shrikant; Awasthi, Vibhudutta
2010-01-01
3,5-bis(benzylidene)-4-piperidones are being advanced as synthetic analogs of curcumin for anticancer and anti-inflammatory properties. We performed structure-activity relationship studies, by testing several synthesized 3,5-bis(benzylidene)-4-piperidones for anti-proliferative activity in lung adenocarcinoma H441 cells. Compared to the lead compound 1, or 3,5-bis(2-fluorobenzylidene)-4-piperidone, five compounds were found to be more potent (IC50 < 30 μM), and sixteen compounds possessed reduced cell-killing efficacy (IC50 > 50 μM). Based on the observations, we synthesized 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] (29 or CLEFMA) as a novel analog of 1. CLEFMA was evaluated for anti-proliferative activity in H441 cells, and was found to be several folds more potent than compound 1. We did not find apoptotic cell population in flow cytometry, and the absence of apoptosis was confirmed by the lack of caspase cleavage. The electron microscopy of H441cells indicated that CLEFMA and compound 1 induce autophagic cell death that was inhibited by specific autophagy inhibitor 3-methyladenine. The results suggest that the potent and novel curcuminoid, CLEFMA, offers an alternative mode of cell death in apoptosis-resistant cancers. PMID:20638855
Huang, Wei-Sheng; Metcalf, Chester A; Sundaramoorthi, Raji; Wang, Yihan; Zou, Dong; Thomas, R Mathew; Zhu, Xiaotian; Cai, Lisi; Wen, David; Liu, Shuangying; Romero, Jan; Qi, Jiwei; Chen, Ingrid; Banda, Geetha; Lentini, Scott P; Das, Sasmita; Xu, Qihong; Keats, Jeff; Wang, Frank; Wardwell, Scott; Ning, Yaoyu; Snodgrass, Joseph T; Broudy, Marc I; Russian, Karin; Zhou, Tianjun; Commodore, Lois; Narasimhan, Narayana I; Mohemmad, Qurish K; Iuliucci, John; Rivera, Victor M; Dalgarno, David C; Sawyer, Tomi K; Clackson, Tim; Shakespeare, William C
2010-06-24
In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.
A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering
NASA Astrophysics Data System (ADS)
Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia
2017-12-01
In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.
Tran, Helen; Gael, Sarah L; Connolly, Michael D; Zuckermann, Ronald N
2011-11-02
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.
[Fragment-based drug discovery: concept and aim].
Tanaka, Daisuke
2010-03-01
Fragment-Based Drug Discovery (FBDD) has been recognized as a newly emerging lead discovery methodology that involves biophysical fragment screening and chemistry-driven fragment-to-lead stages. Although fragments, defined as structurally simple and small compounds (typically <300 Da), have not been employed in conventional high-throughput screening (HTS), the recent significant progress in the biophysical screening methods enables fragment screening at a practical level. The intention of FBDD primarily turns our attention to weakly but specifically binding fragments (hit fragments) as the starting point of medicinal chemistry. Hit fragments are then promoted to more potent lead compounds through linking or merging with another hit fragment and/or attaching functional groups. Another positive aspect of FBDD is ligand efficiency. Ligand efficiency is a useful guide in screening hit selection and hit-to-lead phases to achieve lead-likeness. Owing to these features, a number of successful applications of FBDD to "undruggable targets" (where HTS and other lead identification methods failed to identify useful lead compounds) have been reported. As a result, FBDD is now expected to complement more conventional methodologies. This review, as an introduction of the following articles, will summarize the fundamental concepts of FBDD and will discuss its advantages over other conventional drug discovery approaches.
Bertinaria, Massimo; Guglielmo, Stefano; Rolando, Barbara; Giorgis, Marta; Aragno, Cristina; Fruttero, Roberta; Gasco, Alberto; Parapini, Silvia; Taramelli, Donatella; Martins, Yuri C; Carvalho, Leonardo J M
2011-05-01
The synthesis and physico-chemical properties of novel compounds obtained by conjugation of amodiaquine with moieties containing either furoxan or nitrooxy NO-donor substructures are described. The synthesised compounds were tested in vitro against both the chloroquine sensitive, D10 and the chloroquine resistant, W-2 strains of Plasmodium falciparum (P. falciparum). Most of the compounds showed an antiplasmodial activity comparable to that of the parent drug. By comparing the activities of simple related structures devoid of the ability to release NO, it appears that the contribution of NO to the antiplasmodial action in vitro is marginal. All the compounds were able to relax rat aorta strips with a NO-dependent mechanism, thus showing their capacity to release NO in the vessels. A preliminary in vivo study using Plasmodium berghei ANKA-infected mice showed a trend for prolonged survival of mice with cerebral malaria treated with compound 40, which is potent and fast amodiaquine-derived NO-donor, when compared with amodiaquine alone or with compound 31, a milder NO-donor. The two compounds showed in vivo antiplasmodial activity similar to that of amodiaquine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Jiang, Yuhang; Fay, James M; Poon, Chi-Duen; Vinod, Natasha; Zhao, Yuling; Bullock, Kristin; Qin, Si; Manickam, Devika S; Yi, Xiang; Banks, William A; Kabanov, Alexander V
2018-02-07
Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)- b -poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.
Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng
2014-06-01
To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.
NASA Astrophysics Data System (ADS)
Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent
2017-12-01
Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.
Molecular pharming - VLPs made in plants.
Marsian, Johanna; Lomonossoff, George P
2016-02-01
Plant-based expression offers a safe, inexpensive and potentially limitless way to produce therapeutics in a quick and flexible manner. Plants require only simple inorganic nutrients, water, carbon dioxide and sunlight for efficient growth. Virus-like particles (VLPs) are convincing look-alikes of viruses but without carrying infectious genomic material. However, they can still elicit a very potent immune response which makes them ideal vaccine candidates. In this review the different methods of plant expression are described together with the most recent developments in the field of transiently-expressed plant-made VLPs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Redox Catalysis Facilitates Lignin Depolymerization
2017-01-01
Lignin is a recalcitrant and underexploited natural feedstock for aromatic commodity chemicals, and its degradation generally requires the use of high temperatures and harsh reaction conditions. Herein we present an ambient temperature one-pot process for the controlled oxidation and depolymerization of this potent resource. Harnessing the potential of electrocatalytic oxidation in conjugation with our photocatalytic cleavage methodology, we have developed an operationally simple procedure for selective fragmentation of β-O-4 bonds with excellent mass recovery, which provides a unique opportunity to expand the existing lignin usage from energy source to commodity chemicals and synthetic building block source. PMID:28691074
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.
2015-02-13
Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can bemore » clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.« less
Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario
2012-08-01
Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.
Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario
2012-01-01
Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622
Abdelhaleem, Eman F; Abdelhameid, Mohammed K; Kassab, Asmaa E; Kandeel, Manal M
2018-01-01
A series of novel tetrahydrobenzothieno[2,3-d]pyrimidine urea derivatives was synthesized according to fragment-based design strategy. They were evaluated for their anticancer activity against MCF-7 cell line. Three compounds 9c, 9d and 11b showed 1.5-1.03 folds more potent anticancer activity than doxorubicin. In this study, a promising multi-sited enzyme small molecule inhibitor 9c, which showed the most potent anti-proliferative activity, was identified. The anti-proliferative activity of this compound appears to correlate well with its ability to inhibit topoisomerase II (IC 50 = 9.29 μM). Moreover, compound 9c showed excellent VEGFR-2 inhibitory activity, at the sub-micromolar level with IC 50 value 0.2 μM, which is 2.1 folds more potent than sorafenib. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Compound 9c showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-3. Quantitative structure-activity relationship (QSAR) studies delivered equations of five 3D descriptors with R 2 = 0.814. This QSAR model provides an effective technique for understanding the observed antitumor properties and thus could be adopted for developing effective lead structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Peptide fragments of a beta-defensin derivative with potent bactericidal activity.
Reynolds, Natalie L; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R
2010-05-01
Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.
Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity ▿
Reynolds, Natalie L.; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R.
2010-01-01
β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1CV has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1CV is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide. PMID:20176896
Reactions of methamidophos with mammalian cholinesterase.
DOT National Transportation Integrated Search
1978-07-01
The lethality of methamidophos, a phosphoramidothioate, to rats (i.p. LD50, 15 mg/kg), is similar to that of such potent organophosphate compounds as parathion and paraoxon. Certain distinctive features of its chemical structure, and reported failure...
Structure-guided design of novel Trypanosoma brucei Methionyl-tRNA synthetase inhibitors.
Huang, Wenlin; Zhang, Zhongsheng; Barros-Álvarez, Ximena; Koh, Cho Yeow; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Buckner, Frederick S; Fan, Erkang
2016-11-29
A screening hit 1 against Trypanosoma brucei methionyl-tRNA synthetase was optimized using a structure-guided approach. The optimization led to the identification of two novel series of potent inhibitors, the cyclic linker and linear linker series. Compounds of both series were potent in a T. brucei growth inhibition assay while showing low toxicity to mammalian cells. The best compound of each series, 16 and 31, exhibited EC 50 s of 39 and 22 nM, respectively. Compounds 16 and 31 also exhibited promising PK properties after oral dosing in mice. Moreover, compound 31 had moderately good brain permeability, with a brain/plasma ratio of 0.27 at 60 min after IP injection. This study provides new lead compounds for arriving at new treatments of human African trypanosomiasis (HAT). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ishihara, Tsukasa; Koga, Yuji; Iwatsuki, Yoshiyuki; Hirayama, Fukushi
2015-01-15
Anticoagulant agents have emerged as a promising class of therapeutic drugs for the treatment and prevention of arterial and venous thrombosis. We investigated a series of novel orally active factor Xa inhibitors designed using our previously reported conjugation strategy to boost oral anticoagulant effect. Structural optimization of anthranilamide derivative 3 as a lead compound with installation of phenolic hydroxyl group and extensive exploration of the P1 binding element led to the identification of 5-chloro-N-(5-chloro-2-pyridyl)-3-hydroxy-2-{[4-(4-methyl-1,4-diazepan-1-yl)benzoyl]amino}benzamide (33, AS1468240) as a potent factor Xa inhibitor with significant oral anticoagulant activity. We also reported a newly developed Free-Wilson-like fragment recommender system based on the integration of R-group decomposition with collaborative filtering for the structural optimization process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Targeting the Cytochrome bc1 Complex of Leishmania Parasites for Discovery of Novel Drugs.
Ortiz, Diana; Forquer, Isaac; Boitz, Jan; Soysa, Radika; Elya, Carolyn; Fulwiler, Audrey; Nilsen, Aaron; Polley, Tamsen; Riscoe, Michael K; Ullman, Buddy; Landfear, Scott M
2016-08-01
Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Choi, Hyukjae; Mascuch, Samantha J.; Villa, Francisco A.; Byrum, Tara; Teasdale, Margaret E.; Smith, Jennifer E.; Preskitt, Linda B.; Rowley, David C.; Gerwick, Lena; Gerwick, William H.
2012-01-01
SUMMARY Honaucins A–C were isolated from the cyanobacterium Leptolyngbya crossbyana which was found overgrowing corals on the Hawaiian coast. Honaucin A consists of (S)-3-hydroxy-γ-butyrolactone and 4-chlorocrotonic acid which are connected via an ester linkage. Honaucin A and its two natural analogs exhibit potent inhibition of bioluminescence, a quorum sensing-dependent phenotype, in Vibrio harveyi BB120 as well as of lipopolysaccharide-stimulated nitric oxide production in the murine macrophage cell line RAW264.7. The decrease in nitric oxide production was accompanied by a decrease in the transcripts of several pro-inflammatory cytokines, most dramatically interleukin-1β. Synthesis of honaucin A as well as a number of analogs and subsequent evaluation in anti-inflammation and quorum sensing inhibition bioassays revealed the essential structural features for activity in this chemical class, and provided analogs with greater potency in both assays. PMID:22633410
NASA Astrophysics Data System (ADS)
Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol
2015-03-01
A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.
Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance
Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous
2012-01-01
The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008
Structural evolution of glycan recognition by a family of potent HIV antibodies.
Garces, Fernando; Sok, Devin; Kong, Leopold; McBride, Ryan; Kim, Helen J; Saye-Francisco, Karen F; Julien, Jean-Philippe; Hua, Yuanzi; Cupo, Albert; Moore, John P; Paulson, James C; Ward, Andrew B; Burton, Dennis R; Wilson, Ian A
2014-09-25
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Xiaofei; Yan, Huidan; Tang, Jian; Chen, Jian; Zhang, Xuewu
2014-01-01
Lentinus edodes has been valued as edible and medical resources. Polysaccharides have been known to be the most potent antitumor and immunomodulating substance in Lentinus edodes. In this review, we summarize the current knowledge of the polysaccharides isolated from Lentinus edodes, including extraction and purification methods, chemical structure and chain conformation, the effects on innate and adaptive immunity and their mechanism, relationship between structure and function, and the future prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik
2010-08-11
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins
Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan
2015-01-01
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301
Tran, Hai L; Lexa, Katrina W; Julien, Olivier; Young, Travis S; Walsh, Christopher T; Jacobson, Matthew P; Wells, James A
2017-02-22
Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.
Zhang, Han-Zhong; Crogan-Grundy, Candace; May, Chris; Drewe, John; Tseng, Ben; Cai, Sui Xiong
2009-04-01
1-(2-(2,5-Dimethoxyphenylthio)benzylidene)semicarbazide (2a) was discovered as a potent apoptosis inducer through our cell based HTS assay. SAR study led to the discovery of a more aqueous soluble analog (2-(2,5-dimethoxyphenylthio)-6-methoxybenzylideneamino)guanidine (5e) with EC(50) value of 60 nM in the caspase activation assay and GI(50) value of 62 nM in the growth inhibition assay in T47D cells. Compound 5e was found to be an inhibitor of tubulin polymerization and efficacious in a MX-1 breast tumor model.
