Structural consistency analysis of recombinant and wild-type human serum albumin
NASA Astrophysics Data System (ADS)
Cao, Hui-Ling; Sun, Li-Hua; Liu, Li; Li, Jian; Tang, Lin; Guo, Yun-Zhu; Mei, Qi-Bing; He, Jian-Hua; Yin, Da-Chuan
2017-01-01
Recombinant human serum albumin (rHSA) is potential alternatives for human serum albumin (HSA) which may ease severe shortage of HSA worldwide. In theory, rHSA and HSA are the same. Structure decides function. Therefore, the 3D structural consistency analysis of rHSA and HSA is outmost importance, which is the base of their function consistency. In this paper, the crystal structures of rHSA at resolution limit of 2.22 Å and HSA at 2.30 Å were determined by X-ray diffraction (XRD), which were deposited in the Protein Data Bank (PDB) with accession codes 4G03 (rHSA) and 4G04 (HSA). The differences between rHSA and HSA were systematically analyzed from the crystallization behavior, diffraction data and three-dimensional (3D) structure. The superimposed contrasted analysis indicated that rHSA and HSA achieved a structural similarity of 99% with an r.m.s. deviation of 0.397 Å for the corresponding overall Cα atoms. In addition, the number of α-helices in the rHSA or HSA molecule was verified to be 30. As a result, rHSA can potentially replace HSA. The study provides a theoretical and experimental basis for the clinical and additional applications of rHSA. Meanwhile, it is also a good example for applications of genetic engineering.
Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study
NASA Astrophysics Data System (ADS)
Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.
2016-01-01
The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.
Santra, Manas Kumar; Banerjee, Abhijit; Krishnakumar, Shyam Sundar; Rahaman, Obaidur; Panda, Dulal
2004-05-01
The changes in the far-UV CD signal, intrinsic tryptophan fluorescence and bilirubin absorbance showed that the guanidine hydrochloride (GdnHCl)-induced unfolding of a multidomain protein, human serum albumin (HSA), followed a two-state process. However, using environment sensitive Nile red fluorescence, the unfolding and folding pathways of HSA were found to follow a three-state process and an intermediate was detected in the range 0.25-1.5 m GdnHCl. The intermediate state displayed 45% higher fluorescence intensity than that of the native state. The increase in the Nile red fluorescence was found to be due to an increase in the quantum yield of the HSA-bound Nile red. Low concentrations of GdnHCl neither altered the binding affinity of Nile red to HSA nor induced the aggregation of HSA. In addition, the secondary structure of HSA was not perturbed during the first unfolding transition (<1.5 m GdnHCl); however, the secondary structure was completely lost during the second transition. The data together showed that the half maximal loss of the tertiary structure occurred at a lower GdnHCl concentration than the loss of the secondary structure. Further kinetic studies of the refolding process of HSA using multiple spectroscopic techniques showed that the folding occurred in two phases, a burst phase followed by a slow phase. An intermediate with native-like secondary structure but only a partial tertiary structure was found to form in the burst phase of refolding. Then, the intermediate slowly folded into the native state. An analysis of the refolding data suggested that the folding of HSA could be best explained by the framework model.
Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.
Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay
2015-01-01
In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.
Frahm, Grant E; Smith, Daryl G S; Kane, Anita; Lorbetskie, Barry; Cyr, Terry D; Girard, Michel; Johnston, Michael J W
2014-01-01
The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs) leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA) produced in Oryza sativa (Asian rice) (OsrHSA) from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA) and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae). The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC), reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE). Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS). The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD) and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which correlated well with the degree of arginine/lysine glycation. The extensive glycation of OsrHSA from multiple suppliers may have further implications for the use of OsrHSA as a therapeutic product.
Taghavi, F; Moosavi-Movahedi, A A; Bohlooli, M; Habibi-Rezaei, M; Hadi Alijanvand, H; Amanlou, M; Sheibani, N; Saboury, A A; Ahmad, F
2014-01-01
Sodium benzoate (SB), a powerful inhibitor of microbial growth, is one of the most commonly used food preservative. Here, we determined the effects of SB on human serum albumin (HSA) structure in the presence or absence of glucose after 35 days of incubation under physiological conditions. The biochemical, biophysical, and molecular approaches including free amine content assay (TNBSA assay), fluorescence, and circular dichroism spectroscopy (CD), differential scanning calorimetry (DSC), and molecular docking and LIGPLOT studies were utilized for structural studies. The TNBSA results indicated that SB has the ability to bind Lys residues in HSA through covalent bonds. The docking and LIGPLOT studies also determined another specific site via hydrophobic interactions. The CD results showed more structural helicity for HSA incubated with SB, while HSA incubated with glucose had the least, and HSA incubated with glucose + SB had medium helicity. Fluorescence spectrophotometry results demonstrated partial unfolding of HSA incubated with SB in the presence or absence of glucose, while maximum partial unfolding was observed in HSA incubated with glucose. These results were confirmed by DSC and its deconvoluted thermograms. The DSC results also showed significant changes in HSA energetic structural domains due to HSA incubation with SB in the presence or absence of glucose. Together, our studies showed the formation of three different intermediates and indicate that biomolecular investigation are effective in providing new insight into safety determinations especially in health-related conditions including diabetes.
NASA Astrophysics Data System (ADS)
Kabir, Md. Zahirul; Tee, Wei-Ven; Mohamad, Saharuddin B.; Alias, Zazali; Tayyab, Saad
2017-06-01
Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04 × 104 M-1), obtained at 298 K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
NASA Astrophysics Data System (ADS)
Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri
2016-09-01
Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.
