Sample records for structurally synthesized binary

  1. Structured Forms Reference Set of Binary Images (SFRS)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images (SFRS) (Web, free access)   The NIST Structured Forms Database (Special Database 2) consists of 5,590 pages of binary, black-and-white images of synthesized documents. The documents in this database are 12 different tax forms from the IRS 1040 Package X for the year 1988.

  2. Structured Forms Reference Set of Binary Images II (SFRS2)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images II (SFRS2) (Web, free access)   The second NIST database of structured forms (Special Database 6) consists of 5,595 pages of binary, black-and-white images of synthesized documents containing hand-print. The documents in this database are 12 different tax forms with the IRS 1040 Package X for the year 1988.

  3. Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH3NH3)SbSI2.

    PubMed

    Li, Tianyang; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2018-06-29

    Lead-free antimony-based mixed sulfide and iodide perovskite phases have recently been reported to be synthesized experimentally and to exhibit reasonable photovoltaic performance. Through a combination of experimental validation and computational analysis, we show no evidence of the formation of the mixed sulfide and iodide perovskite phase, MASbSI 2 (MA = CH 3 NH 3 + ), and instead that the main products are a mixture of the binary and ternary compounds (Sb 2 S 3 and MA 3 Sb 2 I 9 ). Density functional theory calculations also indicate that such a mixed sulfide and iodide perovskite phase should be thermodynamically less stable compared with binary/ternary anion-segregated secondary phases and less likely to be synthesized under equilibrium conditions. Additionally, band structure calculations show that this mixed sulfide and iodide phase, if possible to synthesize (e.g., under nonequilibrium conditions), should have a suitable direct band gap for photovoltaic application.

  4. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  5. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants.

    PubMed

    Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin

    2017-03-15

    In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized in a one-pot process. The synthesized MOFs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), N 2 adsorption, and thermogravimetric analysis (TGA). The meso-porosity and thermal stability of the binary MOFs were higher than those of single HKUST-1 or UiO-66. The synthesized MOF hybrids were then tested for adsorptive removal of methylene blue (MB) from wastewater in terms of kinetic and isothermal adsorption as compared to a commercially available activated carbon (AC). All the synthesized MOFs showed significant removal of MB under a wide range of pH. The adsorption capacities of HKUST-1 are higher than UiO-66 and commercial AC while the binary MOFs presented an even higher adsorption capacity than single MOFs. This is the first time that binary HKUST-1 and UiO-66 MOFs have been successfully synthesized and demonstrated enhanced adsorptive removal of contaminants. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Heterocyclic Salt Synthesis and Rational Properties Tailoring (PREPRINT)

    DTIC Science & Technology

    2009-06-23

    performance behavior can be tailored in a controlled manner, defines the objective of a pertinent synthesis effort. Achieving this objective by...the structure of the anion. To illustrate this premise, four general synthesis methods to synthesize heterocyclic salts, including several new binary...manner, defines the objective of a pertinent synthesis effort. Achieving this objective by introducing structural alterations in a neutral covalent

  7. Discovery of a Superconducting Cu-Bi Intermetallic Compound by High-Pressure Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Samantha M.; Walsh, James P. S.; Amsler, Maximilian

    A new intermetallic compound, the first to be structurally identified in the Cu-Bi binary system, is reported. This compound is accessed by high-pressure reaction of the elements. Its detailed characterization, physical property measurements, and ab initio calculations are described. The commensurate crystal structure of Cu 11Bi 7 is a unique variation of the NiAs structure type. Temperature-dependent electrical resistivity and heat capacity measurements reveal a bulk superconducting transition at T c=1.36 K. Density functional theory calculations further demonstrate that Cu 11Bi 7 can be stabilized (relative to decomposition into the elements) at high pressure and temperature. These results highlight themore » ability of high-pressure syntheses to allow for inroads into heretofore-undiscovered intermetallic systems for which no thermodynamically stable binaries are known.« less

  8. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  9. Micro/nanostructured porous Fe-Ni binary oxide and its enhanced arsenic adsorption performances.

    PubMed

    Liu, Shengwen; Kang, Shenghong; Wang, Guozhong; Zhao, Huijun; Cai, Weiping

    2015-11-15

    A simple method is presented to synthesize micro/nano-structured Fe-Ni binary oxides based on co-precipitation and subsequent calcination. It has been found that the Fe-Ni binary oxides are composed of the porous microsized aggregates built with nanoparticles. When the atomic ratio of Fe to Ni is 2 to 1 the binary oxide is the micro-scaled aggregates consisting of the ultrafine NiFe2O4 nanoparticles with 3-6nm in size, and shows porous structure with pore diameter of 3nm and a specific surface area of 245m(2)g(-1). Such material is of abundant surface functional groups and has exhibited high adsorption performance to As(III) and As(V). The kinetic adsorption can be described by pseudo-second order model and the isothermal adsorption is subject to Langmuir model. The maximum adsorption capacity on such Fe-Ni porous binary oxide is up to 168.6mgg(-1) and 90.1mgg(-1) for As(III) and As(V), respectively, which are much higher than the arsenic adsorption capacity for most commercial adsorbents. Such enhanced adsorption ability for this material is mainly attributed to its porous structure and high specific surface area as well as the abundant surface functional groups. Further experiments have revealed that the influence of the anions such as sulfate, carbonate, and phosphate, which commonly co-exist in water, on the arsenic adsorption is insignificant, exhibiting strong adsorption selectivity to arsenic. This micro/nano-structured porous Fe-Ni binary oxide is hence of good practicability to be used as a highly efficient adsorbent for arsenic removal from the real arsenic-contaminated waters. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  11. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivetić, T.B., E-mail: tamara.ivetic@df.uns.ac.rs; Finčur, N.L.; Đačanin, Lj. R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{submore » 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.« less

  12. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    NASA Technical Reports Server (NTRS)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  13. Electrochemical synthesis of binary molybdenum-tungsten carbides (Mo,W)2C from tungstate-molybdate-carbonate melts

    NASA Astrophysics Data System (ADS)

    Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.

    2013-02-01

    Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.

  14. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  15. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  16. Electrical and optical properties of binary CNx nanocone arrays synthesized by plasma-assisted reaction deposition.

    PubMed

    Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning

    2014-03-21

    Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.

  17. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Raman spectroscopic study of synthetic pyrope-grossular garnets: structural implications

    NASA Astrophysics Data System (ADS)

    Du, Wei; Han, Baofu; Clark, Simon Martin; Wang, Yichuan; Liu, Xi

    2018-02-01

    A study of the effect of substitution of Mg and Ca in garnet solid solution (Grtss) was carried out using Raman spectroscopy to probe changes to the crystal lattice. The garnet solid solutions with composition changing along pyrope (Py; Mg3Al2Si3O12) and grossular (Gr; Ca3Al2Si3O12) binary were synthesized from glass at 6 GPa and 1400 °C and a second series of Grtss with composition Py40Gr60 were synthesized at 6 GPa but different temperatures from 1000 to 1400 °C. Raman mode assignments were made based on a comparison with the two end members pyrope and grossular, which show consistent result with literature study on single crystals data. The correlation between the Raman mode frequencies and compositional changes along the pyrope-grossular binary suggests a two-mode behavior for Mg and Ca cations in the garnet structure. The full widths at half-maximum of selected Raman modes increase on moving away from the end members and are about double the end-member values in the mid-position, where the frequencies closely linearly change with composition. The frequencies of the translational modes of the SiO4 tetrahedron (T(SiO4)) show large deviations from linearity indicating a strong kinematic coupling with the translational modes of the Ca and Mg cations. The anomalies in T(SiO4) are linked to mixing unit cell volume, suggesting that the nonlinear mixing volume behavior along the pyrope-grossular binary is related to the resistance of the Si-O bond to expansion and compression, which is caused by substitution of Mg and Ca cations in the dodecahedral sites. Annealing temperature also shows effect on Raman mode frequencies, but the main factor controlling the changes in mode frequencies along pyrope-grossular binary is composition.

  19. Synthesis, characterization and luminescence of europium perchlorate with MABA-Si complex and coating structure SiO2 @Eu(MABA-Si) luminescence nanoparticles.

    PubMed

    Fu, Zhi-Fang; Li, Wen-Xian; Bai, Juan; Bao, Jin-Rong; Cao, Xiao-Fang; Zheng, Yu-Shan

    2017-05-01

    This article reports a novel category of coating structure SiO 2 @Eu(MABA-Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O was synthesized using HOOCC 6 H 4 N(CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (MABA-Si) and was used as a ligand. Furthermore, the as-prepared silica NPs were successfully coated with the -Si(OCH 2 CH 3 ) 3 group of MABA-Si to form Si-O-Si chemical bonds by means of the hydrolyzation of MABA-Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O. Coating structure SiO 2 @Eu(MABA-Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core-SiO 2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA-Si) was ~20 nm. In the binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O, the fluorescence spectra illustrated that the energy of the ligand MABA-Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO 2 @Eu(MABA-Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core-SiO 2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  1. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher ultimate strains than nacre and pure GO paper (also synthesized by filtration). Specifically, it exhibits ˜30 times higher fracture energy than filtrated graphene paper and nacre, ˜100 times tougher than filtrated GO paper. Besides reinforced nanocomposites, we further explored the self-assembly of spherical colloids and the templating nanofabrication of moth-eye-inspired broadband antireflection coatings. Binary crystalline structures can be easily accomplished by spin-coating double-layer nonclose-packed colloidal crystals as templates, followed by colloidal templating. The polymer matrix between self-assembled colloidal crystal has been used as a sacrificial template to define the resulting periodic binary nanostructures, including intercalated arrays of silica spheres and polymer posts, gold nanohole arrays with binary sizes, and dimple-nipple antireflection coatings. The binary-structured antireflection coatings exhibit better antireflective properties than unitary coatings. Natural optical structures and nanocomposites teach us a great deal on how to create high performance artificial materials. The bottom-up technologies developed in this thesis are scalable and compatible with standard industrial processes, promising for manufacturing high-performance materials for the benefits of human beings.

  2. Physicochemical Properties of Glycine-Based Ionic Liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and Its Binary Mixtures with Poly(ethylene glycol) (Mw = 200) at Various Temperatures

    PubMed Central

    Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Lin, Yuan-Chung; Wang, H. Paul; Kuo, Chung-Wen; Sun, I-Wen

    2011-01-01

    This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO3] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, κ, for the binary mixture of [QuatGly-OEt][EtOSO3] with poly(ethylene glycol) (PEG) [Mw = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO3] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (VmE ) and deviations (Δη, Δxn, ΔΨn, ΔxR, and ΔΨR) are discussed in terms of molecular interactions and molecular structures in the binary mixture. PMID:22272102

  3. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun

    2017-11-01

    2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

  4. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  5. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  6. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  7. Far-infrared study of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals

    NASA Astrophysics Data System (ADS)

    Trajic, J.; Romcevic, M.; Paunovic, N.; Curcic, M.; Balaz, P.; Romcevic, N.

    2018-05-01

    The analysis of the optical properties of mechanochemically synthesized stannite Cu2FeSnS4 nanocrystals has been performed using far-infrared spectroscopy. The Cu2FeSnS4 stannite nanocrystals were synthesized mechanochemically from elemental precursors Cu, Fe, Sn, and S. Milling time was 45, 60, 90 and 120 min. Reflectivity spectra were analyzed using the classical form of the dielectric function, which includes the phonon and the free carrier contribution. The influence of milling time on synthesis of stannite Cu2FeSnS4 is observed. Among the modes that are characteristic for the stannite Cu2FeSnS4, we registered the modes of binary phases of FeS and SnS. The total disappearance of the binary phases of FeS and SnS and forming pure Cu2FeSnS4 is observed when the milling time is 120 min. Effective permittivity of Cu2FeSnS4 and binary phases of FeS and SnS were modeled by Maxwell - Garnet approximation.

  8. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  10. CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer.

    PubMed

    Lee, Jung-Pil; Koh, Haeng-Deog; Shin, Won-Jeong; Kang, Nam-Goo; Park, Soojin; Lee, Jae-Suk

    2014-03-01

    We demonstrate the well-defined control of phase transition of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer from spherical micelles to lamellar structures, in which CdS and C60 nanoparticles (NPs) are selectively positioned at the P2VP domains. The CdS NPs are in situ synthesized using PS-b-P2VP block copolymer templates that are self-assembled in PS-selective solvents. The CdS-PS-b-P2VP micellar structures are transformed to lamellar phase by adjusting a solvent selectivity for both blocks. In addition, a binary system of CdS/C60 embedded in PS-b-P2VP lamellar structures (CdS/C60-PS-b-P2VP) is fabricated by embedding C60 molecules into P2VP domain though charge-transfer complexation between pyridine units of PS-b-P2VP and C60 molecules. The CdS/C60-PS-b-P2VP nanostructured films are characterized by transmission electron microscopy (TEM) and UV-Vis spectrometer. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    PubMed

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  12. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  13. Binary and ternary copper(II) complexes of a new Schiff base ligand derived from 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone: Synthesis, spectral, thermal, antimicrobial and antitumor studies

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Adly, Omima M. I.; Abdelrhman, Ebtesam M.; El-Shetary, B. A.

    2017-10-01

    A new Schiff base ligand was synthesized by the reaction of 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone with ethylenediamine. A series of binary copper(II) Schiff base complexes have been synthesized by using various copper(II) salts; AcO-, NO3-, ClO4-, Cl- and Br-. Ternary complexes were synthesized by using auxiliary ligands (L‧) [N,O-donor; 8-hydroxyquinoline and glycine or N,N-donor; 1,10-phenanthroline, bipyridyl and 2-aminopyridine]. The structures of the Schiff base and its complexes were characterized by elemental and thermal analyses, IR, electronic, mass, 1H NMR and ESR spectra in addition to conductivity and magnetic susceptibility measurements. The obtained complexes include neutral binuclear complexes as well as neutral and cationic mononuclear complexes according to the anion used and the experimental conditions. The ESR spin Hamiltonian parameters of some complexes were calculated and discussed. The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages were evaluated using Coats-Redfern equations. The antimicrobial activity of the Schiff base and its complexes was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the Schiff base and some of its Cu(II) complexes was investigated against HepG-2 cell line.

  14. Influence of valence electron concentration on Laves phases: Structures and phase stability of pseudo-binary MgZn 2-xPd x

    DOE PAGES

    Thimmaiah, Srinivasa; Miller, Gordon J.

    2015-06-03

    A series of pseudo-binary compounds MgZn 2-xPd x (0.15 ≤ x ≤ 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn 2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ≤ x ≤ 0.3 (MgNi 2-type, hP24; MgZn 1.80Pd 0.20(2)), 0.4 ≤ x ≤ 0.6 (MgCu 2-type, cF24; MgZn 1.59Pd 0.41(2)), and 0.62 ≤ x ≤ 0.8 (MgZn 2-type, hP12: MgZn 1.37Pd 0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Znmore » atoms among the majority atom sites in these structures. Interestingly, the MgZn 2-type structure re-emerges in MgZn 2–xPd x at x ≈ 0.7 with the refined composition MgZn 1.37(2)Pd 0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn 2. Electronic structure calculations on a model “MgZn 1.25Pd 0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn 2 to the ternary “MgZn 1.25Pd 0.75”. Multi-centered bonding is evident from electron localization function plots for “MgZn 1.25Pd 0.75”, an outcome which is in accordance with analysis of other Laves phases.« less

  15. Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Kamari, Halimah Mohamed; Saion, Elias; Chyi, Josephine Liew Ying; Abdullah, Che Azurahanim Che

    2018-06-01

    A binary (CuO)0.6 (CeO2)0.4 nanoparticles were prepared via thermal treatment method, using copper nitrate, cerium nitrate as precursors, PVP as capping agent and de-ionized water as a solvent. The structures, morphology, composition of the element and optical properties of these nanoparticles have been studied under different temperatures using various techniques. The XRD spectrum of the samples at 500 °C and above confirmed the existence of both monoclinic (CuO) and cubic fluorite (CeO2) structures. The findings of FESEM and TEM exhibited the average practical size and agglomeration increment with an elevation in the calcination temperature. The synthesized nanoparticles were also characterized by FTIR, which indicated the formation of binary Cu-O and Ce-O bonds. The EDX analysis was performed to indicate the chemical composition of the sample. The double energy band gaps of (CuO)0.6(CeO2)0.4 reduction with rising calcination temperature, can be referred to the enhancement of the crystallinity of the samples. PL intensity of (CuO)0.6(CeO2)0.4 nanoparticles peaks, which increased with the elevation of the calcination temperature to 800 °C was observed from the PL spectrum; this was due to the increment of the particle size that occurred.

  16. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity.

    PubMed

    Magdalane, C Maria; Kaviyarasu, K; Vijaya, J Judith; Siddhardha, Busi; Jeyaraj, B

    2016-10-01

    We report the synthesis of high quality CeO2-CdO binary metal oxide nanocomposites were synthesized by a simple chemical precipitation and hydrothermal method. Cerium nitrate and cadmium nitrate were used as precursors. Composition, structure and morphology of the nanocomposites were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD pattern proves that the final product has cubic phase and the particle size diameter of the nanocomposites are 27nm, XRD results also indicated that the crystalline properties of the nanocomposite were improved without affecting the parent lattice, FESEM analysis indicates that the product is composed of spherical particles in clusters. The morphological and optical properties of CeO2-CdO nanosamples were characterized by HRTEM and DRS spectroscopy. The IR results showed high purity of products and indicated that the nanocomposites are made up of CeO2 and CdO bonds. Absorption spectra exhibited an upward shift in characteristic peaks caused by the addition of transition metal oxide, suggesting that crystallinity of both the metal oxide is improved due to specific doping level. TGA plots further confirmed the purity and stability of nanomaterials prepared. Hence the nanocomposite has cubic crystal lattice and form a homogeneous solid structure. From the result, Cd(2+) ions are embedded in the cubic crystal lattice of ceria. The growth rate increases which are ascribed to the cationic doping with a lower valence cation. Ce-Cd binary metal oxide nanocomposites showed antibacterial activity, it showed the better growth inhibition towards p.aeruginosa. Exploit of photodegradation and photocatalytic activity of large scale synthesis of CeO2-CdO binary metal oxide nanocomposites was reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics.

    PubMed

    Demirbilek, Celile; Dinç, Cemile Özdemir

    2012-10-01

    Epichlorohydrin-crosslinked diethylaminoethyl dextran (DEAE-D/ECH) hydrogel was synthesized by intermolecular side-chain reaction of DEAE-D hydroxyl groups with monomeric crosslinking agent, ECH. Swelling ability, adsorption capacity and metal removal of the hydrogel were profoundly determined and some structural parameters for the hydrogel such as volume of non-swollen gel, percentages of gellation, swelling ratio and equilibrium water content were evaluated in this study. The ability of removing heavy metal ions from Orontes River by the synthesized hydrogel, thoroughly characterized by photometric spectrometer and the adsorption characteristics of metal ions, was investigated as well as surface morphologies of the hydrogel before and after metal adsorption were examined by SEM. Structure of DEAE-D/ECH gel was analyzed by FTIR, TGA, and DSC. Gellation point of binary system reaction between DEAE-D and ECH was determined via monitoring viscosity changes during reaction. The order of affinity based on amount of metal ion uptake was found as follows: Zn(2+)>Mn(2+)>Pb(2+)>Cd(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Europium gallium garnet (Eu3Ga5O12) and Eu3GaO6: Synthesis and material properties

    NASA Astrophysics Data System (ADS)

    Sawada, Kenji; Nakamura, Toshihiro; Adachi, Sadao

    2016-10-01

    Eu-Ga-O ternary compounds were synthesized from a mixture of cubic (c-) Eu2O3 and monoclinic Ga2O3 (β-Ga2O3) raw powders using the solid-state reaction method by calcination at Tc = 1200 °C. The structural and optical properties of the Eu-Ga-O ternary compounds were investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and Raman scattering measurements. Stoichiometric compounds such as cubic Eu3Ga5O12 (EGG) and orthorhombic Eu3GaO6 were synthesized using molar ratios of x = 0.375 and 0.75 [x≡Eu2O3/(Eu2O3 + Ga2O3)], respectively, together with the end-point binary compounds β-Ga2O3 (x = 0) and monoclinic (m-) Eu2O3 (x = 1.0). The structural change from "cubic" to "monoclinic" in Eu2O3 is due to the structural phase transition occurring at Tc ≥ 1050 °C. In principle, the perovskite-type EuGaO3 and monoclinic Eu4Ga2O9 can also be synthesized at x = 0.5 and 0.667, respectively; however, such stoichiometric compounds could not be synthesized in this study. The PL and PLE properties of EGG and Eu3GaO6 were studied in detail. The temperature dependence of the PL spectra was observed through measurements carried out between T = 20 and 300 K and explained using a newly developed model. Raman scattering measurements were also performed on the Eu-Ga-O ternary systems over the entire composition range from x = 0 (β-Ga2O3) to 1.0 (m-Eu2O3).

  19. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible, since they strongly depend on the observationally indeterminate frequency of primordial binaries with extreme mass ratios in long-period orbits.

  20. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    PubMed

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  1. Effect of Organic Substrates on the Photocatalytic Reduction of Cr(VI) by Porous Hollow Ga2O3 Nanoparticles

    PubMed Central

    Liu, Jin; Gan, Huihui; Wu, Hongzhang; Zhang, Xinlei; Zhang, Jun; Li, Lili; Wang, Zhenling

    2018-01-01

    Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). PMID:29690548

  2. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods

    PubMed Central

    Chanbi, Daoud; Amara, Sif Eddine; Fellah, Z. E. A.

    2018-01-01

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density. PMID:29735946

  3. Synthetic Survey of the Kepler Field

    NASA Astrophysics Data System (ADS)

    Wells, Mark; Prša, Andrej

    2018-01-01

    In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.

  4. Facile synthesis of CuSe nanoparticles and high-quality single-crystal two-dimensional hexagonal nanoplatelets with tunable near-infrared optical absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin; Korolkov, Ilia; Qiao, Xvsheng

    2016-06-15

    A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared. - Graphical abstract: TEM images of the coppermore » selenides nanoparticles and nanoplates synthesized at 180 °C for 0 min, 10 min, 60 min. And the growth mechanism of the copper selenide nanoplates via the “oriented attachment”. Display Omitted - Highlights: • CuSe nanoparticles and nanoplates are synthesized by a rapid injection approach. • CuSe band gap can be widely tuned simply by modifying the synthesized time. • Al{sup 3+} ions have a significant impact on the growth rate of the nanoplates. • Growth mechanism of the CuSe nanoplates is based on the “oriented attachment”.« less

  5. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  6. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  7. Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan

    2017-12-01

    The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydratedmore » portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.« less

  8. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballato, John

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges 2 and La 2S 3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositionsmore » were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have T gs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger samples would be needed for further development and optimization« less

  9. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  10. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  11. One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite.

    PubMed

    Yao, Guangyuan; Lei, Jingjing; Zhang, Xiaoyu; Sun, Zhiming; Zheng, Shuilin

    2018-05-28

    Zeolite X powder was synthesized using natural low-grade diatomite as the main source of Si but only as a partial source of Al via a simple and green hydrothermal method. The microstructure and surface properties of the obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), wavelength dispersive X-ray fluorescence (XRF), calcium ion exchange capacity (CEC), thermogravimetric-differential thermal (TG-DTA) analysis, and N₂ adsorption-desorption technique. The influence of various synthesis factors, including aging time and temperature, crystallization time and temperature, Na₂O/SiO₂ and H₂O/Na₂O ratio on the CEC of zeolite, were systematically investigated. The as-synthesized zeolite X with binary meso-microporous structure possessed remarkable thermal stability, high calcium ion exchange capacity of 248 mg/g and large surface area of 453 m²/g. In addition, the calcium ion exchange capacity of zeolite X was found to be mainly determined by the crystallization degree. In conclusion, the synthesized zeolite X using diatomite as a cost-effective raw material in this study has great potential for industrial application such as catalyst support and adsorbent.

  12. A Phase Separation Route to Synthesize α-Fe2O3 Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun

    2018-07-01

    A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.

  13. A Phase Separation Route to Synthesize α-Fe2O3 Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun

    2018-04-01

    A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.

  14. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.

    PubMed

    Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana

    2014-07-01

    Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.

  15. Preparation and application of nanoglued binary titania-silica aerogel.

    PubMed

    Luo, Liang; Cooper, Adrienne T; Fan, Maohong

    2009-01-15

    Nanoglued binary titania (TiO2)-silica (SiO2) aerogel, as a novel type of photocatalyst, has been synthesized on glass substrates. Using an about-to-gel SiO2 sol as nanoglue, anatase TiO2 aerogel was immobilized into a three-dimensional mesoporous network of the SiO2. Factorial designs were employed to optimize both TiO2 aerogel and binary TiO2-SiO2 aerogel synthesis. Characterization of the as-prepared TiO2 and binary samples by surface area, porosity, and surface chemical composition showed that the photocatalysts were high-surface-area nanoporous materials, with a Ti4+ valency. The binary aerogel exhibited high photocatalytic activity for the degradation of methylene blue (MB) under simulated solar light; the reaction followed the pseudo first-order Langmuir-Hinshelwood (L-H) kinetic model. Fluorescence spectroscopy revealed that the hydroxyl (*OH) radical was formed during the illumination of the binary TiO2-SiO2 aerogel in a solution of probe molecules, which corroborates the probable mechanism of hydroxyl radical oxidation of contaminants in photocatalytic reactions.

  16. Effect of CdS Growth Time on the Optical Properties of One-Pot Preparation of CdS-Ag2S Binary Compounds

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Izadian, L.; Molaei, M.

    2018-02-01

    CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.

  17. An algorithm that improves speech intelligibility in noise for normal-hearing listeners.

    PubMed

    Kim, Gibak; Lu, Yang; Hu, Yi; Loizou, Philipos C

    2009-09-01

    Traditional noise-suppression algorithms have been shown to improve speech quality, but not speech intelligibility. Motivated by prior intelligibility studies of speech synthesized using the ideal binary mask, an algorithm is proposed that decomposes the input signal into time-frequency (T-F) units and makes binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by the target or the masker. Speech corrupted at low signal-to-noise ratio (SNR) levels (-5 and 0 dB) using different types of maskers is synthesized by this algorithm and presented to normal-hearing listeners for identification. Results indicated substantial improvements in intelligibility (over 60% points in -5 dB babble) over that attained by human listeners with unprocessed stimuli. The findings from this study suggest that algorithms that can estimate reliably the SNR in each T-F unit can improve speech intelligibility.

  18. Morphological control of seedlessly-synthesized gold nanorods using binary surfactants

    NASA Astrophysics Data System (ADS)

    Roach, Lucien; Ye, Sunjie; Moorcroft, Samuel C. T.; Critchley, Kevin; Coletta, P. Louise; Evans, Stephen D.

    2018-04-01

    High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

  19. Synthesis of Hf 8O 7, a new binary hafnium oxide, at high pressures and high temperatures

    DOE PAGES

    Bayarjargal, L.; Morgenroth, W.; Schrodt, N.; ...