Seki, Maki; Tsuruta, Osamu; Tatsumi, Ryo; Soejima, Aki
2013-07-15
A novel series of pyrrolidine derivatives as Na(+) channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na(+) channels. Structure-activity relationship (SAR) studies of a pyrrolidine analogue 2 led to the discovery of 5e as a potent Na(+) channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound 5e showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that 5e would act as a neuroprotectant for ischemic stroke. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F
2014-04-18
All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.
Lin, Hong; Erhard, Karl; Hardwicke, Mary Ann; Luengo, Juan I; Mack, James F; McSurdy-Freed, Jeanelle; Plant, Ramona; Raha, Kaushik; Rominger, Cynthia M; Sanchez, Robert M; Schaber, Michael D; Schulz, Mark J; Spengler, Michael D; Tedesco, Rosanna; Xie, Ren; Zeng, Jin J; Rivero, Ralph A
2012-03-15
A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinhua; Johnson, Ted W.; Bailey, Simon
2014-02-27
Crizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients. Under pressure of crizotinib treatment, point mutations arise in the kinase domain of ALK, resulting in resistance and progressive disease. The successful application of both structure-based and lipophilic-efficiency-focused drug design resulted in aminopyridine 8e, which was potent across a broad panel of engineered ALK mutant cell lines and showed suitable preclinical pharmacokinetics and robust tumor growth inhibition in a crizotinib-resistant cell line (H3122-L1196M).
Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents.
Lv, Min; Ma, Jingchun; Li, Qin; Xu, Hui
2018-01-15
A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5-10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200 μg/mL. Their structure-activity relationships were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rzasa, Robert M; Frohn, Michael J; Andrews, Kristin L; Chmait, Samer; Chen, Ning; Clarine, Jeffrey G; Davis, Carl; Eastwood, Heather A; Horne, Daniel B; Hu, Essa; Jones, Adrie D; Kaller, Matthew R; Kunz, Roxanne K; Miller, Silke; Monenschein, Holger; Nguyen, Thomas; Pickrell, Alexander J; Porter, Amy; Reichelt, Andreas; Zhao, Xiaoning; Treanor, James J S; Allen, Jennifer R
2014-12-01
We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.
Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents.
Sahu, Pramod K; Umme, Tamima; Yu, Jinha; Kim, Gyudong; Qu, Shuhao; Naik, Siddhi D; Jeong, Lak Shin
2017-07-12
A series of acyclic selenopurine nucleosides 3a - f and 4a - g were synthesized based on the bioisosteric rationale between oxygen and selenium, and then evaluated for antiviral activity. Among the compounds tested, seleno-acyclovir ( 4a ) exhibited the most potent anti-herpes simplex virus (HSV)-1 (EC 50 = 1.47 µM) and HSV-2 (EC 50 = 6.34 µM) activities without cytotoxicity up to 100 µM, while 2,6-diaminopurine derivatives 4e - g exhibited significant anti-human cytomegalovirus (HCMV) activity, which is slightly more potent than the guanine derivative 4d , indicating that they might act as prodrugs of seleno-ganciclovir ( 4d ).
Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.
Fujimoto, Tatsuhiko; Kunitomo, Jun; Tomata, Yoshihide; Nishiyama, Keiji; Nakashima, Masato; Hirozane, Mariko; Yoshikubo, Shin-Ichi; Hirai, Keisuke; Marui, Shogo
2011-11-01
During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, Stéphane L.; Pan, Weidong; Gibeau, Craig R.
2016-03-10
A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23–ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Verma, Vikas; Sharma, Vikas
Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasLmore » (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead structure for further optimization.« less
Yeon, Seul Ki; Choi, Ji Won; Park, Jong-Hyun; Lee, Ye Rim; Kim, Hyeon Jeong; Shin, Su Jeong; Jang, Bo Ko; Kim, Siwon; Bahn, Yong-Sun; Han, Gyoonhee; Lee, Yong Sup; Pae, Ae Nim; Park, Ki Duk
2018-01-01
Benzyloxyphenyl moiety is a common structure of highly potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B), safinamide and sembragiline. We synthesized 4-(benzyloxy)phenyl and biphenyl-4-yl derivatives including halogen substituents on the terminal aryl unit. In addition, we modified the carbon linker between amine group and the biaryl linked unit. Among synthesized compounds, 12c exhibited the most potent and selective MAO-B inhibitory effect (hMAO-B IC 50 : 8.9 nM; >10,000-fold selectivity over MAO-A) as a competitive inhibitor. In addition, 12c showed greater MAO-B inhibitory activity and selectivity compared to well-known MAO-B inhibitors such as selegiline, safinamide and sembragiline. In the MPTP-induced mouse model of Parkinson's disease (PD), 12c significantly protected the tyrosine hydroxylase (TH)-immunopositive DAergic neurons and attenuated the PD-associated behavioral deficits. This study suggests characteristic structures as a MAO-B inhibitor that may provide a good insight for the development of therapeutic agents for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, John A.; Xiao, Li; Fischmann, Thierry O.
2016-08-02
Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil ismore » structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.« less
Debonis, Salvatore; Skoufias, Dimitrios A; Indorato, Rose-Laure; Liger, François; Marquet, Bernard; Laggner, Christian; Joseph, Benoît; Kozielski, Frank
2008-03-13
The human kinesin Eg5 is a potential drug target for cancer chemotherapy. Eg5 specific inhibitors cause cells to block in mitosis with a characteristic monoastral spindle phenotype. Prolonged metaphase block eventually leads to apoptotic cell death. S-trityl-L-cysteine (STLC) is a tight-binding inhibitor of Eg5 that prevents mitotic progression. It has proven antitumor activity as shown in the NCI 60 tumor cell line screen. It is of considerable interest to define the minimum chemical structure that is essential for Eg5 inhibition and to develop more potent STLC analogues. An initial structure-activity relationship study on a series of STLC analogues reveals the minimal skeleton necessary for Eg5 inhibition as well as indications of how to obtain more potent analogues. The most effective compounds investigated with substitutions at the para-position of one phenyl ring have an estimated K i (app) of 100 nM in vitro and induce mitotic arrest with an EC 50 of 200 nM.
In Silico Identification of a Novel Hinge-Binding Scaffold for Kinase Inhibitor Discovery.
Wang, Yanli; Sun, Yuze; Cao, Ran; Liu, Dan; Xie, Yuting; Li, Li; Qi, Xiangbing; Huang, Niu
2017-10-26
To explore novel kinase hinge-binding scaffolds, we carried out structure-based virtual screening against p38α MAPK as a model system. With the assistance of developed kinase-specific structural filters, we identify a novel lead compound that selectively inhibits a panel of kinases with threonine as the gatekeeper residue, including BTK and LCK. These kinases play important roles in lymphocyte activation, which encouraged us to design novel kinase inhibitors as drug candidates for ameliorating inflammatory diseases and cancers. Therefore, we chemically modified our substituted triazole-class lead compound to improve the binding affinity and selectivity via a "minimal decoration" strategy, which resulted in potent and selective kinase inhibitors against LCK (18 nM) and BTK (8 nM). Subsequent crystallographic experiments validated our design. These rationally designed compounds exhibit potent on-target inhibition against BTK in B cells or LCK in T cells, respectively. Our work demonstrates that structure-based virtual screening can be applied to facilitate the development of novel chemical entities in crowded chemical space in the field of kinase inhibitor discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friberg, Anders; Vigil, Dominico; Zhao, Bin
2012-12-17
Myeloid cell leukemia 1 (Mcl-1), a member of the Bcl-2 family of proteins, is overexpressed and amplified in various cancers and promotes the aberrant survival of tumor cells that otherwise would undergo apoptosis. Here we describe the discovery of potent and selective Mcl-1 inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified two chemically distinct hit series that bind to different sites on Mcl-1. Members of the two fragment classes were merged together to produce lead compounds that bind to Mcl-1 with a dissociation constant of <100 nM with selectivity for Mcl-1 over Bcl-xLmore » and Bcl-2. Structures of merged compounds when complexed to Mcl-1 were obtained by X-ray crystallography and provide detailed information about the molecular recognition of small-molecule ligands binding Mcl-1. The compounds represent starting points for the discovery of clinically useful Mcl-1 inhibitors for the treatment of a wide variety of cancers.« less
Shamim, Shahbaz; Khan, Khalid Mohammed; Salar, Uzma; Ali, Farman; Lodhi, Muhammad Arif; Taha, Muhammad; Khan, Farman Ali; Ashraf, Sajda; Ul-Haq, Zaheer; Ali, Muhammad; Perveen, Shahnaz
2018-02-01
5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones 1-43 were synthesized in a "one-pot" three component reaction and structurally characterized by various spectroscopic techniques such as 1 H, 13 C NMR, EI-MS, HREI-MS, and IR. All compounds were evaluated for their in vitro urease inhibitory activity. It is worth mentioning that except derivatives 1, 11, 12, and 14, all were found to be more potent than the standard thiourea (IC 50 = 21.25 ± 0.15 µM) and showed their urease inhibitory potential in the range of IC 50 = 3.70 ± 0.5-20.14 ± 0.1 µM. Structure-activity relationship (SAR) was rationalized by looking at the varying structural features of the molecules. However, molecular modeling study was performed to confirm the binding interactions of the molecules (ligand) with the active site of enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Rudolph, Michael J; Vance, David J; Cassidy, Michael S; Rong, Yinghui; Shoemaker, Charles B; Mantis, Nicholas J
2016-08-01
In this report, we describe the X-ray crystal structures of two single domain camelid antibodies (VH H), F5 and F8, each in complex with ricin toxin's enzymatic subunit (RTA). F5 has potent toxin-neutralizing activity, while F8 has weak neutralizing activity. F5 buried a total of 1760 Å(2) in complex with RTA and made contact with three prominent secondary structural elements: α-helix B (Residues 98-106), β-strand h (Residues 113-117), and the C-terminus of α-helix D (Residues 154-156). F8 buried 1103 Å(2) in complex with RTA that was centered primarily on β-strand h. As such, the structural epitope of F8 is essentially nested within that of F5. All three of the F5 complementarity determining regions CDRs were involved in RTA contact, whereas F8 interactions were almost entirely mediated by CDR3, which essentially formed a seventh β-strand within RTA's centrally located β-sheet. A comparison of the two structures reported here to several previously reported (RTA-VH H) structures identifies putative contact sites on RTA, particularly α-helix B, associated with potent toxin-neutralizing activity. This information has implications for rational design of RTA-based subunit vaccines for biodefense. Proteins 2016; 84:1162-1172. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists.
Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita; Breitinger, Ulrike; Villmann, Carmen; Banoub, Maha M; Breitinger, Hans-Georg; Dandekar, Thomas; Holzgrabe, Ulrike; Sotriffer, Christoph; Jensen, Anders A; Zlotos, Darius P
2016-12-23
A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [ 3 H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC 50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.
2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.
Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin
2016-01-01
Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.
Zask, Arie; Birnberg, Gary; Cheung, Katherine; Kaplan, Joshua; Niu, Chuan; Norton, Emily; Suayan, Ronald; Yamashita, Ayako; Cole, Derek; Tang, Zhilian; Krishnamurthy, Girija; Williamson, Robert; Khafizova, Gulnaz; Musto, Sylvia; Hernandez, Richard; Annable, Tami; Yang, Xiaoran; Discafani, Carolyn; Beyer, Carl; Greenberger, Lee M; Loganzo, Frank; Ayral-Kaloustian, Semiramis
2004-09-09
Hemiasterlin, a tripeptide isolated from marine sponges, induces microtubule depolymerization and mitotic arrest in cells. HTI-286, an analogue from an initial study of the hemiasterlins, is presently in clinical trials. In addition to its potent antitumor effects, 2 has the advantage of circumventing the P-glycoprotein-mediated resistance that hampers the efficacy of other antimicrotubule agents such as paclitaxel and vincristine in animal models. This paper describes an in-depth study of the structure--activity relationships of analogues of 2, their effects on microtubule polymerization, and their in vitro and in vivo anticancer activity. Regions of the molecule necessary for potent activity are identified. Groups tolerant of modification, leading to novel analogues, are reported. Potent analogues identified through in vivo studies in tumor xenograft models include one superior analogue, HTI-042.
Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R
2017-11-17
Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.
2014-01-01
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S; Nallaganchu, Bhaskara Rao; Olson, Gary L; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S
2014-12-30
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers.
Discovery of highly potent, selective, covalent inhibitors of JAK3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempson, James; Ovalle, Damaso; Guo, Junqing
A useful and novel set of tool molecules have been identified which bind irreversibly to the JAK3 active site cysteine residue. The design was based on crystal structure information and a comparative study of several electrophilic warheads.
Quantum chemical studies of estrogenic compounds
USDA-ARS?s Scientific Manuscript database
Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...
RISK CHARACTERIZATION OF DIOXINS
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; "Dioxin") is the most toxic member of a family of structurally related compounds which are ubiquitous environmental pollutants. The most potent of these, the polyhalogenated dibenzo-p-dioxins and furans, were never produced int...
Binding ability of impromidine, a potent H2 agonist of histamine
NASA Astrophysics Data System (ADS)
Anouar, A.; Lhadi, E.; Decock, P.; Kozlowskyinst4, H.
1999-09-01
Impromidine (fig.1) is a potent and selective histamine H2 receptor agonist and its structure comprises a strongly basic guanidine group containing two different imidazole-containing side chains. The present work deals with the study of coordination equilibria between impromidine and Cu(II) and Ni(II) in aqueous solution at 25 circC. Potentiometric, UV-Visible and EPR studies on Cu(II) complexes with impromidine have shown that this anti-ulcerogenic drug is a very potent chelating agent. This drug is found to be a very effective ligand for Ni(II) ions also. The effective coordination of impromidine to metal ions may have significant biological implications. L'impromidine est un agoniste H2 de l'histamine, sa structure possède un groupement guanidinique de forte basicité et dont l'environne ment des deux groupements imidazoliques est différent. Le présent travail consiste en l'étude de la coordination de l'impromidine avec le Cu(II) et le Ni(II) en milieu aqueux à 25 circC. La potentiométrie, LíUV-Visible et la RPE montrent que le cuivre se coordine très fortement avec l'impromidine. Nous avons trouvé que ce médicament se coordine aussi fortement avec le nickel(II). La coordination de l'impromidine avec les métaux pourrait avoir des applications importantes en médecine.