2015-02-01
Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.
Hip Structural Analysis in Adolescent Boys With Anorexia Nervosa and Controls
Katzman, Debra K.; Clarke, Hannah; Snelgrove, Deirdre; Brigham, Kathryn; Miller, Karen K.; Klibanski, Anne
2013-01-01
Context: We have reported lower hip bone mineral density (BMD) in adolescent boys with anorexia nervosa (AN) compared with controls. Although studies have described bone structure in girls with AN, these data are not available for boys. Hip structural analysis (HSA) using dual-energy x-ray absorptiometry is a validated technique to assess hip geometry and strength while avoiding radiation associated with quantitative computed tomography. Objective: We hypothesized that boys with AN would have impaired hip structure/strength (assessed by HSA) compared with controls. Design and Setting: We conducted a cross-sectional study at a clinical research center. Subjects and Intervention: We used HSA techniques on hip dual-energy x-ray absorptiometry scans in 31 previously enrolled boys, 15 with AN and 16 normal-weight controls, 12 to 19 years old. Results: AN boys had lower body mass index SD score (P < .0001), testosterone (P = .0005), and estradiol (P = .006) than controls. A larger proportion of AN boys had BMD Z-scores <−1 at the femoral neck (60% vs 12.5%, P = 0008). Using HSA, at the narrow neck and trochanter region, boys with AN had lower cross-sectional area (P = .03, 0.02) and cortical thickness (P = .02, 0.03). Buckling ratio at the trochanter region was higher in AN (P = .008). After controlling for age and height, subperiosteal width at the femoral shaft, cross-sectional moment of inertia (narrow neck and femoral shaft), and section modulus (all sites) were lower in AN. The strongest associations of HSA measures were observed with lean mass, testosterone, and estradiol. On multivariate analysis, lean mass remained associated with most HSA measures. Conclusions: Boys with AN have impaired hip geometric parameters, associated with lower lean mass. PMID:23653430
Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis
Lack, Nathan; Lowe, Edward D.; Liu, Jie; Eltis, Lindsay D.; Noble, Martin E. M.; Sim, Edith; Westwood, Isaac M.
2008-01-01
Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon–carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 Å resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors’ knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors. PMID:18097091
Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis.
Lack, Nathan; Lowe, Edward D; Liu, Jie; Eltis, Lindsay D; Noble, Martin E M; Sim, Edith; Westwood, Isaac M
2008-01-01
Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon-carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 A resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors' knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.
Wang, Rui; Hu, Xing; Pan, Junhui; Gong, Deming; Zhang, Guowen
2018-05-23
Quinoline yellow (QY), a widely used synthetic colorant in food industry, has caused extensive concern due to its potential harm to human health. In the present work, the interaction between food colourant quinoline yellow (QY) and human serum albumin (HSA) was characterized by multispectroscopic methods, chemometrics algorithm and molecular modeling studies. The concentration profiles and the pure spectra for the components (QY, HSA and QY-HSA complex) obtained through analyzing the expanded UV-vis absorption data matrix by multivariate curve resolution-alternating least squares confirmed the QY-HSA interaction process. QY quenched the fluorescence of HSA due to the formation of QY-HSA complex and moderate affinity stabilized the complex. Hydrophobic forces and hydrogen bonding played major roles in the binding of QY to HSA. Site-specific marker-induced displacement results suggested that QY bound to the subdomain IIA of HSA which was corroborated by the molecular docking results. Decreases of HSA surface hydrophobicity and free sulfhydryl groups content indicated that QY caused a contraction of the peptide strand in HSA and hided the hydrophobic patches of the protein. The analysis of UV-vis absorption, circular dichroism and three-dimensional fluorescence spectroscopy found that QY led to the microenvironmental perturbations around the fluorophores and secondary structure changes of HSA. This work showed that QY could bind to HSA and affect the structural and functional properties of this protein, which provided new insights into the binding mechanism of QY with HSA and comprehensive understanding for the toxicity of QY in biological process. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Khoo, Benjamin C C; Beck, Thomas J; Qiao, Qi-Hong; Parakh, Pallav; Semanick, Lisa; Prince, Richard L; Singer, Kevin P; Price, Roger I
2005-07-01
Hip structural analysis (HSA) is a technique for extracting strength-related structural dimensions of bone cross-sections from two-dimensional hip scan images acquired by dual energy X-ray absorptiometry (DXA) scanners. Heretofore the precision of the method has not been thoroughly tested in the clinical setting. Using paired scans from two large clinical trials involving a range of different DXA machines, this study reports the first precision analysis of HSA variables, in comparison with that of conventional bone mineral density (BMD) on the same scans. A key HSA variable, section modulus (Z), biomechanically indicative of bone strength during bending, had a short-term precision percentage coefficient of variation (CV%) in the femoral neck of 3.4-10.1%, depending on the manufacturer or model of the DXA equipment. Cross-sectional area (CSA), a determinant of bone strength during axial loading and closely aligned with conventional DXA bone mineral content, had a range of CV% from 2.8% to 7.9%. Poorer precision was associated with inadequate inclusion of the femoral shaft or femoral head in the DXA-scanned hip region. Precision of HSA-derived BMD varied between 2.4% and 6.4%. Precision of DXA manufacturer-derived BMD varied between 1.9% and 3.4%, arising from the larger analysis region of interest (ROI). The precision of HSA variables was not generally dependent on magnitude, subject height, weight, or conventional femoral neck densitometric variables. The generally poorer precision of key HSA variables in comparison with conventional DXA-derived BMD highlights the critical roles played by correct limb repositioning and choice of an adequate and appropriately positioned ROI.
Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate.
Kawai, Akito; Yamasaki, Keishi; Enokida, Taisuke; Miyamoto, Shuichi; Otagiri, Masaki
2018-03-01
Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA-PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug-HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.
Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo
2015-08-10
Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.
Ito, Masako
Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.
Sun, Qiaomei; Yang, Hongqin; Tang, Peixiao; Liu, Jiuyang; Wang, Wan; Li, Hui
2018-03-15
Considering the adverse effect of food additives on humans, thorough research of their physiological effects at the molecular level is important. The interactions of cinnamaldehyde (CNMA), a food perfume, and its major metabolite cinnamic acid (CA) with human serum albumin (HSA) were examined by multiple-spectroscopies. NMR analysis revealed CNMA and CA both bound to HSA, and STD-NMR experiments established CNMA and CA primarily interacted with site I and site II of HSA, respectively. The ligands caused strong quenching of HSA fluorescence through a static quenching mechanism, with hydrophobic and electrostatic interaction between CNMA/CA and HSA, respectively. UV-vis absorption and CD results showed ligands induced secondary structure changes of HSA. Binding configurations were proved by docking method. Furthermore, binding constants of CNMA/CA-HSA systems were influenced by the addition of four other food additives. These studies have increased our knowledge regarding the safety and biological action of CNMA and CA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moriyama, Yoshiko; Takeda, Kunio
2017-05-01
The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.
Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N
2016-04-01
Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.
2016-01-01
Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.
Characterization of endogenous nanoparticles from roasted chicken breasts.
Song, Xunyu; Cao, Lin; Cong, Shuang; Song, Yukun; Tan, Mingqian
2018-06-22
Emergence of endogenous nanoparticles in thermally processed food has aroused much attention due to their unique properties and potential biological impact. The aim of this study was to investigate the presence of fluorescence nanoparticles in roasted chicken breasts, elemental composition, physico-chemical properties and their molecular interaction with human serum albumin (HSA). Transmission electron microscopy analysis revealed that the foodborne nanoparticles from roasted chicken were nearly spherical with an average particle size of 1.7 ± 0.4 nm. The elemental analysis of X-ray photoelectron spectroscopy showed the composition of nanoparticles as 47.4% C, 25.8% O and 26.1% N. The fluorescence of HSA was quenched by the nanoparticles following a static mode, and the molecular interaction of nanoparticles with HSA was spontaneous (ΔG°<0), where hydrogen bonding and van der Waals forces played an important role during HSA-nanoparticles complex stabilization through thermodynamic analysis by isothermal titration calorimetry. The principal location of the nanoparticles binding site on HSA was primarily in site I as determined by site-specific marker competition. The conformational of HSA was also changed and ɑ-helical structure decreased in the presence of nanoparticles. Our studies revealed that fluorescent nanoparticles were produced after roasting of chicken breast at 230 °C for 30 min for the first time. The obtained nanoparticles can interact with HSA in a spontaneous manner, thus providing valuable insight into foodborne NPs as well as their effects to human albumin protein.
Protein-protein binding before and after photo-modification of albumin
NASA Astrophysics Data System (ADS)
Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo
2016-03-01
Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.
NASA Astrophysics Data System (ADS)
Takeno, Hiroyuki; Mochizuki, Tomomitsu; Yoshiba, Kazuto; Kondo, Shingo; Dobashi, Toshiaki
Self-assembling structures and sol-gel transition in solution of optically active and racemic 12-Hydroxystearic acids (HSA) have been investigated by means of small-angle X-ray scattering (SAXS), differential scanning calorimetry and rheological measurements. Apparently two kinds of gel, transparent gel and turbid gel were obtained in different solvents or by changing concentrations in the same solvent. The melting temperature of the turbid gel is higher than that of the transparent gel. The difference can be qualitatively explained by the dissolution of the crystals (melting point depression) in non-ideal solutions. The SAXS profiles of the transparent gel composed of fibrillar structures have a similar shape at different concentrations, although the intensity is larger for the gels with higher concentrations of 12-HSA. The SAXS analysis reveals that the cross-section of fibrils have square or circular shape (no anisotropic shape) with the radius of gyration 83 Å. On the other hand, for the turbid gel structural inhomnogeneity becomes significant with concentration. The gelation properties and the structures are found to be similar in the racemic HSA gel and the optically active (D-HSA) gel.
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob
2016-03-01
Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL -1 ). The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size.
Heat-stable antigen (CD24) as ligand for mouse P-selectin.