    2017-01-23

    In this paper, two binary phases in the system Hf-O have been synthesized at pressures between 12 and 34 GPa and at temperatures up to 3000 K by reacting Hf with HfO 2 using a laser-heated diamond anvil cell. In situ X-ray diffraction in conjunction with density functional theory calculations has been employed to characterize a previously unreported tetragonal Hf 8O 7 phase. This phase has a structure which is based on an fcc Hf packing with oxygen atoms occupying octahedral interstitial positions. Its predicted bulk modulus is 223(1) GPa. The second phase has a composition close to Hf 6O,more » where oxygen atoms occupy octahedral interstitial sites in an hcp Hf packing. Its experimentally determined bulk modulus is 128(30) GPa. Finally, the phase diagram of Hf metal was further constrained at high pressures and temperatures, where we show that α-Hf transforms to β-Hf around 2160(150) K and 18.2 GPa and β-Hf remains stable up to at least 2800 K at this pressure.« less

  20. Binary Alkali-Metal Silicon Clathrates by Spark Plasma Sintering: Preparation and Characterization

    PubMed Central

    Veremchuk, Igor; Beekman, Matt; Antonyshyn, Iryna; Schnelle, Walter; Baitinger, Michael; Nolas, George S.; Grin, Yuri

    2016-01-01

    The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4–700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques. PMID:28773710

  1. New organic binary solids with phenolic coformers for NLO applications

    NASA Astrophysics Data System (ADS)

    Draguta, Sergiu; Fonari, Marina S.; Leonova, Evgenia; Timofeeva, Tatiana V.

    2015-10-01

    Five binary adducts between N,N-dimethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 1, N,N-diethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 2, N,N-dimethyl-4-[(E)-pyridin-3-yldiazenyl]aniline 3, and coformers that include 4-nitrophenol I, 4-nitrobenzoic acid II, benzene-1,3-diol III, and 2,4-dinitrophenol IV were synthesized to follow the factors influencing the formation of polar crystals. New solids were characterized by melting points and absorption spectra, while their structures were proven by single crystal X-ray diffraction. Adducts differ by the components' ratio and position of the acidic hydrogen atom, thus giving examples of four new cocrystals and one salt. The single crystal X-ray analysis revealed the acentric packing for two compounds, 1 (I) and 3(3) (III) that crystallize in the Pca21 and P1 space groups. The melting point data and the cut-off wavelength from absorption spectra show that these materials are stable till relatively high temperatures and transparent in a wide range of spectrum.

  2. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  3. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.

  4. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  5. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  6. Reducing Dangerous Effects of Unsymmetrical Dimethyl Hydrazine as a Liquid Propellant by Addition of Hydroxyethylhydrazine, Part II, Performance with Several Oxidizers

    NASA Astrophysics Data System (ADS)

    Keshavarz, Mohammad Hossein; Ramadan, Alireza; Mousaviazar, Ali; Zali, Abbas; Shokrollahi, Arash

    2011-07-01

    This work continues the study of suitable binary liquid mixtures of unsymmetrical dimethylhydrazine (UDMH) and hydroxyethylhydrazine (HEH) to reduce the harmful effects of pure UDMH. The synthesized HEH was mixed with UDMH up to 40 wt% of HEH to study the performance and properties of binary liquid mixtures of UDMH/HEH. The existence of strong hydrogen bonding between HEH and UDMH provides low-volatile mixtures of these hydrazine derivatives. The addition of HEH significantly reduces the vapor pressure of UDMH, thus reducing the known UDMH health risk to inhalation exposure. Specific impulse was used to study performance of binary mixture UDMH/HEH with respect to pure UDMH. A binary mixture of UDMH/HEH reacts spontaneously in contact with nitrogen tetroxide, red fuming nitric acid (RFNA), and inhibited red fuming nitric acid (IRFNA).

  7. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  8. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  9. Syntheses and crystal structures of the rare-earth metal(III) bromide ortho-oxidotungstates(VI) with the formula REBr[WO4] (RE = Y, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Schustereit, Tanja; Schleid, Thomas; Hartenbach, Ingo

    2015-10-01

    The rare-earth metal(III) bromide ortho-oxidotungstates(VI) with the formula REBr[WO4] crystallize triclinically in space group P 1 bar (a = 689-693, b = 715-728, c = 1074-1107 pm, α = 103-106, β ≈ 108 and γ = 93-95°, Z = 4) for RE = Y, Gd-Yb. Their crystal structure is isotypic with the most examples of the formally analogous lanthanoid(III) bromide oxidomolybdates(VI) REBr[MoO4] with RE = Y, Pr, Nd, Sm, Gd-Lu. It contains two crystallographically different rare-earth metal(III) cations with coordination numbers of seven plus one for (RE1)3+ and seven for (RE2)3+. The (RE1)3+ cations are surrounded by three Br- and four plus one O2- anions forming distorted trigonal dodecahedra, while the (RE2)3+ cations exhibit a coordination environment of one Br- and six O2- anions in the shape of a monocapped trigonal prism. Furthermore, the structure contains two crystallographically independent, isolated tetrahedral [WO4]2- units. All these polyhedra are fused together to form 1 ∞ {REBr[WO4]} chains running along [012]. Since the title compounds, synthesized by solid-state reactions from the underlying binaries, emerge as pure phases according to X-ray powder diffractometry, spectroscopic and magnetic measurements were performed.

  10. Bi-dimensional null model analysis of presence-absence binary matrices.

    PubMed

    Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J

    2018-01-01

    Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological matrices. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  11. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure.

  12. Crystal structure and europium luminescence of NaMgH3-xFx

    NASA Astrophysics Data System (ADS)

    Pflug, Christian; Franz, Alexandra; Kohlmann, Holger

    2018-02-01

    The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.

  13. Large moments in bcc FexCoyMnz ternary alloy thin films

    NASA Astrophysics Data System (ADS)

    Snow, R. J.; Bhatkar, H.; N'Diaye, A. T.; Arenholz, E.; Idzerda, Y. U.

    2018-02-01

    The elemental magnetic moments and the average atomic moment of 10-20 nm thick single crystal bcc (bct) FexCoyMnz films deposited on MgO(001) have been determined as a function of a broad range of compositions. Thin film epitaxy stabilized the bcc structure for 80% of the available ternary compositional space compared to only a 23% stability region for the bulk. The films that display ferromagnetism represent 60% of the available compositional possibilities compared to 25% for the bulk. A maximum average atomic moment of 3.25 ± 0.3 μB/atom was observed for a bcc Fe9Co62Mn29 film (well above the limit of the Slater-Pauling binary alloy curve of 2.45 μB/atom). The FexCoyMnz ternary alloys that exhibit high moments can only be synthesized as ultrathin films since the bcc structure is not stable in the bulk for those compositions.

  14. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effectivemore » moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and decreases for the late rare-earth metal analogs. • Experimental and theoretical work suggest limiting solubility range RE{sub ≈3}Ca{sub ≈2}Ge{sub 3}.« less

  16. Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content

    NASA Astrophysics Data System (ADS)

    Ramos Guivar, Juan A.; Bustamante D., Angel; Gonzalez, J. C.; Sanches, Edgar A.; Morales, M. A.; Raez, Julia M.; López-Muñoz, María-José; Arencibia, Amaya

    2018-10-01

    Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites prepared with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap co-precipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, these nanocomposites contain a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2/g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, being possible to be separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.

  17. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    PubMed

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  18. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  19. Optical resolution by preferential crystallization of (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid and its use in synthesizing optically active 2-amino-2-methyl-3-phenylpropanoic acid.

    PubMed

    Shiraiwa, Tadashi; Suzuki, Masahiro; Sakai, Yoshio; Nagasawa, Hisashi; Takatani, Kazuhiro; Noshi, Daisuke; Yamanashi, Kenji

    2002-10-01

    To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.

  20. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 4-GHz counters bring synthesizers up to speed

    NASA Astrophysics Data System (ADS)

    Lee, F.; Miller, R.

    1984-06-01

    The availability of digital IC counters built on GaAs makes direct frequency division in microwave synthesizers possible. Four GHz is the highest clock rate achievable in production designs. These devices have the ability to drive TTL/CMOS logic, and the counter can be connected directly to single-chip frequency synthesizers controllers. A complete microwave sythesizer is formed by two chips and a voltage-controlled oscillator (VCO). The advantages of GaAs are discussed along with flip-flop basics, aspects of device fabrication, and the characteristics of GaAs MESAFETs. Attention is given to a GaAs prescaler usable for direct conversion, four kinds of flip-flops in a divide-by-two mode, and seven-stage binary ripple counters.

  2. Fractional labelmaps for computing accurate dose volume histograms

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.

  3. Effects of structures of bidentate Schiff base type bonded-ligands derived from benzaldehyde on the photoluminescence performance of polymer-rare earth complexes.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Zhang, Dandan

    2018-02-07

    Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and it has been confirmed by fluorescence spectroscopy and thermogravimetric analysis.

  4. Electrochemical Synthesis of Binary and Ternary Refractory Compounds in the System Ti-Si-B from Chloride-Fluoride Melts

    NASA Astrophysics Data System (ADS)

    Devyatkin, Sergei V.

    2007-09-01

    Electrochemical synthesis of binary and ternary compounds in the system Ti-Si-B from chloridefluoride melts has been investigated by voltammetry and electrolysis. Electrochemical syntheses of titanium diboride, four titanium silicides (TiSi2, TiSi, Ti5Si4, Ti5Si3), silicon tetraboride and a new ternary compound, Ti5Si3B3, have been found to be one-step processes. The stoichiometry of the deposited compounds has been found to correlate with the bulk concentration of Ti, Si and B ions in the melt.

  5. Discovery of FeBi 2

    DOE PAGES

    Walsh, James P. S.; Clarke, Samantha M.; Meng, Yue; ...

    2016-10-26

    Some recent advances in high-pressure techniques offer chemists access to vast regions of uncharted synthetic phase space, expanding our experimental reach to pressures comparable to the core of the Earth. These newfound capabilities enable us to revisit simple binary systems in search of compounds that for decades have remained elusive. One of the most tantalizing of these targets are systems in which the two elements in question do not interact even as molten liquids—so-called immiscible systems. As a prominent example, immiscibility between iron and bismuth is so severe that no material containing Fe–Bi bonds is known to exist. The elusivenessmore » of Fe–Bi bonds has a myriad of consequences; crucially, it precludes completing the iron pnictide superconductor series. Herein we report the first iron–bismuth binary compound, FeBi 2, featuring the first Fe–Bi bond in the solid state. We employed geologically relevant pressures, similar to the core of Mars, to access FeBi 2, which we synthesized at 30 GPa and 1500 K. The compound crystallizes in the Al 2Cu structure type (space group I4/mcm) with a = 6.3121(3) Å and c = 5.4211(4) Å. The new binary intermetallic phase persists from its formation pressure of 30 GPa down to 3 GPa. The existence of this phase at low pressures suggests that it might be quenchable to ambient pressure at low temperatures. Our results offer a pathway toward the realization of new exotic materials.« less

  6. Discovery of FeBi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, James P. S.; Clarke, Samantha M.; Meng, Yue

    2016-10-26

    Recent advances in high-pressure techniques offer chemists access to vast regions of uncharted synthetic phase space, expanding our experimental reach to pressures comparable to the core of the Earth. These newfound capabilities enable us to revisit simple binary systems in search of compounds that for decades have remained elusive. The most tantalizing of these targets are systems in which the two elements in question do not interact even as molten liquids—so-called immiscible systems. As a prominent example, immiscibility between iron and bismuth is so severe that no material containing Fe–Bi bonds is known to exist. The elusiveness of Fe–Bi bondsmore » has a myriad of consequences; crucially, it precludes completing the iron pnictide superconductor series. Herein we report the first iron–bismuth binary compound, FeBi 2, featuring the first Fe–Bi bond in the solid state. We employed geologically relevant pressures, similar to the core of Mars, to access FeBi 2, which we synthesized at 30 GPa and 1500 K. The compound crystallizes in the Al2Cu structure type (space group I4/mcm) with a = 6.3121(3) Å and c = 5.4211(4) Å. The new binary intermetallic phase persists from its formation pressure of 30 GPa down to 3 GPa. The existence of this phase at low pressures suggests that it might be quenchable to ambient pressure at low temperatures. These results offer a pathway toward the realization of new exotic materials.« less

  7. Principles of protein folding--a perspective from simple exact models.

    PubMed Central

    Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.

    1995-01-01

    General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459

  8. Facile preparation of 3D hierarchical coaxial-cable-like Ni-CNTs@beta-(Ni, Co) binary hydroxides for supercapacitors with ultrahigh specific capacitance.

    PubMed

    Zhang, Manyu; Ma, Xiaowei; Bi, Han; Zhao, Xuebing; Wang, Chao; Zhang, Jie; Li, Yuesheng; Che, Renchao

    2017-09-15

    A facile chemical method for Co doping Ni-CNTs@α-Ni(OH) 2 combining with an in situ phase transformation process is successfully proposed and employed to synthesize three-dimensional (3D) hierarchical Ni-CNTs@β-(Ni, Co) binary hydroxides. This strategy can effectively maintain the coaxial-cable-like structure of Ni-CNTs@α-Ni(OH) 2 and meanwhile increase the content of Co as much as possible. Eventually, the specific capacitances and electrical conductivity of the composites are remarkably enhanced. The optimized composite exhibits high specific capacitances of 2861.8F g -1 at 1A g -1 (39.48F cm -2 at 15mAcm -2 ), good rate capabilities of 1221.8F g -1 at 20A g -1 and cycling stabilities (87.6% of capacitance retention after 5000cycles at 5A g -1 ). The asymmetric supercapacitor (ASC) constructed with the as-synthesized composite and activated carbon as positive and negative electrode delivers a high specific capacitance of 287.7F g -1 at 1A g -1 . The device demonstrates remarkable energy density (96Whkg -1 ) and high power density (15829.4Wkg -1 ). The retention of capacitance remains 83.5% at the current density of 5A g -1 after 5000cycles. The charged and discharged samples are further studied by ex situ electron energy loss spectroscopy (EELS) analysis, XRD and SEM to figure out the reasons of capacitance fading. Overall, it is believable that this facile synthetic strategy can be applied to prepare various nanostructured metal hydroxide/CNT composites for high performance supercapacitor electrode materials. Copyright © 2017. Published by Elsevier Inc.

  9. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models

    PubMed Central

    Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong

    2016-01-01

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471

  10. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  11. CARTAM. The Cartesian Access Method for Data Structures with n-dimensional Keys.

    DTIC Science & Technology

    1979-01-01

    become apparent later, I have chosen to store structural information in an explicit binary tree , with modifications. instead of the left and right links of...the usual binary tree , I use the child and twin pointers of a ring structure or circular list. This ring structure as illustrated in figure 3-1* also...Since the file is being stored as an explicit binary tree , note that additional records are being generated, and the concept of an Ni-thm record for

  12. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xie, Man; Wu, Feng; Chen, Renjie

    2015-10-07

    In this study, a facile nanoetching-template route is developed to synthesize porous nanomicrohierarchical LiNi1/3Co1/3Mn1/3O2 microspheres with diameters below 1.5 μm, using porous CoMnO3 binary oxide microspheres as the template. The unique morphology of CoMnO3 template originates from the contraction effect during the oxidative decomposition of Ca0.2Mn0.4Co0.4CO3 precursors and is further improved by selectively removing calcium carbonate with a nanoetching process after calcination. The as-synthesized LiNi1/3Co1/3Mn1/3O2 microsphere, composed of numerous primary particles and pores with size of dozens of nanometers, illustrates a well-assembled porous nanomicrohierarchical structure. When used as the cathode material for lithium-ion batteries, the as-synthesized microspheres exhibit remarkably enhanced electrochemical performances with higher capacity, excellent cycling stability, and better rate capability, compared with the bulk counterpart. Specifically, hierarchical LiNi1/3Co1/3Mn1/3O2 achieves a high discharge capacity of 159.6 mA h g(-1) at 0.2 C with 98.7% capacity retention after 75 cycles and 133.2 mA h g(-1) at 1 C with 90% capacity retention after 100 cycles. A high discharge capacity of 135.5 mA h g(-1) even at a high current of 750 mA g(-1) (5 C) is also achieved. The nanoetching-template method can provide a general approach to improve cycling stability and rate capability of high capacity cathode materials for lithium-ion batteries.

  14. Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.

    PubMed

    Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin

    2017-08-07

    Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.

  15. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.

    PubMed

    Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong

    2016-04-07

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. VizieR Online Data Catalog: Excess CaII H&K emission in active binaries (Montes+, 1996)

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.

    1996-05-01

    In this work we analyze the behaviour of the excess CaII H & K and H_epsilon emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the CaII H & K lines in these 73 systems. We have determined the excess CaII H & K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. (4 data files).

  17. Removal of thallium from aqueous solutions using Fe-Mn binary oxides.

    PubMed

    Li, Huosheng; Chen, Yongheng; Long, Jianyou; Li, Xiuwan; Jiang, Daqian; Zhang, Ping; Qi, Jianying; Huang, Xuexia; Liu, Juan; Xu, Ruibing; Gong, Jian

    2017-09-15

    In this study, Fe-Mn binary oxides, which harbor the strong oxidative power of manganese dioxide and the high adsorption capacity of iron oxides, were synthesized for Tl(I) removal using a concurrent chemical oxidation and precipitation method. The adsorption of Tl onto the Fe-Mn adsorbent was fast, effective, and selective, with equilibrium sorption reaching over 95% under a broad operating pH (3-12), and high ionic strength (0.1-0.5mol/L). The adsorption can be well fitted with both Langmuir and Freundlich isotherms, and the kinetics can be well described by the pseudo-second-order model. Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) spectra suggest that surface complexation, oxidation and precipitation were the main mechanisms for the removal of Tl. This study shows that the Fe-Mn binary oxides could be a promising adsorbent for Tl removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture

    NASA Astrophysics Data System (ADS)

    Suseel Jai Krishnan, S.; P. K., Nagarajan

    2017-05-01

    In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.

  19. Characterization Of Improved Binary Phase-Only Filters In A Real-Time Coherent Optical Correlation System

    NASA Astrophysics Data System (ADS)

    Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.

    1987-06-01

    Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  1. Simple synthetic route to manganese-containing nanowires with the spinel crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lei; Zhang, Yan; Hudak, Bethany M.

    This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less

  2. Dielectric properties and phase transition behaviors in (1-x)PbZrO3-xPb(Mg1/2W1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Vittayakorn, Naratip; Charoonsuk, Piyanut; Kasiansin, Panisara; Wirunchit, Supamas; Boonchom, Banjong

    2009-09-01

    The solid solution of lead zirconate [PbZrO3 (PZ)] and lead magnesium tungstate [Pb(Mg1/2W1/2)O3 (PMW)] has been synthesized by the wolframite precursor method. The crystal structure, phase transformations, dielectric and thermal properties of (1-x)PZ-xPMW, where x =0.00-0.10, were investigated. The crystal structure of sintered ceramics was analyzed by x-ray diffraction. Phase-pure perovskite was obtained for all compositions. Furthermore, a change from orthorhombic to rhombohedral symmetry was observed as the mole fraction of increased PMW. As a result, it was found that PbZrO3-Pb(Mg1/2W1/2)O3 undergoes successive transitions from the antiferroelectric phase to the ferroelectric phase to the paraelectric state. The coexistence of orthorhombic and rhombohedral phases in this binary system is located near the composition x =0.1.

  3. Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor

    NASA Astrophysics Data System (ADS)

    Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.

    2014-11-01

    Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.

  4. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  5. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  6. Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: Single and binary systems

    NASA Astrophysics Data System (ADS)

    Rad, Leila Roshanfekr; Haririan, Ismaeil; Divsar, Faten

    2015-02-01

    In the present study, adsorption and photo-Fenton processes have been compared for the removal of phenol and paracetamol from aqueous solutions in a single and binary systems. NaX nanozeolites and cobalt ferrite nanoparticles were used during adsorption and photo-Fenton processes, respectively. Both nanoparticles were synthesized using microwave heating method. The synthesized nanoparticles were characterized using powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM) analysis. Based on results, more than 99% removing percentages of phenol and paracetamol were obtained during photo-Fenton process at initial concentrations of 10, 20, 50, 100 and 200 mg/L of phenol and paracetamol. Moreover, the complete removing of phenol and paracetamol was only achieved at lower initial concentrations than 10 mg/L for phenol and paracetamol during adsorption process. The results showed a significant dependence of the phenol and paracetamol removing on the initial concentrations of phenol and paracetamol for selection of process. The photo-Fenton process could be considered an alternative method in higher initial concentrations of phenol and paracetamol. However, the adsorption process due to economical issue was preferred for phenol and paracetamol removing at lower initial concentrations. The kinetic data of photo-Fenton and adsorption processes were well described using first-order and pseudo-second-order kinetic models. The results of phenol and paracetamol removing in a binary system confirmed the obtained results of single removing of phenol and paracetamol in selection of process.

  7. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  8. Could binary mixture of Nd-Ni ions control the electrical behavior of strontium-barium M-type hexaferrite nanoparticles?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima

    2011-05-15

    Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less

  9. Mixed Metal Oxides of the Type CoxZn1-xFe2O4 as Photocatalysts for Malachite Green Degradation Under UV Light Irradiation.

    PubMed

    Tzvetkov, Martin; Milanova, Maria; Cherkezova-Zheleva, Zara; Spassova, Ivanka; Valcheva, Evgenia; Zaharieva, Joana; Ivan, Mitov

    2017-06-01

    A combination of thermal and mechanical (high energy ball milling) treatment was applied in an attempt to obtain polycrystalline mixed metal binary and ternary oxides of the type CoxZn1-xFe2O4 (x = 0; 0.25; 0.5; 0.75; 1). The synthetic procedure used successfully produced single-phased, homogeneous ZnFe2O4, CoFe2O4, and Co0.75Zn0.25Fe2O4, as well as mixed oxides, whose composition depended both on the duration of the high energy ball milling and the ratio Zn(II)/Co(II). The formation of spinel-like structures was proved by XRD, Mössbauer spectroscopy and Raman spectroscopy. For the characterization of the samples low-temperature N2 adsorption, UV/Vis spectroscopy and transmission electron microscopy were applied. The energy band gap of the samples was calculated, suggesting they are promising photocatalysts. The decomposition of the Malachite Green in model water solutions under UV-light irradiation was successfully achieved in the presence of the samples as photocatalysts. The highest rate constant was obtained for the sample synthesized at longer milling time in combination with higher Zn(II)/Co(II) ratio. The photocatalytic activity of the ternary mixed oxides was compared with the pure hematite, α-Fe2O3, and the binary ZnFe2O4 and CoFe2O4 ferrites with spinel structure that were treated in the same way. A synergetic effect of α-Fe2O3 and the spinel-like structure on the photocatalytic properties of ternary mixed metal oxides was detected.

  10. The respective roles of polar/nonpolar binary patterns and amino acid composition in protein regular secondary structures explored exhaustively using hydrophobic cluster analysis.

    PubMed

    Rebehmed, Joseph; Quintus, Flavien; Mornon, Jean-Paul; Callebaut, Isabelle

    2016-05-01

    Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA-derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three-dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α-helices or β-strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the "binary pattern preference" assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having "weak" binary patterns and versatile RSS and HC types with high preferences for RSS, having "strong" binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well-differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design. © 2016 Wiley Periodicals, Inc.

  11. Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆

    PubMed Central

    Kleinhans, F.W.; Mazur, Peter

    2009-01-01

    Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609

  12. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.

    PubMed

    Kleinhans, F W; Mazur, Peter

    2007-04-01

    Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.

  13. Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3

    NASA Astrophysics Data System (ADS)

    Mondal, Gopinath; Santra, Ananyakumari; Jana, Sumanta; Pramanik, Nimai Chand; Mondal, Anup; Bera, Pulakesh

    2018-04-01

    Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] ( 1) and/or [CuI(mdpa)2][CuICl2] ( 2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)-S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals. [Figure not available: see fulltext.

  14. Combined NMR and molecular dynamics modeling study of transport properties in sulfonamide based deep eutectic lithium electrolytes: LiTFSI based binary systems.

    PubMed

    Pauric, Allen D; Halalay, Ion C; Goward, Gillian R

    2016-03-07

    The trend toward Li-ion batteries operating at increased (>4.3 V vs. Li/Li(+)) voltages requires the development of novel classes of lithium electrolytes with electrochemical stability windows exceeding those of LiPF6/carbonate electrolyte solutions. Several new classes of electrolytes have been synthesized and investigated over the past decade, in the search for LIB electrolytes with improved properties (increased hydrolytic stability, improved thermal abuse tolerance, higher oxidation voltages, etc.) compared with the present state-of-the-art LiPF6 and organic carbonates-based formulations. Among these are deep eutectic electrolytes (DEEs), which share many beneficial characteristics with ionic liquids, such as low vapor pressure and large electrochemical stability windows, with the added advantage of a significantly higher lithium transference number. The present work presents the pulsed field gradient NMR characterization of the transport properties (diffusion coefficients and cation transport numbers) of binary DEEs consisting of a sulfonamide solvent and lithium bis(trifluoromethanesulfonyl)imide salt. Insights into the structural and dynamical properties, which enable one to rationalize the observed ionic conductivity behavior were obtained from a combination of NMR data and MD simulations. The insights thus gained should assist the formulation of novel DEEs with improved properties for LIB applications.

  15. Hydrogen storage in double clathrates with tert-butylamine.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sum, Amadeu K; Sloan, E Dendy; Koh, Carolyn A

    2009-06-18

    The first proof-of-concept of the formation of a double tert-butylamine (t-BuNH(2)) + hydrogen (H(2)) clathrate hydrate has been demonstrated. Binary clathrate hydrates with different molar concentrations of the large guest t-BuNH(2) (0.98-9.31 mol %) were synthesized at 13.8 MPa and 250 K, and characterized by powder X-ray diffraction and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed under hydrogen pressures. Raman spectroscopic data suggested that the hydrogen molecules occupied the small cages and had similar occupancy to hydrogen in the double tetrahydrofuran (THF) + H(2) clathrate hydrate. The hydrogen storage capacity in this system was approximately 0.7 H(2) wt % at the molar concentration of t-BuNH(2) close to the sII stoichiometry.