Huang, Boshi; Li, Cuicui; Chen, Wenmin; Liu, Tao; Yu, Mingyan; Fu, Lu; Sun, Yueyue; Liu, Huiqing; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan; Zhan, Peng; Liu, Xinyong
2015-03-06
In our arduous efforts to develop new potent HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs), novel piperidine-linked [1,2,4]triazolo[1,5-a]pyrimidine derivatives were designed, synthesized and evaluated for their antiviral activities in MT-4 cell cultures. Biological results showed that all of the title compounds displayed moderate to excellent activities against wild-type (wt) HIV-1 strain (IIIB) with EC50 values ranging from 8.1 nM to 2284 nM in a cell-based assay. Among them, the most promising analog 7d possessed an EC50 value of 8.1 nM against wt HIV-1, which was much more potent than the reference drugs DDI, 3 TC, NVP and DLV. Additionally, 7d demonstrated weak activity against the double mutant HIV-1 strain (K103N + Y181C), and was more efficient than NVP in a RT inhibition assay. Besides, some measured and calculated physicochemical properties of 7d, like log P and water solubility, as well as the structure-activity relationships (SARs) analysis have been discussed in detail. Furthermore, the binding mode of the active compound 7d was rationalized by molecular simulation studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Thanigaimalai, Pillaiyar; Konno, Sho; Yamamoto, Takehito; Koiwai, Yuji; Taguchi, Akihiro; Takayama, Kentaro; Yakushiji, Fumika; Akaji, Kenichi; Kiso, Yoshiaki; Kawasaki, Yuko; Chen, Shen-En; Naser-Tavakolian, Aurash; Schön, Arne; Freire, Ernesto; Hayashi, Yoshio
2013-07-01
This work describes the design, synthesis, and evaluation of low-molecular weight peptidic SARS-CoV 3CL protease inhibitors. The inhibitors were designed based on the potent tripeptidic Z-Val-Leu-Ala(pyrrolidone-3-yl)-2-benzothiazole (8; Ki = 4.1 nM), in which the P3 valine unit was substituted with a variety of distinct moieties. The resulting series of dipeptide-type inhibitors displayed moderate to good inhibitory activities against 3CL(pro). In particular, compounds 26m and 26n exhibited good inhibitory activities with Ki values of 0.39 and 0.33 μM, respectively. These low-molecular weight compounds are attractive leads for the further development of potent peptidomimetic inhibitors with pharmaceutical profiles. Docking studies were performed to model the binding interaction of the compound 26m with the SARS-CoV 3CL protease. The preliminary SAR study of the peptidomimetic compounds with potent inhibitory activities revealed several structural features that boosted the inhibitory activity: (i) a benzothiazole warhead at the S1' position, (ii) a γ-lactam unit at the S1-position, (iii) an appropriately hydrophobic leucine moiety at the S2-position, and (iv) a hydrogen bond between the N-arylglycine unit and a backbone hydrogen bond donor at the S3-position. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wu, Mingyi; Wen, Dandan; Gao, Na; Xiao, Chuang; Yang, Lian; Xu, Li; Lian, Wu; Peng, Wenlie; Jiang, Jianmin; Zhao, Jinhua
2015-03-06
Fucosylated chondroitin sulfate (FCS), a structurally unusual glycosaminoglycan, has distinct anticoagulant properties, and is an especially strong inhibitor of the intrinsic factor Xase (anti-Xase). To obtain a highly selective inhibitor of human Xase, we purified six native FCSs with various sulfation patterns, prepared a series of FCS derivatives, and then elucidated the relationship between the structures and the anticoagulant activities of FCSs. FCSs 1-3 containing higher Fuc2S4S exhibit stronger AT-dependent anti-IIa activities, whereas 4-6 containing more Fuc3S4S produce potent HCII-dependent anti-IIa activities. Saccharides containing a minimum of 6-8 trisaccharide units, free carboxyl groups, and full fucosylation of GlcA may be required for potent anti-Xase activity, and approximately six trisaccharide units and partial fucosylation of GlcA may contribute to potent HCII-dependent activity. Decreasing of the molecular weights markedly reduces their AT-dependent anti-IIa activities, and even eliminates human platelet and factor XII activation. Furthermore, in vitro and in vivo studies suggested that fractions of 6-12 kDa may be very promising compounds as putative selective intrinsic Xase inhibitors with antithrombotic action, but without the consequences of major bleeding and factor XII activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Borrero, Nicholas V; Bai, Fang; Perez, Cristian; Duong, Benjamin Q; Rocca, James R; Jin, Shouguang; Huigens, Robert W
2014-02-14
Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao
Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{supmore » pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.« less
Li, Jinglei; Lee, Il Woo; Shin, Gye Hwa; Chen, Xiguang; Park, Hyun Jin
2015-08-01
Using a simple solution mixing method, curcumin was dispersed in the matrix of Eudragit® E PO polymer. Water solubility of curcumin in curcumin-Eudragit® E PO solid dispersion (Cur@EPO) was greatly increased. Based on the results of several tests, curcumin was demonstrated to exist in the polymer matrix in amorphous state. The interaction between curcumin and the polymer was investigated through Fourier transform infrared spectroscopy and (1)H NMR which implied that OH group of curcumin and carbonyl group of the polymer involved in the H bonding formation. Cur@EPO also provided protection function for curcumin as verified by the pH challenge and UV irradiation test. The pH value influenced curcumin release profile in which sustained release pattern was revealed. Additionally, in vitro transdermal test was conducted to assess the potential of Cur@EPO as a vehicle to deliver curcumin through this alternative administration route. Copyright © 2015 Elsevier B.V. All rights reserved.
Sabino, Bruno Duarte; Torraca, Tathiana Guilliod; Moura, Claudia Melo; Rozenbaum, Hannah Felicia; de Castro Faria, Mauro Velho
2010-05-01
Foods contaminated with a granulated material similar to Temik (a commercial pesticide formulation containing the carbamate insecticide aldicarb) are often involved in accidental ingestion, suicides, and homicides in Brazil. We developed a simple technique to detect aldicarb. This technique is based on the inhibition of a stable preparation of the enzyme acetylcholinesterase, and it is specially adapted for forensic purposes. It comprises an initial extraction step with the solvent methylene chloride followed by a colorimetric acetylcholinesterase assay. We propose that results of testing contaminated forensic samples be expressed in aldicarb equivalents because, even though all other carbamates are also potent enzyme inhibitors, aldicarb is the contaminant most frequently found in forensic samples. This method is rapid (several samples can be run in a period of 2 h) and low cost. This method also proved to be precise and accurate, detecting concentrations as low as 40 microg/kg of aldicarb in meat samples.
RISK CHARACTERIZATION OF DIOXINS FOR EUROTOX 2005
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or Dioxin) is the most toxic member of a family of structurally related compounds which are ubiquitous environmental pollutants. The most potent of these classes, the polyhalogenated dibenzo-p-dioxins and furans, were never produced in...
Shin, Dong-Yun; Kim, Sun Nam; Chae, Jung-Hyun; Hyun, Soon-Sil; Seo, Seung-Yong; Lee, Yong-Sil; Lee, Kwang-Ok; Kim, Seok-Ho; Lee, Yun-Sang; Jeong, Jae Min; Choi, Nam-Song; Suh, Young-Ger
2004-09-06
Syntheses and excellent anti-MRSA activities of the mansonone F analogs are reported. In addition, the minimal structural requirements for its anti-MRSA activities as well as its structure-activity relationship including the C3 substituents effects on anti-MRSA activity are also described. In particular, this study revealed that both ortho-quinone and tricyclic systems of mansonone F are essential for anti-MRSA activities.
Abdi, Muna H; Beswick, Paul J; Billinton, Andy; Chambers, Laura J; Charlton, Andrew; Collins, Sue D; Collis, Katharine L; Dean, David K; Fonfria, Elena; Gleave, Robert J; Lejeune, Clarisse L; Livermore, David G; Medhurst, Stephen J; Michel, Anton D; Moses, Andrew P; Page, Lee; Patel, Sadhana; Roman, Shilina A; Senger, Stefan; Slingsby, Brian; Steadman, Jon G A; Stevens, Alexander J; Walter, Daryl S
2010-09-01
A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies. Copyright 2010 Elsevier Ltd. All rights reserved.
Effects of potentization in aqueous solutions.
Schulte, J
1999-10-01
Over the past two decades, research into structure formation and structure conservation in water has created a significant interest among the homeopathy research community. The formation of sustained static and dynamic structures in aqueous solutions is thought to be synonymous with the possible storage of information in associated liquids. Prominent models and experiments considering this possibility are presented in this paper, and some of their subtleties, which were not given much room in the respective original publications, will be elucidated in more detail here.
Antisense oligonucleotide technologies in drug discovery.
Aboul-Fadl, Tarek
2006-09-01
The principle of antisense oligonucleotide (AS-OD) technologies is based on the specific inhibition of unwanted gene expression by blocking mRNA activity. It has long appeared to be an ideal strategy to leverage new genomic knowledge for drug discovery and development. In recent years, AS-OD technologies have been widely used as potent and promising tools for this purpose. There is a rapid increase in the number of antisense molecules progressing in clinical trials. AS-OD technologies provide a simple and efficient approach for drug discovery and development and are expected to become a reality in the near future. This editorial describes the established and emerging AS-OD technologies in drug discovery.
Almaaytah, Ammar; Zhou, Mei; Wang, Lei; Chen, Tianbao; Walker, Brian; Shaw, Chris
2012-06-01
The venoms of scorpions are complex cocktails of polypeptide toxins that fall into two structural categories: those that contain cysteinyl residues with associated disulfide bridges and those that do not. As the majority of lethal toxins acting upon ion channels fall into the first category, most research has been focused there. Here we report the identification and structural characterization of two novel 18-mer antimicrobial peptides from the venom of the North African scorpion, Androctonus amoreuxi. Named AamAP1 and AamAP2, both peptides are C-terminally amidated and differ in primary structure at just two sites: Leu-->Pro at position 2 and Phe-->Ile at position 17. Synthetic replicates of both peptides exhibited a broad-spectrum of antimicrobial activity against a Gram-positive bacterium (Staphylococcus aureus), a Gram-negative bacterium (Escherichia coli) and a yeast (Candida albicans), at concentrations ranging between 20 μM and 150 μM. In this concentration range, both peptides produced significant degrees of hemolysis. A synthetic replicate of AamAP1 containing a single substitution (His-->Lys) at position 8, generated a peptide (AamAP-S1) with enhanced antimicrobial potency (3-5 μM) against the three test organisms and within this concentration range, hemolytic effects were negligible. In addition, this His-->Lys variant exhibited potent growth inhibitory activity (ID(50) 25-40 μm) against several human cancer cell lines and endothelial cells that was absent in both natural peptides. Natural bioactive peptide libraries, such as those that occur in scorpion venoms, thus constitute a unique source of novel lead compounds with drug development potential whose biological properties can be readily manipulated by simple synthetic chemical means. Copyright © 2012 Elsevier Inc. All rights reserved.
Cui, Qi; Wang, Li-Tao; Liu, Ju-Zhao; Wang, Hui-Mei; Guo, Na; Gu, Cheng-Bo; Fu, Yu-Jie
2017-09-01
A simple, green and efficient extraction method named modified-solvent free microwave extraction (M-SFME) was employed for the extraction of essential oils (EOs) from Amomun tsao-ko. The process of M-SFME was optimized with the prominent preponderance of such higher extraction yield (1.13%) than those of solvent free microwave extraction (SFME, 0.91%) and hydrodistillation (HD, 0.84%) under the optimal parameters. Thirty-four volatile substances representing 95.4% were identified. The IC 50 values of EOs determined by DPPH radical scavenging activity and β-carotene/linoleic acid bleaching assay were 5.27 and 0.63mg/ml. Furthermore, the EOs exhibited moderate to potent broad-spectrum antimicrobial activity against all tested strains including five gram-positive and two gram-negative bacteria (MIC: 2.94-5.86mg/ml). In general, M-SFME is a potential and desirable alternative for the extraction of EOs from aromatic herbs, and the EOs obtained from A. tsao-ko can be explored as a potent natural antimicrobial and antioxidant preservative ingredient in food industry from the technological and economical points of view. Copyright © 2017 Elsevier B.V. All rights reserved.
Cígler, Petr; Kožíšek, Milan; Řezáčová, Pavlína; Brynda, Jíří; Otwinowski, Zbyszek; Pokorná, Jana; Plešek, Jaromír; Grüner, Bohumír; Dolečková-Marešová, Lucie; Máša, Martin; Sedláček, Juraj; Bodem, Jochen; Kräusslich, Hans-Georg; Král, Vladimír; Konvalinka, Jan
2005-01-01
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submicromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 Å resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3′ subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition. PMID:16227435
The monoamine oxidase inhibition properties of selected structural analogues of methylene blue.
Delport, Anzelle; Harvey, Brian H; Petzer, Anél; Petzer, Jacobus P
2017-06-15
The thionine dye, methylene blue (MB), is a potent inhibitor of monoamine oxidase (MAO) A, a property that may, at least in part, mediate its antidepressant effects in humans and animals. The central inhibition of MAO-A by MB has also been linked to serotonin toxicity (ST) which may arise when MB is used in combination with serotonergic drugs. Structural analogues and the principal metabolite of MB, azure B, have also been reported to inhibit the MAO enzymes, with all compounds exhibiting specificity for the MAO-A isoform. To expand on the structure-activity relationships (SARs) of MAO inhibition by MB analogues, the present study investigates the human MAO inhibition properties of five MB analogues: neutral red, Nile blue, new methylene blue, cresyl violet and 1,9-dimethyl methylene blue. Similar to MB, these analogues also are specific MAO-A inhibitors with cresyl violet (IC 50 =0.0037μM), Nile blue (IC 50 =0.0077μM) and 1,9-dimethyl methylene blue (IC 50 =0.018μM) exhibiting higher potency inhibition compared to MB (IC 50 =0.07μM). Nile blue also represents a potent MAO-B inhibitor with an IC 50 value of 0.012μM. From the results it may be concluded that non-thionine MB analogues (e.g. cresyl violet and Nile blue) also may exhibit potent MAO inhibition, a property which should be considered when using these compounds in pharmacological studies. Benzophenoxazines such as cresyl violet and Nile blue are, similar to phenothiazines (e.g. MB), representative of high potency MAO-A inhibitors with a potential risk of ST. Copyright © 2017 Elsevier Inc. All rights reserved.
Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T; Doerksen, Robert J; Na, MinKyun
2017-01-01
Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [ 3 H] acetyl-CoA into palmitate. Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC 50 of 6.7±0.2μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1-3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors
2014-01-01
Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957
Henry, Brian L; Connell, Justin; Liang, Aiye; Krishnasamy, Chandravel; Desai, Umesh R
2009-07-31
Antithrombin, a major regulator of coagulation and angiogenesis, is known to interact with several natural sulfated polysaccharides. Previously, we prepared sulfated low molecular weight variants of natural lignins, called sulfated dehydrogenation polymers (DHPs) (Henry, B. L., Monien, B. H., Bock, P. E., and Desai, U. R. (2007) J. Biol. Chem. 282, 31891-31899), which have now been found to exhibit interesting antithrombin binding properties. Sulfated DHPs represent a library of diverse noncarbohydrate aromatic scaffolds that possess structures completely different from heparin and heparan sulfate. Fluorescence binding studies indicate that sulfated DHPs bind to antithrombin with micromolar affinity under physiological conditions. Salt dependence of binding affinity indicates that the antithrombin-sulfated DHP interaction involves a massive 80-87% non-ionic component to the free energy of binding. Competitive binding studies with heparin pentasaccharide, epicatechin sulfate, and full-length heparin indicate that sulfated DHPs bind to both the pentasaccharide-binding site and extended heparin-binding site of antithrombin. Affinity capillary electrophoresis resolves a limited number of peaks of antithrombin co-complexes suggesting preferential binding of selected DHP structures to the serpin. Computational genetic algorithm-based virtual screening study shows that only one sulfated DHP structure, out of the 11 present in a library of plausible sequences, bound in the heparin-binding site with a high calculated score supporting selectivity of recognition. Enzyme inhibition studies indicate that only one of the three sulfated DHPs studied is a potent inhibitor of free factor VIIa in the presence of antithrombin. Overall, the chemo-enzymatic origin and antithrombin binding properties of sulfated DHPs present novel opportunities for potent and selective modulation of the serpin function, especially for inhibiting the initiation phase of hemostasis.
Tseng, Chih-Hua; Tung, Chun-Wei; Wu, Chen-Hsin; Tzeng, Cherng-Chyi; Chen, Yen-Hsu; Hwang, Tsong-Long; Chen, Yeh-Long
2017-06-16
A series of indeno[1,2- c ]quinoline derivatives were designed, synthesized and evaluated for their anti-tuberculosis (anti-TB) and anti-inflammatory activities. The minimum inhibitory concentration (MIC) of the newly synthesized compound was tested against Mycobacterium tuberculosis H 37 R V . Among the tested compounds, ( E )- N '-[6-(4-hydroxypiperidin-1-yl)-11 H -indeno[1,2- c ]quinolin-11-ylidene]isonicotino-hydrazide ( 12 ), exhibited significant activities against the growth of M. tuberculosis (MIC values of 0.96 μg/mL) with a potency approximately equal to that of isoniazid (INH), an anti-TB drug. Important structure features were analyzed by quantitative structure-activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the anti-TB activity. The anti-inflammatory activity was induced by superoxide anion generation and neutrophil elastase (NE) release using the formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils method. Results indicated that compound 12 demonstrated a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 1.76 and 1.72 μM, respectively. Our results indicated that compound 12 is a potential lead compound for the discovery of dual anti-TB and anti-inflammatory drug candidates. In addition, 6-[3-(hydroxymethyl)piperidin-1-yl]-9-methoxy-11 H -indeno[1,2- c ]quinolin-11-one ( 4g ) showed a potent dual inhibitory effect on NE release and superoxide anion generation with IC 50 values of 0.46 and 0.68 μM, respectively, and is a potential lead compound for the discovery of anti-inflammatory drug candidates.
Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T.; Doerksen, Robert J.; Na, MinKyun
2016-01-01
Background Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. Methods The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [3H] acetyl-CoA into palmitate. Results Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC50 of 6.7 ± 0.2 μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1–3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. Conclusion This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. General significance FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. PMID:27531709
Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi
2002-07-01
During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.
Backes, Bradley J; Longenecker, Kenton; Hamilton, Gregory L; Stewart, Kent; Lai, Chunqiu; Kopecka, Hana; von Geldern, Thomas W; Madar, David J; Pei, Zhonghua; Lubben, Thomas H; Zinker, Bradley A; Tian, Zhenping; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Black-Schaefer, Candace; Sham, Hing L; Trevillyan, James M
2007-04-01
A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.
Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif
2017-11-08
An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.
Hartisch, C; Kolodziej, H; von Bruchhausen, F
1997-04-01
In the present study, the effects of tannins obtained from various plant sources on the activity of 5-LOX and AT were examined. With IC50 values ranging from 1.0 to 18.7 muM, hamamelitannin and the galloylated proanthocyanidins isolated from Hamamelis virginiana L. were found to be most potent inhibitors of 5-LOX. Unlike the 5-LOX study, hamamelitannin proved to be ineffective in the AT assay. Potent candidates are represented by the group of B-type proanthocyanidins. Structure-activity relationships regarding the in vitro inhibitory potency of the polyphenols in the biological assays are discussed.
Teaching Beginning Chemistry Students Simple Lewis Dot Structures
ERIC Educational Resources Information Center
Nassiff, Peter; Czerwinski, Wendy A.
2015-01-01
Students beginning their initial study of chemistry often have a difficult time mastering simple Lewis dot structures. Textbooks show students how to manipulate Lewis structures by moving valence electron dots around the chemical structure so each atom has an octet or duet. However, an easier method of teaching Lewis structures for simple…
Barrow, James C; Stauffer, Shaun R; Rittle, Kenneth E; Ngo, Phung L; Yang, ZhiQiang; Selnick, Harold G; Graham, Samuel L; Munshi, Sanjeev; McGaughey, Georgia B; Holloway, M Katharine; Simon, Adam J; Price, Eric A; Sankaranarayanan, Sethu; Colussi, Dennis; Tugusheva, Katherine; Lai, Ming-Tain; Espeseth, Amy S; Xu, Min; Huang, Qian; Wolfe, Abigail; Pietrak, Beth; Zuck, Paul; Levorse, Dorothy A; Hazuda, Daria; Vacca, Joseph P
2008-10-23
A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.
Rahman, Mona N.; Vukomanovic, Dragic; Vlahakis, Jason Z.; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao
2013-01-01
The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. PMID:23097500
Takesada, H; Matsuda, K; Ohtake, R; Mihara, R; Ono, I; Tanaka, K; Naito, M; Yatagai, M; Suzuki, E
1996-10-01
Molecular structures of 10 metabolites, which were isolated from urine (M1-M8) or bile (M9 and M10) after administration of AY4166 (N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine), a novel amino acid derivative with hypoglycemic activity, have been elucidated by mass spectrometry and nuclear magnetic resonance. Four of these (M1, M2, M3 and M8) were determined to be hydroxyl derivatives of AY4166, two (M9 and M10) were carboxylate derivatives via oxidization of M2 and M3, three (M4, M5 and M6) were glucronic acid conjugates and the other (M7) was a dehydro derivative. The estimated structures for M1, M2, M3, M7, M8, M9 and M10 were confirmed by the coincidence of the retention time of HPLC, MS and 1H NMR spectra between the isolated metabolites and authentic synthesized substances. For three glucronic acid conjugates, M4, M5 and M6, structural confirmation was performed by a selective enzymatic digestion with beta-glucronidase. M1 and M2/3 were about 5-6 and 3 times less potent than AY4166, respectively, and M7 was almost as potent as AY4166.
Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush
2013-01-01
Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876
Qian, Keduo; Kuo, Reen-Yun; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L; Lee, Kuo-Hsiung
2010-04-22
In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.
NASA Astrophysics Data System (ADS)
Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin
2016-11-01
Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.
Hu, Youcai; Potts, Malia B.; Colosimo, Dominic; Herrera-Herrera, Mireya L.; Legako, Aaron G.; Yousufuddin, Muhammed; White, Michael A.; MacMillan, John B.
2013-01-01
Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase involved in a variety of cellular response pathways, including regulation of cell growth, proliferation and motility. Using a newly developed platform to identify the signaling pathway/molecular target of natural products, we identified a family of alkaloid natural products, discoipyrroles A–D (1–4), from Bacillus hunanensis that inhibit the DDR2 signaling pathway. The structure of 1–4, determined by detailed 2D NMR methods and confirmed by X-ray crystallographic analysis has an unusual 3H-benzo[ d]pyrrolo][1,3]oxazine-3,5-dione core. Discoipyrroles A–D potently inhibit DDR2 dependent migration of BR5 fibroblasts and show selective cytotoxicity to DDR2 mutant cell lung cancer cell lines (IC50 120–400 nM). Examination of the biosynthesis has led to the conclusion that the discoipyrroles are formed through a non-enzymatic process, leading to a one-pot total synthesis of 1. PMID:23984625
Noeske, Tobias; Trifanova, Dina; Kauss, Valerjans; Renner, Steffen; Parsons, Christopher G; Schneider, Gisbert; Weil, Tanja
2009-08-01
We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays. We identified a potent chemotype exhibiting selective antagonistic activity at mGluR1 (functional IC(50)=0.74+/-0.29 microM). Hit optimization yielded lead structure 16 with an affinity of K(i)=0.024+/-0.001 microM and greater than 1000-fold selectivity for mGluR1 versus mGluR5. Homology-based receptor modelling suggests a binding site compatible with previously reported mutation studies. Our study demonstrates the usefulness of ligand-based virtual screening for scaffold-hopping and rapid lead structure identification in early drug discovery projects.
He, Ye; Wang, Xiao-Bing; Fan, Bo-Yi; Kong, Ling-Yi
2014-01-15
Ten honokiol oligomers (1-10), including four novel trimers (1-4) and four novel dimers (5-8), were obtained by means of biotransformation of honokiol catalyzed by Momordica charantia peroxidase (MCP) for the first time. Their structures were established on the basis of spectroscopic methods. The biological results demonstrated that most of the oligomers were capable of inhibiting α-glucosidase with significant abilities, which were one to two orders of magnitude more potent than the substrate, honokiol. In particular, compound 2, the honokiol trimer, displayed the greatest inhibitory activity against α-glucosidase with an IC50 value of 1.38μM. Kinetic and CD studies indicated that 2 inhibited α-glucosidase in a reversible, mixed-type manner and caused conformational changes in the secondary structure of the enzyme protein. These findings suggested that 2 might be exploited as a promising drug candidate for the treatment of diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.
2015-01-01
This Letter reports a family of novel antimicrobial compounds obtained by combining peptide library screening with structure-based design. Library screening led to the identification of a human LL-37 peptide resistant to chymotrypsin. This d-amino-acid-containing peptide template was active against Escherichia coli but not methicillin-resistant Staphylococcus aureus (MRSA). It possesses a unique nonclassic amphipathic structure with hydrophobic defects. By repairing the hydrophobic defects, the peptide (17BIPHE2) gained activity against the ESKAPE pathogens, including Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species. In vitro, 17BIPHE2 could disrupt bacterial membranes and bind to DNA. In vivo, the peptide prevented staphylococcal biofilm formation in a mouse model of catheter-associated infection. Meanwhile, it boosted the innate immune response to further combat the infection. Because these peptides are potent, cell-selective, and stable to several proteases, they may be utilized to combat one or more ESKAPE pathogens. PMID:25061850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J Jean; Tran-Dube,; #769
2011-08-03
Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with amore » better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.« less
A synthetic chalcone as a potent inducer of glutathione biosynthesis.
Kachadourian, Remy; Day, Brian J; Pugazhenti, Subbiah; Franklin, Christopher C; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène
2012-02-09
Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2',5'-dihydroxychalcone (2',5'-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure-activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4',6'-dimethoxy-2'-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements.
Investigation of pyrazolo-sulfonamides as putative small molecule oxytocin receptor agonists.
Katte, Timothy A; Reekie, Tristan A; Werry, Eryn L; Jorgensen, William T; Boyd, Rochelle; Wong, Erick C N; Gulliver, Damien W; Connor, Mark; Kassiou, Michael
2017-08-18
The neuropeptide oxytocin has been implicated in multiple central nervous system functions in mammalian species. Increased levels have been reported to improve trust, alleviate symptoms related to autism and social phobias, and reduce social anxiety. Hoffman-La Roche published a patent claiming to have found potent small molecule oxytocin receptor agonists, smaller than the first non-peptide oxytocin agonist reported, WAY 267,464. We selected two of the more potent compounds from the patent and, in addition, created WAY 267,464 hybrid structures and determined their oxytocin and vasopressin receptor activity. Human embryonic kidney and Chinese hamster ovary cells were used for the expression of oxytocin or vasopressin 1a receptors and activity assessed via IP1 accumulation assays and calcium FLIPR assays. The results concluded that the reported compounds in the patent and the hybrid structures have no activity at the oxytocin or vasopressin 1a receptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cheung, Mui; Tangirala, Raghuram S; Bethi, Sridhar R; Joshi, Hemant V; Ariazi, Jennifer L; Tirunagaru, Vijaya G; Kumar, Sanjay
2018-02-08
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) plays an important role in triglyceride synthesis and is a target of interest for the treatment of metabolic disorders. Herein we describe the structure-activity relationship of a novel tetralone series of DGAT1 inhibitors and our strategies for overcoming genotoxic liability of the anilines embedded in the chemical structures, leading to the discovery of a candidate compound, ( S )-2-(6-(5-(3-(3,4-difluorophenyl)ureido)pyrazin-2-yl)-1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetic acid (GSK2973980A, 26d ). Compound 26d is a potent and selective DGAT1 inhibitor with excellent DMPK profiles and in vivo efficacy in a postprandial lipid excursion model in mice. Based on the overall biological and developability profiles and acceptable safety profiles in the 7-day toxicity studies in rats and dogs, compound 26d was selected as a candidate compound for further development in the treatment of metabolic disorders.