Sammar, M; Aigner, S; Hubbe, M; Schirrmacher, V; Schachner, M; Vestweber, D; Altevogt, P
1994-07-01
Heat-stable antigen (HSA)/CD24 is a cell surface molecule expressed by many cell types in the mouse. The molecule has an unusual structure because of its small protein core and extensive glycosylation. In order to study the functional role of the HSA-associated glycoconjugates we have isolated different forms of HSA. Using lectin analysis we provide evidence for extensive heterogeneity in carbohydrate composition and sialic acid linkage. Several HSA forms were recognized by mouse P-selectin-IgG but not E-selectin-IgG in ELISA. As expected, P-selectin-IgG also bound to L2/HNK-1-positive neural glycoproteins (L2-glycoproteins) and sulfatides but not to gangliosides and other control glycoproteins. The binding of P-selectin-IgG to L2-glycoproteins and HSA required bivalent cations. The reactivity to HSA was sensitive to sialidase treatment whereas the binding to L2-glycoproteins was not. Studies with alpha 2-6 sialytransferase indicated that alpha 2-6 linked sialic acid was not involved in the P-selectin binding to HSA. Surprisingly, an L2/HNK-1 specific antibody was found to cross-react with some HSA glycoforms and its binding correlated with P-selectin-IgG reactivity. L2/HNK-1-positive or L2/HNK-1-negative HSA glycoforms were also analyzed after coating to polystyrene beads. Only the L2/HNK-1-positive HSA coated beads were reactive with P-selectin-IgG and could bind to activated bend3 endothelioma cells expressing P-selectin whereas the L2/HNK-1-negative HSA beads did not. It is suggested that in its L2/HNK-1 modified form the HSA molecule on leukocytes could represent a ligand for P-selectin on endothelial cells or platelets.
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Mirzazadeh, Negar; Arpanaei, Ayyoob
2016-01-01
Background Recently, applications of albumin nanoparticles as drug delivery carriers have increased. Most toxicology studies have shown that surface chemistry and size of nanoparticles play an important role in biocompatibility and toxicity. Objective The effect of desolvating agents with different chemical properties on the size of synthesized HSA NPs was investigated. Materials and Methods Acetone, ethanol, methanol, and acetonitrile were used to synthesize HSA NPs with controllable size by desolvation method. Scanning electron microscopy (SEM), dynamic light scattering (DLS), and circular dichroism (CD) were employed to characterize produced particles. Finally, the toxicity of HSA NPs synthesized under different conditions was evaluated on PC-12 cells. Results The sizes of synthesized particles differed according to the different solvents used. The sizes were 275.3 nm, 155.3 nm, 100.11 nm, and 66.2 nm for acetonitrile, ethanol, acetone, and methanol, respectively. CD showed that larger NPs had more changes in the secondary structures. Finally, the toxicity monitored on the cultured PC-12 cells showed no significant toxic effect through treating with these NPs at different concentrations (0-500 μg.mL-1). Conclusions The size of HSA NPs has a strong dependency on the desolvating agent. The mechanism in which the desolvating agent affects the size of HSA NPs is complex. Various factors such as dielectric constant, polarity, functional groups, and hydrogen bonding of the solvents have the potential to affect the size and structure of HSA NPs. CD analysis suggested that the solvent denaturing capability had a critical effect on the HSA particle size. The stronger denaturing capability of the solvent resulted in the larger HSA particle size. PMID:28959317
Malti, Tina; Zuffianò, Antonio; Noam, Gil G
2018-04-01
Knowing every child's social-emotional development is important as it can support prevention and intervention approaches to meet the developmental needs and strengths of children. Here, we discuss the role of social-emotional assessment tools in planning, implementing, and evaluating preventative strategies to promote mental health in all children and adolescents. We, first, selectively review existing tools and identify current gaps in the measurement literature. Next, we introduce the Holistic Student Assessment (HSA), a tool that is based in our social-emotional developmental theory, The Clover Model, and designed to measure social-emotional development in children and adolescents. Using a sample of 5946 students (51% boys, M age = 13.16 years), we provide evidence for the psychometric validity of the self-report version of the HSA. First, we document the theoretically expected 7-dimension factor structure in a calibration sub-sample (n = 984) and cross-validate its structure in a validation sub-sample (n = 4962). Next, we show measurement invariance across development, i.e., late childhood (9- to 11-year-olds), early adolescence (12- to 14-year-olds), and middle adolescence (15- to 18-year-olds), and evidence for the HSA's construct validity in each age group. The findings support the robustness of the factor structure and confirm its developmental sensitivity. Structural equation modeling validity analysis in a multiple-group framework indicates that the HSA is associated with mental health in expected directions across ages. Overall, these findings show the psychometric properties of the tool, and we discuss how social-emotional tools such as the HSA can guide future research and inform large-scale dissemination of preventive strategies.
Interaction between phillygenin and human serum albumin based on spectroscopic and molecular docking
NASA Astrophysics Data System (ADS)
Song, W.; Ao, M. Z.; Shi, Y.; Yuan, L. F.; Yuan, X. X.; Yu, L. J.
2012-01-01
In this paper, the interaction of human serum albumin (HSA) with phillygenin was investigated by fluorescence, circular dichroism (CD), UV-vis spectroscopic and molecular docking methods under physiological conditions. The Stern-Volmer analysis indicated that the fluorescence quenching of HSA by phillygenin resulted from static mechanism, and the binding constants were 1.71 × 10 5, 1.61 × 10 5 and 1.47 × 10 4 at 300, 305 and 310 K, respectively. The results of UV-vis spectra show that the secondary structure of the protein has been changed in the presence of phillygenin. The CD spectra showed that HSA conformation was altered by phillygenin with a major reduction of α-helix and an increase in β-sheet and random coil structures, indicating a partial protein unfolding. The distance between donor (HSA) and acceptor (phillygenin) was calculated to be 3.52 nm and the results of synchronous fluorescence spectra showed that binding of phillygenin to HSA can induce conformational changes in HSA. Molecular docking experiments found that phillygenin binds with HSA at IIIA domain of hydrophobic pocket with hydrogen bond interactions. The ionic bonds were formed with the O (4), O (5) and O (6) of phillygenin with nitrogen of ASN109, ARG186 and LEU115, respectively. The hydrogen bonds are formed between O (2) of phillygenin and SER419. In the presence of copper (II), iron (III) and alcohol, the apparent association constant KA and the number of binding sites of phillygenin on HSA were both decreased in the range of 88.84-91.97% and 16.09-18.85%, respectively. In view of the evidence presented, it is expected to enrich our knowledge of the interaction dynamics of phillygenin to the important plasma protein HSA, and it is also expected to provide important information of designs of new inspired drugs.