  16. Assistant template and co-template agents in modeling mesoporous silicas and post-synthesizing organofunctionalizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Vaeudo V.; Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br

    2012-12-15

    Mesoporous SBA-16 silicas were synthesized through a direct methodology using the template (F127) combined with co-templates (ethanol and n-butanol), with tetraethylorthosilicate as the silica source. These ordered mesoporous silica were characterized by elemental analyses, infrared spectroscopy, solid-state nuclear magnetic resonance for {sup 13}C (CP/MAS) and {sup 29}Si (HP/DEC) nuclei, nitrogen sorption/desorption processes, small angle X-ray analyses (SAXS) and transmission electron microscopy (TEM). SAXS and TEM results confirmed the space group Im3m and cubic 3D symmetry, typical for highly ordered SBA-16. The sorption/desorption data for SBA-16 and when functionalized gave type IV isotherms, with hysteresis loop H2. Surface areas of 836;more » 657 and 618 m{sup 2} g{sup -1} and average pore diameters of 7.99; 8.10 and 9.85 nm, for SBA-16A, SBA-16B and SBA-16C were obtained, respectively. When functionalized the silicas presented a reduction in surface area, pore volume and pore diameter due to the pendant chains that interfere with nitrogen sorption in these measurements. The co-template ethanol favors the ordered mesopores with highest wall thicknesses. - Graphical Abstract: The mesoporous SBA-16 can be synthesized from binary (F127/TEOS) or ternary (F127/alcohol/TEOs) systems to give well-ordered mesoporous silicas. The co-templates ethanol or butanol gave the final material with highest wall thickness, mainly with ethanol. After these syntheses the pores were successfully organofunctionalized to give a good incorporation of the silylating agents. The final silicas presented of well-arranged solid characteristics as expressing by three distinct peaks, as indexed by the corresponding planes. Highlights: Black-Right-Pointing-Pointer Syntheses of mesoporous silicas by using ternary (F127/agent/TEOS) and binary (F127/TEOS) systems. Black-Right-Pointing-Pointer Use of co-templates to synthesize mesoporous silicas with larger wall thicknesses. Black-Right-Pointing-Pointer Immobilization of pendant chains inside the porous silicas. Black-Right-Pointing-Pointer Ordered mesoposous silicas as new materials for possible applications on sorption and delivering drug systems.« less

  17. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  18. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    NASA Astrophysics Data System (ADS)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  19. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    PubMed

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Trans*versing the DMZ: A Non-Binary Autoethnographic Exploration of Gender and Masculinity

    ERIC Educational Resources Information Center

    Stewart, Dafina-Lazarus

    2017-01-01

    Using an abductive, critical-poststructuralist autoethnographic approach, I consider the ways in which masculine of centre, non-binary/genderqueer trans* identities transverse the poles of socializing binary gender systems, structures, and norms which inform higher education. In this paper, I assert that non-binary genderqueer identities are…

  1. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.

    PubMed

    Li, Hongying; Guo, Xisheng; Ye, Xinxin

    2017-02-01

    Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.

  2. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  3. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  4. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  5. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So

    2003-11-20

    We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less

  6. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins.

    PubMed

    Barth, Holger; Aktories, Klaus; Popoff, Michel R; Stiles, Bradley G

    2004-09-01

    Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic "A-B" paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The "B" components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated "B" components form homoheptameric rings that subsequently dock with an "A" component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, "A" molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.

  7. Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins

    PubMed Central

    Barth, Holger; Aktories, Klaus; Popoff, Michel R.; Stiles, Bradley G.

    2004-01-01

    Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic “A-B” paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The “B” components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated “B” components form homoheptameric rings that subsequently dock with an “A” component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, “A” molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria. PMID:15353562

  8. Powder characteristics and biocidal activity of the MnOx-WO₃-TiO₂ system synthesized by a sol-gel method for antifouling agents.

    PubMed

    Shin, Byeongkil; Kim, Sangmin; Lee, Heesoo; Park, Hyun

    2013-08-01

    The TiO₂-system powders were investigated with respect to the crystallinity and the microstructure. The biocidal activity increased from TiO₂ to binary MnOx-TiO₂ to ternary MnOx-WO₃-TiO₂ against Vibrio fischeri as a model of Gram-negative bacteria. Anatase and rutile TiO₂ were not toxic even at 200 mg/L, but anatase has been observed in bacterial growth inhibition due to the different electronic band (lattice) structure. All materials containing manganese oxides were toxic: the toxicity correlation (EC₅₀) of MnOx-WO₃ and MnOx-WO₃-TiO₂ was 7.0, 1.8 ppm, respectively. The high antifouling activity of MnOx-WO₃-TiO₂ was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics.

  9. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Yuan, Guanghui; Xiang, Jiming; Jin, Huafeng; Wu, Lizhou; Jin, Yanzi; Zhao, Yan

    2018-01-10

    A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g -1 after 200 cycles at 100 mA g -1 . Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li⁺ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  10. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  11. Mechanochemical synthesis, structure and properties of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2018-03-01

    The paper deals with the mechanochemical synthesis of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba) by high-energy ball milling. Several metal precursors and fluorinating agents were tested for synthesizing M0.5Pb0.5F2. Metal acetates and ammonium fluoride as precursors show the most promising results and were therefore used for the formation of MxPb1-xF2 with different metal cationic ratios. The characterization of the local fluorine coordination and the crystal structure was performed by 19F MAS NMR spectroscopy and X-ray diffraction. Additional calculations of 19F chemical shifts using the superposition model allow a deeper insight into the local structure of the compounds. The fluoride ion conductivity was followed by temperature dependent DC conductivity measurements. Significantly higher conductivities were found in comparison with those of the corresponding binary fluorides. The highest values were observed for samples with high lead content M0.25Pb0.75F2, bearing in mind the much higher conductivity of PbF2 compared to MF2.

  12. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  13. Light-curve and spectral properties of ultra-stripped core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2017-11-01

    We discuss light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are supernovae with ejecta masses of only ~0.1M ⊙ whose progenitors lose their envelopes due to binary interactions with their compact companion stars. We follow the evolution of an ultra-stripped supernova progenitor until core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae based on the nucleosynthesis results. We show that ultra-stripped supernovae synthesize ~0.01M ⊙ of the radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5 - 10 days. By comparing synthesized and observed spectra, we find that SN 2005ek and some of so-called calcium-rich gap transients like PTF10iuv may be related to ultra-stripped supernovae.

  14. Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: Application of laser engineered net shaping (LENS)

    DOE PAGES

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...

    2016-04-15

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  15. Binary processing and display concepts for low-cost Omega receivers. [airborne systems simulation

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1974-01-01

    A description is given of concepts related to plans for developing a low-cost, all-digital Omega receiver capable of offering to the small-aircraft pilot a reliable and accurate navigation aid. The receiver base considered includes a receiver front-end module, a receiver control module, a memory-aided phase-locked loop module, a housekeeping timer module, and a synthesizer module.

  16. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    NASA Astrophysics Data System (ADS)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  17. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.

    PubMed

    Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-02-28

    The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.

  18. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  19. Synthesis of Ultra-incompressible sp 3 -Hybridized Carbon Nitride with 1:1 Stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios; Lobanov, Sergey; Dong, Huafeng

    Search of materials with C-N composition hold a great promise in creating materials which would rival diamond hardness due to the very strong and relatively low-ionic C-N bond. Early experimental and theoretical works on C-N compounds were based on structural similarity with binary A 3B 4 structural types; however, the synthesis of C 3N 4 remains elusive. Here we explored an unbiased synthesis from the elemental materials at high pressures and temperatures. Using in situ synchrotron X-ray diffraction and Raman spectroscopy we demonstrate the synthesis of highly incompressible Pnnm CN compound with sp 3 hybridized carbon above 55 GPa andmore » 7000 K. This result is supported by first principles evolutionary search, which finds that Pnnm CN is the most stable compound above 10.9 GPa. On pressure release below 6 GPa the synthesized CN compound amorphizes reattaining its 1:1 stoichiometry as confirmed by Energy-Dispersive X-ray Spectroscopy. Here, this work underscores the importance of understanding of novel high-pressure chemistry rules and it opens a new route for synthesis of superhard materials.« less

  20. Synthesis of Ultra-incompressible sp 3 -Hybridized Carbon Nitride with 1:1 Stoichiometry

    DOE PAGES

    Stavrou, Elissaios; Lobanov, Sergey; Dong, Huafeng; ...

    2016-10-11

    Search of materials with C-N composition hold a great promise in creating materials which would rival diamond hardness due to the very strong and relatively low-ionic C-N bond. Early experimental and theoretical works on C-N compounds were based on structural similarity with binary A 3B 4 structural types; however, the synthesis of C 3N 4 remains elusive. Here we explored an unbiased synthesis from the elemental materials at high pressures and temperatures. Using in situ synchrotron X-ray diffraction and Raman spectroscopy we demonstrate the synthesis of highly incompressible Pnnm CN compound with sp 3 hybridized carbon above 55 GPa andmore » 7000 K. This result is supported by first principles evolutionary search, which finds that Pnnm CN is the most stable compound above 10.9 GPa. On pressure release below 6 GPa the synthesized CN compound amorphizes reattaining its 1:1 stoichiometry as confirmed by Energy-Dispersive X-ray Spectroscopy. Here, this work underscores the importance of understanding of novel high-pressure chemistry rules and it opens a new route for synthesis of superhard materials.« less

  1. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  2. A PLANETARY LENSING FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sun-Ju; Hwang, Kyu-Ha; Ryu, Yoon-Hyun

    Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this investigation, we find that because of the differentmore » magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.« less

  3. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  4. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    PubMed Central

    Kolel-Veetil, Manoj K.; Keller, Teddy M.

    2010-01-01

    The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  5. Temperature dependent structural and dynamical properties of liquid Cu80Si20 binary alloy

    NASA Astrophysics Data System (ADS)

    Suthar, P. H.; Shah, A. K.; Gajjar, P. N.

    2018-05-01

    Ashcroft and Langreth binary structure factor have been used to study for pair correlation function and the study of dynamical variable: velocity auto correlation functions, power spectrum and mean square displacement calculated based on the static harmonic well approximation in liquid Cu80Si20 binary alloy at wide temperature range (1140K, 1175K, 1210K, 1250K, 1373K, 1473K.). The effective interaction for the binary alloy is computed by our well established local pseudopotential along with the exchange and correction functions Sarkar et al(S). The negative dip in velocity auto correlation decreases as the various temperature is increases. For power spectrum as temperature increases, the peak of power spectrum shifts toward lower ω. Good agreement with the experiment is observed for the pair correlation functions. Velocity auto correlation showing the transferability of the local pseudopotential used for metallic liquid environment in the case of copper based binary alloys.

  6. Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal

    PubMed Central

    Gupta, Vinod Kumar; Pathania, Deepak; Priya, Bhanu; Singha, Amar Singh; Sharma, Gaurav

    2014-01-01

    Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10−1 for EMA and 2.76 mol/L × 10−1 for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system. PMID:25157348

  7. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  8. Molecular interactions and structures in ethylene glycol-ethanol and ethylene glycol-water solutions at 303 K on densities, viscosities, and refractive indices data

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ghatbandhe, A. S.

    2014-01-01

    Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.

  9. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.

    PubMed

    Sun, Cuixia; Dai, Lei; Gao, Yanxiang

    2017-02-10

    The anti-solvent co-precipitation method was used to fabricate the zein-propylene glycol alginate (PGA) binary complex with different mass ratios of zein to PGA (20:1, 10:1, 5:1, 2:1 and 1:1) at pH 4.0. Results showed that attractive electrostatic interaction between zein and PGA occurred and negatively charged binary complex with large size and high turbidity was formed due to the charge neutralization. Hydrogen bonding and hydrophobic effects were involved in the interactions between zein and PGA, leading to the changed secondary structure and improved thermal stability of zein. Aggregates in the irregular shape with large size were obviously observed in the AFM images. PGA alone exhibited a fine filamentous network structure, while zein-PGA binary complex showed a rough branch-like pattern and the surface of "branch" was closely adsorbed by lots of spherical zein particles. Q in zein-PGA binary complex dispersions presented the improved photochemical and thermal stability. The potential mechanism of a two-step process was proposed to explain the formation of zein-PGA binary complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    PubMed

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  11. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  12. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  13. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0

  14. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    PubMed

    Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego

    2015-01-01

    The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  15. "Horseshoe" Structures in the Debris Disks of Planet-Hosting Binary Stars

    NASA Astrophysics Data System (ADS)

    Demidova, T. V.

    2018-03-01

    The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.

  16. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  17. Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds

    NASA Astrophysics Data System (ADS)

    Liu, Yangzhen; Xing, Jiandong; Fu, Hanguang; Li, Yefei; Sun, Liang; Lv, Zheng

    2017-08-01

    The properties of sulfides are important in the design of new iron-steel materials. In this study, first-principles calculations were used to estimate the structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. The results reveal that these XS binary compounds are thermodynamically stable, because their formation enthalpy is negative. The elastic constants, Cij, and moduli (B, G, E) were investigated using stress-strain and Voigt-Reuss-Hill approximation, respectively. The sulfide anisotropy was discussed from an anisotropic index and three-dimensional surface contours. The electronic structures reveal that the bonding characteristics of the XS compounds are a mixture of metallic and covalent bonds. Using a quasi-harmonic Debye approximation, the heat capacity at constant pressure and constant volume was estimated. NiS possesses the largest CP and CV of the sulfides.

  18. Binary to Octal and Octal to Binary Code Converter Using Mach-Zehnder Interferometer for High Speed Communication

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-05-01

    Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  19. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  20. Relaxation dynamics in a binary hard-ellipse liquid.

    PubMed

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2015-01-21

    Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.

  1. Computational identification of promising thermoelectric materials among known quasi-2D binary compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    Quasi low-dimensional structures are abundant among known thermoelectric materials, primarily because of their low lattice thermal conductivities. In this work, we have computationally assessed the potential of 427 known binary quasi-2D structures in 272 different chemistries for thermoelectric performance. To assess the thermoelectric performance, we employ an improved version of our previously developed descriptor for thermoelectric performance [Yan et al., Energy Environ. Sci., 2015, 8, 983]. The improvement is in the explicit treatment of van der Waals interactions in quasi-2D materials, which leads to significantly better predictions of their crystal structures and lattice thermal conductivities. The improved methodology correctly identifiesmore » known binary quasi-2D thermoelectric materials such as Sb2Te3, Bi2Te3, SnSe, SnS, InSe, and In2Se3. As a result, we propose candidate quasi-2D binary materials, a number of which have not been previously considered for thermoelectric applications.« less

  2. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  3. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  4. Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessmer, Manuel

    This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.

  5. Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data

    NASA Astrophysics Data System (ADS)

    Palumbo, Francesco; D'Enza, Alfonso Iodice

    The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.

  6. Efficient Merge and Insert Operations for Binary Heaps and Trees

    NASA Technical Reports Server (NTRS)

    Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.

  7. Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.

    PubMed

    Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie

    2007-08-15

    Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.

  8. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  9. Influence of Hydrogen Bond on Thermal and Phase Transitions of Binary Complex Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Rajasekaran, T. R.; Baskar, K.

    2017-12-01

    A novel supramolecular liquid crystal (LC) is synthesized from the binary complex of 4-decyloxy benzoic acid and cholesteryl acetate. Fourier transform infrared (FTIR) spectroscopic study confirms the formation of intermolecular hydrogen bond between the mesogens. Various mesophases and corresponding textural changes in the complex are observed by comparing with its constituents through polarizing optical microscopic (POM) studies. The thermal stability factor of smectic phase for present complex is calculated. An interesting observation of present work is that investigation of extended thermal span of mesomorphic phases, decreased enthalpy, a nematic phase with a high clearing point and a low melting point. This is due to an arrangement of molecular reorientations and the development of new associations by hydrogen bonding. Optical tilt angle for smectic C phase is determined and the same is fitted to a power law.

  10. Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera.

    PubMed

    Yurduseven, Okan; Marks, Daniel L; Fromenteze, Thomas; Smith, David R

    2018-03-05

    We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between "ON" and "OFF" states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.

  11. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  12. Ferroelectricity in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. The known FE materials LiNbO3 can be regarded as derived from the A2O3 corundum structure with cation ordering. Here we consider more general binary (AB O3) and ternary (A2 BB' O6) corundum derivatives as an extended class of potential FE materials, motivated by the fact that some members of this class have recently been synthesized. There are four structure types for these corundum derivatives, and the number of cation combinations is enormous, but in many cases the energy barriers for polarization reversal may be too large to allow FE behavior. Here we present a first-principles study of the polar structure, coherent FE barrier, and domain-wall switching barrier for a representative set of polar corundum derivatives, allowing us to identify several potentially new FE materials. We also discuss the conditions under which ferroelectricity is compatible with magnetic ordering. Finally, we identify several empirical measures that can provide a rule of thumb for estimating the barrier energies. Our results should assist in the experimental search for new FE materials in the corundum derivative family. This work is supported by ONR Grant No. N-00014-12-1-1035.

  13. Super-massive binary black holes in galaxies. Dynamical models and observed structures in Arp 5, 87, 214, 240, and NGC 4027, 6946

    NASA Astrophysics Data System (ADS)

    Anosova, Joanna P.

    2017-06-01

    On 14 Sept, 2015 The LIGO reported the first direct detection of gravitational waves and the first direct observation of a binary black hole. These observations demonstrate the existence of binary black holes in stellar systems predicted by Einstein in his general theory of relativity a century earlier.A lot of violent and complicated phenomena take place on different scales in the Universe. Many of them may be caused by multiple centers of gravitational attraction: planetary rings, accretion discs of various scales, peculiar structures of single galaxies and interacting galaxies. In this work, we show that various features of celestial objects can be understood by assuming the existence of two dominant centers of gravity in stellar systems.We study numerically the dynamical evolution of models with the central super-massive binary black holes and extended shells with numerous low-mass particles inside and around the orbits of binaries. These particles could be star clusters or gas and dust complexes. We consider several tens of thousands of initial conditions for the general three-body problem and compile them. We studied the dynamical evolution of all spherical shells together and separately. Our method permits us to study the individual trajectories of particles, their close double and triple approaches, and inspect the time-depending structures in the models. Multiple runs of the models allow us to classify the numerous strong triple interactions of the binary components with low-mass particles; frequently, the "gravitational slingshot" effect occurs in the center of systems. Such strong interactions of bodies are results in various structures with "dumb-bell" bars, close and open spirals, different types of flows, jets etc. These structures are often very similar the observed structures of galaxies.We found some combinations of the initial conditions and model parameters that produce at some time similar structures as that found in the galaxies Arp 5, 87, 214, 240, and NGC 4027, 6946. Our Figures show results of such comparison and the past and future evolution of our models.

  14. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196.

    PubMed

    Perelle, S; Gibert, M; Bourlioux, P; Corthier, G; Popoff, M R

    1997-04-01

    A Clostridium difficile isolate was found to produce an actin-specific ADP-ribosyltransferase (CDT) homologous to the enzymatic components of Clostridium perfringens iota toxin and Clostridium spiroforme toxin (M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Infect. Immun. 56:2299-2306, 1988). The CDT locus from C. difficile CD196 was cloned and sequenced. It contained two genes (cdtA and cdtB) which display organizations and sequences similar to those of the iota toxin gene. The deduced enzymatic (CDTa) and binding (CDTb) components have 81 and 84% identity, respectively, with the corresponding components of iota toxin. CDTa and CDTb induced actin cytoskeleton alterations similar to those caused by other clostridial binary toxins. The lower level of production of binary toxin by CD196 than of iota toxin by C. perfringens was related to a lower transcript level, possibly due to a promoter region different from that of iota toxin genes. The cdtA and cdtB genes have been detected in 3 of 24 clinical isolates examined, and cdtB alone was found in 2 additional strains. One strain (in addition to CD196) was shown by Western blotting to produce CDTa and CDTb. These results indicate that some C. difficile strains synthesize a binary toxin that could be an additional virulence factor.

  15. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196.

    PubMed Central

    Perelle, S; Gibert, M; Bourlioux, P; Corthier, G; Popoff, M R

    1997-01-01

    A Clostridium difficile isolate was found to produce an actin-specific ADP-ribosyltransferase (CDT) homologous to the enzymatic components of Clostridium perfringens iota toxin and Clostridium spiroforme toxin (M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Infect. Immun. 56:2299-2306, 1988). The CDT locus from C. difficile CD196 was cloned and sequenced. It contained two genes (cdtA and cdtB) which display organizations and sequences similar to those of the iota toxin gene. The deduced enzymatic (CDTa) and binding (CDTb) components have 81 and 84% identity, respectively, with the corresponding components of iota toxin. CDTa and CDTb induced actin cytoskeleton alterations similar to those caused by other clostridial binary toxins. The lower level of production of binary toxin by CD196 than of iota toxin by C. perfringens was related to a lower transcript level, possibly due to a promoter region different from that of iota toxin genes. The cdtA and cdtB genes have been detected in 3 of 24 clinical isolates examined, and cdtB alone was found in 2 additional strains. One strain (in addition to CD196) was shown by Western blotting to produce CDTa and CDTb. These results indicate that some C. difficile strains synthesize a binary toxin that could be an additional virulence factor. PMID:9119480

  16. Pore-forming activity of clostridial binary toxins.

    PubMed

    Knapp, O; Benz, R; Popoff, M R

    2016-03-01

    Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  18. Facile assembly of 3D binary colloidal crystals from soft microgel spheres.

    PubMed

    Liu, Yang; Guan, Ying; Zhang, Yongjun

    2014-03-01

    It still remains a big challenge to fabricate binary colloidal crystals (binary CCs) from hard colloidal spheres, although a lot of efforts have been made. Here, for the first time, binary CCs are assembled from soft hydrogel spheres, PNIPAM microgels, instead of hard spheres. Different from hard spheres, microgel binary CCs can be facilely fabricated by simply heating binary microgel dispersions to 37 °C and then allowing them to cool back to room temperature. The formation of highly ordered structure is indicated by the appearance of an iridescent color and a sharp Bragg diffraction peak. Compared with hard sphere binary CCs, the assembly of PNIPAM microgel binary CCs is much simpler, faster and with a higher "atom" economy. The easy formation of PNIPAM microgel binary CC is attributed to the thermosensitivity and soft nature of the PNIPAM microgel spheres. In addition, PNIPAM microgel binary CCs can respond to temperature change, and their stop band can be tuned by changing the concentration of the dispersion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Origin of the computational hardness for learning with binary synapses.

    PubMed

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-11-01

    Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.

  20. Pattern formation in binary colloidal assemblies: hidden symmetries in a kaleidoscope of structures.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2018-06-10

    In this study we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of non-preservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology in order to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are precious for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor physical properties of colloidal assemblies.

  1. Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.

    PubMed

    Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho

    2017-03-21

    The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.

  2. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations

    PubMed Central

    Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego

    2015-01-01

    The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by “communities” of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information. PMID:26226226

  3. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  4. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.

    PubMed

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  5. Modeling of protein binary complexes using structural mass spectrometry data

    PubMed Central

    Kamal, J.K. Amisha; Chance, Mark R.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints—positive and/or negative—in the docking step and are also used to decide the type of energy filter—electrostatics or desolvation—in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure. PMID:18042684

  6. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    DOE PAGES

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-03

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-samplemore » classification accuracy achieved by our feature pair with those reported previously.« less

  7. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  8. CoBi3-the first binary compound of cobalt with bismuth: high-pressure synthesis and superconductivity

    NASA Astrophysics Data System (ADS)

    Tencé, S.; Janson, O.; Krellner, C.; Rosner, H.; Schwarz, U.; Grin, Y.; Steglich, F.

    2014-10-01

    The first compound in the cobalt bismuth system was synthesized by high-pressure high-temperature synthesis at 5 GPa and 450 °C. CoBi3 crystallizes in space group Pnma (no. 62) with lattice parameters of a = 8.8464(7) Å, b = 4.0697(4) Å and c = 11.5604(9) Å adopting a NiBi3-type crystal structure. CoBi3 undergoes a superconducting transition at Tc = 0.48(3) K as evidenced by electrical-resistivity and specific-heat measurements. Based on the anomaly of the specific heat at Tc and considering the estimated electron-phonon coupling, the new Bi-rich compound can be classified as a Bardeen-Cooper-Schrieffer-type superconductor with weak electron-phonon coupling. Density-functional theory calculations disclose a sizable influence of the spin-orbit coupling to the valence states and proximity to a magnetic instability, which accounts for a significantly enhanced Sommerfeld coefficient.

  9. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  10. Emptying and filling a tunnel bronze

    DOE PAGES

    Marley, Peter M.; Abtew, Tesfaye A.; Farley, Katie E.; ...

    2015-01-13

    The classical orthorhombic layered phase of V 2O 5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V 2O 5 (ζ-V 2O 5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodationmore » of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV 2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.« less

  11. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  12. Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors

    PubMed Central

    Li, Dan; Lin, Lizhen; Dey, Dipak K.

    2015-01-01

    Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333

  13. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil.

    PubMed

    McCann, Clare M; Peacock, Caroline L; Hudson-Edwards, Karen A; Shrimpton, Thomas; Gray, Neil D; Johnson, Karen L

    2018-01-15

    The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70mgg -1 and 32mgg -1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p<0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  15. Structural and Electrical Characteristics of Carbon Nanowalls Synthesized on the Polyimide Film.

    PubMed

    Kwon, Seok Hun; Kim, Hyung Jin; Choi, Won Seok; Kang, Hyunil

    2018-09-01

    In this study, the structural and electrical characteristics of carbon nanowalls (CNWs) synthesized on polyimide films were investigated. CNWs were synthesized on polyimide films as various growth times. The cross-section and surface of the CNWs synthesized were examined using FE-SEM. The growth and defects of CNWs were observed by raman spectrum. The hall measurement system was used to analyzed sheet resistance, resistivity and conductivity. The CNWs synthesized at 40 minutes showed outstanding structural and electrical characterizations than another growth times.

  16. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  17. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  18. 1974: the discovery of the first binary pulsar

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2015-06-01

    The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.

  19. Monte Carlo simulation of magnetic properties of mixed spin (3/2, 1) ferromagnetic and ferrimagnetic disordered binary alloys with amorphous structure

    NASA Astrophysics Data System (ADS)

    Motlagh, H. Nakhaei; Rezaei, G.

    2018-01-01

    Monte Carlo simulation is used to study the magnetic properties of mixed spin (3/2, 1) disordered binary alloys on simple cubic, hexagonal and amorphous magnetic ultra-thin films with 18 × 18 × 2 atoms. To this end, at the first approximation, the exchange coupling interaction between the spins is considered as a constant value and at the second one, the Ruderman-Kittel-Kasuya-Yosida (RKKY) model is used. Effects of concentration, structure, exchange interaction, single ion-anisotropy and the film size on the magnetic properties of disordered ferromagnetic and ferrimagnetic binary alloys are investigated. Our results indicate that the spontaneous magnetization and critical temperatures of rare earth-3d transition binary alloys are affected by these parameters. It is also found that in the ferrimagnetic state, the compensation temperature (Tcom) and the magnetic rearrangement temperature (TR) appear for some concentrations.

  20. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    PubMed Central

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-01-01

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998

  1. Generation of two-dimensional binary mixtures in complex plasmas

    NASA Astrophysics Data System (ADS)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  2. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.

    2017-12-01

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.

  4. Radiation-grafted proton exchange membranes based on co-grafting from binary monomer mixtures into poly(ethylene-co-tetrafluoroethylene) (ETFE) film

    NASA Astrophysics Data System (ADS)

    Sohn, Joon-Yong; Sung, Hae-Jun; Song, Joo-Myung; Shin, Junhwa; Nho, Young-Chang

    2012-08-01

    In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.

  5. The Firework of Electromagnetic Counterparts from GW170817

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel

    2018-01-01

    The gravitational-wave signal of the binary neutron star merger GW170817 was followed by a firework of electromagnetic transients across the entire electromagnetic spectrum. The gamma-ray emission has provided strong evidence for the association of short gamma-ray bursts (SGRBs) with binary neutron star mergers and the ultraviolet, optical, and near-infrared emission is consistent with a kilonova indicative of the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process). In this talk, I will discuss and review theoretical scenarios to interpret the gamma-ray, X-ray, and radio observations. I will present recent results from general-relativistic magnetohydrodynamic simulations and discuss possible scenarios and mass ejection mechanisms that can give rise to the observed kilonova features. In particular, I will argue that massive winds from neutrino-cooled post-merger accretion disks most likely synthesized the heavy r-process elements in GW170817.