Fyvie, W. Sean; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki
2018-01-01
The structure-based design, synthesis, and biological evaluation of a series of nonpeptidic HIV-1 protease inhibitors with rationally designed P2′ ligands are described. The inhibitors are designed to enhance backbone binding interactions, particularly at the S2′ subsite. Synthesis of inhibitors was carried out efficiently. The stereochemistry of alcohol functionalities of the P2′ ligands was set by asymmetric reduction of the corresponding ketone using (R,R)- or (S,S)-Noyori catalysts. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 3g and 3h showed enzyme Ki values of 27.9 and 49.7 pM and antiviral activity of 6.2 and 3.9 nM, respectively. These inhibitors also remained quite potent against darunavir-resistant HIV-1 variants. An X-ray structure of inhibitor 3g in complex with HIV-1 protease revealed key interactions in the S2′ subsite. PMID:29110408
NASA Astrophysics Data System (ADS)
Gehrmann, Andreas; Nagai, Yoshimitsu; Yoshida, Osamu; Ishizu, Syohei
Since management decision-making becomes complex and preferences of the decision-maker frequently becomes inconsistent, multi-attribute decision-making problems were studied. To represent inconsistent preference relation, the concept of evaluation structure was introduced. We can generate simple rules to represent inconsistent preference relation by the evaluation structures. Further rough set theory for the preference relation was studied and the concept of approximation was introduced. One of our main aims of this paper is to introduce a concept of rough evaluation structure for representing inconsistent preference relation. We apply rough set theory to the evaluation structure, and develop a method for generating simple rules for inconsistent preference relations. In this paper, we introduce concepts of totally ordered information system, similarity class of preference relation, upper and lower approximation of preference relations. We also show the properties of rough evaluation structure and provide a simple example. As an application of rough evaluation structure, we analyze questionnaire survey of customer preferences about audio players.
Begum, S; Achary, P Ganga Raju
2015-01-01
Quantitative structure-activity relationship (QSAR) models were built for the prediction of inhibition (pIC50, i.e. negative logarithm of the 50% effective concentration) of MAP kinase-interacting protein kinase (MNK1) by 43 potent inhibitors. The pIC50 values were modelled with five random splits, with the representations of the molecular structures by simplified molecular input line entry system (SMILES). QSAR model building was performed by the Monte Carlo optimisation using three methods: classic scheme; balance of correlations; and balance correlation with ideal slopes. The robustness of these models were checked by parameters as rm(2), r(*)m(2), [Formula: see text] and randomisation technique. The best QSAR model based on single optimal descriptors was applied to study in vitro structure-activity relationships of 6-(4-(2-(piperidin-1-yl) ethoxy) phenyl)-3-(pyridin-4-yl) pyrazolo [1,5-a] pyrimidine derivatives as a screening tool for the development of novel potent MNK1 inhibitors. The effects of alkyl group, -OH, -NO2, F, Cl, Br, I, etc. on the IC50 values towards the inhibition of MNK1 were also reported.
Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection
Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.
2012-01-01
Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312
NASA Astrophysics Data System (ADS)
Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea
2015-10-01
Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.
Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidases by Bengamide Derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jing-Ping; Yuan, Xiu-Hua; Yuan, Hai
Methionine aminopeptidase (MetAP) carries out an essential function of protein N-terminal processing in many bacteria and is a promising target for the development of novel antitubercular agents. Natural bengamides potently inhibit the proliferation of mammalian cells by targeting MetAP enzymes, and the X-ray crystal structure of human type 2 MetAP in complex with a bengamide derivative reveals the key interactions at the active site. By preserving the interactions with the conserved residues inside the binding pocket while exploring the differences between bacterial and human MetAPs around the binding pocket, seven bengamide derivatives were synthesized and evaluated for inhibition of MtMetAP1amore » and MtMetAP1c in different metalloforms, inhibition of M. tuberculosis growth in replicating and non-replicating states, and inhibition of human K562 cell growth. Potent inhibition of MtMetAP1a and MtMetAP1c and modest growth inhibition of M. tuberculosis were observed for some of these derivatives. Crystal structures of MtMetAP1c in complex with two of the derivatives provided valuable structural information for improvement of these inhibitors for potency and selectivity.« less
Marks, Spaces and Boundaries: Punctuation (and Other Effects) in the Typography of Dictionaries
ERIC Educational Resources Information Center
Luna, Paul
2011-01-01
Dictionary compilers and designers use punctuation to structure and clarify entries and to encode information. Dictionaries with a relatively simple structure can have simple typography and simple punctuation; as dictionaries grew more complex, and encountered the space constraints of the printed page, complex encoding systems were developed,…
Bae, Ki Hyun; Tan, Susi; Yamashita, Atsushi; Ang, Wei Xia; Gao, Shu Jun; Wang, Shu; Chung, Joo Eun; Kurisawa, Motoichi
2017-12-01
The green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG), has gained significant attention as a potent adjuvant to enhance the antitumor efficacy of cisplatin while mitigating its harmful side effects. Herein we report the development of a fail-safe cisplatin nanomedicine constructed with hyaluronic acid-EGCG conjugate for ovarian cancer therapy. A simple mixing of this conjugate and cisplatin induces spontaneous self-assembly of micellar nanocomplexes having a spherical core-shell structure. The surface-exposed hyaluronic acid enables efficient delivery of cisplatin into CD44-overexpressing cancer cells via receptor-mediated endocytosis whereas the internally packed EGCG moieties offer an environment favorable for the encapsulation of cisplatin. In addition, the antioxidant effect of EGCG moieties ensures fail-safe protection against off-target organ toxicity originating from cisplatin-evoked oxidative stress. Pharmacokinetic and biodistribution studies reveal the prolonged blood circulation and preferential tumor accumulation of intravenously administered nanocomplexes. Moreover, the nanocomplexes exhibit superior antitumor efficacy over free cisplatin while displaying no toxicity in both a subcutaneous xenograft model and peritoneal metastatic model of human ovarian cancer. Our findings demonstrate proof of concept for the feasibility of green tea catechin-based micellar nanocomplexes as a safe and effective cisplatin nanomedicine for ovarian cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D
2017-03-01
The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.
1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors.
Hequet, Arnaud; Burchak, Olga N; Jeanty, Matthieu; Guinchard, Xavier; Le Pihive, Emmanuelle; Maigre, Laure; Bouhours, Pascale; Schneider, Dominique; Maurin, Max; Paris, Jean-Marc; Denis, Jean-Noël; Jolivalt, Claude
2014-07-01
The synthesis of 37 1-(1H-indol-3-yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti-staphylococcal activity. By contrast, several of the compounds restored, in a concentration-dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure-activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)-N-benzylidene-2-(tert-butoxycarbonylamino)-1-(5-iodo-1H-indol-3-yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA-1199B strain when used at a concentration of 0.5 mg L(-1) . To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert-butyl (2-(3-hydroxyureido)-2-(1H-indol-3-yl)ethyl)carbamate, which is not toxic for human cells, was also found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.
Andersson, Martin N; Schlyter, Fredrik; Hill, Sharon Rose; Dekker, Teun
2012-06-01
Physiological studies on olfaction frequently ignore the airborne quantities of stimuli reaching the sensory organ. We used a gas chromatography-calibrated photoionization detector to estimate quantities released from standard Pasteur pipette stimulus cartridges during repeated puffing of 27 compounds and verified how lack of quantification could obscure olfactory sensory neuron (OSN) affinities. Chemical structure of the stimulus, solvent, dose, storage condition, puff interval, and puff number all influenced airborne quantities. A model including boiling point and lipophilicity, but excluding vapor pressure, predicted airborne quantities from stimuli in paraffin oil on filter paper. We recorded OSN responses of Drosophila melanogaster, Ips typographus, and Culex quinquefasciatus, to known quantities of airborne stimuli. These demonstrate that inferred OSN tuning width, ligand affinity, and classification can be confounded and require stimulus quantification. Additionally, proper dose-response analysis shows that Drosophila AB3A OSNs are not promiscuous, but highly specific for ethyl hexanoate, with other earlier proposed ligands 10- to 10 000-fold less potent. Finally, we reanalyzed published Drosophila OSN data (DoOR) and demonstrate substantial shifts in affinities after compensation for quantity and puff number. We conclude that consistent experimental protocols are necessary for correct OSN classification and present some simple rules that make calibration, even retroactively, readily possible.
Poecillastrin D: a new cytotoxin of the chondropsin class from marine sponge Jaspis serpentina.
Takemoto, Daisaku; Takekawa, Yoshihiko; Soest, Rob W M van; Fusetani, Nobuhiro; Matsunaga, Shigeki
2007-11-01
Poecillastrin D (2) was isolated together with poecillastrin C (1) from the deep sea sponge, Japsis serpentina. Its structure was elucidated to be that of a macrolide lactam by spectroscopic methods. These compounds showed potent cytotoxicity against various tumor cell lines.
New Technology and Information Explosion.
ERIC Educational Resources Information Center
Johns, David
A flood of new electronic technologies promises to usher in the Information Age and alter economic and social structures. Telematics, a potent combination of telecommunications and computer technologies, could eventually bring huge volumes of information to great numbers of people by making large data bases accessible to computer terminals in…
Singh, Swati; Khare, Garima; Bahal, Ritika Kar; Ghosh, Prahlad C; Tyagi, Anil K
2018-01-01
Background 7,8-Diaminopelargonic acid synthase (BioA), an enzyme of biotin biosynthesis pathway, is a well-known promising target for anti-tubercular drug development. Methods In this study, structure-based virtual screening was employed against the active site of BioA to identify new chemical entities for BioA inhibition and top ranking compounds were evaluated for their ability to inhibit BioA enzymatic activity. Results Seven compounds inhibited BioA enzymatic activity by greater than 60% at 100 μg/mL with most potent compounds being A36, A35 and A65, displaying IC50 values of 10.48 μg/mL (28.94 μM), 33.36 μg/mL (88.16 μM) and 39.17 μg/mL (114.42 μM), respectively. Compounds A65 and A35 inhibited Mycobacterium tuberculosis (M. tuberculosis) growth with MIC90 of 20 μg/mL and 80 μg/mL, respectively, whereas compound A36 exhibited relatively weak inhibition of M. tuberculosis growth (83% inhibition at 200 μg/mL). Compound A65 emerged as the most potent compound identified in our study that inhibited BioA enzymatic activity and growth of the pathogen and possessed drug-like properties. Conclusion Our study has identified a few hit molecules against M. tuberculosis BioA that can act as potential candidates for further development of potent anti-tubercular therapeutic agents. PMID:29750019
Verlinden, Bianca K; de Beer, Marna; Pachaiyappan, Boobalan; Besaans, Ethan; Andayi, Warren A; Reader, Janette; Niemand, Jandeli; van Biljon, Riette; Guy, Kiplin; Egan, Timothy; Woster, Patrick M; Birkholtz, Lyn-Marie
2015-08-15
A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inhibition of Mutated Isocitrate Dehydrogenase 1 in Cancer.
Wu, Fangrui; Cheng, Gang; Yao, Yuan; Kogiso, Mari; Jiang, Hong; Li, Xiao-Nan; Song, Yongcheng
2018-05-23
R132H mutation of isocitrate dehydrogenase 1 (IDH1) are found in ~75% of low-grade gliomas and secondary glioblastomas as well as in several other types of cancer. More chemotypes of inhibitors of IDH1(R132H) are therefore needed. To develop a new class of IDH1(R132H) inhibitors as potent antitumor agents. A biochemical assay was developed to find inhibitors of IDH1(R132H) mutant enzyme. Chemical synthesis and structure activity relationship studies were used to find compounds with improved potency. Antitumor activities of selected compounds were evaluated. A series of aromatic sulfonamide compounds were found to be novel, potent inhibitors of IDH1(R132H) with Ki values as low as 0.6 µM. Structure activity relationships of these compounds are discussed. Enzyme kinetics studies showed that one compound is a competitive inhibitor against the substrate α-KG and a non-competitive inhibitor against the cofactor NADPH. Several inhibitors were found to have no activity against wild-type IDH1, showing a high selectivity. Two potent inhibitors exhibited strong activity against proliferation of BT142 glioma cells with IDH1 R132H mutation, while these compounds did not significantly affect growth of glioma cells without IDH1 mutation. This novel series of IDH1(R132H) inhibitors have potential to be further developed for the treatment of glioma with IDH1 mutation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka
2016-01-01
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially. PMID:27356896
Tandon, Manuj; Johnson, James; Li, Zhihong; Xu, Shuping; Wipf, Peter; Wang, Qiming Jane
2013-01-01
The emergence of protein kinase D (PKD) as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1). 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1M659G for dissecting PKD-specific functions and signaling pathways in various biological systems. PMID:24086585
Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P
2017-01-26
Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.
Cravezic, Aurore; Fichna, Jakub; Gach, Katarzyna; Wyrebska, Anna; Perlikowska, Renata; Costentin, Jean; Bonnet, Jean-Jacques; Janecka, Anna; do Rego, Jean-Claude
2011-12-01
The biological effects of endomorphins (EMs) are short-lasting due to their rapid degradation by endogenous enzymes. Competing enzymatic degradation is an approach to prolong EM bioavailability. In the present study, a series of tetra- and tripeptides of similar to EMs structure was synthesized and tested in vitro and in vivo for their ability to inhibit degradation of EMs. The obtained results indicated that, among the series of analogs, the tetrapeptide Tyr-Pro-d-ClPhe-Phe-NH(2) and the tripeptide Tyr-Pro-Ala-NH(2), which did not bind to the μ-opioid receptors, were potent inhibitors of EM catabolism in rat brain homogenate. In vivo, these two peptides significantly prolonged the analgesic and antidepressant-like effects, induced by exogenous EMs, by blocking EM degrading enzymes. These new potent inhibitors may therefore increase the level and the half life of endogenous EMs and could be used in a new therapeutic strategy against pain and mood disorders, based on increasing of EM bioavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.