Fasihi, Ali; M Soltani, Bahram; Atashi, Amir; Nasiri, Shirzad
2018-07-01
Wnt signaling is hyper-activated in most of human cancers including colorectal carcinoma (CRC). Therefore, the introduction of new regulators for Wnt pathway possesses promising diagnostic and therapeutic applications in cancer medicine. Bioinformatics analysis introduced hsa-miR-103a, hsa-miR-1827, and hsa-miR-137 as potential regulators of Wnt signaling pathway. Here, we intended to examine the effect of these human miRNAs on Wnt signaling pathway components, on the cell cycle progression in CRC originated cell lines and their expression in CRC tissues. RT-qPCR results indicated upregulation of hsa-miR-103a, hsa-miR-1827, and downregulation of hsa-miR-137 in CRC tissues. Overexpression of hsa-miR-103a and hsa-miR-1827 in SW480 cells resulted in elevated Wnt activity, detected by both Top/Flash assay and RT-qPCR analysis. Inhibition of Wnt signaling by using PNU-74654 or IWP-2 small molecules suggested that these miRNAs exerts their effect at the β-catenin degradation complex level. Then, RT-qPCR, dual luciferase assay, and western blotting analysis indicated that APC and APC2 transcripts were targeted by hsa-miR-103a, hsa-miR-1827 while, Wnt3a and β-catenin genes were upregulated. However, hsa-miR-137 downregulated Wnt3a and β-catenin genes. Further, hsa-miR-103a and hsa-miR-1827 overexpression resulted in cell cycle progression and reduced apoptotic rate in SW480 cells, unlike hsa-miR-137 overexpression which resulted in cell cycle suppression, detected by flowcytometry and Anexin analysis. Overall, our data introduced hsa-miR-103a, hsa-miR-1827 as onco-miRNAs and hsa-miR-137 as tumor suppressor which exert their effect through regulation of Wnt signaling pathway in CRC and introduced them as potential target for therapy. © 2017 Wiley Periodicals, Inc.
The HSA in Your Future: Defined Contribution Retiree Medical Coverage.
Towarnicky, Jack M
In 2004, when evaluating health savings account (HSA) business opportunities, I predicted: "Twenty-five years ago, no one had ever heard of 401(k); 25 years from now, everyone will have an HSA." Twelve years later, growth in HSA eligibility, participation, contributions and asset accumulations suggests we just might achieve that prediction. This article shares one plan sponsor's journey to help employees accumulate assets to fund medical costs-while employed and after retirement, It documents a 30-plus-year retiree health insurance transition from a defined benefit to a defined dollar structure and culminating in a full-replacement defined contribution structure using HSA-qualifying high-deductible health plans (HDHPs) and then redeploying/repurposing the HSA to incorporate a savings incentive for retiree medical costs.
Ahmed, Azaj; Shamsi, Anas; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Bano, Bilqees
2018-07-01
Serum protein glycation and formation of advanced glycation end products (AGEs) correlates with many diseases viz. diabetes signifying the importance of studying the glycation pattern of serum proteins. In our present study, methylglyoxal was investigated for its effect on the structure of human serum albumin (HSA); exploring the formation of AGEs and aggregates of HSA. The analytical tools employed includes intrinsic and extrinsic fluorescence, UV spectroscopy, far UV circular dichroism, Thioflavin T fluorescence, congo red binding, polyacrylamide gel electrophoresis (PAGE). UV and fluorescence spectroscopy revealed the structural transition of native HSA evident by new peaks and increased absorbance in UV spectra and quenched fluorescence in the presence of MG. Far UV CD spectroscopy revealed MG induced secondary structural alteration evident by reduced α-helical content. AGEs formation was confirmed by AGEs specific fluorescence. Increased ThT fluorescence and CR absorbance of 10mM MG incubated HSA suggests that glycated HSA results in the formation of aggregates of HSA. SEM and TEM were reported to have an insight of these aggregates. Molecular docking was also utilized to see site specific interaction of MG-HSA. This study is clinically significant as HSA is a clinically relevant protein which plays a crucial role in many diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yong; Ni, Yongnian
2014-02-01
Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.
Ma, Xiangling; Wang, Qing; Wang, Lili; Huang, Yanmei; Liao, Xiaoxiang; Li, Hui
2016-06-01
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular-docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three-dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular-docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8-anilino-1-naphthalenesulfonic acid, was changed with norgestrel addition. © 2016 Wiley Periodicals, Inc.
Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking
NASA Astrophysics Data System (ADS)
Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin
2009-06-01
Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.