  6. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.

    PubMed

    Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N

    2017-12-22

    Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.

  7. Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.

    PubMed

    Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra

    2017-07-19

    A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.

  8. Observability of characteristic binary-induced structures in circumbinary disks

    NASA Astrophysics Data System (ADS)

    Avramenko, R.; Wolf, S.; Illenseer, T. F.

    2017-07-01

    Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods: To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.

  9. Statistical inference approach to structural reconstruction of complex networks from binary time series

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  10. Statistical inference approach to structural reconstruction of complex networks from binary time series.

    PubMed

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  11. Serial binary interval ratios improve rhythm reproduction.

    PubMed

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  12. Serial binary interval ratios improve rhythm reproduction

    PubMed Central

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258

  13. Individual and binary mixture effects of bisphenol A and lignin-derived bisphenol in Daphnia magna under chronic exposure.

    PubMed

    Li, Dan; Chen, Hongxing; Bi, Ran; Xie, Haibo; Zhou, Yu; Luo, Yongju; Xie, Lingtian

    2018-01-01

    In recent years, many new chemicals have been synthesized from biomass with an aim for sustainable development by replacing the existing toxic chemicals with those having similar properties and applications. However, the effects of these new chemicals on aquatic organisms remain relatively unknown. In this study, the effects of bisphenol A (BPA) and lignin-derived bisphenol (LD-BP, a BPA analogue) on Daphnia magna were evaluated. The animals were exposed to BPA, LD-BP, and their binary mixture at concentrations (2-2000 μg L -1 ) for 21 days. The expression of various biochemical markers and the effects on growth, molting, and reproduction parameters were examined. The results showed that the weight of daphnids significantly increased after exposure to BPA, LD-BP, and the binary mixture relative to that of the control animals. The activity of superoxide dismutase was significantly inhibited by LD-BP and the binary mixture. At the highest exposure concentration of the binary mixture, the activities of acetylcholinesterase and α-glucosidase, fecundity, and the number of neonates per brood were significantly altered. Our results showed that the effects of BPA and LD-BP on D. magna were generally comparable, except for the effect on the weight at their environmentally relevant concentrations (e.g., <20 μg L -1 ). The effects on the reproduction of D. magna could be mainly due to the shift in energy redistribution under BPA and LD-BP exposures. Our results implied that exposures to both BPA and LD-BP could potentially cause deleterious effects at the population level in D. magna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  15. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  16. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  17. Thermal Annealing Effect on Optical Properties of Binary TiO₂-SiO₂ Sol-Gel Coatings.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2012-12-24

    TiO₂-SiO₂ binary coatings were deposited by a sol-gel dip-coating method using tetrabutyl titanate and tetraethyl orthosilicate as precursors. The structure and chemical composition of the coatings annealed at different temperatures were analyzed by Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The refractive indices of the coatings were calculated from the measured transmittance and reflectance spectra. An increase in refractive index with the high temperature thermal annealing process was observed. The Raman and FTIR results indicate that the refractive index variation is due to changes in the removal of the organic component, phase separation and the crystal structure of the binary coatings.

  18. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components

    NASA Astrophysics Data System (ADS)

    Balankina, E. S.

    2016-06-01

    Analytical dependences of a volume's properties on the differences between the geometric structures of initial monosystems are obtained for binary systems simulated by a grain medium. The effect of microstructural parameter k (the ratio of volumes of molecules of mixed components) on the concentration behavior of the relative excess molar volume of different types of real binary solutions is analyzed. It is established that the contribution due to differences between the volumes of molecules and coefficients of the packing density of mixed components is ~80-100% for mutual solutions of n-alkanes and ~55-80% of the experimental value of the relative excess molar volume for water solutions of n-alcohols.

  19. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  20. Parallel protein secondary structure prediction based on neural networks.

    PubMed

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  1. Thermodynamics and structural transition of binary atomic Bose-Fermi mixtures in box or harmonic potentials: A path-integral study

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2018-03-01

    Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.

  2. Novel Synthesis of Calcium Oxide-Aluminum Oxide Glasses

    NASA Astrophysics Data System (ADS)

    Weber, J. K. Richard; Tangeman, Jean A.; Key, Thomas S.; Hiera, Kirsten J.; Paradis, Paul-Francois; Ishikawa, Takehiko; Yu, Jianding; Yoda, Shinichi

    2002-05-01

    Binary Al2O3:CaO glasses containing 36-50 mole% Al2O3 were synthesized by containerless processing of liquids in nitrogen using aerodynamic and a pressurized electrostatic-aerodynamic levitator. The critical cooling rate for glass formation RC under containerless conditions was ca. 70 K/s. The Vickers hardness of the glasses was 775-785; and the infrared transmission extended to approximately 5500 nm. The work function of the 36 mole% Al2O3 composition was 3.7 eV at 1100 K.

  3. A unifying framework for marginalized random intercept models of correlated binary outcomes

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.

    2013-01-01

    We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871

  4. A new method for constructing networks from binary data

    NASA Astrophysics Data System (ADS)

    van Borkulo, Claudia D.; Borsboom, Denny; Epskamp, Sacha; Blanken, Tessa F.; Boschloo, Lynn; Schoevers, Robert A.; Waldorp, Lourens J.

    2014-08-01

    Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.

  5. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  6. Phase relations in the pseudobinary systems RAO3-R2Ti2O7 (R: rare earth element and Y, A: Fe, Ga, Al, Cr and Mn) and syntheses of new compounds R(A1-xTix)O3+x/2 (2/3≤x≤3/4) at elevated temperatures in air

    NASA Astrophysics Data System (ADS)

    Brown, Francisco; Jacobo-Herrera, Ivan; Alvarez-Montaño, Victor; Kimizuka, Noboru; Kurashina, Keiji; Michiue, Yuichi; Matsuo, Yoji; Mori, Shigeo; Ikeda, Naoshi; Medrano, Felipe

    2017-07-01

    Phase relations in the pseudo-binary systems RFeO3-R2Ti2O7 (R: Lu, Ho and Dy), RGaO3-R2Ti2O7 (R: Lu and Er), LuAlO3-Lu2Ti2O7 and RAO3-R2Ti2O7 (R: Lu and Yb. A: Cr and Mn) at elevated temperatures in air were determined by means of a classic quenching method. There exist Lu(Fe1-xTix)O3+x/2, R(Ga1-xTix)O3+x/2 (R: Lu and Er) and Lu(Al1-xTix)O3+x/2 (2/3≤ x≤3/4) having the Yb(Fe1-xTix)O3+x/2-type of crystal structure (x=0.72, space group: R3m, a(Å)=17.9773 and c(Å)=16.978 as a hexagonal setting) in these pseudo binary systems. Eighteen compounds R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) were newly synthesized and their lattice constants as a hexagonal setting were measured by means of the X-ray powder diffraction method. The R occupies the octahedral site and both A and Ti does the trigonalbipyramidal one in these compounds. Relation between lattice constants for the rhombic R(A1-xTix)O3+x/2 and the monoclinic In(A1-xTix)O3+x/2 are as follows, ah≈5 x bm, ch≈3 x cm x sin β and am=31/2 x bm, where ah and ch are the lattice constants as a hexagonal setting for R(A1-xTix)O3+x/2 and am, bm, cm and β are those of the monoclinic In(A1-xTix)O3+x/2. Crystal structural relationships among α-InGaO3 (hexagonal, high pressure form, space group: P63/mmc), InGaO3 (rhombic, hypothetical), (RAO3)n(BO)m and RAO3(ZnO)m (R: Lu-Ho, Y and In, A: Fe, Ga, and Al, B: divalent cation element, m, n: natural number), the orthorhombic-and monoclinic In(A1-xTix)O3+x/2 (A: Fe, Ga, Al, Cr and Mn) and the hexagonal-and rhombic R(A1-xTix)O3+x/2 (R: Lu-Sm and Y, A: Fe, Ga and Al) are schematically presented. We concluded that the crystal structures of both the α-InGaO3 (high pressure form, hexagonal, space group: P63/mmc) and the hypothetical InGaO3 (rhombic) are the key structures for constructing the crystal structures of these compounds having the cations with CN=5.

  7. COSMIC probes into compact binary formation and evolution

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  8. The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kochoska, Angela; Prša, Andrej; Horvat, Martin

    2018-01-01

    Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and can be used with any existing or new model of the structure of contact binaries. We present results on several test objects and future prospects of the implementation in state-of-the-art binary star modeling software.

  9. On the structure of contact binaries. I - The contact discontinuity

    NASA Technical Reports Server (NTRS)

    Shu, F. H.; Lubow, S. H.; Anderson, L.

    1976-01-01

    The problem of the interior structure of contact binaries is reviewed, and a simple resolution of the difficulties which plague the theory is suggested. It is proposed that contact binaries contain a contact discontinuity between the lower surface of the common envelope and the Roche lobe of the cooler star. This discontinuity is maintained against thermal diffusion by fluid flow, and the transition layer is thin to the extent that the dynamical time scale is short in comparison with the thermal time scale. The idealization that the transition layer has infinitesimal thickness allows a simple formulation of the structure equations which are closed by appropriate jump conditions across the discontinuity. The further imposition of the standard boundary conditions suffices to define a unique model for the system once the chemical composition, the masses of the two stars, and the orbital separation are specified.

  10. A 3D dynamical model of the colliding winds in binary systems

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  11. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    PubMed

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  12. Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6:Mn4+ .

    PubMed

    Wang, L Y; Song, E H; Deng, T T; Zhou, Y Y; Liao, Z F; Zhao, W R; Zhou, B; Zhang, Q Y

    2017-08-14

    Herein, a Mn 4+ ion doped complex ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ has been synthesized through a facile two-step co-precipitation method at room temperature. The crystal structure, morphological properties and influence of the dopant concentration, temperature and humidity on luminescence properties as well as the performance of the as-synthesized phosphor used in white light emitting diodes (WLEDs) were investigated carefully. Intense absorption in the blue region (∼460 nm) and bright narrow-band red emission (∼630 nm) with high color purity were observed from this resultant powder. Temperature-dependent investigation and reliability examination in a HTHH environment (85 °C high temperature and 85% high humidity) indicate that the obtained ternary-alkaline fluoride phosphor K 2 NaAlF 6 :Mn 4+ presents more exceptional thermal quenching behavior and longevity compared to some other binary-alkaline fluorides. Moreover, using K 2 NaAlF 6 :Mn 4+ as a red light component, a warm WLED with a preferable color rendering index (R a = 85.5) and luminous efficacy (LE = 91.2 lm W -1 ) as well as a low corresponding color temperature (CCT = 3650 K) is easily achieved, further revealing the great potential of the as-prepared ternary-alkaline fluoride red phosphor K 2 NaAlF 6 :Mn 4+ for WLED applications.

  13. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    PubMed

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  14. Systematic approach for simultaneously correcting the band-gap and p - d separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    DOE PAGES

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less

  15. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Systematic approach for simultaneously correcting the band-gap and p -d separation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-01

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.

  17. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  18. Synthesis, crystal structures and luminescence properties of the Eu 3+-doped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13

    NASA Astrophysics Data System (ADS)

    Höss, Patrick; Osvet, Andres; Meister, Frank; Batentschuk, Miroslaw; Winnacker, Albrecht; Schleid, Thomas

    2008-10-01

    Y 2Te 4O 11:Eu 3+ and Y 2Te 5O 13:Eu 3+ single crystals in sub-millimeter scale were synthesized from the binary oxides (Y 2O 3, Eu 2O 3 and TeO 2) using CsCl as fluxing agent. Crystallographic structures of the undoped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13 have been determined and refined from single-crystal X-ray diffraction data. In Y 2Te 4O 11, a layered structure is present where the reticulated sheets consisting of edge-sharing [YO 8] 13- polyhedra are interconnected by the oxotellurate(IV) units, whereas in Y 2Te 5O 13 only double chains of condensed yttrium-oxygen polyhedra with coordination numbers of 7 and 8 are left, now linked in two crystallographic directions by the oxotellurate(IV) entities. The Eu 3+ luminescence spectra and the decay time from different energy levels of the doped compounds were investigated and all detected emission levels were identified. Luminescence properties of the Eu 3+ cations have been interpreted in consideration of the now accessible detailed crystallographic data of the yttrium compounds, providing the possibility to examine the influence of the local symmetry of the oxygen coordination spheres.

  19. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  20. Global optimization of small bimetallic Pd-Co binary nanoalloy clusters: a genetic algorithm approach at the DFT level.

    PubMed

    Aslan, Mikail; Davis, Jack B A; Johnston, Roy L

    2016-03-07

    The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.

  1. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE PAGES

    Li, Luyao; Liu, Haiqing; Qin, Chao; ...

    2018-02-28

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  2. Structural variety in copper(II) complexes of 3-formylchromone: Synthesis, spectral, thermal, molecular modeling and biological studies

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Adly, Omima M. I.; Taha, A.; Elabd, N. N.

    2017-11-01

    The compound in the title (L) was synthesized and reacted with Cu(II) metal ion with different anions (OAc-, NO3-, SO42-, ClO4-, Cl- and Br-) in absence and presence of auxiliary ligands (L‧); N,O-donor; or N,N-donor; to form binary and ternary Cu(II)-chelates. The metal complexes were fully characterized by analytical and spectral techniques in addition to thermal, conductivity and magnetic susceptibility measurements. The obtained results showed that the ligand behaves as a neutral bidentate, forming chelates with molar ratios: 1:1, 1:2 and 1:3; M:L for binary and 1:2:1 and 1:1:1; M:L:L‧ for ternary complexes, which can be formulated as: [LmCuXn(H2O)y]·zH2O, m = 1 or 2, n = 0, 1 or 2, X = OAc-, SO42-, Cl- or Br-, y = 0 or 2, z = 0 or 0.5; [LmCu(H2O)n]X2·zMeOH, m = 2 or 3, n = 0 or 2, X = ClO4- or NO3-, z = 0 or 1 and [Lm L'Cu(H2O)n](NO3)x·yS, m = 1 or 2, n = 0 or 2, X = 1 or 2, y = 0.5 or 4, S = H2O or MeOH. The ESR spin Hamiltonian parameters of some complexes were calculated. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The metal complexes exhibited octahedral and square planar geometrical arrangements according to the nature of the anion. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.

  3. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Luyao; Liu, Haiqing; Qin, Chao

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  4. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  5. Formation of Circumbinary Planets in a Dead Zone

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Armitage, Philip J.; Alexander, Richard D.

    2013-08-01

    Circumbinary planets have been observed at orbital radii where binary perturbations may have significant effects on the gas disk structure, on planetesimal velocity dispersion, and on the coupling between turbulence and planetesimals. Here, we note that the impact of all of these effects on planet formation is qualitatively altered if the circumbinary disk structure is layered, with a non-turbulent midplane layer (dead zone) and strongly turbulent surface layers. For close binaries, we find that the dead zone typically extends from a radius close to the inner disk edge up to a radius of around 10-20 AU from the center of mass of the binary. The peak in the surface density occurs within the dead zone, far from the inner disk edge, close to the snow line, and may act as a trap for aerodynamically coupled solids. We suggest that circumbinary planet formation may be easier near this preferential location than for disks around single stars. However, dead zones around wide binaries are less likely, and hence planet formation may be more difficult there.

  6. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    DOE PAGES

    Han, Lili; Meng, Qingping; Wang, Deli; ...

    2016-12-08

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less

  7. Accretion of clumpy cold gas onto massive black hole binaries: the challenging formation of extended circumbinary structures

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto

    2018-05-01

    Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.

  8. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William

    2012-01-15

    Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Structural and electronic properties of monolayer group III monochalcogenides

    NASA Astrophysics Data System (ADS)

    Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.

    2017-03-01

    We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.

  10. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation.

    PubMed

    Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder

    2017-05-01

    Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.

  11. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2017-12-09

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  12. Characterization of pore and crystal structure of synthesized LiBOB with varying quality of raw materials as electrolyte for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lestariningsih, Titik; Ratri, Christin Rina; Wigayati, Etty Marty; Sabrina, Qolby

    2016-02-01

    Characterization of pore structure and crystal structure of the LiB(C2O4)2H2O or LIBOB compound has been performed in this study. These recent years, research regarding LiBOB electrolyte salt have been performed using analytical-grade raw materials, therefore this research was aimed to synthesized LiBOB electrolyte salt using the cheaper and abundant technical-grade raw materials. Lithium hydroxide (LiOH), oxalic acid dihydrate (H2C2O4.2H2O), and boric acid (H3BO3) both in technical-grade and analytical-grade quality were used as raw materials for the synthesis of LiBOB. Crystal structure characterization results of synthesized LiBOB from both technical-grade and analytical-grade raw materials have shown the existence of LiBOB and LiBOB hydrate phase with orthorombic structure. These results were also confirmed by FT-IR analysis, which showed the functional groups of LiBOB compounds. SEM analysis results showed that synthesized LiBOB has spherical structure, while commercial LiBOB has cylindrical structure. Synthesized LiBOB has a similar pore size of commercial LiBOB, i.e. 19 nm (mesoporous material). Surface area of synthesized LiBOB from analytical-grade raw materials and technical-grade materials as well as commercial LIBOB were 88.556 m2/g, 41.524 m2/g, and 108.776 m2/g, respectively. EIS analysis results showed that synthesized LiBOB from technical-grade raw materials has lower conductivity than synthesized LiBOB from analytical-grade raw materials.

  13. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  14. Optimal aggregation of binary classifiers for multiclass cancer diagnosis using gene expression profiles.

    PubMed

    Yukinawa, Naoto; Oba, Shigeyuki; Kato, Kikuya; Ishii, Shin

    2009-01-01

    Multiclass classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. There have been many studies of aggregating binary classifiers to construct a multiclass classifier based on one-versus-the-rest (1R), one-versus-one (11), or other coding strategies, as well as some comparison studies between them. However, the studies found that the best coding depends on each situation. Therefore, a new problem, which we call the "optimal coding problem," has arisen: how can we determine which coding is the optimal one in each situation? To approach this optimal coding problem, we propose a novel framework for constructing a multiclass classifier, in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. Although there is no a priori answer to the optimal coding problem, our weight tuning method can be a consistent answer to the problem. We apply this method to various classification problems including a synthesized data set and some cancer diagnosis data sets from gene expression profiling. The results demonstrate that, in most situations, our method can improve classification accuracy over simple voting heuristics and is better than or comparable to state-of-the-art multiclass predictors.

  15. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  16. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less

  17. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd High-Entropy Alloy Superconductors on a CsCl-Type Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolze, Karoline; Tao, Jing; von Rohr, Fabian O.

    We have synthesized previously unreported High-Entropy Alloys (HEAs) in the pentanary (ScZrNb) 1-x[RhPd] x and hexanary (ScZrNbTa) 1-x[RhPd] x systems. The materials have CsCl-type structures and mixed site occupancies. Both HEAs are type-II superconductors with strongly varying critical temperatures (T cs) depending on the valence electron count (VEC); the T cs increase monotonically with decreasing VEC within each series, and do not follow the trends seen for either crystalline or amorphous transition metal superconductors. The (ScZrNb) 0.65[RhPd] 0.35 HEA with the highest T c, ~9.3 K, also exhibits the largest µ 0H c2(0) = 10.7 T. The pentanary and hexanarymore » HEAs have higher superconducting transition tempera-tures than their simple binary intermetallic relatives with the CsCl-type structure and a surprisingly ductile mechanical behavior. The presence of niobium, even at the 20% level, has a positive impact on the T c. Nevertheless, niobium-free (ScZr) 0.50[RhPd] 0.50, as mother-compound of both superconducting HEAs found here, is itself superconducting, proving that superconductivity is an intrinsic feature of the bulk material.« less

  18. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd High-Entropy Alloy Superconductors on a CsCl-Type Lattice

    DOE PAGES

    Stolze, Karoline; Tao, Jing; von Rohr, Fabian O.; ...

    2018-01-17

    We have synthesized previously unreported High-Entropy Alloys (HEAs) in the pentanary (ScZrNb) 1-x[RhPd] x and hexanary (ScZrNbTa) 1-x[RhPd] x systems. The materials have CsCl-type structures and mixed site occupancies. Both HEAs are type-II superconductors with strongly varying critical temperatures (T cs) depending on the valence electron count (VEC); the T cs increase monotonically with decreasing VEC within each series, and do not follow the trends seen for either crystalline or amorphous transition metal superconductors. The (ScZrNb) 0.65[RhPd] 0.35 HEA with the highest T c, ~9.3 K, also exhibits the largest µ 0H c2(0) = 10.7 T. The pentanary and hexanarymore » HEAs have higher superconducting transition tempera-tures than their simple binary intermetallic relatives with the CsCl-type structure and a surprisingly ductile mechanical behavior. The presence of niobium, even at the 20% level, has a positive impact on the T c. Nevertheless, niobium-free (ScZr) 0.50[RhPd] 0.50, as mother-compound of both superconducting HEAs found here, is itself superconducting, proving that superconductivity is an intrinsic feature of the bulk material.« less

  19. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    PubMed

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  20. The binary progenitors of short and long GRBs and their gravitational-wave emission

    NASA Astrophysics Data System (ADS)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  1. Binary Colloidal Alloy Test-5: Aspheres

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Hollingsworth, Andrew D.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..

  2. Modeling Spatial Relationships within a Fuzzy Framework.

    ERIC Educational Resources Information Center

    Petry, Frederick E.; Cobb, Maria A.

    1998-01-01

    Presents a model for representing and storing binary topological and directional relationships between 2-dimensional objects that is used to provide a basis for fuzzy querying capabilities. A data structure called an abstract spatial graph (ASG) is defined for the binary relationships that maintains all necessary information regarding topology and…

  3. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} from DFTB calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enyashin, A.N.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru

    2013-11-15

    The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti{sub 3}C{sub 2−x}N{sub x} and their hydroxylated derivatives Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2} are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti{sub 3}C{sub 2} (Ti{sub 3}N{sub 2})→hydroxylated forms Ti{sub 3}C{sub 2}(OH){sub 2} (Ti{sub 3}N{sub 2}(OH){sub 2})→pristine MXene Ti{sub 3}C{sub 2−x}N{sub x}→hydroxylated Ti{sub 3}C{sub 2−x}N{sub x}(OH){sub 2}. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides withmore » random distribution of C and N atoms are found to be thermodynamically more favorable. - Graphical abstract: The side views of the optimized atomic structures of some examined hydroxylated derivatives of MXene Ti{sub 3}CN and their electronic band structures. Display Omitted - Highlights: • Very recently 2D titanium carbonitrides have been synthesized. • Structural, electronic properties and stability for these materials were evaluated. • The hydroxylated derivatives of 2D titanium carbonitrides are examined.« less

  4. Fabrication and characterization of high-efficiency double-sided blazed x-ray optics.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2016-01-15

    The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.

  5. Synthesis and molecular structure of a spheroidal binary nanoscale copper sulfide cluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-09-27

    The reaction of copper(4-(tert-butyl)phenyl)methanethiolate [CuSCH 2 C 6 H 4 t Bu] with bis(trimethylsilyl)sulfide S(SiMe 3 ) 2 in the presence of triphenylphosphine PPh 3 afforded the binary 52 nuclear copper cluster [Cu 52 S 12 (SCH 2 C 6 H 4 t Bu) 28 (PPh 3 ) 8 ]. The molecular structure of this intensely red coloured nanoscale Cu 2 S mimic was established by single crystal X-ray diffraction.

  6. Stationary and oscillatory convection of binary fluids in a porous medium.

    PubMed

    Augustin, M; Umla, R; Huke, B; Lücke, M

    2010-11-01

    We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.

  7. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  8. Laves phase UTi2 stabilized by hydrogen and its magnetic properties

    NASA Astrophysics Data System (ADS)

    Buturlim, V.; Havela, L.; Sowa, S.; Kim-Ngan, N.-. T. H.; Paukov, M.; Drozdenko, D.; Dopita, M.; Minarik, P.; Mašková, S.

    2018-05-01

    We describe basic magnetic properties of uranium-based hydrides UTi2Hx, reported in literature as a cubic Laves phase, although the UTi2 binary phase does not exist. Using a high-temperature hydrogenation, we successfully synthesized two types of such hydrides, presumably with different H concentrations, one with a smaller lattice parameter a = 850.3 pm, which is a paramagnet close to the verge of magnetic ordering, the other with a = 858.8 pm, with a ferromagnetic ground state and ordering temperature TC = 54 K.

  9. Short-period (AlAs)(GaAs) superlattice lasers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Fletcher, E.D.; Foxon, C.T.

    1988-07-25

    We have used short-period all-binary (AlAs)(GaAs) superlattices with layers as thin as three monolayers to synthesize the barrier and cladding regions of GaAs quantum well lasers grown by molecular beam epitaxy. By studying the threshold current of single- and double-well devices as a function of cavity length and temperature, we conclude that the optical scattering losses are very low, that the gain-current characteristics are similar to alloy barrier devices, and that there is evidence for current leakage by recombination in the barriers.

  10. The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials.

    PubMed

    Hever, Alon; Oses, Corey; Curtarolo, Stefano; Levy, Ohad; Natan, Amir

    2018-01-16

    The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of nonoverlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.

  11. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin

    2012-04-01

    It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.

  12. Near-Infrared Polarimetry of the GG Tauri A Binary System

    NASA Technical Reports Server (NTRS)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  13. Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.

    PubMed

    Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo

    2016-10-01

    Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.

  14. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    NASA Astrophysics Data System (ADS)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  15. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection.

    PubMed

    Cheng, Tiejun; Li, Qingliang; Wang, Yanli; Bryant, Stephen H

    2011-02-28

    Aqueous solubility is recognized as a critical parameter in both the early- and late-stage drug discovery. Therefore, in silico modeling of solubility has attracted extensive interests in recent years. Most previous studies have been limited in using relatively small data sets with limited diversity, which in turn limits the predictability of derived models. In this work, we present a support vector machines model for the binary classification of solubility by taking advantage of the largest known public data set that contains over 46 000 compounds with experimental solubility. Our model was optimized in combination with a reduction and recombination feature selection strategy. The best model demonstrated robust performance in both cross-validation and prediction of two independent test sets, indicating it could be a practical tool to select soluble compounds for screening, purchasing, and synthesizing. Moreover, our work may be used for comparative evaluation of solubility classification studies ascribe to the use of completely public resources.

  16. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach.

    PubMed

    Auyeung, Evelyn; Cutler, Joshua I; Macfarlane, Robert J; Jones, Matthew R; Wu, Jinsong; Liu, George; Zhang, Ke; Osberg, Kyle D; Mirkin, Chad A

    2011-12-11

    Crystalline nanoparticle arrays and superlattices with well-defined geometries can be synthesized by using appropriate electrostatic, hydrogen-bonding or biological recognition interactions. Although superlattices with many distinct geometries can be produced using these approaches, the library of achievable lattices could be increased by developing a strategy that allows some of the nanoparticles within a binary lattice to be replaced with 'spacer' entities that are constructed to mimic the behaviour of the nanoparticles they replace, even though they do not contain an inorganic core. The inclusion of these spacer entities within a known binary superlattice would effectively delete one set of nanoparticles without affecting the positions of the other set. Here, we show how hollow DNA nanostructures can be used as 'three-dimensional spacers' within nanoparticle superlattices assembled through programmable DNA interactions. We show that this strategy can be used to form superlattices with five distinct symmetries, including one that has never before been observed in any crystalline material.