1998-01-01
Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748
Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1
Najjar, Malek; Suebsuwong, Chalada; Ray, Soumya S.; Thapa, Roshan J.; Maki, Jenny L.; Nogusa, Shoko; Shah, Saumil; Saleh, Danish; Gough, Peter J.; Bertin, John; Yuan, Junying; Balachandran, Siddharth; Cuny, Gregory D.; Degterev, Alexei
2015-01-01
Summary RIPK1 and RIPK3, two closely related RIPK family members, have emerged as important regulators of pathologic cell death and inflammation. In the current work, we report that the Bcr-Abl inhibitor and anti-leukemia agent ponatinib is also a first-in-class dual inhibitor of RIPK1 and RIPK3. Ponatinib potently inhibited multiple paradigms of RIPK1- and RIPK3-dependent cell death and inflammatory TNFα gene transcription. We further describe design strategies that utilize the ponatinib scaffold to develop two classes of inhibitors (CS and PN series), each with greatly improved selectivity for RIPK1. In particular, we detail the development of PN10, a highly potent and selective ‘hybrid’ RIPK1 inhibitor, capturing the best properties of two different allosteric RIPK1 inhibitors, ponatinib and necrostatin-1. Finally, we show that RIPK1 inhibitors from both classes are powerful blockers of TNF-induced injury in vivo. Altogether, these findings outline promising candidate molecules and design approaches for targeting RIPK1/3-driven inflammatory pathologies. PMID:25801024
Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei
2016-04-14
The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.
Zablocki, Jeff A; Elzein, Elfatih; Li, Xiaofen; Koltun, Dmitry O; Parkhill, Eric Q; Kobayashi, Tetsuya; Martinez, Ruben; Corkey, Britton; Jiang, Haibo; Perry, Thao; Kalla, Rao; Notte, Gregory T; Saunders, Oliver; Graupe, Michael; Lu, Yafan; Venkataramani, Chandru; Guerrero, Juan; Perry, Jason; Osier, Mark; Strickley, Robert; Liu, Gongxin; Wang, Wei-Qun; Hu, Lufei; Li, Xiao-Jun; El-Bizri, Nesrine; Hirakawa, Ryoko; Kahlig, Kris; Xie, Cheng; Li, Cindy Hong; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Soohoo, Daniel; Lepist, Eve-Irene; Murray, Bernard; Rhodes, Gerry; Belardinelli, Luiz; Desai, Manoj C
2016-10-03
Late sodium current (late I Na ) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Na v 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late I Na , is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late I Na inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC 50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late I Na inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.
Yang, Bin; Lamb, Michelle L; Zhang, Tao; Hennessy, Edward J; Grewal, Gurmit; Sha, Li; Zambrowski, Mark; Block, Michael H; Dowling, James E; Su, Nancy; Wu, Jiaquan; Deegan, Tracy; Mikule, Keith; Wang, Wenxian; Kaspera, Rüdiger; Chuaqui, Claudio; Chen, Huawei
2014-12-11
KIFC1 (HSET), a member of the kinesin-14 family of motor proteins, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division. To explore the potential of KIFC1 as a therapeutic target for human cancers, a series of potent KIFC1 inhibitors featuring a phenylalanine scaffold was developed from hits identified through high-throughput screening (HTS). Optimization of the initial hits combined both design-synthesis-test cycles and an integrated high-throughput synthesis and biochemical screening method. An important aspect of this integrated method was the utilization of DMSO stock solutions of compounds registered in the corporate compound collection as synthetic reactants. Using this method, over 1500 compounds selected for structural diversity were quickly assembled in assay-ready 384-well plates and were directly tested after the necessary dilutions. Our efforts led to the discovery of a potent KIFC1 inhibitor, AZ82, which demonstrated the desired centrosome declustering mode of action in cell studies.
Sabatini, Stefano; Gosetto, Francesca; Manfroni, Giuseppe; Tabarrini, Oriana; Kaatz, Glenn W; Patel, Diixa; Cecchetti, Violetta
2011-08-25
Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of substrate antimicrobial agents. Inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant phenotype. In this work, a series of 2-phenyl-4(1H)-quinolone and 2-phenyl-4-hydroxyquinoline derivatives, obtained by modifying the flavone nucleus of known efflux pump inhibitors (EPIs), were synthesized in an effort to identify more potent S. aureus NorA EPIs. The 2-phenyl-4-hydroxyquinoline derivatives 28f and 29f display potent EPI activity against SA-1199B, a strain that overexpresses norA, in an ethidium bromide efflux inhibition assay. The same compounds, in combination with ciprofloxacin, were able to completely restore its antibacterial activity against both S. aureus SA-K2378 and SA-1199B, norA-overexpressing strains. © 2011 American Chemical Society
Sabatini, Stefano; Gosetto, Francesca; Iraci, Nunzio; Barreca, Maria Letizia; Massari, Serena; Sancineto, Luca; Manfroni, Giuseppe; Tabarrini, Oriana; Dimovska, Mirjana; Kaatz, Glenn W; Cecchetti, Violetta
2013-06-27
Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of antimicrobial agents that are substrates. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, biocides, and dyes, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 2-phenylquinoline derivatives was designed by means of ligand-based pharmacophore modeling in an attempt to identify improved S. aureus NorA efflux pump inhibitors (EPIs). Most of the 2-phenylquinoline derivatives displayed potent EPI activity against the norA overexpressing strain SA-1199B. The antibacterial activity of ciprofloxacin, when used in combination with some of the synthesized compounds, was completely restored in SA-1199B and SA-K2378, a strain overexpressing norA from a multicopy plasmid. Compounds 3m and 3q also showed potent synergistic activity with the ethidium bromide dye in a strain overexpressing the MepA MDR efflux pump.
Wei, Zhi-Yu; Chi, Ke-Qiang; Wang, Ke-Si; Wu, Jie; Liu, Li-Ping; Piao, Hu-Ri
2018-06-01
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1 H NMR, 13 C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC 50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei
2017-02-15
Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A y mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yang, Heejung; Kim, Hyun Woo; Kwon, Yong Soo; Kim, Ho Kyong; Sung, Sang Hyun
2017-09-01
Anthocyanins are potent antioxidant agents that protect against many degenerative diseases; however, they are unstable because they are vulnerable to external stimuli including temperature, pH and light. This vulnerability hinders the quality control of anthocyanin-containing berries using classical high-performance liquid chromatography (HPLC) analytical methodologies based on UV or MS chromatograms. To develop an alternative approach for the quality assessment and discrimination of anthocyanin-containing berries, we used MS spectral data acquired in a short analytical time rather than UV or MS chromatograms. Mixtures of anthocyanins were separated from other components in a short gradient time (5 min) due to their higher polarity, and the representative MS spectrum was acquired from the MS chromatogram corresponding to the mixture of anthocyanins. The chemometric data from the representative MS spectra contained reliable information for the identification and relative quantification of anthocyanins in berries with good precision and accuracy. This fast and simple methodology, which consists of a simple sample preparation method and short gradient analysis, could be applied to reliably discriminate the species and geographical origins of different anthocyanin-containing berries. These features make the technique useful for the food industry. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site.
Cheng, Hao D; Grimm, Sebastian K; Gilman, Morgan Sa; Gwom, Luc Christian; Sok, Devin; Sundling, Christopher; Donofrio, Gina; Hedestam, Gunilla B Karlsson; Bonsignori, Mattia; Haynes, Barton F; Lahey, Timothy P; Maro, Isaac; von Reyn, C Fordham; Gorny, Miroslaw K; Zolla-Pazner, Susan; Walker, Bruce D; Alter, Galit; Burton, Dennis R; Robb, Merlin L; Krebs, Shelly J; Seaman, Michael S; Bailey-Kellogg, Chris; Ackerman, Margaret E
2018-03-08
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists.
Wang, Yonghui; Yang, Ting; Liu, Qian; Ma, Yingli; Yang, Liuqing; Zhou, Ling; Xiang, Zhijun; Cheng, Ziqiang; Lu, Sijie; Orband-Miller, Lisa A; Zhang, Wei; Wu, Qianqian; Zhang, Kathleen; Li, Yi; Xiang, Jia-Ning; Elliott, John D; Leung, Stewart; Ren, Feng; Lin, Xichen
2015-09-01
A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Wenlin; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Barros-Álvarez, Ximena; Creason, Sharon A; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Buckner, Frederick S; Fan, Erkang
2017-06-15
Potent inhibitors of Trypanosoma brucei methionyl-tRNA synthetase were previously designed using a structure-guided approach. Compounds 1 and 2 were the most active compounds in the cyclic and linear linker series, respectively. To further improve cellular potency, SAR investigation of a binding fragment targeting the "enlarged methionine pocket" (EMP) was performed. The optimization led to the identification of a 6,8-dichloro-tetrahydroquinoline ring as a favorable fragment to bind the EMP. Replacement of 3,5-dichloro-benzyl group (the EMP binding fragment) of inhibitor 2 using this tetrahydroquinoline fragment resulted in compound 13, that exhibited an EC 50 of 4nM. Copyright © 2017 Elsevier Ltd. All rights reserved.
O'Meara, Jeff A.; Lemke, Christopher T.; Godbout, Cédrickx; Kukolj, George; Lagacé, Lisette; Moreau, Benoît; Thibeault, Diane; White, Peter W.; Llinàs-Brunet, Montse
2013-01-01
Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms. PMID:23271737
Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen
2015-03-01
From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.
Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi
2017-08-01
We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A.; Clifton, Ian J.; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B.; Spencer, James; Fishwick, Colin W. G.; Schofield, Christopher J.
2016-08-01
β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as `transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.
Luo, Yin; Qiu, Ke-Ming; Lu, Xiang; Liu, Kai; Fu, Jie; Zhu, Hai-Liang
2011-08-15
A series of novel cinnamic acyl sulfonamide derivatives (9a-16e) have been designed and synthesized and their biological activities were also evaluated as potential tubulin polymerization inhibitors. Among all the compounds, 10c showed the most potent growth inhibitory activity against B16-F10 cancer cell line in vitro, with an IC(50) value of 0.8μg/mL. Docking simulation was performed to insert compound 10c into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. Based on the preliminary results, compound 10c with potent inhibitory activity in tumor growth may be a potential anticancer agent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Structure-activity relationship of karrikin germination stimulants.
Flematti, Gavin R; Scaffidi, Adrian; Goddard-Borger, Ethan D; Heath, Charles H; Nelson, David C; Commander, Lucy E; Stick, Robert V; Dixon, Kingsley W; Smith, Steven M; Ghisalberti, Emilio L
2010-08-11
Karrikins (2H-furo[2,3-c]pyran-2-ones) are potent smoke-derived germination promoters for a diverse range of plant species but, to date, their mode of action remains unknown. This paper reports the structure-activity relationship of numerous karrikin analogues to increase understanding of the key structural features of the molecule that are required for biological activity. The results demonstrate that modification at the C5 position is preferred over modification at the C3, C4, or C7 positions for retaining the highest bioactivity.
2016-01-01
The P300/CBP-associated factor plays a central role in retroviral infection and cancer development, and the C-terminal bromodomain provides an opportunity for selective targeting. Here, we report several new classes of acetyl-lysine mimetic ligands ranging from mM to low micromolar affinity that were identified using fragment screening approaches. The binding modes of the most attractive fragments were determined using high resolution crystal structures providing chemical starting points and structural models for the development of potent and selective PCAF inhibitors. PMID:26731131
Zhuang, Chunlin; Narayanapillai, Sreekanth; Zhang, Wannian; Sham, Yuk Yin; Xing, Chengguo
2014-02-13
In this study, rapid structure-based virtual screening and hit-based substructure search were utilized to identify small molecules that disrupt the interaction of Keap1-Nrf2. Special emphasis was placed toward maximizing the exploration of chemical diversity of the initial hits while economically establishing informative structure-activity relationship (SAR) of novel scaffolds. Our most potent noncovalent inhibitor exhibits three times improved cellular activation in Nrf2 activation than the most active noncovalent Keap1 inhibitor known to date.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
USDA-ARS?s Scientific Manuscript database
Antimicrobial plant secondary metabolites increase rumen efficiency and decrease waste products (i.e. ammonia, methane) in some cases. A promising source of bioactive secondary metabolites is the hops plant (Humulus lupulus L.), which produces '-acid, a suite of structurally similar, potent antibact...
Exotic behavior and crystal structures of calcium under pressure
Oganov, Artem R.; Ma, Yanming; Xu, Ying; Errea, Ion; Bergara, Aitor; Lyakhov, Andriy O.
2010-01-01
Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc → bcc → simple cubic → Ca-IV → Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The β-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33–71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching approximately 20 K at 120 GPa, in good agreement with experiment. PMID:20382865
Protein nanoparticles are nontoxic, tuneable cell stressors.
de Pinho Favaro, Marianna Teixeira; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Roldán, Mónica; Unzueta, Ugutz; Serna, Naroa; Cano-Garrido, Olivia; Azzoni, Adriano Rodrigues; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther
2018-02-01
Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
Raj, Raghu; Saini, Anu; Gut, Jiri; Rosenthal, Philip J; Kumar, Vipan
2015-05-05
The manuscript describes the synthesis of novel amide tethered 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone bifunctional hybrids and their evaluation as antimalarial agents against W2 resistant strain of Plasmodium falciparum. The antiplasmodial activity of 7-chloroquinoline-ferrocenylchalcones was found to be less than their corresponding simple chalcone conjugates. The presence of a methoxy substituent at para position of ring B on chalcones and longer alkyl chain length markedly improved the antiplasmodial profiles of the synthesized scaffolds with the most potent of the test compound exhibiting an IC50 value of 17.8 nM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mohanram, Harini; Bhattacharjya, Surajit
2014-04-21
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.
Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β.