Raghav, Alok; Alam, Khursheed
2017-01-01
Background Albumin glycation and subsequent formation of advanced glycation end products (AGEs) correlate with diabetes and associated complications. Methods Human Serum Albumin (HSA) was modified with D-glucose for a 40 day period under sterile conditions at 37°C. Modified samples along with native HSA (unmodified) were analyzed for structural modifications by UV and fluorescence, FTIR, Liquid chromatography mass spectrometry (LCMS) and X–ray crystallography. New-Zealand white female rabbits immunized with AGEs, represent auto-antibodies formation as assessed by competitive and direct binding enzyme-linked immunosorbent assay (ELISA). Neo-epitopesagainst In-vitro formed AGEs were characterized in patients with diabetes mellitus type 2 (n = 50), type 1 (n = 50), gestational diabetes (n = 50) and type 2 with chronic kidney disease (CKD) with eGFR level 60–89 mL/min (n = 50) from serum direct binding ELISA. Results Glycated-HSA showed amarked increase in hyperchromicity of 65.82%,71.98%, 73.62% and 76.63% at λ280 nm along with anincreasein fluorescence intensity of 65.82%, 71.98%, 73.62% and 76.63% in glycated-HSA compared to native. FTIR results showed theshifting of Amide I peak from 1656 cm_1 to 1659 cm_1 and Amide II peak from 1554 cm_1 to 1564 cm_1 in glycated-HSA, with anew peak appearance of carbonyl group at 1737 cm-1. LCMS chromatogram of glycated-HSA showed thepresence of carboxymethyl lysine (CML) at 279.1 m/z. Immunological analysis showed high antibody titre>1:12,800 in theserum of rabbits immunized with glycated-HSA (modified with 400 mg/dL glucose) and inhibition of 84.65% at anantigen concentration of 20μg/mL. Maximum serum auto-antibody titre was found in T2DM (0.517±0.086), T1DM (0.108±0.092), GDM (0.611±0.041) and T2DM+CKD (0.096±0.25) patients immunized with glycated-HSA (modified with 400 mg/dL glucose). Conclusions Non-enzymatic glycosylation of HSA manifests immunological complications in diabetes mellitus due to change in its structure that enhances neo-epitopes generation. PMID:28520799
Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis
NASA Astrophysics Data System (ADS)
Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.
2016-01-01
Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum albumin, while KSV values for gHSA-KP systems are only slightly lower than that obtained for HSA-KP. The affinity of PHB to the glycated HSA is stronger than to the non-glycated in the first class binding sites within subdomain IIA, in the vicinity of Trp-214. Ketoprofen bound to unmodified human serum albumin stronger than for glycated albumin and one class of binding sites is observed (Scatchard linear plots).
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
NASA Astrophysics Data System (ADS)
Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen
2004-04-01
Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.
Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar
2013-07-01
The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.
Effect of glycation on human serum albumin-zinc interaction: a biophysical study.
Iqbal, Sarah; Qais, Faizan Abul; Alam, Md Maroof; Naseem, Imrana
2018-05-01
Zinc deficiency is common in diabetes. However, the cause of this phenomenon is largely unknown. 80% of the absorbed zinc is transported through the blood in association with human serum albumin (HSA). Under persistent hyperglycemia, HSA frequently undergoes non-enzymatic glycation which can affect its structure and metal-binding function. Hence, in this study, we have examined the interaction of zinc with native and glycated HSA. The protein samples were incubated either in the presence or in the absence of physiologically elevated glucose concentration for 21 days. The samples were then analyzed for structural changes and zinc-binding ability using various spectrometric and calorimetric approaches. The study reveals changes in the three-dimensional structure of the protein upon glycation that cause local unfolding of the molecule. Most such regions are localized in subdomain IIA of HSA which plays a key role in zinc binding. This affects zinc interaction with HSA and could in part explain the perturbed zinc distribution in patients with hyperglycemia. The varying degree of HSA glycation in blood could explain the observed heterogeneity pertaining to zinc deficiency among people suffering from diabetes.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan
2015-03-01
This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.
Pereira, Thaís Dos Santos Fontes; Brito, João Artur Ricieri; Guimarães, André Luiz Sena; Gomes, Carolina Cavaliéri; de Lacerda, Júlio Cesar Tanos; de Castro, Wagner Henriques; Coimbra, Roney Santos; Diniz, Marina Gonçalves; Gomez, Ricardo Santiago
2018-01-01
Cemento-ossifying fibroma (COF) is a benign fibro-osseous neoplasm of uncertain pathogenesis, and its treatment results in morbidity. MicroRNAs (miRNA) are small non-coding RNAs that regulate gene expression and may represent therapeutic targets. The purpose of the study was to generate a comprehensive miRNA profile of COF compared to normal bone. Additionally, the most relevant pathways and target genes of differentially expressed miRNA were investigated by in silico analysis. Nine COF and ten normal bone samples were included in the study. miRNA profiling was carried out by using TaqMan® OpenArray® Human microRNA panel containing 754 validated human miRNAs. We identified the most relevant miRNAs target genes through the leader gene approach, using STRING and Cytoscape software. Pathways enrichment analysis was performed using DIANA-miRPath. Eleven miRNAs were downregulated (hsa-miR-95-3p, hsa-miR-141-3p, hsa-miR-205-5p, hsa-miR-223-3p, hsa-miR-31-5p, hsa-miR-944, hsa-miR-200b-3p, hsa-miR-135b-5p, hsa-miR-31-3p, hsa-miR-223-5p and hsa-miR-200c-3p), and five were upregulated (hsa-miR-181a-5p, hsa-miR-181c-5p, hsa-miR-149-5p, hsa-miR-138-5p and hsa-miR-199a-3p) in COF compared to normal bone. Eighteen common target genes were predicted, and the leader genes approach identified the following genes involved in human COF: EZH2, XIAP, MET and TGFBR1. According to the biology of bone and COF, the most relevant KEGG pathways revealed by enrichment analysis were proteoglycans in cancer, miRNAs in cancer, pathways in cancer, p53-, PI3K-Akt-, FoxO- and TGF-beta signalling pathways, which were previously found to be differentially regulated in bone neoplasms, odontogenic tumours and osteogenesis. miRNA dysregulation occurs in COF, and EZH2, XIAP, MET and TGFBR1 are potential targets for functional analysis validation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj
2015-09-01
A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.