  17. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  18. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  19. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.

    PubMed

    Zhang, Siwen; Yin, Bosi; Jiang, He; Qu, Fengyu; Umar, Ahmad; Wu, Xiang

    2015-02-07

    Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively. A metal catalyst (Au) to form a binary alloy has been used in the process. The as-obtained ZnO/ZnS products are characterized by using a series of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion X-ray spectroscopy (EDS), Raman spectroscopy and photoluminescence. A possible growth mechanism is temporarily proposed. The hybrid structures are also directly functionalized as supercapacitor (SC) electrodes without using any ancillary materials such as carbon black or binder. Results show that the as-synthesized ZnO/ZnS heterostructures exhibit a greatly reduced ultraviolet emission and dramatically enhanced green emission compared to pure ZnO nanorods. The SCs data demonstrate high specific capacitance of 217 mF cm(-2) at 1 mA cm(-2) and excellent cyclic performance with 82% capacity retention after 2000 cycles at a current density of 2.0 mA cm(-2).

  20. Photoluminescent SBA-16 Rhombic Dodecahedral Particles: Assembly, Characterization, and ab Initio Modeling.

    PubMed

    Ruso, Juan M; Pardo, Victor; Sartuqui, Javier; Gravina, Noel; D'Elía, Noelia L; Pieroni, Olga I; Messina, Paula V

    2015-06-17

    Nowadays, the use of polyhedral instead of spherical particles as building blocks of engineering new materials has become an area of particular effort in the scientific community. Therefore, fabricating in a reproducible manner large amounts of uniform crystal-like particles is a huge challenge. In this work we report a low reagent-consuming binary surfactant templated method mediated by a hydrothermal treatment as a facile and controllable route for the synthesis of crystal-like rombdodecahedral particles exhibiting SBA-16 mesoporosity. It was determined that the hydrothermal treatment conditions were a key point upon the final material morphology, surface area, microporosity, wall thickness, and mesopore width. As a consequence of their internal mesoporosity order, rhombic dodecahedral synthesized particles exhibited highly efficient ultraviolet absorptions and photoluminescence emissions at room temperature. Conducting experimental and theoretical comparative studies allowed us to infer that the presence of intrinsic defects confined into an ordered mesoporous structure plays a very important role in semiconductor materials. The information presented here is expected to be useful, giving new, accurate information, for the construction of novel technological devices.

  1. A GDP-driven model for the binary and weighted structure of the International Trade Network

    NASA Astrophysics Data System (ADS)

    Almog, Assaf; Squartini, Tiziano; Garlaschelli, Diego

    2015-01-01

    Recent events such as the global financial crisis have renewed the interest in the topic of economic networks. One of the main channels of shock propagation among countries is the International Trade Network (ITN). Two important models for the ITN structure, the classical gravity model of trade (more popular among economists) and the fitness model (more popular among networks scientists), are both limited to the characterization of only one representation of the ITN. The gravity model satisfactorily predicts the volume of trade between connected countries, but cannot reproduce the missing links (i.e. the topology). On the other hand, the fitness model can successfully replicate the topology of the ITN, but cannot predict the volumes. This paper tries to make an important step forward in the unification of those two frameworks, by proposing a new gross domestic product (GDP) driven model which can simultaneously reproduce the binary and the weighted properties of the ITN. Specifically, we adopt a maximum-entropy approach where both the degree and the strength of each node are preserved. We then identify strong nonlinear relationships between the GDP and the parameters of the model. This ultimately results in a weighted generalization of the fitness model of trade, where the GDP plays the role of a ‘macroeconomic fitness’ shaping the binary and the weighted structure of the ITN simultaneously. Our model mathematically explains an important asymmetry in the role of binary and weighted network properties, namely the fact that binary properties can be inferred without the knowledge of weighted ones, while the opposite is not true.

  2. Binary asteroid orbit evolution due to primary shape deformation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Jacobson, Seth A.; Davis, Alex

    2017-10-01

    About a sixth of all small asteroid systems are binary [Margot et al., Science, 2002]. Many binary asteroids consist of an elongated synchronous secondary body orbiting a fast-rotating spheroidal primary body with ridges on its equator. The primary in such systems has experienced a long-term spin-up due to the YORP effect [Vokrouhlick'y et al., Asteroid IV, 2015]. This spin-up process can make the primary reach its spin barrier inducing shape deformation processes that ease the structural condition for failure inside the primary [e.g., Holsapple, Icarus, 2010]. Earlier works have shown that structural heterogeneities in the primary such as the shape and density distribution induce asymmetric deformation [Sánchez and Scheeres, Icarus, 2016]. Here, we investigate how asymmetric shape deformation in the primary affects the mutual motion of a binary system. We use a dynamics model for an irregularly shaped binary system that accounts for possible deformation of the primary [Hirabayashi et al., LPSC, 2017]. In this model, we consider asymmetric deformation that occurs based on structural failure in the primary and thus it modifies the location of the center of mass of the system. Using 1999 KW4 as an example, we study a hypothetical case in which the primary is initially identical to the current shape [Ostro et al., Science, 2006] with an aspect ratio (AR) of 0.83 and then suddenly changes its shape to an AR of 0.76. The results show that the asymmetric deformation process and the shift of the center of mass excite the eccentricity of the mutual orbit. Considering that the original mutual orbit has an eccentricity of 0.0004, after the primary shape change the eccentricity reaches values up to 0.15. Also, since the gravity field is modified after deformation, the secondary’s spin is desynchronized from the mutual orbit. Since synchronicity is a requirement for the binary YORP (BYORP) effect, which modifies the semi-major axis of binary asteroids, a primary shape change temporarily pauses the BYORP effect, in effect lengthening the effective BYORP timescale.

  3. First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2017-07-01

    We examine the thermodynamic stability of compounds and alloys in the ternary B-As-P system theoretically using first-principles calculations. We demonstrate that the icosahedral B12As2 is the only stable compound in the binary B-As system, while the zinc-blende BAs is thermodynamically unstable with respect to B12As2 and the pure arsenic phase at 0 K, and increasingly so at higher temperature, suggesting that BAs may merely exist as a metastable phase. On the contrary, in the binary B-P system, both zinc-blende BP and icosahedral B12P2 are predicted to be stable. As for the binary As-P system, As1 -xPx disordered alloys are predicted at elevated temperature—for example, a disordered solid solution of up to ˜75 at.% As in black phosphorus as well as a small solubility of ˜1 at.% P in gray arsenic at T =750 K, together with the presence of miscibility gaps. The calculated large solubility of As in black phosphorus explains the experimental syntheses of black-phosphorus-type As1 -xPx alloys with tunable compositions, recently reported in the literature. We investigate the phase stabilities in the ternary B-As-P system and demonstrate a high tendency for a formation of alloys in the icosahedral B12(As1 -xPx )2 structure by intermixing of As and P atoms at the diatomic chain sites. The phase diagram displays noticeable mutual solubility of the icosahedral subpnictides in each other even at room temperature as well as a closure of a pseudobinary miscibility gap around 900 K. As for pseudobinary BAs1 -xPx alloys, only a tiny amount of BAs is predicted to be able to dissolve in BP to form the BAs1 -xPx disordered alloys at elevated temperature. For example, less than 5% of BAs can dissolve in BP at T =1000 K. The small solubility limit of BAs in BP is attributed to the thermodynamic instability of BAs with respect to B12As2 and As.

  4. Magneto-optical properties of binar ferrocolloids

    NASA Astrophysics Data System (ADS)

    Pshenichnikov, A. F.; Lebedev, A. V.; Lakhtina, E. V.; Stepanov, G. V.

    2018-03-01

    In this work, a new method for increasing optical anisotropy of a ferrocolloid through introducing the coiled polymer molecules or elongated nanosized non-magnetic particles is realized. Since the dimensions of structural elements comprising such a binary colloidal solution are small compared to the wavelength, the ferrocolloid remains optically homogeneous. Type I binary ferrocolloids are obtained by introducing polybutadiene molecules into a magnetic fluid (magnetite + kerosene + oleic acid). In this case, an increase in the double refraction (DR) is due to the deformation and stretching of the polymer coils along the magnetic field. In weak fields, double amplification of the signal was detected for the concentration of polymer molecules of about 0.5 %. A further increase in the concentration of impurity molecules weakens DR due to a disturbance of the sedimentation stability of the solution and precipitation of colloidal particles. Type II binary solution is synthesized on the basis of a magnetic fluid and rod-shaped impurity nanoparticles of goethite ( αFeOOH). The transverse dimension of the impurity particles (10 ‑ 30 nm) was close to the average diameter of single-domain magnetite particles, and the longitudinal dimension was an order of magnitude larger. An increase in the DR occurs due to the orientation of long axes of impurity particles along the magnetic field caused by the difference in the ”demagnetizing” coefficients along and across the axis of the particle. The magnetic double refraction has been studied depending on the concentration of magnetite and impurity particles and the strength of the magnetic field. For the first time, an experimental substantiation of the multiple amplification of the DR signal by impurity particles was obtained. In the fields (up to 10 kA/m) and for the volume fraction of impurity particles of the order of one percent, the DR signal is amplified by more than an order of magnitude. In stronger fields, the signal gain, associated with the influence of impurity particles, reaches saturation and, with further increase in the field strength, remains practically unchanged, while the total anisotropy of the solution continues to increase due to the orientation of the magnetite particles.

  5. On the role of structure-dynamic relationship in determining the excess entropy of mixing and chemical ordering in binary square-well liquid alloys

    NASA Astrophysics Data System (ADS)

    Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar

    2018-05-01

    Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.

  6. Swimming Between: An Examination of the Inherent Complexity within Social Justice

    ERIC Educational Resources Information Center

    Aguilar, Israel; Nelson, Sarah; Niño, Juan Manuel

    2016-01-01

    Classrooms tend to be absolute spaces, places where fluidity is rejected and nearly everything--from people, to ideas, to practices and policies--is viewed and organized through binary logic. Because binary logic is implicitly accepted as the natural order in schools and the structures resulting from it are highly unmalleable, individuals who…

  7. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  8. FORMATION OF CIRCUMBINARY PLANETS IN A DEAD ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Rebecca G.; Armitage, Philip J.; Alexander, Richard D.

    Circumbinary planets have been observed at orbital radii where binary perturbations may have significant effects on the gas disk structure, on planetesimal velocity dispersion, and on the coupling between turbulence and planetesimals. Here, we note that the impact of all of these effects on planet formation is qualitatively altered if the circumbinary disk structure is layered, with a non-turbulent midplane layer (dead zone) and strongly turbulent surface layers. For close binaries, we find that the dead zone typically extends from a radius close to the inner disk edge up to a radius of around 10-20 AU from the center ofmore » mass of the binary. The peak in the surface density occurs within the dead zone, far from the inner disk edge, close to the snow line, and may act as a trap for aerodynamically coupled solids. We suggest that circumbinary planet formation may be easier near this preferential location than for disks around single stars. However, dead zones around wide binaries are less likely, and hence planet formation may be more difficult there.« less

  9. Equilibrium vortex lattices of a binary rotating atomic Bose–Einstein condensate with unequal atomic masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less

  10. Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David

    2005-06-01

    The discovery that many trans-Neptunian objects exist in pairs, or binaries, is proving invaluable for shedding light on the formation, evolution and structure of the outer Solar system. Based on recent systematic searches it has been estimated that up to 10 per cent of Kuiper-belt objects might be binaries. However, all examples discovered to date are unusual, as compared with near-Earth and main-belt asteroid binaries, for their mass ratios of the order of unity and their large, eccentric orbits. In this article we propose a common dynamical origin for these compositional and orbital properties based on four-body simulations in the Hill approximation. Our calculations suggest that binaries are produced through the following chain of events. Initially, long-lived quasi-bound binaries form by two bodies getting entangled in thin layers of dynamical chaos produced by solar tides within the Hill sphere. Next, energy transfer through gravitational scattering with a low-mass intruder nudges the binary into a nearby non-chaotic, stable zone of phase space. Finally, the binary hardens (loses energy) through a series of relatively gentle gravitational scattering encounters with further intruders. This produces binary orbits that are well fitted by Kepler ellipses. Dynamically, the overall process is strongly favoured if the original quasi-bound binary contains comparable masses. We propose a simplified model of chaotic scattering to explain these results. Our findings suggest that the observed preference for roughly equal-mass ratio binaries is probably a real effect; that is, it is not primarily due to an observational bias for widely separated, comparably bright objects. Nevertheless, we predict that a sizeable population of very unequal-mass Kuiper-belt binaries is probably awaiting discovery.

  11. Satellite radiance data assimilation for binary tropical cyclone cases over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Choi, Yonghan; Cha, Dong-Hyun; Lee, Myong-In; Kim, Joowan; Jin, Chun-Sil; Park, Sang-Hun; Joh, Min-Su

    2017-06-01

    A total of three binary tropical cyclone (TC) cases over the Western North Pacific are selected to investigate the effects of satellite radiance data assimilation on analyses and forecasts of binary TCs. Two parallel cycling experiments with a 6 h interval are performed for each binary TC case, and the difference between the two experiments is whether satellite radiance observations are assimilated. Satellite radiance observations are assimilated using the Weather Research and Forecasting Data Assimilation (WRFDA)'s three-dimensional variational (3D-Var) system, which includes the observation operator, quality control procedures, and bias correction algorithm for radiance observations. On average, radiance assimilation results in slight improvements of environmental fields and track forecasts of binary TC cases, but the detailed effects vary with the case. When there is no direct interaction between binary TCs, radiance assimilation leads to better depictions of environmental fields, and finally it results in improved track forecasts. However, positive effects of radiance assimilation on track forecasts can be reduced when there exists a direct interaction between binary TCs and intensities/structures of binary TCs are not represented well. An initialization method (e.g., dynamic initialization) combined with radiance assimilation and/or more advanced DA techniques (e.g., hybrid method) can be considered to overcome these limitations.

  12. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  13. Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.

    PubMed

    Al-Heniti, Saleh; Umar, Ahmad

    2013-01-01

    In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).

  14. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.

    PubMed

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.

  15. Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder

    NASA Astrophysics Data System (ADS)

    Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang

    2018-07-01

    Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.

  16. Binary colloidal structures assembled through Ising interactions

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.

    2012-04-01

    New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.

  17. Evaluation of an Approximate Method for Synthesizing Covariance Matrices for Use in Meta-Analytic SEM

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Furlow, Carolyn F.

    2006-01-01

    Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…

  18. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  19. Ca4As3 – a new binary calcium arsenide

    PubMed Central

    Hoffmann, Andrea V.; Hlukhyy, Viktor; Fässler, Thomas F.

    2015-01-01

    The crystal structure of the binary compound tetra­calcium triarsenide, Ca4As3, was investigated by single-crystal X-ray diffraction. Ca4As3 crystallizes in the Ba4P3 structure type and is thus a homologue of isotypic Sr4As3. The unit cell contains 32 Ca2+ cations, 16 As3− isolated anions and four centrosymmetric [As2]4– dumbbells. The As atoms in each of the dumbbells are connected by a single bond, thus this calcium arsenide is a Zintl phase. PMID:26870427

  20. Binary photonic crystal for refractometric applications (TE case)

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.; Shaheen, Somaia A.

    2018-04-01

    In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.

  1. Method and apparatus for synthesizing filamentary structures

    DOEpatents

    Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  2. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  3. DISCOVERY OF EXTENDED AND VARIABLE RADIO STRUCTURE FROM THE GAMMA-RAY BINARY SYSTEM PSR B1259-63/LS 2883

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldon, Javier; Ribo, Marc; Paredes, Josep M.

    2011-05-01

    PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less

  4. Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Ted

    2010-01-01

    The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.

  5. A structural model for the in vivo human cornea including collagen-swelling interaction

    PubMed Central

    Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.

    2015-01-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  6. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers.

    PubMed

    Xu, Jiaqi; Li, Xiaodong; Liu, Wei; Sun, Yongfu; Ju, Zhengyu; Yao, Tao; Wang, Chengming; Ju, Huanxin; Zhu, Junfa; Wei, Shiqiang; Xie, Yi

    2017-07-24

    Structural parameters of ternary transition-metal dichalcogenide (TMD) alloy usually obey Vegard law well, while interestingly it often exhibits boosted electrocatalytic performances relative to its two pristine binary TMDs. To unveil the underlying reasons, we propose an ideal model of ternary TMDs alloy monolayer. As a prototype, MoSeS alloy monolayers are successfully synthesized, in which X-ray absorption fine structure spectroscopy manifests their shortened Mo-S and lengthened Mo-Se bonds, helping to tailor the d-band electronic structure of Mo atoms. Density functional theory calculations illustrate an increased density of states near their conduction band edge, which ensures faster electron transfer confirmed by their lower work function and smaller charge-transfer resistance. Energy calculations show the off-center charge around Mo atoms not only benefits for stabilizing COOH* intermediate confirmed by its most negative formation energy, but also facilitates the rate-limiting CO desorption step verified by CO temperature programmed desorption and electro-stripping tests. As a result, MoSeS alloy monolayers attain the highest 45.2 % Faradaic efficiency for CO production, much larger than that of MoS 2 monolayers (16.6 %) and MoSe 2 monolayers (30.5 %) at -1.15 V vs. RHE. This work discloses how the partially delocalized charge in ternary TMDs alloys accelerates electrocatalytic performances at atomic level, opening new horizons for manipulating CO 2 electroreduction properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A machine-learning approach for damage detection in aircraft structures using self-powered sensor data

    NASA Astrophysics Data System (ADS)

    Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto

    2017-04-01

    This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.

  8. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less

  9. Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Yuan; Yu, Sheng-Hui; Jiang, Hao-Fan; Yao, Qi-Zhi; Fu, Sheng-Quan; Zhou, Gen-Tao

    2018-06-01

    Hierarchical vaterite spherulites, synthesized by a simple injection-precipitation method at room temperature, were applied for the simultaneous removal of heavy metal Cd(II) and dye Congo red (CR) from aqueous solution. Batch experiments reveal that the maximum removal capacities of as-prepared vaterite spherulites to Cd(II) and CR are 984.5 and 89.0 mg/g, respectively, showing excellent removal performance for Cd(II) and CR. Furthermore, in the binary Cd(II)-CR system, the removal capacity of vaterite to Cd(II) is significantly enhanced at lower CR concentration (<100 mg/L), but inhibited at higher CR concentration (>100 mg/L). In contrast, the concurrent Cd(II) shows negligible effect on the CR removal. The simultaneous removal mechanism was investigated by FESEM, EDX, XRD, FT-IR and XPS techniques. The simultaneous removal of Cd(II) and CR in the binary system is shown to be a multistep process, involving the preferential adsorption of dye CR, stabilization of CR to vaterite, coordination of the adsorbed CR molecules with Cd(II), and transformation of vaterite into otavite. Given the facile and green synthesis procedure, and effective removal of Cd(II) and CR in the binary system, the obtained vaterite spherulites have considerable practical interest in integrative treatment of wastewater contaminated by heavy metals and dyes.

  10. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.

  11. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  12. Low-mass X-ray binaries from black hole retaining globular clusters

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  13. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu; Yang, Xiaochao

    2017-04-01

    Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  14. The behaviour of the excess CA II H and K and Hɛ emissions in chromospherically active binaries.

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.

    1996-08-01

    In this work we analyze the behaviour of the excess Ca II H and K and Hɛ emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995c). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the Ca II H and K lines in these 73 systems. We have determined the excess Ca II H and K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. We have found that the components of active binaries are generally stronger emitters than single active stars for a given effective temperature and rotation rate. A slight decline of the excess Ca II H and K emissions towards longer rotation periods, P_rot_, and larger Rossby numbers, R_0_, is found. When we use R_0_ instead of P_rot_ the scatter is reduced and a saturation at R_0_=~0.3 is observed. A good correlation between the excess Ca II K and Hɛ chromospheric emission fluxes has been found. The correlations obtained between the excess Ca II K emission and other activity indicators, (C IV in the transition region, and X-rays in the corona) indicate that the exponents of the power-law relations increase with the formation temperature of the spectral features.

  15. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: I. mechanical environment and dynamical model

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Michel, Patrick; Schwartz, Stephen R.; Naidu, Shantanu P.; Benner, Lance A. M.

    2017-01-01

    An understanding of the post-impact dynamics of ejecta clouds are crucial to the planning of a kinetic impact mission to an asteroid, and also has great implications for the history of planetary formation. The purpose of this article is to track the evolution of ejecta produced by AIDA mission, which targets for kinetic impact the secondary of near-Earth binary asteroid (65803) Didymos on 2022, and to feedback essential informations to AIDA's ongoing phase-A study. We present a detailed dynamic model for the simulation of an ejecta cloud from a binary asteroid that synthesizes all relevant forces based on a previous analysis of the mechanical environment. We apply our method to gain insight into the expected response of Didymos to the AIDA impact, including the subsequent evolution of debris and dust. The crater scaling relations from laboratory experiments are employed to approximate the distributions of ejecta mass and launching speed. The size distribution of fragments is modeled with a power law fitted from observations of real asteroid surface. A full-scale demonstration is simulated using parameters specified by the mission. We report the results of the simulation, which include the computed spread of the ejecta cloud and the recorded history of ejecta accretion and escape. The violent period of the ejecta evolution is found to be short, and is followed by a stage where the remaining ejecta is gradually cleared. Solar radiation pressure proves to be efficient in cleaning dust-size ejecta, and the simulation results after two weeks shows that large debris on polar orbits (perpendicular to the binary orbital plane) has a survival advantage over smaller ejecta and ejecta that keeps to low latitudes.

  16. A Two-Stage Approach to Synthesizing Covariance Matrices in Meta-Analytic Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cheung, Mike W. L.; Chan, Wai

    2009-01-01

    Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…

  17. Empirical comparison study of approximate methods for structure selection in binary graphical models.

    PubMed

    Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel

    2014-03-01

    Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Refractive index and solubility control of para-cymene solutions for index-matched fluid-structure interaction studies

    NASA Astrophysics Data System (ADS)

    Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.

    2015-12-01

    To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.

  19. An instrumental variable random-coefficients model for binary outcomes

    PubMed Central

    Chesher, Andrew; Rosen, Adam M

    2014-01-01

    In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048

  20. Self-assembly of metal nanostructures on binary alloy surfaces

    PubMed Central

    Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.

    2011-01-01

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  1. Heterogeneous structure and solvation dynamics of DME/water binary mixtures: A combined spectroscopic and simulation investigation

    NASA Astrophysics Data System (ADS)

    Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2018-05-01

    Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.

  2. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  3. Electrical resistivity of Al-Cu liquid binary alloy

    NASA Astrophysics Data System (ADS)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  4. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  5. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  6. Magnetism in icosahedral quasicrystals: current status and open questions

    DOE PAGES

    Goldman, Alan I.

    2014-07-02

    Progress in our understanding of the magnetic properties of R-containing icosahedral quasicrystals (R = rare earth element) from over 20 years of experimental effort is reviewed. This includes the much studied R-Mg-Zn and R-Mg-Cd ternary systems, as well as several magnetic quasicrystals that have been discovered and investigated more recently including Sc-Fe-Zn, R-Ag-In, Yb-Au-Al, the recently synthesized R-Cd binary quasicrystals, and their periodic approximants. In many ways, the magnetic properties among these quasicrystals are very similar. However, differences are observed that suggest new experiments and promising directions for future research.

  7. Exploring the color of transition metal ions in irregular coordination geometries: new colored inorganic oxides based on the spiroffite structure, Zn(2-x)M(x)Te3O8 (M = Co, Ni, Cu).

    PubMed

    Tamilarasan, S; Sarma, Debajit; Bhattacharjee, S; Waghmare, U V; Natarajan, S; Gopalakrishnan, J

    2013-05-20

    We describe the synthesis, crystal structures, and optical absorption spectra of transition metal-substituted spiroffite derivatives, Zn(2-x)M(x)Te3O8 (M(II) = Co, Ni, Cu; 0 < x ≤ 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 °C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M(II)-O bonds (1.898-2.236 Å) and one longer Zn/M(II)-O bond (2.356-2.519 Å). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn(2-x)M(x)Te3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M(II)-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M(II) = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn(2-x)M(x)Te3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

  8. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  9. Inverse design of multicomponent assemblies

    NASA Astrophysics Data System (ADS)

    Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-03-01

    Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

  10. A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices

    ERIC Educational Resources Information Center

    Brusco, Michael; Steinley, Douglas

    2011-01-01

    Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where…

  11. The Function and Influence of the Emancipatory Binary and the Progressive Triad in the Discourse on Citizenship in Social Studies Education

    ERIC Educational Resources Information Center

    Johnson, Marcus Edward

    2017-01-01

    Using an analytic informed by Nietzschean genealogy and systems theory, this paper explains how two conceptual structures (the emancipatory binary and the progressive triad), along with standard citation practices in academic journal writing, function to sustain and regenerate a progressive perspective within social studies education scholarship.…

  12. DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information

    ERIC Educational Resources Information Center

    McCallister, Gary

    2005-01-01

    The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)

  13. Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions

    NASA Astrophysics Data System (ADS)

    Cates, Michael E.; Tjhung, Elsen

    2018-02-01

    Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.

  14. Binary partition tree analysis based on region evolution and its application to tree simplification.

    PubMed

    Lu, Huihai; Woods, John C; Ghanbari, Mohammed

    2007-04-01

    Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.

  15. Predicting the occurrence of wildfires with binary structured additive regression models.

    PubMed

    Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel

    2017-02-01

    Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structural and magnetic studies of half-metallic Heusler alloy Cr2CoSi nanoparticle synthesized by mechanical-alloying method

    NASA Astrophysics Data System (ADS)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Ravichandran, K.

    2018-05-01

    Heusler Alloy based Cr2CoSi nanoparticles were synthesized by using ball milling. X-ray diffractions studies were used to characterize the crystal structure of Cr2CoSi nanoparticles and magnetic properties were studied using VSM. XRD data analysis confirms the Heusler alloy phase showing the L21 structure. Magnetic properties are measured for synthesized samples having coercivity Hc = 389 Oe, with high saturation magnetization value Ms = 8.64 emu/g and remenance value Mr = 2.93 emu/g. Synthesized Heusler alloy Cr2CoSi nanoparticles can be potential materials for use in Spin polarized based spin sensors, spin devices, magnetic sensors and transducer applications.

  17. Hydrodynamics on Supercomputers: Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1997-05-01

    The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.

  18. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells.