Wang, Yikai; Wach, Jean-Yves; Sheehan, Patrick; Zhong, Cheng; Zhan, Chenyang; Harris, Richard; Almo, Steven C; Bishop, Joshua; Haggarty, Stephen J; Ramek, Alexander; Berry, Kayla N; O'Herin, Conor; Koehler, Angela N; Hung, Alvin W; Young, Damian W
2016-09-08
Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3β, allow the systematic synthesis of related fragment analogues to explore fragment-level structure-activity relationship, and finally lead to the synthesis of a more potent compound.
Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity.
Sandomenico, Annamaria; Severino, Valeria; Apone, Fabio; De Lucia, Adriana; Caporale, Andrea; Doti, Nunzianna; Russo, Anna; Russo, Rosita; Rega, Camilla; Del Giacco, Tiziana; Falcigno, Lucia; Ruvo, Menotti; Chambery, Angela
2017-03-01
The term "oxidative stress" indicates a set of chemical reactions unleashed by a disparate number of events inducing DNA damage, lipid peroxidation, protein modification and other effects, which are responsible of altering the physiological status of cells or tissues. Excessive Reactive Oxygen Species (ROS) levels may accelerate ageing of tissues or induce damage of biomolecules thus promoting cell death or proliferation in dependence of cell status and of targeted molecules. In this context, new antioxidants preventing such effects may have a relevant role as modulators of cell homeostasis and as therapeutic agents. Following an approach of peptide libraries synthesis and screening by an ORAC FL assay, we have isolated potent anti-oxidant compounds with well-defined structures. Most effective peptides are N-terminally trifluoroacetylated (CF 3 ) and have the sequence tyr-tyr-his-pro or tyr-tyr-pro-his. Slight changes in the sequence or removal of the CF 3 group strongly reduced antioxidant ability, suggesting an active role of both the fluorine atoms and of peptide structure. We have determined the NMR solution structures of the active peptides and found a common structural motif that could underpin the radical scavenging activity. The peptides protect keratinocytes from exogenous oxidation, thereby from potential external damaging cues, suggesting their use as skin ageing protectant and as cell surviving agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko
2017-07-28
Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu
2015-11-01
Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates. Electronic supplementary information (ESI) available: DOX-AuNP absorption spectra and colored solution images, citrate displacement data, original DOX-AuNP loading isotherm, XPS data and TEM micrographs, modelling data. See DOI: 10.1039/c5nr05826k
Tetrahydrohyperforin and Octahydrohyperforin Are Two New Potent Inhibitors of Angiogenesis
Martínez-Poveda, Beatriz; Verotta, Luisella; Bombardelli, Ezio; Quesada, Ana R.; Medina, Miguel Ángel
2010-01-01
Background We have previously shown that hyperforin, a phloroglucinol derivative found in St. John's wort, behaves as a potent anti-angiogenic compound. To identify the reactive group(s) mainly involved in this anti-angiogenic effect, we have investigated the anti-angiogenic properties of a series of stable derivatives obtained by oxidative modification of the natural product. In addition, in the present work we have studied the role of the four carbonyl groups present in hyperforin by investigating the potential of some other chemically stable derivatives. Methodology/Principal Findings The experimental procedures included the analysis of the effects of treatment of endothelial cells with these compounds in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Our study with hyperforin and eight derivatives shows that the enolized β-dicarbonyl system contained in the structure of hyperforin has a dominant role in its antiangiogenic activity. On the other hand, two of the tested hyperforin derivatives, namely, tetrahydrohyperforin and octahydrohyperforin, behave as potent inhibitors of angiogenesis. Additional characterization of these compounds included a cell specificity study of their effects on cell growth, as well as the in vivo Matrigel plug assay. Conclusions/Significance These observations could be useful for the rational design and chemical synthesis of more effective hyperforin derivatives as anti-angiogenic drugs. Altogether, the results indicate that octahydrohyperforin is a more specific and slightly more potent antiangiogenic compound than hyperforin. PMID:20224821
Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C
2018-06-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.
Bis-Benzimidazole Hits against Naegleria fowleri Discovered with New High-Throughput Screens
Rice, Christopher A.; Colon, Beatrice L.; Alp, Mehmet; Göker, Hakan; Boykin, David W.
2015-01-01
Naegleria fowleri is a pathogenic free-living amoeba (FLA) that causes an acute fatal disease known as primary amoebic meningoencephalitis (PAM). The major problem for infections with any pathogenic FLA is a lack of effective therapeutics, since PAM has a case mortality rate approaching 99%. Clearly, new drugs that are potent and have rapid onset of action are needed to enhance the treatment regimens for PAM. Diamidines have demonstrated potency against multiple pathogens, including FLA, and are known to cross the blood-brain barrier to cure other protozoan diseases of the central nervous system. Therefore, amidino derivatives serve as an important chemotype for discovery of new drugs. In this study, we validated two new in vitro assays suitable for medium- or high-throughput drug discovery and used these for N. fowleri. We next screened over 150 amidino derivatives of multiple structural classes and identified two hit series with nM potency that are suitable for further lead optimization as new drugs for this neglected disease. These include both mono- and diamidino derivatives, with the most potent compound (DB173) having a 50% inhibitory concentration (IC50) of 177 nM. Similarly, we identified 10 additional analogues with IC50s of <1 μM, with many of these having reasonable selectivity indices. The most potent hits were >500 times more potent than pentamidine. In summary, the mono- and diamidino derivatives offer potential for lead optimization to develop new drugs to treat central nervous system infections with N. fowleri. PMID:25605363
Amakali, Klaudia T; Legoabe, Lesetja Jan; Petzer, Anel; Petzer, Jacobus P
2018-05-01
Chalcone has been identified as a promising lead for the design of monoamine oxidase (MAO) inhibitors. This study attempted to discover potent and selective chalcone-derived MAO inhibitors by synthesising a series consisting of various cyclic chalcone derivatives. The cyclic chalcones were selected based on the possibility that their restricted structures would confer a higher degree of MAO isoform selectivity, and included the following chemical classes: 1-indanone, 1-tetralone, 1-benzosuberone, chromone, thiochromone, 4-chromanone and 4-thiochromanone. The results showed that the cyclic chalcones are in general good potency, and in most instances specific inhibitors of the human MAO-B isoform. Among these compounds, the 4-chromanone derivative was the most potent MAO-B inhibitor with an IC50 value of 0.156 µM. To further investigate the MAO inhibition of cyclic chalcones, a series of twenty-three 2-benzylidene-1-tetralone derivatives were synthesised and evaluated as MAO inhibitors. Most 2-benzylidene-1-tetralones possess good inhibitory activity and specificity for MAO-B with the most potent inhibitor displaying an IC50 value of 0.0064 µM, while the most potent MAO-A inhibitor possessed an IC50 value of 0.754 µM. This study thus shows that certain cyclic chalcones are human MAO-B inhibitors, compounds that could be suitable for the treatment of neurodegenerative disorders such as Parkinson's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence
Allen, Robert C.
2015-01-01
Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (1O2 *) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism. PMID:26783542
GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.
Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G
2014-01-01
The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.
Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).
Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman
2012-09-01
Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.
Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.
2015-01-01
Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351
The S-Matrix and Acoustic Signal Structure in Simple and Compound Waveguides.
1982-12-01
RD-A125 583 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE- L/1 AND COMPOUND WAVEGUIDES(U) UTAH UNIV SALT LAKE CITY DEPT OF MATHEMATICS C H...WILCOX DEC 82 TSR-45 UNCLASSIFIED N6@8i4-76-C-8276 F/G 12/1 NL IEINEIIIIIIEIhllhlllllllIflllllflflflflflEN L-- U5-12 III,2,0 III.J --IL.,5 MICROCOP ...RESLUIO TETCHRNATIONA BUREA OF 20NADS16 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE AND COMPOUND WAVEGUIDES C. H. Wilcox Technical Simmary Report
Azevedo-Silva, J; Queirós, O; Baltazar, F; Ułaszewski, S; Goffeau, A; Ko, Y H; Pedersen, P L; Preto, A; Casal, M
2016-08-01
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Dhar, T G Murali; Liu, Chunjian; Pitts, William J; Guo, Junquing; Watterson, Scott H; Gu, Henry; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Barrish, Joel C; Hollenbaugh, Diane; Iwanowicz, Edwin J
2002-11-04
A series of heterocyclic replacements for the central diamide moiety of 1, a potent small molecule inhibitor of inosine monophosphate dehydrogenase (IMPDH) were explored The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for these new series of inhibitors is given.
Dhar, T G Murali; Guo, Junqing; Shen, Zhongqi; Pitts, William J; Gu, Henry H; Chen, Bang-Chi; Zhao, Rulin; Bednarz, Mark S; Iwanowicz, Edwin J
2002-06-13
[structure: see text] A modified approach to the synthesis of 2-(N-aryl)-1,3-oxazoles, employing an optimized iminophosphorane/heterocumulene-mediated methodology, and its application to the synthesis of BMS-337197, a potent inhibitor of IMPDH, are described.
Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio
2002-10-03
Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text
Polycyclic aromatic hydrocarbons (PAHs ) are ubiquitous environmental pollutants. Due to its structural similarity with the potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) and because of its environmental presence naphtho[1,2- a]pyrene (N[1,2-a]P) is of considerable resea...
Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DPBs) in drinking water that are mutagenic in Salmonella and potent inducers of DNA strand breaks in mammalian cells. Here we compared the mutagenic potencies of the HNMs to those of their halo...
Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DPBs) in drinking water that are mutagenic in Salmonella and potent inducers of DNA strand breaks in mammalian cells. Here we compared the mutagenic potencies of the HNMs to those of their halom...
McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris
2016-06-15
Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inserra, Marco C; Kompella, Shiva N; Vetter, Irina; Brust, Andreas; Daly, Norelle L; Cuny, Hartmut; Craik, David J; Alewood, Paul F; Adams, David J; Lewis, Richard J
2013-09-15
A new α-conotoxin LsIA was isolated from the crude venom of Conus limpusi using assay-guided RP-HPLC fractionation. Synthetic LsIA was a potent antagonist of α3β2, α3α5β2 and α7 nAChRs, with half-maximal inhibitory concentrations of 10, 31 and 10 nM, respectively. The structure of LsIA determined by NMR spectroscopy comprised a characteristic disulfide bond-stabilized α-helical structure and disordered N-terminal region. Potency reductions of up to 9-fold were observed for N-terminally truncated analogues of LsIA at α7 and α3β2 nAChRs, whereas C-terminal carboxylation enhanced potency 3-fold at α3β2 nAChRs but reduced potency 3-fold at α7 nAChRs. This study gives further insight into α-conotoxin pharmacology and the molecular basis of nAChR selectivity, highlighting the influence of N-terminal residues and C-terminal amidation on conotoxin pharmacology. Copyright © 2013. Published by Elsevier Inc.
Opsenica, Igor M.; Tot, Mikloš; Gomba, Laura; Nuss, Jonathan E.; Sciotti, Richard J.; Bavari, Sina; Burnett, James C.; Šolaja, Bogdan A.
2013-01-01
Structurally simplified analogs of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and non-toxic. Twelve, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45-12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. Twelve, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules. PMID:23815186
Bello, Angelica M; Poduch, Ewa; Liu, Yan; Wei, Lianhu; Crandall, Ian; Wang, Xiaoyang; Dyanand, Christopher; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P
2008-02-14
Malaria, caused by Plasmodia parasites, has re-emerged as a major problem, imposing its fatal effects on human health, especially due to multidrug resistance. In Plasmodia, orotidine 5'-monophosphate decarboxylase (ODCase) is an essential enzyme for the de novo synthesis of uridine 5'-monophosphate. Impairing ODCase in these pathogens is a promising strategy to develop novel classes of therapeutics. Encouraged by our recent discovery that 6-iodo uridine is a potent inhibitor of P. falciparum, we investigated the structure-activity relationships of various C6 derivatives of UMP. 6-Cyano, 6-azido, 6-amino, 6-methyl, 6- N-methylamino, and 6- N, N-dimethylamino derivatives of uridine were evaluated against P. falciparum. The mononucleotides of 6-cyano, 6-azido, 6-amino, and 6-methyl uridine derivatives were studied as inhibitors of plasmodial ODCase. 6-Azidouridine 5'-monophosphate is a potent covalent inhibitor of P. falciparum ODCase. 6-Methyluridine exhibited weak antimalarial activity against P. falciparum 3D7 isolate. 6- N-Methylamino and 6- N, N-dimethylamino uridine derivatives exhibited moderate antimalarial activities.
Morningstar, Marshall L.; Roth, Thomas; Farnsworth, David W.; Smith, Marilyn Kroeger; Watson, Karen; Buckheit, Robert W.; Das, Kalyan; Zhang, Wanyi; Arnold, Eddy; Julias, John G.; Hughes, Stephen H.; Michejda, Christopher J.
2010-01-01
In an ongoing effort to develop novel and potent nonnucleoside HIV-1 reverse transcriptase (RT) inhibitors that are effective against the wild type (WT) virus and clinically observed mutants, 1,2-bis-substituted benzimidazoles were synthesized and tested. Optimization of the N1 and C2 positions of benzimidazole led to the development of 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-4-methylbenzimidazole (1) (IC50 = 0.2 μM, EC50 = 0.44 μM, and TC50 ≥ 100 against WT). This paper describes how substitution on the benzimidazole ring profoundly affects activity. Substituents at the benzimidazole C4 dramatically enhanced potency, while at C5 or C6 substituents were generally detrimental or neutral to activity, respectively. A 7-methyl analogue did not inhibit HIV-1 RT. Determination of the crystal structure of 1 bound to RT provided the basis for accurate modeling of additional analogues, which were synthesized and tested. Several derivatives were nanomolar inhibitors of wild-type virus and were effective against clinically relevant HIV-1 mutants. PMID:17663538
Xie, Meng; Zhang, Hai-Jing; Deng, An-Jun; Wu, Lian-Qiu; Zhang, Zhi-Hui; Li, Zhi-Hong; Wang, Wen-Jie; Qin, Hai-Lin
2016-04-22
In this study, natural quaternary coptisine was used as a lead compound to design and synthesize structurally stable and actively potent coptisine analogues. Of the synthesized library, 13 N-dihydrocoptisine-8-ylidene amines/amides were found not only to be noncytotoxic toward intestinal epithelial cells (IECs), but they were also able to activate the transcription of X-box-binding protein 1 (XBP1) targets to varying extents in vitro. Antiulcerative colitis (UC) activity levels were assessed at the in vitro molecular level as well as in vivo in animals using multiple biomarkers as indices. In an in vitro XBP1 transcriptional activity assay, four compounds demonstrated good dose-effect relationships with EC50 values of 0.0708-0.0132 μM. Moreover, two compounds were confirmed to be more potent in vivo than a positive control, demonstrating a curative effect for UC in experimental animals. Thus, the findings of this study suggest that these coptisine analogues are promising candidates for the development of anti-UC drugs.
Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors
NASA Astrophysics Data System (ADS)
Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.
2018-03-01
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.
2013-01-01
The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition. PMID:24256217
Naud, Sébastien; Westwood, Isaac M; Faisal, Amir; Sheldrake, Peter; Bavetsias, Vassilios; Atrash, Butrus; Cheung, Kwai-Ming J; Liu, Manjuan; Hayes, Angela; Schmitt, Jessica; Wood, Amy; Choi, Vanessa; Boxall, Kathy; Mak, Grace; Gurden, Mark; Valenti, Melanie; de Haven Brandon, Alexis; Henley, Alan; Baker, Ross; McAndrew, Craig; Matijssen, Berry; Burke, Rosemary; Hoelder, Swen; Eccles, Suzanne A; Raynaud, Florence I; Linardopoulos, Spiros; van Montfort, Rob L M; Blagg, Julian
2013-12-27
The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.
Nara, Hiroshi; Kaieda, Akira; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2017-01-26
On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC 50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu
2017-09-01
In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi
2017-01-01
ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. PMID:28630199
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano
2005-04-01
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
Jeng, Yow-Jiun; Watson, Cheryl S.
2011-01-01
Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566
Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM.
Rawson, Shaun; Bisson, Claudine; Hurdiss, Daniel L; Fazal, Asif; McPhillie, Martin J; Sedelnikova, Svetlana E; Baker, Patrick J; Rice, David W; Muench, Stephen P
2018-02-20
Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae ( Sc_ IGPD) and Arabidopsis thaliana ( At_ IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_ IGPD than At_ IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_ IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Å are sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_ IGPD/C348 complex. The structure of Sc _IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding. Copyright © 2018 the Author(s). Published by PNAS.
Simple Runoff Control Structures Stand Test of Time
Dean M. Knighton
1984-01-01
Diversion terraces and detention basins constructed along the field-forest edge in the Driftless Area reduce farmland runoff and subsequent gullying in the forest below for many years. The structures are inexpensive and simple to build.
Stamou, Panagiota; Marioli, Dimitra; Patmanidi, Alexandra L; Sgourou, Argyro; Vittoraki, Angeliki; Theofani, Efthymia; Pierides, Chryso; Taraviras, Stavros; Costeas, Paul A; Spyridonidis, Alexandros
2017-04-01
Major barriers in using classical FOXP3+ regulatory T cells (Tregs) in clinical practice are their low numbers in the circulation, the lack of specific cell surface markers for efficient purification and the loss of expression of Treg signature molecules and suppressive function after in vitro expansion or in a pro-inflammatory microenviroment. A surface molecule with potent immunosuppressive function is the human leukocyte antigen-G (HLA-G), which is normally expressed in placenta protecting the "semi-allogeneic" fetus from maternal immune attack. Because HLA-G expression is strongly regulated by methylation, we asked whether hypomethylating agents (HA) may be used in vitro to induce HLA-G expression on conventional T cells and convert them to Tregs. Human peripheral blood T cells were exposed to azacytidine/decitabine and analyzed for HLA-G expression and their in vitro suppressor properties. HA treatment induces de novo expression of HLA-G on T cells through hypomethylation of the HLA-G proximal promoter. The HA-induced CD4 + HLA-G pos T cells are FOXP3 negative and have potent in vitro suppression function, which is dependent to a large extent, but not exclusively, on the HLA-G molecule. Converted HLA-G pos suppressors retain their suppressor function in the presence of tumor necrosis factor (TNF) and preserve hypomethylated the HLA-G promoter for at least 2 days after azacytidine exposure. Decitabine-treated T cells suppressed ex vivo the proliferation of T cells isolated from patients suffering from graft-versus-host disease (GVHD). We propose, in vitro generation of HLA-G-expressing T cells through pharmacological hypomethylation as a simple, Good Manufacturing Practice (GMP)-compatible and efficient strategy to produce a stable Treg subset of a defined phenotype that can be easily purified for adoptive immunotherapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Li, Xiao; Huang, Boshi; Zhou, Zhongxia; Gao, Ping; Pannecouque, Christophe; Daelemans, Dirk; De Clercq, Erik; Zhan, Peng; Liu, Xinyong
2016-08-01
With the continuation of our unremitting efforts toward the discovery of potent HIV-1 NNRTIs, a series of novel imidazo[4,5-b]pyridin-2-ylthioacetanilides were designed, synthesized, and evaluated for their antiviral activities through combining bioisosteric replacement and structure-based drug design. Almost all of the title compounds displayed moderate to good activities against wild-type (wt) HIV-1 strain with EC50 values ranging from 0.059 to 1.41 μm in a cell-based antiviral assay. Thereinto, compounds 12 and 13 were the most active two analogues possessing an EC50 value of 0.059 and 0.073 μm against wt HIV-1, respectively, which was much more effective than the control drug nevirapine (EC50 = 0.26 μm) and comparable to delavirdine (EC50 = 0.038 μm). In addition, one selected compound showed a remarkable reverse transcriptase inhibitory activity compared to nevirapine and etravirine. In the end of this manuscript, preliminary structure-activity relationships (SARs) and molecular modeling studies were detailedly discussed, which may provide valuable insights for further optimization. © 2016 The Authors. Chemical Biology & Drug Design Published by John Wiley & Sons A/S.
Current data regarding the structure-toxicity relationship of boron-containing compounds.
Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A
2016-09-06
Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B
2015-03-20
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.
2015-01-01
Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005
Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview
Teixeira, José; Gaspar, Alexandra; Garrido, E. Manuela; Garrido, Jorge; Borges, Fernanda
2013-01-01
Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far. PMID:23956973
Su, Hao; Yan, Ji; Xu, Jian; Fan, Xi-Zhen; Sun, Xian-Lin; Chen, Kang-Yu
2015-08-01
Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.
Lee, Seung Woong; Kim, Young Kook; Kim, Koanhoi; Lee, Hyun Sun; Choi, Jung Ho; Lee, Woo Song; Jun, Chang-Duk; Park, Jee Hun; Lee, Jeong Min; Rho, Mun-Chual
2008-08-15
Eight alkamides 1-8 were isolated by bioassay-guided isolation of EtOH extracts of the fruits of Piper longum and Piper nigum (Piperaceae). Their structures were elucidated by spectroscopic analysis ((1)H, (13)C NMR, and ESI-MS) as follows: guineensine (1), retrofracamide C (2), (2E,4Z,8E)-N-[9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]piperidine (3), pipernonaline (4), piperrolein B (5), piperchabamide D (6), pellitorin (7), and dehydropipernonaline (8). Their compounds 3-5, 7, and 8 inhibited potently the direct binding between sICAM-1 and LFA-1 of THP-1 cells in a dose-dependent manner, with IC(50) values of 10.7, 8.8, 13.4, 13.5, and 6.0 microg/mL, respectively.
Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus).
Masuda, Toshiya; Odaka, Yuka; Ogawa, Natsuko; Nakamoto, Katsuo; Kuninaga, Hideki
2008-01-23
Lemongrass is a popular Asian herb having a lemon-like flavor. Very recently, potent tyrosinase inhibitory activity has been found in lemongrass in addition to various biological activities reported in the literature. The aim of the present study is to identify the active compounds in the lemongrass. An assay-guided purification revealed that one of the active substances was geranic acid. Geranic acid has two stereoisomers, which are responsible for the trans and cis geometry on the conjugated double bond. Both isomers are present in the active ethyl acetate-soluble extract of the lemongrass, and their IC50 values were calculated to be 0.14 and 2.3 mM, respectively. The structure requirement of geranic acid for the potent tyrosinase inhibitory activity was investigated using geranic acid-related compounds.
Lee, Sanghyuck; Kwon, Oh Seok; Lee, Chang-Soo; Won, Misun; Ban, Hyun Seung; Ra, Choon Sup
2017-07-01
We designed and synthesized strobilurin analogues as hypoxia-inducible factor (HIF) inhibitors based on the molecular structure of kresoxim-methyl. Biological evaluation in human colorectal cancer HCT116 cells showed that most of the synthesized kresoxim-methyl analogues possessed moderate to potent inhibitory activity against hypoxia-induced HIF-1 transcriptional activation. Three candidates, compounds 11b, 11c, and 11d were identified as potent inhibitors against HIF-1 activation with IC 50 values of 0.60-0.94µM. Under hypoxic condition, compounds 11b, 11c, and 11d increased the intracellular oxygen contents, thereby attenuating the hypoxia-induced accumulation of HIF-1α protein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eckelbarger, Joseph D.; Wilmot, Jeremy T.; Epperson, Matthew T.; Thakur, Chandar S.; Shum, David; Antczak, Christophe; Tarassishin, Leonid; Djaballah, Hakim; Gin, David Y.
2008-01-01
Deoxyharringtonine (2), homoharringtonine (3), homodeoxyharringtonine (4), and anhydroharringtonine (5) are reported to be among the most potent members of the antileukemia alkaloids isolated from the Cephalotaxus genus. Convergent syntheses of these four natural products are described, each involving novel synthetic methods and strategies. These syntheses enabled evaluation of several advanced natural and non-natural compounds against an array of human hematopoietic and solid tumor cells. Potent cytotoxicity was observed in several cell lines previously not challenged with these alkaloids. Variations in the structure of the ester chain within this family of alkaloids confer differing activity profiles against vincristine-resistant HL-60/RV+, signalling new avenues for molecular design of these natural products to combat multi-drug resistance. PMID:18366032
Zhai, Lipeng; Lin, Shuangjun; Qu, Dongjing; Hong, Xuechuan; Bai, Linquan; Chen, Wenqing; Deng, Zixin
2012-07-01
Polyoxins and nikkomycins are potent antifungal peptidyl nucleoside antibiotics, which inhibit fungal cell wall biosynthesis. They consist of a nucleoside core and one or two independent peptidyl moieties attached to the core at different sites. Making mutations and introducing heterologous genes into an industrial Streptomyces aureochromogenes polyoxin producer, resulted in the production of four polyoxin-nikkomycin hybrid antibiotics designated as polyoxin N and nikkoxin B-D, whose structures were confirmed using high resolution MS and NMR. Two of the hybrid antibiotics, polyoxin N and nikkoxin D, were significantly more potent against some human or plant fungal pathogens than their parents. The data provides an example for rational generation of novel peptidyl nucleoside antibiotics in an industrial producer. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Chengyan; Liu, Hongchun; Song, Zilan; Ji, Yinchun; Xing, Li; Peng, Xia; Wang, Xisheng; Ai, Jing; Geng, Meiyu; Zhang, Ao
2017-06-01
Three series of pyrazolo[3,4-d]pyrimidine derivatives were synthesized and evaluated as RET kinase inhibitors. Compounds 23a and 23c were identified to show significant activity both in the biochemical and the BaF3/CCDC6-RET cell assays. Compound 23c was found to significantly inhibit RET phosphorylation and down-stream signaling in BaF3/CCDC6-RET cells, confirming its potent cellular RET-targeting profile. Different from other RET inhibitors with equal potency against KDR that associated with severe toxicity, 23c did not show significant KDR-inhibition even at the concentration of 1μM. These results demonstrated that 23c is a potent and selective RET inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ding, Yun; O'Keefe, Heather; DeLorey, Jennifer L; Israel, David I; Messer, Jeffrey A; Chiu, Cynthia H; Skinner, Steven R; Matico, Rosalie E; Murray-Thompson, Monique F; Li, Fan; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher; Morgan, Barry A
2015-08-13
The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality.
Bulet, P; Cociancich, S; Reuland, M; Sauber, F; Bischoff, R; Hegy, G; Van Dorsselaer, A; Hetru, C; Hoffmann, J A
1992-11-01
The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.
Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.
Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali
2017-04-27
A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.
Krasavin, Mikhail; Shetnev, Anton; Sharonova, Tatyana; Baykov, Sergey; Tuccinardi, Tiziano; Kalinin, Stanislav; Angeli, Andrea; Supuran, Claudiu T
2018-02-01
A series of novel aromatic primary sulfonamides decorated with diversely substituted 1,2,4-oxadiazole periphery groups has been prepared using a parallel chemistry approach. The compounds displayed a potent inhibition of cytosolic hCA II and membrane-bound hCA IX isoforms. Due to a different cellular localization of the two target enzymes, the compounds can be viewed as selective inhibition tools for either isoform, depending on the cellular permeability profile. The SAR findings revealed in this study has been well rationalized by docking simulation of the key compounds against the crystal structures of the relevant hCA isoforms. Copyright © 2017. Published by Elsevier Inc.
A Simple Label Switching Algorithm for Semisupervised Structural SVMs.
Balamurugan, P; Shevade, Shirish; Sundararajan, S
2015-10-01
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.
Structure-guided development of selective TbcatB inhibitors
Mallari, Jeremy P.; Shelat, Anang A.; Kosinski, Aaron; Caffrey, Conor R.; Connelly, Michele; Zhu, Fangyi; McKerrow, James H.; Guy, R. Kiplin
2009-01-01
The trypanosomal cathepsin TbcatB is essential for parasite survival and is an attractive therapeutic target. Herein we report the structure-guided development of TbcatB inhibitors with specificity relative to rhodesain and human cathepsins B and L. Inhibitors were tested for enzymatic activity, trypanocidal activity, and general cytotoxicity. These data chemically validate TbcatB as a drug target, and demonstrate that it is possible to potently and selectively inhibit TbcatB relative to trypanosomal and human homologues. PMID:19769357