Zaman, Asif; Arif, Zarina; Moinuddin; Alam, Khursheed
2018-04-01
Fructose is a reducing and highly lipogenic sugar that has unique metabolic effects in the liver. Non-enzymatic fructosylation of proteins generates advanced glycation end products (AGEs). Human serum albumin (HSA) may undergo fructosylation vis-à-vis AGEs formation. High fructose consumption may lead to structurally altered and functionally compromised fructosylated-HSA-AGEs, which can cause damage to hepatocytes resulting in hepatic macro- and microvesicular steatosis. In this study, HSA was incubated with varying concentrations of fructose for 10days and the induced changes were studied. Fructosylated-HSA exhibited hyperchromicity, increased AGE-specific fluorescence, quenching of tryptophan fluorescence and increased melting temperature. Nε-[carboxymethyl]-lysine (CML), was detected by liquid chromatography mass spectrometry (LC-MS). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed decreased mobility in fructosylated-HSA. Perturbations in secondary and tertiary structure were revealed by fourier transform-infrared spectroscopy (FT-IR), supported by far- and near-UV circular dichroism (CD). Dynamic light scattering (DLS) and Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry studies suggested increase in molecular mass of fructosylated-HSA. Amyloidogenic aggregates were confirmed from Congo red, Thioflavin T assay and Scanning electron microscope (SEM). These investigations confirmed the structural alterations in fructosylated-HSA and warrants further study to probe the role of fructosylated-HSA-AGEs in hepatopathy vis-à-vis fatty liver diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Insights on the functional impact of microRNAs present in autism-associated copy number variants.
Vaishnavi, Varadarajan; Manikandan, Mayakannan; Tiwary, Basant K; Munirajan, Arasambattu Kannan
2013-01-01
Autism spectrum disorder is a complex neurodevelopmental disorder that appears during the first three years of infancy and lasts throughout a person's life. Recently a large category of genomic structural variants, denoted as copy number variants (CNVs), were established to be a major contributor of the pathophysiology of autism. To date almost all studies have focussed only on the genes present in the CNV loci, but the impact of non-coding regulatory microRNAs (miRNAs) present in these regions remain largely unexplored. Hence we attempted to elucidate the biological and functional significance of miRNAs present in autism-associated CNV loci and their target genes by using a series of computational tools. We demonstrate that nearly 11% of the CNV loci harbor miRNAs and a few of these miRNAs were previously reported to be associated with autism. A systematic analysis of the CNV-miRNAs based on their interactions with the target genes enabled the identification of top 10 miRNAs namely hsa-miR-590-3p, hsa-miR-944, hsa-miR-570, hsa-miR-34a, hsa-miR-124, hsa-miR-548f, hsa-miR-429, hsa-miR-200b, hsa-miR-195 and hsa-miR-497 as hub molecules. Further, the CNV-miRNAs formed a regulatory loop with transcription factors and their downstream target genes, and annotation of these target genes indicated their functional involvement in neurodevelopment and synapse. Moreover, miRNAs present in deleted and duplicated CNV loci may explain the difference in dosage of the crucial genes controlled by them. These CNV-miRNAs can also impair the global processing and biogenesis of all miRNAs by targeting key molecules in the miRNA pathway. To our knowledge, this is the first report to highlight the significance of CNV-microRNAs and their target genes to contribute towards the genetic heterogeneity and phenotypic variability of autism.
Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use.
Takahashi, Teppei; Terada, Tomoyoshi; Arikawa, Hajime; Kizaki, Kazuha; Terawaki, Hiroyuki; Imai, Hajime; Itoh, Yoshinori; Era, Seiichi
2016-01-01
We investigated the quantitation of oxidative chemical modifications, such as thiol oxidation and carbonylation, in medical-grade human serum albumin (HSA) preparations, in comparison with those of healthy and diseased subjects. Four kinds of HSA products were obtained from three major suppliers in Japan. Eight male collegiate students and six healthy male volunteers were recruited as the young (21.6 years) and older (57.2 years) groups, respectively. Four male stable patients (64.3 years) treated with regular hemodialysis (HD) also enrolled in this study. Quantitative analyses for thiol oxidation and carbonylation were performed using HPLC and spectroscopic methods, respectively. Structural characterization was further investigated by differential scanning calorimetry (DSC) and circular dichroism (CD) spectropolarimetry. Significantly larger amounts of thiol-oxidized and carbonylated HSA products were observed than HSA obtained from healthy subjects. In the structural characterization, the midpoint temperature of the denaturation curve (Tm) analyzed by DSC was relatively high, and may have been caused by the added albumin-specific stabilizers, and CD-resolved secondary structure showed that HSA products had a helical conformation. Commercial HSA products for clinical use have a more thermally stable state and remain in a helix-rich structure, even though their specific amino acids (mainly Cys and Lys residues) are oxidatively modified.
Adams, Ralph; Griffin, Laura; Compson, Joanne E; Jairaj, Mark; Baker, Terry; Ceska, Tom; West, Shauna; Zaccheo, Oliver; Davé, Emma; Lawson, Alastair Dg; Humphreys, David P; Heywood, Sam
2016-10-01
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.