    PubMed

    Barth, Holger; Stiles, Bradley G

    2008-01-01

    Binary bacterial toxins are unique AB-type toxins, composed of two non-linked proteins that act as a binding/translocation component and an enzyme component. All known actin-ADP-ribosylating toxins from clostridia possess this binary structure. This toxin family is comprised of the prototypical Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium difficile CDT, and Clostridium spiroforme toxin. Once in the cytosol of host cells, these toxins transfer an ADP-ribose moiety from nicotinamide-adenosine-dinucleotide onto G-actin that then leads to depolymerization of actin filaments. In recent years much progress has been made towards understanding the cellular uptake mechanism of binary actin-ADP-ribosylating toxins, and in particular that of C2 toxin. Both components act in a precisely concerted manner to intoxicate eukaryotic cells. The binding/translocation (B-) component forms a complex with the enzyme (A-) component and mediates toxin binding to a cell-surface receptor. Following receptor-mediated endocytosis, the enzyme component escapes from acidic endosomes into the cytosol. Acidification of endosomes triggers pore formation by the binding/translocation component in endosomal membranes and the enzyme component subsequently translocates through the pore. This step requires a host cell chaperone, Hsp90. Due to their unique structure, binary toxins are naturally "tailor made" for transporting foreign proteins into the cytosol of host cells. Several highly specific and cell-permeable recombinant fusion proteins have been designed and successfully used in experimental cell research. This review will focus on the recent progress in studying binary actin ADP-ribosylating toxins as highly effective virulence factors and innovative tools for cell physiology as well as pharmacology.

  19. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens.

    PubMed

    Simões, M; Pereira, M O; Vieira, M J

    2007-01-01

    This study investigates the phenotype of turbulent (Re = 5,200) and laminar (Re = 2,000) flow-generated Pseudomonas fluorescens biofilms. Three P. fluorescens strains, the type strain ATCC 13525 and two strains isolated from an industrial processing plant, D3-348 and D3-350, were used throughout this study. The isolated strains were used to form single and binary biofilms. The biofilm physiology (metabolic activity, cellular density, mass, extracellular polymeric substances, structural characteristics and outer membrane proteins [OMP] expression) was compared. The results indicate that, for every situation, turbulent flow-generated biofilms were more active (p < 0.05), had more mass per cm(2) (p < 0.05), a higher cellular density (p < 0.05), distinct morphology, similar matrix proteins (p > 0.1) and identical (isolated strains -single and binary biofilms) and higher (type strain) matrix polysaccharides contents (p < 0.05) than laminar flow-generated biofilms. Flow-generated biofilms formed by the type strain revealed a considerably higher cellular density and amount of matrix polysaccharides than single and binary biofilms formed by the isolated strains (p < 0.05). Similar OMP expression was detected for the several single strains and for the binary situation, not dependent on the hydrodynamic conditions. Binary biofilms revealed an equal coexistence of the isolated strains with apparent neutral interactions. In summary, the biofilms formed by the type strain represent, apparently, the worst situation in a context of control. The results obtained clearly illustrate the importance of considering strain variation and hydrodynamics in biofilm development, and complement previous studies which have focused on physical aspects of structural and density differences.

  20. Properties of L-ascorbic acid in water and binary aqueous mixtures of D-glucose and D-fructose at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh

    2017-12-01

    Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.

  1. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors.

    PubMed

    Xi, Shuang; Zhu, Yinlong; Yang, Yutu; Jiang, Shulan; Tang, Zirong

    2017-12-01

    Free-standing NiO/MnO 2 core-shell nanoflake structure was deposited on flexible carbon cloth (CC) used as electrode for high-performance supercapacitor (SC). The NiO core was grown directly on CC by hydrothermal process and the following annealing treatment. MnO 2 thin film was then covered on NiO structures via a self-limiting process in aqueous solution of 0.5 M KMnO 4 and 0.5 M Na 2 SO 4 with a carbon layer serving as the sacrificial layer. Both the core and shell materials are good pseudocapacitive materials, the compounds of binary metal oxides can provide the synergistic effect of all individual constituents, and thus enhance the performance of SC electrode. The obtained CC/NiO/MnO 2 heterostructure was directly used as SC electrodes, showing an enhanced electrochemical performance including areal capacitance of 316.37 mF/cm 2 and special gravimetric capacitance of 204.3 F/g at the scan rate of 50 mV/s. The electrode also shows excellent cycling stability, which retains 89% of its initial discharge capacitance after 2200 cycles with >97% Coulombic efficiency. The synthesized binder-free hierarchical composite electrode with superior electrochemical properties demonstrates enormous potential in the application of flexible SCs.

  2. Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases.

    PubMed

    Tejaswi, Somapangu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Shivaraj

    2016-11-01

    Novel benzothiazole Schiff bases L 1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L 2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L 3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L 4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.

  3. Growth and preparation of lead-potassium-niobate (PKN) single crystals specimens

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.

    1982-12-01

    Lead-potassium-niobate, Pb2KNb5O15 (PKN) is a member of the family of tungsten-bronze materials of the type A6B10O30. It is both ferroelastic and ferroelectric and it can be considered as a pseudo-binary compound represented by 2PbNb2O6.KNbO3. Its piezoelectric and electromechanical properties make it the leading substrate material for the fabrication of temperature compensated surface-acoustic-wave (SAW) devices. However, it is very difficult to synthesize PKN as a large, crack-free and chemically homogeneous single crystal. This report deals primarily with the problems encountered in crystal growth of PKN and suggests means to circumvent them. Furthermore, it describes two new methods - top seeded and solution growth - to synthesize crack-free, stoichiometrically uniform large single crystals of the compound. Also the results of PKN characterization by means of X-ray diffraction and dielectric, optical and electrical conductivity measurements are presented and discussed here.

  4. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero; Volonteri, Marta

    2004-08-01

    We compute the expected low-frequency gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo ``merger tree.'' The merger history of dark matter halos and associated MBHs is followed via cosmological Monte Carlo realizations of the merger hierarchy from redshift z=20 to the present in a ΛCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center because of dynamical friction against the dark matter background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical (three-body) interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. A simple scheme is applied in which the ``loss cone'' is constantly refilled and a constant stellar density core forms because of the ejection of stars by the shrinking binary. The integrated emission from inspiraling MBH binaries at all redshifts is computed in the quadrupole approximation and results in a gravitational wave background (GWB) with a well-defined shape that reflects the different mechanisms driving the late orbital evolution. The characteristic strain spectrum has the standard hc(f)~f-2/3 behavior only in the range f=10-9to10-6 Hz. At lower frequencies the orbital decay of MBH binaries is driven by the ejection of background stars (``gravitational slingshot''), and the strain amplitude increases with frequency, hc(f)~f. In this range the GWB is dominated by 109-1010 Msolar MBH pairs coalescing at 0<~z<~2. At higher frequencies, f>10-6Hz, the strain amplitude, as steep as hc(f)~f-1.3, is shaped by the convolution of last stable circular orbit emission by lighter binaries (102-107 Msolar) populating galaxy halos at all redshifts. We discuss the observability of inspiraling MBH binaries by a low-frequency gravitational wave experiment such as the planned Laser Interferometer Space Antenna (LISA). Over a 3 yr observing period LISA should resolve this GWB into discrete sources, detecting ~60 (~250) individual events above an S/N=5 (S/N=1) confidence level.

  5. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-09-01

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g

  6. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Binary particle separation in droplet microfluidics using acoustophoresis

    NASA Astrophysics Data System (ADS)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  8. Mechanochemical synthesis and physico-chemical investigations of new materials for gas sensors

    NASA Astrophysics Data System (ADS)

    Shubenkova, E. G.

    2018-01-01

    Solid solutions of the InSb-ZnTe semiconductor system containing up to 20 mol.% of ZnTe were synthesized for the first time. The role of mechanochemical treatment in the process of obtaining solid solutions of this system is shown. Solid solutions in the InSb-ZnTe system have been identified by Raman spectroscopy, and the optical properties of its components have been studied. On the basis of an analysis of the anti-stokes spectral radiation distribution the solid solutions formation was identified both on the dependence of the spectral distribution maximum’s shift on the composition of the InSb1-x-ZnTex system, and by estimating the radiation intensity of the initial binary semiconductors at frequencies corresponding to the LO- and TO- vibrations of the binary compounds crystal lattice. The values of the band gap for InSb, (InSb)0.95(ZnTe)0.05 and (InSb)0.9(ZnTe)0.1 were calculated, their values were 0.22 eV, 0.30 eV and 0.38 eV, respectively.

  9. Design and synthesis of magnetic binary metal oxides nanocomposites through dopamine chemistry for highly selective enrichment of phosphopeptides.

    PubMed

    Wang, Mengyi; Sun, Xueni; Li, Yan; Deng, Chunhui

    2016-03-01

    In this work, for the first time, magnetic binary metal oxides nanocomposites which integrated Zr and Ti into one entity on an atomic scale on polydopamine coated magnetic graphene (magG/PD/(Zr-Ti)O4 ) was designed and synthesized, and applied to the enrichment of phosphopeptides. The newly prepared magG/PD/(Zr-Ti)O4 composites gathered the advantages of large surface area, superparamagnetism, biocompatibility and the enhanced affinity properties to phosphopeptides. MagG/PD/ZrO2 , magG/PD/TiO2 , as well as the simple physical mixture of them were introduced to compare with magG/PD/(Zr-Ti)O4 composites. High sensitivity (1 pg/μL or 4.0 × 10(-11) M) and selectivity (weight ratio of β-casein and BSA reached up to 1:8000) toward phosphopeptides were also presented for magG/PD/(Zr-Ti)O4 composites. Additionally, mouse brain tissue was chose as the real samples to further investigate the phosphopeptides enrichment ability of this new material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.

    PubMed

    Domańska, Urszula; Bogel-Łukasik, Rafał

    2005-06-23

    Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.

  11. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  12. 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile.

    PubMed

    Roth, Braden M; Godoy-Ruiz, Raquel; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-04-01

    Clostridium difficile is a bacterial pathogen and is the most commonly reported source of nosocomial infection in industrialized nations. Symptoms of C. difficile infection (CDI) include antibiotic-associated diarrhea, pseudomembranous colitis, sepsis and death. Over the last decade, rates and severity of hospital infections in North America and Europe have increased dramatically and correlate with the emergence of a hypervirulent strain of C. difficile characterized by the presence of a binary toxin, CDT (C. difficile toxin). The binary toxin consists of an enzymatic component (CDTa) and a cellular binding component (CDTb) that together form the active binary toxin complex. CDTa harbors a pair of structurally similar but functionally distinct domains, an N-terminal domain (residues 1-215; (1-215)CDTa) that interacts with CDTb and a C-terminal domain (residues 216-420; (216-420)CDTa) that harbors the intact ADP-ribosyltransferase (ART) active site. Reported here are the (1)H, (13)C, and (15)N backbone resonance assignments of the 23 kDa, 205 amino acid C-terminal enzymatic domain of CDTa, termed (216-420)CDTa. These NMR resonance assignments for (216-420)CDTa represent the first for a family of ART binary toxins and provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.

  13. Lattice animals in diffusion limited binary colloidal system

    NASA Astrophysics Data System (ADS)

    Shireen, Zakiya; Babu, Sujin B.

    2017-08-01

    In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.

  14. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    NASA Astrophysics Data System (ADS)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  15. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  16. A Novel Partial Sequence Alignment Tool for Finding Large Deletions

    PubMed Central

    Aruk, Taner; Ustek, Duran; Kursun, Olcay

    2012-01-01

    Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777

  17. Modeling of the Structure of Disordered Metallic Alloys and Its Transformation Under Thermal Forcing

    NASA Astrophysics Data System (ADS)

    Cress, Ryan Paul

    The morphology of disordered binary metallic alloys is investigated. The structure of disordered binary metallic alloys is modeled as a randomly close packed (RCP) assembly of atoms. It was observed through a 2-D binary hard sphere experiment that RCP structure can be modeled as a mixture of nano-crystallites and glassy matter. We define the degree of crystallinity as the fraction of atoms contained in nano-crystallites in an RCP medium. Nano-crystallites by size in a crystallite size distribution were determined experimentally to define the morphology of the RCP medium. Both the degree of crystallinity and the crystallite size distribution have been found to be determined by the composition of a given binary mixture. A 2-D Monte Carlo simulation was developed in order to replicate the RCP structure observed in the experiment which is then extended to cases of arbitrary composition. Crystallites were assumed to be spherical with isotropic cross sections. The number of atoms in an individual crystallite in 2-D is simply transformed into the number of atoms in 3-D; we then obtain the crystallite size distribution in 3-D. This experiment accounts for the contribution from the repulsive core of the inter-atomic potential. The attractive part of the potential is recovered by constructing spherical nano-crystallites of a given radius from a crystalline specimen of each given alloy. A structural model of a disordered alloy is thus obtained. With the basic structure of the RCP medium defined, the response to heating would be in the form of changes to the crystallite size distribution. This was first investigated in a hard sphere mechanical oven experiment. The experimental setup consists of a 2-D cell which is driven by two independent stepper motors. The motors drive a binary RCP bed of spheres on a slightly tilted plane according to a chaotic algorithmm. The motors are driven at four different speed settings. The RCP medium was analyzed using a sequence of digital images taken of the beds. The bursts of images provide a Gaussian distribution of particle speeds in x and y directions thus giving rise to the notion of "temperature." This temperature scales with the motor speed settings. The measured average degree of crystallinity is found to decrease as the effective temperature was raised suggesting that nano-crystallites dissociate under thermal forcing. The evolution of a specimen's structure is calculated rigorously by means of the law of mass action formalism. A system of thermal dissociation reaction equations is written out for the set of nano-crystallites according to the 3-D crystallite size distribution. The equilibrium treatment is justified because the energy differences between metastable RCP structures fall within kT. Thermal dissociation of one surface atom at a time is assumed because the energy cost in dissociation of a surface atom on a nano-crystallite is significantly less than that of a multi atom cluster. The full set of reaction equations cover all possible dissociation steps, which may amount to several thousand for a disordered alloy specimen. The primary determining factor in each of these dissociation equations is the dissociation potential or the amount of attractive energy needed to remove a surface atom on a nano-crystallite of a given size. The attractive potential between atoms is calculated using a Lennard-Jones potential between a pair of atoms for which quantum chemistry calculations exist in the literature. All interactions impinged on the surface atom by all other atoms in a crystallite are summed. As the nano-crystallites dissociate due to heating, the structure of the alloy changes, and this leads to modifications of alloy's transport properties. The model is found to predict the melting temperature of various disordered binary alloys as well as refractory metals in good agreement with known data. The structure model for disordered binary alloys gives an excellent characterization of the alloy morphology. It therefore provides fruitful avenues for making predictions about how thermophysical properties of disordered binary alloys change as the alloy temperature is raised by heating.

  18. Multireader multicase reader studies with binary agreement data: simulation, analysis, validation, and sizing.

    PubMed

    Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D

    2014-10-01

    We treat multireader multicase (MRMC) reader studies for which a reader's diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities ([Formula: see text]). This model can be used to validate the coverage probabilities of 95% confidence intervals (of [Formula: see text], [Formula: see text], or [Formula: see text] when [Formula: see text]), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes [Formula: see text]). To illustrate the utility of our simulation model, we adapt the Obuchowski-Rockette-Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data.

  19. Multireader multicase reader studies with binary agreement data: simulation, analysis, validation, and sizing

    PubMed Central

    Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D.

    2014-01-01

    Abstract. We treat multireader multicase (MRMC) reader studies for which a reader’s diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities (P1=P2). This model can be used to validate the coverage probabilities of 95% confidence intervals (of P1, P2, or P1−P2 when P1−P2=0), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes P1=P2). To illustrate the utility of our simulation model, we adapt the Obuchowski–Rockette–Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data. PMID:26158051

  20. Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.

    ERIC Educational Resources Information Center

    Pradels, Jean Louis

    Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…

  1. u-Constacyclic codes over F_p+u{F}_p and their applications of constructing new non-binary quantum codes

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Wang, Yongkang

    2018-01-01

    Structural properties of u-constacyclic codes over the ring F_p+u{F}_p are given, where p is an odd prime and u^2=1. Under a special Gray map from F_p+u{F}_p to F_p^2, some new non-binary quantum codes are obtained by this class of constacyclic codes.

  2. Quality issues in blue noise halftoning

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Parker, Kevin J.

    1998-01-01

    The blue noise mask (BNM) is a halftone screen that produces unstructured visually pleasing dot patterns. The BNM combines the blue-noise characteristics of error diffusion and the simplicity of ordered dither. A BNM is constructed by designing a set of interdependent binary patterns for individual gray levels. In this paper, we investigate the quality issues in blue-noise binary pattern design and mask generation as well as in application to color reproduction. Using a global filtering technique and a local 'force' process for rearranging black and white pixels, we are able to generate a series of binary patterns, all representing a certain gray level, ranging from white-noise pattern to highly structured pattern. The quality of these individual patterns are studied in terms of low-frequency structure and graininess. Typically, the low-frequency structure (LF) is identified with a measurement of the energy around dc in the spatial frequency domain, while the graininess is quantified by a measurement of the average minimum distance (AMD) between minority dots as well as the kurtosis of the local kurtosis distribution (KLK) for minority pixels of the binary pattern. A set of partial BNMs are generated by using the different patterns as unique starting 'seeds.' In this way, we are able to study the quality of binary patterns over a range of gray levels. We observe that the optimality of a binary pattern for mask generation is related to its own quality mertirc values as well as the transition smoothness of those quality metric values over neighboring levels. Several schemes have been developed to apply blue-noise halftoning to color reproduction. Different schemes generate halftone patterns with different textures. In a previous paper, a human visual system (HVS) model was used to study the color halftone quality in terms of luminance and chrominance error in CIELAB color space. In this paper, a new series of psycho-visual experiments address the 'preferred' color rendering among four different blue noise halftoning schemes. The experimental results will be interpreted with respect to the proposed halftone quality metrics.

  3. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  4. Perrhenate incorporation into binary mixed sodalites: The role of anion size and implications for technetium-99 sequestration

    DOE PAGES

    Dickson, Johnbull O.; Harsh, James B.; Lukens, Wayne W.; ...

    2014-12-20

    Perrhenate (ReO 4 -), as a TcO 4 - analogue, was incorporated into mixed-anion sodalites from binary solutions containing ReO 4 - and a competing anion X n- (Cl -, CO 3 2-, SO 4 2-, MnO 4 -, or WO 4 2-). For this study, our objective was to determine the extent of solid solution formation and the dependence of competing ion selectivity on ion size. Using equivalent aqueous concentrations of the anions (ReO 4 -/X n- molar ratio = 1:1), we synthesized mixed-anion sodalites from zeolite and NaOH at 90 °C for 96 h. The resulting solids weremore » characterized by bulk chemical analysis, powder X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure (XANES) spectroscopy to determine crystal structure, chemical composition, morphology, and rhenium (Re) oxidation state. Rhenium in the solid phase occurred predominately as Re(VII)O 4 - in the sodalites, which have a primitive cubic pattern in the space group P43n. The refined unit-cell parameters of the mixed sodalites ranged from 8.88 to 9.15 Å and showed a linear dependence on the size and mole fraction of the incorporated anion(s). The ReO 4 - selectivity, represented by its distribution coefficient (K d), increased in the following order: Cl - < NO 3 - < MnO 4 - and CO 3 2- < SO 4 2- < WO 4 2- for the monovalent and divalent anions, respectively. The relationship between the ReO 4 - distribution coefficient and competing anion size was nonlinear. When the difference in ionic radius (DIR) between ReO 4 - and X n - (n = 1 or 2) was greater than ~ 12%, then ReO 4 - incorporation into sodalite was insignificant. The results imply that anion size is the major factor that determines sodalite anion compositions. Given the similarity in chemical behavior and anion size, ReO 4 - serves as a suitable analogue for TcO 4 - under oxidizing conditions where both elements are expected to remain as oxyanions in the + 7 oxidation state.« less

  5. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  6. Search for new phases in the Praseodymium-Silicon system

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose; Basaran, Ali C.; Grant, Ted; Gallardo-Amores, J.; Ramirez, J. G.; Suchomel, M. R.; Alario-Franco, M. A.; Fisk, Zachary; Schuller, Ivan K.

    2013-03-01

    We searched for new superconducting and magnetic phases in the Pr-Si system using high-pressure high-temperature and conventional arc melting syntheses. High pressure synthesis is a unique technique which allows incorporation of elements into compounds which otherwise cannot be synthesized at ambient pressure Both high and low Si concentration areas of the phase diagram were explored. To investigate the high Si concentration compounds, PrSi2 with an excess of Si was subjected to HP-HT synthesis. To explore the high Pr concentration binary compound Pr5Si3, we have synthesized undoped Pr5Si3 as well as different samples doped with C or B. High resolution X-ray powder diffraction, Magnetic Field Modulated Microwave Spectroscopy and magnetic characterization found that the addition of C gave rise to multiple previously-unknown ferromagnetic phases. Furthermore, X-ray refinement of the undoped samples confirmed the existence of the so far unconfirmed Pr3Si2 phase. Work supported by AFOSR MURI #F49550-09-1-0577 dedicated to Search for New Superconductors for Energy and Power A. Use of the Advanced Photon Source at ANL was supported by the U. S. DoE, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357.

  7. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  8. Stability, electronic structures and thermoelectric properties of binary Zn–Sb materials

    DOE PAGES

    He, Xin; Fu, Yuhao; Singh, David J.; ...

    2016-11-03

    We report first principles studies of the binary Zn–Sb phases in relation to thermoelectric properties and chemical stability. We identify the unknown structure of the Zn 3Sb 2 phase using particle swarm optimization, finding a tetragonal structure different from the hexagonal Mg 3Sb 2 and the hexagonal or cubic Ca 3Sb 2 phases. All the phases are found to be semiconducting with bandgaps in the range of 0.06–0.77 eV. This semiconducting behavior is understood in Zintl terms as a balance between the Zn:Sb and Sb 3-:½(Sb 2) 4- ratios in the stable crystal structures. With the exception of Zn 3Sbmore » 2, which has a small gap, all the compounds have electronic properties favorable for thermoelectric performance.« less

  9. A Taxonomy-Based Approach to Shed Light on the Babel of Mathematical Models for Rice Simulation

    NASA Technical Reports Server (NTRS)

    Confalonieri, Roberto; Bregaglio, Simone; Adam, Myriam; Ruget, Francoise; Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Buis, Samuel; hide

    2016-01-01

    For most biophysical domains, differences in model structures are seldom quantified. Here, we used a taxonomy-based approach to characterise thirteen rice models. Classification keys and binary attributes for each key were identified, and models were categorised into five clusters using a binary similarity measure and the unweighted pair-group method with arithmetic mean. Principal component analysis was performed on model outputs at four sites. Results indicated that (i) differences in structure often resulted in similar predictions and (ii) similar structures can lead to large differences in model outputs. User subjectivity during calibration may have hidden expected relationships between model structure and behaviour. This explanation, if confirmed, highlights the need for shared protocols to reduce the degrees of freedom during calibration, and to limit, in turn, the risk that user subjectivity influences model performance.

  10. Automated design of infrared digital metamaterials by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sugino, Yuya; Ishikawa, Atsushi; Hayashi, Yasuhiko; Tsuruta, Kenji

    2017-08-01

    We demonstrate automatic design of infrared (IR) metamaterials using a genetic algorithm (GA) and experimentally characterize their IR properties. To implement the automated design scheme of the metamaterial structures, we adopt a digital metamaterial consisting of 7 × 7 Au nano-pixels with an area of 200 nm × 200 nm, and their placements are coded as binary genes in the GA optimization process. The GA combined with three-dimensional (3D) finite element method (FEM) simulation is developed and applied to automatically construct a digital metamaterial to exhibit pronounced plasmonic resonances at the target IR frequencies. Based on the numerical results, the metamaterials are fabricated on a Si substrate over an area of 1 mm × 1 mm by using an EB lithography, Cr/Au (2/20 nm) depositions, and liftoff process. In the FT-IR measurement, pronounced plasmonic responses of each metamaterial are clearly observed near the targeted frequencies, although the synthesized pixel arrangements of the metamaterials are seemingly random. The corresponding numerical simulations reveal the important resonant behavior of each pixel and their hybridized systems. Our approach is fully computer-aided without artificial manipulation, thus paving the way toward the novel device design for next-generation plasmonic device applications.

  11. H2O-EG-assisted synthesis of uniform urchinlike rutile TiO2 with superior lithium storage properties.

    PubMed

    Chen, Jun Song; Liang, Yen Nan; Li, Yongmei; Yan, Qingyu; Hu, Xiao

    2013-10-23

    A facile green method to synthesize uniform nanostructured urchinlike rutile TiO2 is demonstrated. Titanium trichloride was selected as the TiO2 precursor, and a mixed solvent containing H2O and ethylene glycol was used. By using this binary medium, the nucleation and crystal growth of rutile TiO2 can be regulated, giving rise to very uniform urchinlike structures with tailorable sizes. As confirmed by the SEM and TEM analysis, large particles with dense aggregation of needle-like building blocks or small ones with loosely packed subunits could be obtained at different reaction conditions. The as-prepared samples were applied as the anode material for lithium-ion batteries, and they were shown to have superior properties with a high reversible capacity of 140 mA h g(-1) at a high current rate of 10 C for up to 300 cycles, which is almost unmatched by other rutile TiO2-based electrodes. A stable capacity of 88 mA h g(-1) can also be delivered at an extremely high rate of 50 C, suggesting the great potential of the as-prepared product for high-rate lithium-ion batteries.

  12. Synthesis of CuInSe2 nanocrystals using a continuous hot-injection microreactor

    NASA Astrophysics Data System (ADS)

    Jin, Hyung Dae; Chang, Chih-Hung

    2012-10-01

    A very rapid and simple synthesis of CuInSe2 nanocrystals (NCs) was successfully performed using a continuous hot-injection microreactor with a high throughput per reactor volume. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times along with the formation of Cu2Se and In2Se3. Binary syntheses were performed and the results show a much faster formation rate of Cu2Se than In2Se3. The rate limiting step in the formation of CuInSe2 is forming the In2Se3 intermediate. Rapid synthesis of stoichiometric CuInSe2 NCs using a continuous-flow microreactor was accomplished by properly adjusting the Cu/In precursor ratio. Tuning the ratio of coordinating solvents can cause size differences from 2.6 to 4.1 nm, bandgaps from 1.1 to 1.3 eV, and different production yields of NCs. The highest production yield as determined by weight was achieved up to 660 mg/h using a microreactor with a small volume of 3.2 cm3.

  13. Chemical segregation in metallic glass nanowires.

    PubMed

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  14. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    PubMed

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Superparamagnetic LaSrMnO3 nanoparticles for magnetic nanohyperthermia and their biocompatibility

    NASA Astrophysics Data System (ADS)

    Aneja, Mohit; Tovstolytkin, Alexandr; Singh Lotey, Gurmeet

    2017-11-01

    The nanohyperthermia investigation of superparamagnetic La0.77Sr0.23MnO3 nanoparticles synthesized by hydrothermal method has been carried out. The synthesized nanoparticles are found to be highly uniform in size and shape with average particle size 18 nm. Structural analysis confirms the pseudo-cubic perovskite crystal structure with space group of (R3c). The magnetization versus applied magnetic field (M-H) hysteresis loops measurements revealed the superparmagnetic nature of the synthesized nanoparticles. The induction heating of synthesized nanoparticles for their applications in nanohyperthermia has been studied. The in vitro cytotoxicity test of the synthesized superparamagnetic nanoparticles has been probed by evaluating the viability of HeLa (Human Negroid Cervix Epitheloid Carcinoma) cell lines. The mechanism responsible for nanohyperthermia heating of the synthesized nanoparticles has been discussed.

  16. Structural and electronic properties of the V-V compounds isoelectronic to GaN and isostructural to gray arsenic

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Han, Dan; Chen, Guohong; Chen, Shiyou

    2018-03-01

    The III-V binary compound semiconductors such as GaN, GaP, InN and InP have extensive applications in various optoelectronic, microwave and power-electronic devices. Using first-principles calculation, we systematically studied the structural and electronic properties of the V-V binary compounds (BiN, BiP, SbN and SbP) that are isoelectronic to GaN, GaP, InN and InP if Bi and Sb are in the +3 valence state. Interestingly, we found that the ground-state structures of BiP, SbN and SbP have the R-3m symmetry and are isostructural to the layered structure of gray arsenic, whereas BiN prefers a different ground-state structure with the C2 symmetry. Electronic structure calculations showed that the bulk BiN is a narrow bandgap semiconductor for its bandgap is about 0.2 eV. In contrast, BiP, SbN and SbP are metallic. The layered ground-state structure of the V-V binary compounds motivates us to study the electronic properties of their few-layer structures. As the structure becomes monolayer, their bandgaps increase significantly and are all in the range from about 1 eV to 1.7 eV, which are comparative to the bandgap of the monolayer gray arsenic. The monolayer BiP, SbN and SbP have indirect bandgaps, and they show a semiconductor-metal transition as the number of layers increase. Interestingly, the monolayer BiP has the largest splitting (350 meV) of the CBM valley, and thus may have potential application in novel spintronics and valleytronics devices.

  17. A Chemical Alphabet for Macromolecular Communications.

    PubMed

    Giannoukos, Stamatios; McGuiness, Daniel Tunç; Marshall, Alan; Smith, Jeremy; Taylor, Stephen

    2018-06-08

    Molecular communications in macroscale environments is an emerging field of study driven by the intriguing prospect of sending coded information over olfactory networks. For the first time, this article reports two signal modulation techniques (on-off keying-OOK, and concentration shift keying-CSK) which have been used to encode and transmit digital information using odors over distances of 1-4 m. Molecular transmission of digital data was experimentally investigated for the letter "r" with a binary value of 01110010 (ASCII) for a gas stream network channel (up to 4 m) using mass spectrometry (MS) as the main detection-decoding system. The generation and modulation of the chemical signals was achieved using an automated odor emitter (OE) which is based on the controlled evaporation of a chemical analyte and its diffusion into a carrier gas stream. The chemical signals produced propagate within a confined channel to reach the demodulator-MS. Experiments were undertaken for a range of volatile organic compounds (VOCs) with different diffusion coefficient values in air at ambient conditions. Representative compounds investigated include acetone, cyclopentane, and n-hexane. For the first time, the binary code ASCII (American Standard Code for Information Interchange) is combined with chemical signaling to generate a molecular representation of the English alphabet. Transmission experiments of fixed-width molecular signals corresponding to letters of the alphabet over varying distances are shown. A binary message corresponding to the word "ion" was synthesized using chemical signals and transmitted within a physical channel over a distance of 2 m.

  18. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.

    PubMed

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong

    2016-11-05

    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Competition and enhancement effect in coremoval of atenolol and copper by an easily regenerative magnetic cation exchange resin.

    PubMed

    Li, Qimeng; Wang, Zheng; Li, Qiang; Shuang, Chendong; Zhou, Qing; Li, Aimin; Gao, Canzhu

    2017-07-01

    This paper aimed to investigate the removal of combined Cu 2+ and atenolol (ATL) in aqueous solution by using a newly synthesized magnetic cation exchange resin (MCER) as the adsorbent. The MCER exhibited efficient removal performance in sole, binary, pre-loading and saline systems. The adsorption kinetics of Cu 2+ and ATL fitted both pseudo-first-order and pseudo-second order model, while better described by pseudo-second order model in binary system. In mixed Cu 2+ and ATL solution, the adsorption of ATL was suppressed due to direct competition of carboxylic groups, while Cu 2+ adsorption was enhanced because of the formation of surface complexes. This increasing in heterogeneity was demonstrated by adsorption isotherms, which were more suitable for Freundlich model in binary system, while better described by Langmuir model in sole system. As proved by FTIR and XPS spectra, both amino and hydroxyl groups of ATL could form complexes with Cu 2+ . Decomplexing-bridging interaction was elucidated as the leading mechanism in coremoval of Cu 2+ and ATL, which involved [Cu-ATL] decomplexing and newly created Cu- or ATL sites for additional bridging. For saline system, the resulting competition and enhancement effects in mixed solution were amplified with the addition of co-existing cations. Moreover, the MCER could be effectively regenerated by 0.01 M HCl solution and maintain high stability over 5 adsorption-desorption cycles, which render it great potential for practical applications. Copyright © 2017. Published by Elsevier Ltd.

  20. Colorimetric chemosensor of symmetrical benzoylthiourea derivatives as for detection of Cu2+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hamedan, N. A.; Hasan, S.; Zaki, H. M.; Alias, N. Z.

    2017-02-01

    A novel receptor, designed with a combination of oxygen (O), nitrogen (N) and sulfur (S) -binding sites for metal ions was synthesized. Ortho (A), meta (B) and para (C) bearing benzoyl thiourea were designed and synthesized with triamine group to apply as colorimetric chemosensors for detection of Cu2+. The structure was confirmed by characterized the compound using Elemental analysis, Fourier Infrared (FTIR) and proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Functional groups of C=O, N-H, C=N and C=S were found at 1677 cm-1, 3240 cm-1, 1591 cm-1, 1024 cm-1 respectively while 1H NMR shows peaks of alkane (CH2), benzene (Ar-H), CONH, CSNH at 3.68 - 4.14, 7.16 - 7.86, 8.74, and 9.2 respectively. Elemental analysis for A, B and C C20H21N5O2S2Br2 found was compatible with the expected theoretical calculation. For an application, all of these three sensors showed excellent colorimetric specific selectivity and high sensitivity for Cu2+ in acetonitrile/water binary solutions, so only A was selected for further studies towards sensitivity. When Cu2+ was added to the solution of A, a dramatic color change from yellow to green, while other cations Fe2+, Zn2+, Ni2+, Co2+, Cr3+ and Mn2+ did not interfere with the recognition process for Cu2+. The detection limit of the sensor C toward Cu2+ was 1.15 x 10-5 M, which is less sensitive that sensor A and B with a detection limit of 6.2 x 10-6 M and 1.5 x 10-6 M respectively. This indicated that the sensor A and B might be useful as an efficient chemical sensor.

  1. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. Color separation gratings

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Knowlden, Robert E.

    1993-01-01

    In this paper, we describe the theory, fabrication and test of a binary optics 'echelon'. The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffraction order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

  3. Spatial Distributions of Young Stars

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2008-10-01

    We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.

  4. The Structure of the Narcissistic Personality Inventory With Binary and Rating Scale Items.

    PubMed

    Boldero, Jennifer M; Bell, Richard C; Davies, Richard C

    2015-01-01

    Narcissistic Personality Inventory (NPI) items typically have a forced-choice format, comprising a narcissistic and a nonnarcissistic statement. Recently, some have presented the narcissistic statements and asked individuals to either indicate whether they agree or disagree that the statements are self-descriptive (i.e., a binary response format) or to rate the extent to which they agree or disagree that these statements are self-descriptive on a Likert scale (i.e., a rating response format). The current research demonstrates that when NPI items have a binary or a rating response format, the scale has a bifactor structure (i.e., the items load on a general factor and on 6 specific group factors). Indexes of factor strength suggest that the data are unidimensional enough for the NPI's general factor to be considered a measure of a narcissism latent trait. However, the rating item general factor assessed more narcissism components than the binary item one. The positive correlations of the NPI's general factor, assessed when items have a rating response format, were moderate with self-esteem, strong with a measure of narcissistic grandiosity, and weak with 2 measures of narcissistic vulnerability. Together, the results suggest that using a rating format for items enhances the information provided by the NPI.

  5. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel

    2018-01-01

    We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.

  6. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    PubMed Central

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  7. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  8. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  9. Scanning tunneling microscopy investigation of copper phthalocyanine and truxenone derivative binary superstructures on graphite.

    PubMed

    Liu, Jia; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Wan, Li-Jun

    2011-02-01

    The binary self-assembly of copper phthalocyanine (CuPc) and 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23) at the solid/liquid interface of highly oriented pyrolytic graphite (HOPG) was investigated by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Pseduohexagonal and linear patterned superstructures of CuPc are obtained by co-adsorbing with TrO23. High-resolution STM images reveal the structural details of the arrangement of TrO23 and CuPc in the binary assembly structures. The molecular ratio between CuPc and TrO23 in the adlayer can be modulated by the CuPc concentration in liquid phase. The electronic properties of CuPc and TrO23 in the co-adsorbed self-assembly are investigated by STS. The results presented here are helpful to the design and fabrication of multi-component functional molecular nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  11. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  12. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    NASA Astrophysics Data System (ADS)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  13. R package to estimate intracluster correlation coefficient with confidence interval for binary data.

    PubMed

    Chakraborty, Hrishikesh; Hossain, Akhtar

    2018-03-01

    The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The circumstellar envelope around the S-type AGB star W Aql. Effects of an eccentric binary orbit

    PubMed Central

    Ramstedt, S.; Mohamed, S.; Vlemmings, W. H. T.; Danilovich, T.; Brunner, M.; De Beck, E.; Humphreys, E. M. L.; Lindqvist, M.; Maercker, M.; Olofsson, H.; Kerschbaum, F.; Quintana-Lacaci, G.

    2017-01-01

    Context Recent observations at subarcsecond resolution, now possible also at submillimeter wavelengths, have shown intricate circumstellar structures around asymptotic giant branch (AGB) stars, mostly attributed to binary interaction. The results presented here are part of a larger project aimed at investigating the effects of a binary companion on the morphology of circumstellar envelopes (CSEs) of AGB stars. Aims AGB stars are characterized by intense stellar winds that build CSEs around the stars. Here, the CO(J = 3→2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. Methods The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. Results The estimated average mass-loss rate of W Aql is Ṁ = 3.0×10−6 M⊙ yr−1 and agrees with previous results based on single-dish CO line emission observations. The size of the emitting region is consistent with photodissociation models. The inner 10″ of the CSE is asymmetric with arc-like structures at separations of 2-3″ scattered across the denser sections. Further out, weaker spiral structures at greater separations are found, but this is at the limit of the sensitivity and field of view of the ALMA observations. Conclusions The CO(J = 3→2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of ~10″ and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate. PMID:29142327

  15. The circumstellar envelope around the S-type AGB star W Aql. Effects of an eccentric binary orbit.

    PubMed

    Ramstedt, S; Mohamed, S; Vlemmings, W H T; Danilovich, T; Brunner, M; De Beck, E; Humphreys, E M L; Lindqvist, M; Maercker, M; Olofsson, H; Kerschbaum, F; Quintana-Lacaci, G

    2017-09-21

    Recent observations at subarcsecond resolution, now possible also at submillimeter wavelengths, have shown intricate circumstellar structures around asymptotic giant branch (AGB) stars, mostly attributed to binary interaction. The results presented here are part of a larger project aimed at investigating the effects of a binary companion on the morphology of circumstellar envelopes (CSEs) of AGB stars. AGB stars are characterized by intense stellar winds that build CSEs around the stars. Here, the CO( J = 3→2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. The estimated average mass-loss rate of W Aql is Ṁ = 3.0×10 -6 M ⊙ yr -1 and agrees with previous results based on single-dish CO line emission observations. The size of the emitting region is consistent with photodissociation models. The inner 10″ of the CSE is asymmetric with arc-like structures at separations of 2-3″ scattered across the denser sections. Further out, weaker spiral structures at greater separations are found, but this is at the limit of the sensitivity and field of view of the ALMA observations. The CO( J = 3→2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of ~10″ and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate.

  16. Acoustics of marine sediment under compaction: binary grain-size model and viscoelastic extension of Biot's theory.

    PubMed

    Leurer, Klaus C; Brown, Colin

    2008-04-01

    This paper presents a model of acoustic wave propagation in unconsolidated marine sediment, including compaction, using a concept of a simplified sediment structure, modeled as a binary grain-size sphere pack. Compressional- and shear-wave velocities and attenuation follow from a combination of Biot's model, used as the general framework, and two viscoelastic extensions resulting in complex grain and frame moduli, respectively. An effective-grain model accounts for the viscoelasticity arising from local fluid flow in expandable clay minerals in clay-bearing sediments. A viscoelastic-contact model describes local fluid flow at the grain contacts. Porosity, density, and the structural Biot parameters (permeability, pore size, structure factor) as a function of pressure follow from the binary model, so that the remaining input parameters to the acoustic model consist solely of the mass fractions and the known mechanical properties of each constituent (e.g., carbonates, sand, clay, and expandable clay) of the sediment, effective pressure, or depth, and the environmental parameters (water depth, salinity, temperature). Velocity and attenuation as a function of pressure from the model are in good agreement with data on coarse- and fine-grained unconsolidated marine sediments.

  17. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O 3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  18. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, Andreas; Dorr, Kathrin; Ward, Thomas Zac; ...

    2015-04-03

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determinemore » the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n+1Ti nO 3 n+1 Ruddlesden-Popper phases are grown with good long-range order. Furthermore, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  19. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    NASA Astrophysics Data System (ADS)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  20. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo

    DOE PAGES

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.; ...

    2016-05-03

    We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc 2O 3, Y 2O 3 and La 2O 3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local and semi-local Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while withmore » local and semi-local DFT approximations the deviation is 3.06 and 0.94 eV, respectively. For lattice constants, the mean absolute deviation in DMC, local and semi-local DFT approximations, are 0.017(1), 0.07 and 0.05 , respectively. In conclusion, DMC is highly accurate method, outperforming the local and semi-local DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.« less

  1. Generalized Roche potential for misaligned binary systems - Properties of the critical lobe

    NASA Technical Reports Server (NTRS)

    Avni, Y.; Schiller, N.

    1982-01-01

    The paper considers the Roche potential for binary systems where the stellar rotation axis is not aligned with the orbital revolution axis. It is shown that, as the degree of misalignment varies, internal Lagrangian points and external Lagrangian points may switch their roles. A systematic method to identify the internal Lagrangian point and to calculate the volume of the critical lobe is developed, and numerical results for a wide range of parameters of binary systems with circular orbits are presented. For binary systems with large enough misalignment, discrete changes occur in the topological structure of the equipotential surfaces as the orbital phase varies. The volume of the critical lobe has minima, as a function of orbital phase, at the two instances when the secondary crosses the equatorial plane of the primary. In semidetached systems, mass transfer may be confined to the vicinity of these two instances.

  2. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  3. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  4. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  5. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  6. Kinetically Controlled Formation and Decomposition of Metastable [(BiSe) 1+δ] m[TiSe 2] m Compounds

    DOE PAGES

    Lygo, Alexander C.; Hamann, Danielle M.; Moore, Daniel B.; ...

    2018-02-12

    We report that preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe) 1+δ] m[TiSe 2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is notmore » that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe) 1+δ]1[TiSe 2] 1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. Lastly, the data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.« less

  7. Kinetically Controlled Formation and Decomposition of Metastable [(BiSe) 1+δ] m[TiSe 2] m Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lygo, Alexander C.; Hamann, Danielle M.; Moore, Daniel B.

    We report that preparing homologous series of compounds allows chemists to rapidly discover new compounds with predictable structure and properties. Synthesizing compounds within such a series involves navigating a free energy landscape defined by the interactions within and between constituent atoms. Historically, synthesis approaches are typically limited to forming only the most thermodynamically stable compound under the reaction conditions. Presented here is the synthesis, via self-assembly of designed precursors, of isocompositional incommensurate layered compounds [(BiSe) 1+δ] m[TiSe 2] m with m = 1, 2, and 3. The structure of the BiSe bilayer in the m = 1 compound is notmore » that of the binary compound, and this is the first example of compounds where a BiSe layer thicker than a bilayer in heterostructures has been prepared. Specular and in-plane X-ray diffraction combined with high-resolution electron microscopy data was used to follow the formation of the compounds during low-temperature annealing and the subsequent decomposition of the m = 2 and 3 compounds into [(BiSe) 1+δ]1[TiSe 2] 1 at elevated temperatures. These results show that the structure of the precursor can be used to control reaction kinetics, enabling the synthesis of kinetically stable compounds that are not accessible via traditional techniques. Lastly, the data collected as a function of temperature and time enabled us to schematically construct the topology of the free energy landscape about the local free energy minima for each of the products.« less

  8. Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Emami, Hoda; Cuevas, Fermin; Latroche, Michel

    2014-11-01

    The effect of Ni by Cu substitution on the structural, solid-gas and electrochemical hydrogenation properties of TiNi has been investigated. Pseudo-binary TiNi1-xCux (x ≤ 0.5) compounds have been synthesized by induction melting. They crystallize in B2 structure above 350 K and either in B19‧ (x < 0.1) or B19 (0.2 ≤ x ≤ 0.5) at room temperature (RT). For all compounds, Pressure-Composition Isotherms at 423 K exhibit a single slopping plateau pressure within the range 10-3-1 MPa of hydrogen pressure revealing a metal to hydride transformation. Both the hydrogenation capacity and the hydride stability decrease with Cu-content. The hydrided pseudobinary compounds crystallize in the tetragonal S.G. I4/mmm structure as for TiNi hydride. The electrochemical discharge capacity increases with Cu content from 150 mAh g-1 for TiNi up to 300 mAh g-1 for TiNi0.8Cu0.2 and then decreases again for larger Cu amounts. Electrochemical isotherms and in-situ neutron diffraction measurements at RT demonstrate that such a capacity increase results from a metal to hydride phase transformation in which the hydride phase is destabilized by Cu substitution. The TiNi0.8Cu0.2 compound exhibits interesting cycling stability for 30 cycles and good high-rate capability at D/2 rate. This compound has promising electrochemical properties as compared to commercial LaNi5-type alloys with the advantage of being rare-earth metal free.

  9. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-05

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. TWO STARS TWO WAYS: CONFIRMING A MICROLENSING BINARY LENS SOLUTION WITH A SPECTROSCOPIC MEASUREMENT OF THE ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason

    Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we presentmore » 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.« less

  11. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    PubMed

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Monte Carlo modeling of spatial coherence: free-space diffraction

    PubMed Central

    Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.

    2008-01-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  13. Hyper-Spectral Synthesis of Active OB Stars Using GLaDoS

    NASA Astrophysics Data System (ADS)

    Hill, N. R.; Townsend, R. H. D.

    2016-11-01

    In recent years there has been considerable interest in using graphics processing units (GPUs) to perform scientific computations that have traditionally been handled by central processing units (CPUs). However, there is one area where the scientific potential of GPUs has been overlooked - computer graphics, the task they were originally designed for. Here we introduce GLaDoS, a hyper-spectral code which leverages the graphics capabilities of GPUs to synthesize spatially and spectrally resolved images of complex stellar systems. We demonstrate how GLaDoS can be applied to calculate observables for various classes of stars including systems with inhomogenous surface temperatures and contact binaries.

  14. Solution combustion synthesis of oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Thomas, Abegayl Lorenda Shara-Lynn

    The quest for stable and efficient photocatalytic materials beyond TiO2 and WO3 has over the years led to the development of new materials that possess varied interfacial energetics. This dissertation study focused on using for the first time a novel method, solution combustion synthesis (SCS), to prepare two distinct families of binary metal-based oxide semiconductor materials. Detailed studies on material characteristics and applications were carried out on tungsten- and niobium-based oxide semiconductors with varying principal metals. Initial emphasis was placed on the SCS of tungsten-based oxide semiconductors (ZnWO4, CuWO4, and Ag2WO4). The influence of different tungsten precursor's on the resultant product was of particular relevance to this study, with the most significant effects highlighted. Upon characterization, each sample's photocatalytic activity towards methyl orange dye degradation was studied, and benchmarked against their respective commercial oxide sample, obtained by solid-state ceramic synthesis. Detailed analysis highlighted the importance of the SCS process as a time- and energy-efficient method to produce crystalline nano-sized materials even without additional or excessive heat treatment. It was observed that using different tungstate precursors does influence the structural and morphological make-up of the resulting materials. The as-synthesized tungstate materials showed good photocatalytic performance for the degradation of methyl orange dye, while taking into account specific surface area and adsorbed dye amount on the surface of the material. Like the tungstate's, niobium-based oxide semiconductors CuNb 2O6 and ZnNb2O6 were the first to be synthesized via solution combustion synthesis. Particular attention was placed on the crystal structures formed while using an oxalate niobium precursor during the reaction process. X-ray patterns yielded a multiphase structure for the ZnNb2O6 and a single phase structure for CuNb 2O6. Photoelectrochemical (PEC) measurements were used both as a characterization tool as well as an application for CO2 reduction. The PEC data was consistent with an n-type and p-type semiconductor for ZnNb 2O6 and CuNb2O6 respectively. Good phototelectrochemical behavior was observed for CuNb2O6 with stable, high photocurrents suggesting a suitable material for CO 2 reduction while in a 0.1 M NaHCO3 + CO2 medium. All in all, this dissertation study expounds on metal ion insertion into various structural frameworks (e.g. WO3) which may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.

  15. CSTutor: A Sketch-Based Tool for Visualizing Data Structures

    ERIC Educational Resources Information Center

    Buchanan, Sarah; Laviola, Joseph J., Jr.

    2014-01-01

    We present CSTutor, a sketch-based interface designed to help students understand data structures, specifically Linked Lists, Binary Search Trees, AVL Trees, and Heaps. CSTutor creates an environment that seamlessly combines a user's sketched diagram and code. In each of these data structure modes, the user can naturally sketch a data structure on…

  16. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Zongyu; Zhang, Zhen; Qi, Xiang; Ren, Xiaohui; Xu, Guanghua; Wan, Pengbo; Sun, Xiaoming; Zhang, Han

    2016-07-01

    Recently, considerable efforts have been made to satisfy the future requirements of electrochemical energy storage using novel functional electrode materials. Binary transition metal oxides (BTMOs) possess multiple oxidation states that enable multiple redox reactions, showing higher supercapacitive properties than single component metal oxides. In this work, a facile hydrothermal method is provided for the synthesis of wall-like hierarchical metal oxide MMoO4 (M = Ni, Co) nanosheet arrays, which are directly grown on flexible carbon cloth for use as advanced binder-free electrodes for supercapacitors. By virtue of their intriguing structure, the resulted active material nanosheets with a high specific surface area can provide a large electroactive region, which could facilitate easy accession of electrolyte ions and fast charge transport, resulting in an enhanced electrochemical performance. Separately, the as-synthesized MMoO4 (M = Ni, Co) samples have exhibited superior specific capacitances (1483 F g-1 of NiMoO4 and 452 F g-1 of CoMoO4 at a current density of 2 A g-1), as well as excellent cycling stability (93.1% capacitance retention of NiMoO4 and 95.9% capacitance retention of CoMoO4 after 2000 cycles). The results show that the binder-free electrodes constructed by deposition of MMoO4 (M = Ni, Co) nanosheets on carbon cloth are promising candidates for the application of supercapacitors.Recently, considerable efforts have been made to satisfy the future requirements of electrochemical energy storage using novel functional electrode materials. Binary transition metal oxides (BTMOs) possess multiple oxidation states that enable multiple redox reactions, showing higher supercapacitive properties than single component metal oxides. In this work, a facile hydrothermal method is provided for the synthesis of wall-like hierarchical metal oxide MMoO4 (M = Ni, Co) nanosheet arrays, which are directly grown on flexible carbon cloth for use as advanced binder-free electrodes for supercapacitors. By virtue of their intriguing structure, the resulted active material nanosheets with a high specific surface area can provide a large electroactive region, which could facilitate easy accession of electrolyte ions and fast charge transport, resulting in an enhanced electrochemical performance. Separately, the as-synthesized MMoO4 (M = Ni, Co) samples have exhibited superior specific capacitances (1483 F g-1 of NiMoO4 and 452 F g-1 of CoMoO4 at a current density of 2 A g-1), as well as excellent cycling stability (93.1% capacitance retention of NiMoO4 and 95.9% capacitance retention of CoMoO4 after 2000 cycles). The results show that the binder-free electrodes constructed by deposition of MMoO4 (M = Ni, Co) nanosheets on carbon cloth are promising candidates for the application of supercapacitors. Electronic supplementary information (ESI) available: XRD pattern and charge-discharge plots. See DOI: 10.1039/c6nr04020a

  17. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  18. Fringe image processing based on structured light series

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Li, Hongyan

    2009-11-01

    The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.

  19. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  20. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.

    PubMed

    Peña, Maria J; Darvill, Alan G; Eberhard, Stefan; York, William S; O'Neill, Malcolm A

    2008-11-01

    Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.

  1. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  2. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.

  3. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  4. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors.

    PubMed

    Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-10-07

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.

  5. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  6. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE PAGES

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...

    2016-04-12

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  7. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    NASA Astrophysics Data System (ADS)

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy

    2016-04-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  8. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.

    PubMed

    Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  9. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  10. Effect of synthesis method on structure, band gap and surface morphology of delafossite oxides, CuAlO2 and CuFeO2

    NASA Astrophysics Data System (ADS)

    Shah, Aadil Abass; Azam, Ameer

    2018-04-01

    In this research work we have reported the synthesis of two different delafossites, CuAlO2 and CuFeO2 by two different synthesis methods viz hydrothermal method and the combustion method. The effect of synthesis on structure, band gap and morphology of the synthesized delafossites was carried out using various techniques. The phase and structure of the synthesized delafossites were studied and confirmed using X-ray diffraction and the crystallite size was calculated. FTIR measurements showed the presence of different stretching modes and functional groups in the synthesized oxides. The surface morphology was studied using the scanning electron microscopy. The band gap of the synthesized delafossite oxides was found to be in the range of 2.8 and 3.3 eV.

  11. MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on themore » so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.« less

  12. The validity of the potential model in predicting the structural, dynamical, thermodynamic properties of the unary and binary mixture of water-alcohol: Methanol-water case

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Abu-Ghazleh, Hind

    2018-06-01

    Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.

  13. In Search of Speedier Searches.

    ERIC Educational Resources Information Center

    Peterson, Ivars

    1984-01-01

    Methods to make computer searching as simple and efficient as possible have led to the development of various data structures. Data structures specify the items involved in searching and what can be done to them. The nature and advantages of using "self-adjusting" data structures (self-adjusting binary search trees) are discussed. (JN)

  14. New two-dimensional V-V binary compounds with a honeycomb-like structure: a first-principles study

    NASA Astrophysics Data System (ADS)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-03-01

    We systematically search for the stable structures of two-dimensional (2D) V-V binary compounds with honeycomb-like structure by using the first-principles calculation. We identify 26 stable structures out of 54 2D V-V compounds based on various assessments of stabilities: total energy, thermodynamics, and mechanics. Among them, 12 2D V-V compounds are previously unrecognized structures. For each class V-V isomer, the most stable structures are found to be β-AsP, β-SbAs, α-BiAs, α-BiSb, α 2-SbP, and α 2-BiP. For all isomers of the AsP, they are always stable, and hence PAs monolayer is most likely to be prepared experimentally. All the stable structures are semiconductors with bandgaps ranging from 0.06 eV to 2.52 eV at the Heyd-Scuseria-Ernzerhof level. Therefore, they are potential materials for versatile semiconductor devices. Our findings provide a new clue to facilitate the design of 2D materials for potential applications.

  15. Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses.

    PubMed

    Soper, Alan K

    2010-10-13

    Liquids and glasses continue to produce a lively debate about the nature of the disordered structure in these materials, and whether it is driven by longer range concentration or density fluctuations. One factor often lacking in these studies is an overview of a wide range of structures from which common features of and differences between materials can be identified. Here I examine the structure of a wide range of chain and network, elemental, binary and tertiary liquids and glasses, using available x-ray and neutron diffraction data and combining them with empirical potential structure refinement. Calculation of the Bhatia-Thornton number-number and concentration-concentration structure factors and distribution functions highlights common structural motifs that run through many of the series. It is found that the greatest structural overlap occurs where the nearest-neighbour and second-neighbour coordination numbers are similar for different materials. As these coordination numbers increase, so the structures undergo a sequence of characteristic changes involving increasingly bent bond angle distributions and increased packing fractions. In these regards liquid and amorphous phosphorus appear to be in a structural class of their own, combining both chain-like and network-like characteristics.

  16. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  17. Water-soluble Au13 clusters protected by binary thiolates: Structural accommodation and the use for chemosensing

    NASA Astrophysics Data System (ADS)

    Ding, Weihua; Huang, Chuanqi; Guan, Lingmei; Liu, Xianhu; Luo, Zhixun; Li, Weixue

    2017-05-01

    Here we report a successful synthesis of water-soluble 13-atoms gold clusters under the monolayer protection of binary thiolates, glutathione and penicillamine, under a molecular formula of Au13(SG)5(PA)7. This monolayer-protected cluster (MPC) finds decent stability and is demonstrated to possess an icosahedral geometry pertaining to structural accommodation in contrast to a planar bare Au13 of local minima energy. Natural bond orbital (NBO) analysis depicts the interaction patterns between gold and the ligands, enlightening to understand the origin of enhanced stability of the Au13 MPCs. Further, the water-soluble Au13 MPCs are found to be a decent candidate for chemosensing and bioimaging.

  18. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  19. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  20. Ferrocenylaniline based amide analogs of methoxybenzoic acids: Synthesis, structural characterization and butyrylcholinesterase (BChE) inhibition studies

    NASA Astrophysics Data System (ADS)

    Altaf, Ataf Ali; Kausar, Samia; Hamayun, Muhammad; Lal, Bhajan; Tahir, Muhammad Nawaz; Badshah, Amin

    2017-10-01

    Three new ferrocene based amides were synthesized with slight structural difference. The general formula of the amides is C5H5FeC5H4C6H4NHCOC6H4(OCH3). The synthesized compounds were characterized by instrumental techniques like elemental analysis, FTIR and NMR spectroscopy. Structure of the two compounds was also studied by single crystal X-rays diffraction analysis. Structural studies provide the evidence that pMeO (one of the synthesized compounds) is an example of amides having no intermolecular hydrogen bonding in solid structure. In the BChE inhibition assay, compound (oMeO) having strong intermolecular force in the solid structure is less active than the compound (pMeO) with weak intermolecular forces in the solid structure. The docking studies proved that hydrogen bonding between inhibitor and BChE enzyme is of more importance for the activity, rather than intermolecular hydrogen bonding in the solid structure of inhibitor.

  1. International migration network: Topology and modeling

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  2. International migration network: topology and modeling.

    PubMed

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  3. Broadband and chiral binary dielectric meta-holograms.

    PubMed

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics.

  4. Broadband and chiral binary dielectric meta-holograms

    PubMed Central

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-01-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices’ compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  5. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    PubMed

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-12-26

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.

  6. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.

    2017-08-01

    The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.

  7. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Shenar, T.

    The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less

  8. On multi-site damage identification using single-site training data

    NASA Astrophysics Data System (ADS)

    Barthorpe, R. J.; Manson, G.; Worden, K.

    2017-11-01

    This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.

  9. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  10. Structural anomaly and dynamic heterogeneity in cycloether/water binary mixtures: Signatures from composition dependent dynamic fluorescence measurements and computer simulations

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit

    2016-03-01

    We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min Ho; Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeckmore » coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.« less

  12. Behavior of lanthanum containing barium stannate nanoparticles synthesized by cetyltriammonium bromide assisted wet chemistry route

    NASA Astrophysics Data System (ADS)

    Kumar, Astakala Anil; Kumar, Ashok; Quamara, J. K.

    2018-02-01

    In present study, we report dielectric, ferroelectric and pyroelectric behavior of pristine and La3+ containing barium stannate nanoparticles synthesized via wet chemical route involving cetyltriammonium bromide assisted thermal decomposition of binary precursors. The X-ray diffraction patterns of pristine and La3+ (2, 4 and 6 at%) doped BaSnO3 nanoparticles showed the formation of cubic perovskite phase. On substitution of Ba2+ lattice sites by La3+ at the La content of 6 at%, the sample exhibited fourfold increase in conductivity in comparison to pristine BaSnO3. Polarization hysteresis (P-E) curves of La containing barium stannate nanoparticles showed anti-ferroelectric behavior. The pyroelectric coefficient of pristine and La (2, 4 and 6 at%) containing BaSnO3 nanoparticles at 473 K were found to be 7.8, 11.6, 14.1 and 17.2 μCm-2K-1, respectively. Further, the responsivity and detectivity values were higher in comparison to the materials, such as AlN, GaN, CdS and ZnO.

  13. Microwave dielectric study of polar liquids at 298 K

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.

    2018-05-01

    Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.

  14. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  15. Carbon nanotube synthesis with different support materials and catalysts

    NASA Astrophysics Data System (ADS)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün

    2013-09-01

    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  16. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    NASA Technical Reports Server (NTRS)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  17. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  18. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging.

    PubMed

    Xue, Mingyue; Zhang, Liangliang; Zhan, Zhihua; Zou, Mengbing; Huang, Yong; Zhao, Shulin

    2016-04-01

    A novel sulfur and nitrogen binary doped carbon dots (S,N-CDs) was synthesized by one-step manner through the hydrothermal treatment of citric acid (CA) and ammonium thiocyanate, and the procedures for biomedical applications, including probing doxycycline in living cells and multicolor cell imaging were developed. The obtained S,N-CDs are stable in aqueous solution, possess a very high quantum yield (QY, 74.15%) and good photostability. The fluorescence of S,N-CDs can be specifically quenched by doxycycline, providing a convenient turn-off assay of doxycycline. This assay shows a wide linear detection range from 0.08 to 60 μM with a low detection limit of 20 nM. The present method also displays a good selectivity. More importantly, the S,N-CDs have an excellent biocompatibility and low cytotoxicity, allowing the multicolor cell imaging and doxycycline detection in living cells. Consequently, the developed doxycycline methods is facile, low-cost, biocompatible, sensitive and selective, which may hold the potential applications in the fields of food safety and environmental monitoring, as well as cancer therapy and related mechanism research. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  20. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn-Al-layered Double Hydroxide Nanohybrid

    NASA Astrophysics Data System (ADS)

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj.; Zainal, Zulkarnain

    2009-11-01

    Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D) intercalated into the interlayer of Zn-Al-layered double hydroxide (ZAN) have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree, Hevea brasiliensis.

  1. Controlled growth of ZnO/Zn₁-xPbxSe core-shell nanowires and their interfacial electronic energy alignment.

    PubMed

    Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I

    2012-05-21

    ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.

  2. Eta Carina: What was the Great Eruption in the 19th Century?

    NASA Astrophysics Data System (ADS)

    Gull, Theodore; Eta Carina Bunch

    2018-01-01

    In the 1840’s, Eta Carina brightened to rival Sirius in apparent magnitude only to fade to naked-eye visibility for 5 decades, brightened somewhat in the 1890s and faded again until the 1940’s when it began a progressive brightening that continues. Today Eta Carina is a massive binary (100 Mo and 30 Mo) with a 5.54-year period, immersed in a massive (>40Mo) dusty, bipolar nebula. The radiation and kinetic energy of the 1840s event rivals that of a supernova, but the binary survived. While Eta Carina is suggested to be a supernova imposter, most imposters, seen in nearby galaxies, lead to actual supernova events months to years afterwards, yet the binary, Eta Carina, is still with us 170 years after the outburst.With modern observatories we are gaining much insight on the massive binary--followed by many ground-based telescopes, the fossil wind structures--mapped with HST/STIS, the Little Homunculus--discovered with HST/STIS and Homunculus--now being studied with ALMA. 3D models are able to explain much of the structures, but potentially much material remains hidden in the form of molecules on the far side of the Homunculus in the equatorial skirt region, where Herschel observations indicate the bulk of dust-emitting continuum resides.Was there a third star that became a supernova? Did one of the two stars go through a near supernova experience?This poster will summarize observations and modeling of the current system in hopes that theorists will become interested in providing scenarios and models that led to the ejecta and binary we observe today.

  3. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  4. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  5. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  6. The Introduction into Bacillus sphaericus of the Bacillus thuringiensis subsp. medellin cyt1Ab1 Gene Results in Higher Susceptibility of Resistant Mosquito Larva Populations to B. sphaericus

    PubMed Central

    Thiéry, I.; Hamon, S.; Delécluse, A.; Orduz, S.

    1998-01-01

    The fragment containing the gene encoding the cytolytic Cyt1Ab1 protein from Bacillus thuringiensis subsp. medellin and its flanking sequences (I. Thiery, A. Delécluse, M. C. Tamayo, and S. Orduz, Appl. Environ. Microbiol. 63:468–473, 1997) was introduced into Bacillus sphaericus toxic strains 2362, 2297, and Iab872 by electroporation with the shuttle vector pMK3. Only small amounts of the protein were produced in recombinant strains 2362 and Iab872. The protein was detected in these strains only by Western blotting and immunodetection with antibody raised against Cyt1Ab1 protein. Large amounts of Cyt1Ab1 protein were produced in B. sphaericus recombinant strain 2297, and there was an additional crystal, other than that of the binary toxin, within the exosporium. The production of the Cyt1Ab1 protein in addition to the binary toxin did not increase the larvicidal activity of the B. sphaericus recombinant strain against susceptible mosquito populations of Culex pipiens or Aedes aegypti. However, it partially restored (10 to 20 times) susceptibility of the resistant mosquito populations of C. pipiens (SPHAE) and Culex quinquefasciatus (GeoR) to the binary toxin. The Cyt1Ab1 protein produced in recombinant B. thuringiensis SPL407(pcyt1Ab1) was synthesized in two types of crystal—one round and with various dense areas, surrounded by an envelope, and the other a regular cuboid crystal, very similar to that found in the B. sphaericus recombinant strain. PMID:9758818

  7. Functional reconstitution of cellulose synthase in Escherichia coli.

    PubMed

    Imai, Tomoya; Sun, Shi-Jing; Horikawa, Yoshiki; Wada, Masahisa; Sugiyama, Junji

    2014-11-10

    Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

  8. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  9. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  10. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  11. Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.

    PubMed

    Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai

    2016-10-10

    Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.

  12. Structural, dielectric and magnetic studies of (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 (x=10%, 20% and 30%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive component Ni0.7Co0.1Cu0.2Fe2O4 (NCCF). The presences of constituent phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for NCCF ferrite phase and tetragonal perovskite structure for BT and, both spinel and pervoskite structures for synthesized ME composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency and composition dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at room temperature using Hioki LCR Hi-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The hysteresis behavior was studied to understand the magnetic ordering in the synthesized composites using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  13. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  14. Structural, dielectric and ferroelectric studies of BZT doped Mg0.2Cu0.3Zn0.5Fe2O4 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2018-05-01

    The composites of ferrite-ferroelectric system (x) Mg0.2Cu0.3Zn0.5Fe2O4+ (1-x) Ba0.8Zr0.2TiO3 (x=15%, 30%, 45%) were synthesized by sintering mixtures of ferroelectric Ba0.8Zr0.2TiO3 (BZT) and ferrite component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The ferroelectric properties of synthesized composites were analyzed using a Precision ferroelectric tester. It is observed that the composites exhibited ferroelectric hysteresis with wide loops indicating lossy nature of composites.

  15. The twisted radio structure of PSO J334.2028+01.4075, still a supermassive binary black hole candidate

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Wrobel, J. M.; Anderson, M. M.; Hallinan, G.

    2018-01-01

    Supermassive binary black holes (BBHs) on sub-parsec scales are prime targets for gravitational wave experiments. They also provide insights on close binary evolution and hierarchical structure formation. Sub-parsec BBHs cannot be spatially resolved but indirect methods can identify candidates. In 2015 Liu et al. reported an optical-continuum periodicity in the quasar PSO J334.2028+01.4075, with the estimated mass and rest-frame period suggesting an orbital separation of about 0.006 pc (0.7 μ arcsec). The persistence of the quasar's optical periodicity has recently been disfavoured over an extended baseline. However, if a radio jet is launched from a sub-parsec BBH, the binary's properties can influence the radio structure on larger scales. Here, we use the Very Long Baseline Array (VLBA) and Karl G. Jansky Very Large Array (VLA) to study the parsec- and kiloparsec-scale emission energized by the quasar's putative BBH. We find two VLBA components separated by 3.6 mas (30 pc), tentatively identifying one as the VLBA 'core' from which the other was ejected. The VLBA components contribute to a point-like, time-variable VLA source that is straddled by lobes spanning 8 arcsec (66 kpc). We classify PSO J334.2028+01.4075 as a lobe-dominated quasar, albeit with an atypically large twist of 39° between its elongation position angles on parsec- and kiloparsec-scales. By analogy with 3C 207, a well-studied lobe-dominated quasar with a similarly-rare twist, we speculate that PSO J334.2028+01.4075 could be ejecting jet components over an inner cone that traces a precessing jet in a BBH system.

  16. The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Wagner, Kevin; Dong, Ruobing; Sheehan, Patrick; Apai, Dániel; Kasper, Markus; McClure, Melissa; Morzinski, Katie M.; Close, Laird; Males, Jared; Hinz, Phil; Quanz, Sascha P.; Fung, Jeffrey

    2018-02-01

    HD 100453AB is a 10 ± 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.″05, or ∼108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary’s orbit to a = 1.″06 ± 0.″09, e = 0.17±0.07, and i = 32.°5 ± 6.°5. We utilized publicly available ALMA 12CO data to constrain the inclination of the disk, {i}{{disk}}∼ 28^\\circ , which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star’s rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.

  17. Machine learning to parse breast pathology reports in Chinese.

    PubMed

    Tang, Rong; Ouyang, Lizhi; Li, Clara; He, Yue; Griffin, Molly; Taghian, Alphonse; Smith, Barbara; Yala, Adam; Barzilay, Regina; Hughes, Kevin

    2018-06-01

    Large structured databases of pathology findings are valuable in deriving new clinical insights. However, they are labor intensive to create and generally require manual annotation. There has been some work in the bioinformatics community to support automating this work via machine learning in English. Our contribution is to provide an automated approach to construct such structured databases in Chinese, and to set the stage for extraction from other languages. We collected 2104 de-identified Chinese benign and malignant breast pathology reports from Hunan Cancer Hospital. Physicians with native Chinese proficiency reviewed the reports and annotated a variety of binary and numerical pathologic entities. After excluding 78 cases with a bilateral lesion in the same report, 1216 cases were used as a training set for the algorithm, which was then refined by 405 development cases. The Natural language processing algorithm was tested by using the remaining 405 cases to evaluate the machine learning outcome. The model was used to extract 13 binary entities and 8 numerical entities. When compared to physicians with native Chinese proficiency, the model showed a per-entity accuracy from 91 to 100% for all common diagnoses on the test set. The overall accuracy of binary entities was 98% and of numerical entities was 95%. In a per-report evaluation for binary entities with more than 100 training cases, 85% of all the testing reports were completely correct and 11% had an error in 1 out of 22 entities. We have demonstrated that Chinese breast pathology reports can be automatically parsed into structured data using standard machine learning approaches. The results of our study demonstrate that techniques effective in parsing English reports can be scaled to other languages.

  18. Respecting variations in embodiment as well as gender: Beyond the presumed 'binary' of sex.

    PubMed

    Saewyc, Elizabeth M

    2017-01-01

    Although societies and health care systems are increasingly recognizing gender outside traditional binary categories, the notion persists of two, and only two sexes, 'naturally' aligned between chromosomes and phenotypic body. Yet there are more than a dozen documented genetic or phenotypic variations that do not completely fit the two simplistic categories, and together, they may comprise 1%-2% of the population worldwide. In this commentary, I consider how adherence to binary notions of sex has created and maintained social and health care structures that perpetuate health care inequities, and may well violate our nursing codes of ethics. I provide some current examples in law and health care systems that create difficulties for people with variations in sex development. I describe our responsibility to challenge the societally promoted but scientifically inaccurate perspective of sex as a binary. I conclude by briefly suggesting a few implications for action within nursing research, nursing education, nursing practice, and in advocacy as a profession. © 2017 John Wiley & Sons Ltd.

  19. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  20. High temperature structure in cool binary stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Brickhouse, Nancy S.; Hanson, G. J.

    1995-01-01

    Strong high temperature emission lines in the EUVE spectra of binary stars containing cool components (Alpha Aur (Capella), 44 iota Boo, Lambda And, and VY Ari) provide the basis to define reliably the differential emission measure of hot plasma. The emission measure distributions for the short-period (P less than or equal to 13 d) binary systems show a high temperature enhancement over a relatively narrow temperature region similar to that originally found in Capella (Dupree et al. 1993). The emission measure distributions of rapidly rotating single stars 31 Com and AB Dor also contain a local enhancement of the emission measure although at different temperatures and width from Capella, suggesting that the enhancement in these objects may be characteristic of rapid rotation of a stellar corona. This feature might be identified with a (polar) active region, although its density and absolute size are unknown; in the binaries Capella and VY Ari, the feature is narrow and it may arise from an interaction region between the components.

  1. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  2. Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar; Ghez, Andrea M.; Hees, Aurelien; Do, Tuan; Witzel, Gunther; Lu, Jessica R.

    2018-02-01

    The population of young stars near the supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematic measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues regarding the origin of these mysterious young stars. However, many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here, we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus, neglecting the contribution of binaries can significantly vary the inferred stars’ orbital properties. While the disk orientation is unaffected, the apparent disk’s 2D width will be increased to about 11.°2, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23. This is consistent with the observed average eccentricity of the stars’ in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally, our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.

  3. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  4. Performances and working mechanism of a novel polycarboxylate superplasticizer synthesized through changing molecular topological structure.

    PubMed

    Liu, Xiao; Guan, Jianan; Lai, Guanghong; Wang, Ziming; Zhu, Jie; Cui, Suping; Lan, Mingzhang; Li, Huiqun

    2017-10-15

    A novel star-shaped polycarboxylate superplasticizer (SPCE) was synthesized through a simple two-step method. 1 H Nuclear Magnetic Resonance ( 1 H NMR) and Infrared Spectroscopy (IR) measurements were used for structural characterization. SPCE and comb-shaped polycarboxylate superplasticizer (CPCE) with same molecular weights were designed and synthesized. The cement paste containing SPCE exhibited better fluidity, fluidity retention, water reduction, 25% lower saturated dosage of PCE, 10% longer setting time, lower hydration heat, more delayed hydration heat evolution and lower amount of hydration products at early ages. Furthermore, the adsorption behavior of SPCE and CPCE in cement pastes and the zeta potential were investigated, and then the working mechanism of SPCE was theoretically explained. It is interesting that changing topological structure from comb-shape to star-shape can achieve the optimization of dispersion effect, and further improve the working effectiveness. The aims of this study are to provide a new avenue to synthesize superplasticizer with novel structure achieving the chemical diversity of superplasticizer structure, and to verify the contribution of optimizing molecular shape. This new type of superplasticizer can be used as a rheology modifying agent in fresh cement-based materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Perspectives on the energy landscape of Au-Cl binary systems from the structural phase diagram of AuxCly (x + y = 20).

    PubMed

    Tian, Zhimei; Cheng, Longjiu

    2015-05-28

    Ligand-protected gold (Au-L) nanoclusters have attracted much attention, where the reported electronic and geometric structures show great diversity. To give a direct and overall view of the energy landscape of Au-L binary systems, the AuxCly (x + y = 20) system is taken as a test case. By intensive global search of the potential energy surface at the level of density functional theory, a diverse set of global minima and low-lying isomers are found at each composition, and the structural phase diagram is obtained. The unbiased global search is carried out using the method combining the genetic algorithm with the TPSS functional. At x = 10 with the stoichiometric ratio of Au and Cl (1 : 1), the cluster presents a catenane structure. When x is in the range of 11-20, the clusters are Au-rich, and the Au-Cl system can be viewed as Cl-protected gold nanoclusters, where the gold cores consist of superatoms, superatom networks, or superatomic molecules in electronic structures. At x = 11-15, the gold cores consist of Au3, Au4 and Au5 2e-superatoms protected by staple motifs. At x = 16-20, the clusters are pyramidal superatomic molecules with one Au16 superatom core bonding with the four vertical atoms (Au or Cl). When x is in the scope of 9-5, the clusters are Cl-rich, and the 5d electrons of Au participate in bonding, resulting in high multiplicities. The Au-Cl binary system shows great diversity and flexibility in electronic and geometric structures, and there are corresponding structures to most of the experimentally produced Au-L nanoclusters in our structural phase diagram. We believe that the structural phase diagram gives an overall perspective on the universe of Au-L nanoclusters.

  6. Extended Abstracts. International Symposium on Halide Glasses (2nd), Rensselaer Polytechnic Institute, Troy, New York, USA, 2-5 August 1983.

    DTIC Science & Technology

    1983-08-02

    Research and Development in ’" T. Miyashita and i.. . nabe 34 "Environmental Effects on the Strength of Fluoride Glass Fibers" A. Nakata, J. Lau, and J...continuous optical window. Ujnfortunately YVP3 ony permit’s thin samiples (1 mm) to be synthesized. Vitrco&us domnain ina the ternary sys ~tem TIT "Zni - YbF 4...synthesis methods, quenched glasses have been obtained in the CdF2-ZnF 2-BaF2 and CdF2-MnF2-BaF 2 ternary sys - tems. Binary glasses (Cd0 .5Ba0 .5 )F2 have

  7. Solid state amorphization in the Al-Fe binary system during high energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less

  8. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Junjun; Zhang, Shiran; Choksi, Tej

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis weremore » explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.« less

  9. Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing.

    PubMed

    Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping

    2018-03-16

    Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.

  10. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Halpern, Jules P.; Eracleous, Michael

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less

  11. On the development and applications of automated searches for eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Devor, Jonathan

    Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.

  12. SALT HRS discovery of a long-period double-degenerate binary in the planetary nebula NGC 1360

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Manick, R.; Mikołajewska, J.; Iłkiewicz, K.; Kamath, D.; Van Winckel, H.

    2018-01-01

    Whether planetary nebulae (PNe) are predominantly the product of binary stellar evolution as some population synthesis models (PSM) suggest remains an open question. Around 50 short-period binary central stars (P ∼ 1 d) are known, but with only four with measured orbital periods over 10 d, our knowledge is severely incomplete. Here we report on the first discovery from a systematic Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) survey for long-period binary central stars. We find a 142 d orbital period from radial velocities of the central star of NGC 1360, HIP 16566. NGC 1360 appears to be the product of common-envelope (CE) evolution, with nebula features similar to post-CE PNe, albeit with an orbital period considerably longer than expected to be typical of post-CE PSM. The most striking feature is a newly identified ring of candidate low-ionization structures. Previous spatiokinematic modelling of the nebula gives a nebula inclination of 30° ± 10°, and assuming the binary nucleus is coplanar with the nebula, multiwavelength observations best fit a more massive, evolved white dwarf (WD) companion. A WD companion in a 142 d orbit is not the focus of many PSM, making NGC 1360 a valuable system with which to improve future PSM work. HIP 16566 is amongst many central stars in which large radial velocity variability was found by low-resolution surveys. The discovery of its binary nature may indicate long-period binaries may be more common than PSM models predict.

  13. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.

    PubMed

    Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy

    2008-02-21

    X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.

  14. Modelling Gravitational Radiation from Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger and coalescence of binary black holes is a key source of strong gravitational waves for the LISA mission. Observing these systems will allow us to probe the formation of cosmic structure to high redshifts and test general relativity directly in the strong-field, dynamical regime. Recently, major breakthroughs have been made in modeling black hole mergers using numerical relativity. This talk will survey these exciting developments, focusing on the gravitational waveforms and the recoil kicks produced from non-equal mass mergers.

  15. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  16. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  17. Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belous, A. G., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Solopan, S. O., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net; Yelenich, O. V., E-mail: belous@ionc.kar.net, E-mail: solopan@ukr.net, E-mail: yelenicho@ukr.net

    In this work, nanoparticles of La{sub 0.75}Sr{sub 0.25}MnO{sub 3} compounds with perovskite structure and AFe{sub 2}O{sub 4} (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from diethylene glycol and microemulsion using Triton X-100 surfactant. Comparative X-ray diffraction and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP)

  18. 2007 TY430: A COLD CLASSICAL KUIPER BELT TYPE BINARY IN THE PLUTINO POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Scott S.; Ragozzine, Darin; Trujillo, Chadwick, E-mail: sheppard@dtm.ciw.edu

    2012-03-15

    Kuiper Belt object 2007 TY430 is the first wide, equal-sized, binary known in the 3:2 mean motion resonance with Neptune. The two components have a maximum separation of about 1 arcsec and are on average less than 0.1 mag different in apparent magnitude with identical ultra-red colors (g - i = 1.49 {+-} 0.01 mag). Using nearly monthly observations of 2007 TY430 from 2007 to 2011, the orbit of the mutual components was found to have a period of 961.2 {+-} 4.6 days with a semi-major axis of 21000 {+-} 160 km and eccentricity of 0.1529 {+-} 0.0028. The inclinationmore » with respect to the ecliptic is 15.68 {+-} 0.22 deg and extensive observations have allowed the mirror orbit to be eliminated as a possibility. The total mass for the binary system was found to be 7.90 {+-} 0.21 Multiplication-Sign 10{sup 17} kg. Equal-sized, wide binaries and ultra-red colors are common in the low-inclination 'cold' classical part of the Kuiper Belt and likely formed through some sort of three-body interactions within a much denser Kuiper Belt. To date 2007 TY430 is the only ultra-red, equal-sized binary known outside of the classical Kuiper Belt population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped 'cold' classical object that later got trapped in the 3:2 resonance. Similar to the known equal-sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g cm{sup -3} the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely that the Kozai mechanism could have altered the orbit, making the 2007 TY430 binary orbit likely one of the few relatively unaltered primordial binary orbits known. Under some binary formation models, the low-inclination prograde orbit of the 2007 TY430 binary indicates formation within a relatively high velocity regime in the Kuiper Belt.« less

  19. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.

  20. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

Top