Moeinpour, Farid; Mohseni-Shahri, Fatemeh S; Malaekeh-Nikouei, Bizhan; Nassirli, Hooriyeh
2016-09-25
The interaction between losartan and human serum albumin (HSA), as well as its glycated form (gHSA) was studied by multiple spectroscopic techniques and molecular dynamics simulation under physiological conditions. The binding information, including the binding constants, effective quenching constant and number of binding sites showed that the binding partiality of losartan to HSA was higher than to gHSA. The findings of three-dimensional fluorescence spectra demonstrated that the binding of losartan to HSA and gHSA would alter the protein conformation. The distances between Trp residue and the binding sites of the drug were evaluated on the basis of the Förster theory, and it was indicated that non-radiative energy transfer from HSA and gHSA to the losartan happened with a high possibility. According to molecular dynamics simulation, the protein secondary and tertiary structure changes were compared in HSA and gHSA for clarifying the obtained results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of sugar additives on stability of human serum albumin during vacuum foam drying and storage.
Hajare, A A; More, H N; Pisal, S S
2011-11-01
No literature on the protein stabilization of human serum albumin (HSA) by vacuum foam drying (VFD) has been reported. The purpose of this study was to investigate the effect of sugar-additive systems on the stability of HSA by VFD. For the assessment, HSA was formulated with sucrose and mannitol, respectively, alone or in combination with stabilizers, which were vacuum foam dried and stored at 25C. Protein content of the resulting dried formulations was analyzed by Lowry method. Fourier-transform infrared spectroscopy (FT-IR) analysis of the HSA secondary structure showed apparent protein structure-stabilizing effects of the amorphous sugar and phosphate combination during the VFD. In particular, sucrose-sodium phosphate monobasic mixture provide an interesting alternative to pure saccharide formulations due to their high glass transition temperatures and their increased ability to maintain a low melting transition temperature in the presence of small amounts of water. Inhibition of the sucrose crystallization in solutions under vacuum resulted in highly amorphous sucrose. Changes in the endothermic melting transition suggested reduced sucrose molecular mobility with increase in the sodium phosphate ratio. The addition of phosphate salts to sugar systems has several interesting features that merit its consideration in formulations to protect dehydrated labile biomaterials. In conclusion, our data suggest that sucrose and phosphate as additives seem to protect HSA during VFD better than lyophilized products and also maintain its stability in the VFD state during storage.
The effect of Berberine on the secondary structure of human serum albumin
NASA Astrophysics Data System (ADS)
Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo
2005-05-01
The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).
Differential expression of basal microRNAs’ patterns in human dental pulp stem cells
Vasanthan, Punitha; Govindasamy, Vijayendran; Gnanasegaran, Nareshwaran; Kunasekaran, Wijenthiran; Musa, Sabri; Abu Kasim, Noor Hayaty
2015-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real-time PCR. Notably, we observed 19 up-regulated miRNAs and 29 significantly down-regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM-MSCs). The 19 up-regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa-miR-516a-3p, hsa-miR-125b-1-3p, hsa-miR-221-5p, hsa-miR-7, hsa-miR-584-5p, hsa-miR-190a, hsa-miR-106a-5p, hsa-mir-376a-5p, hsa-mir-377-5p and hsa-let-7f-2-3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa-miR-516a-3p and hsa-miR-7-5p as these miRNAs were highly expressed upon validation with qRT-PCR analysis. We further proceeded with loss-of-function analysis with these miRNAs and we observed that hsa-miR-516a-3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa-miR-7-5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa-miR-516a-3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs. PMID:25475098
Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees
2018-05-01
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 10 4 M -1 implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.
Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad
2016-09-01
Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This should be mentioned that both theoretical methods calculated the Kb values in the same sequence and are in a good agreement with the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
[Bioinformatics on vascular invasion markers in hepatocellular carcinoma via Big-Data analysis].
Chen, Q; Qiu, X Q
2017-04-10
Objective: To investigate the biomarkers in hepatocellular carcinoma and their prognostic value via GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) database. Methods: Datasets of hepatocellular carcinoma were downloaded from GEO (GSE67140) and TCGA. MicroRNA in SNU423, SNU449, HepG2, Hep3B, SNU398 cell lines which had low or high invasion capabilities were investigated and verified, in 81 patients with and 91 without vascular invasion hepatocellular carcinoma. The prognostic value of these microRNAs were studied via TCGA database,obtained from 362 patients with hepatocellular carcinoma, through Kaplan-Meier and Multivariate Cox proportional hazard analysis. Target genes were analyzed by GO and KEGG. Results: Expressions of hsa-mir-1180, hsa-mir-149, hsa-mir-744 and hsa-mir-940 were all up regulated in high invasion capable cell lines (SNU423, SNU449) and vascular invasion patients with hepatocellular carcinoma (logFC>1, P <0.05). Results from the Survival analysis showed that hsa-mir-1180 ( HR =1.623, 95 % CI : 1.114-2.365, P =0.012), hsa-mir-149 ( HR =2.400, 95 % CI : 1.639-3.514) and hsa-mir-940 ( HR =1.704, 95 %CI : 1.188-2.443, P =0.004) were independent risk factors on the prognosis of patients with hepatocellular carcinoma ( P <0.05). The mechanism might be related to factors as immune response, focal adhesion and adherence junction signaling pathways. Conclusion: With TCGA and GEO data mining, we found that hsa-mir-1180, hsa-mir-149, hsa-mir-744 and hsa-mir-940 were all highly related to the prognosis of hepatocellular carcinoma, that enabled it to be used to further study the biomarkers related to the prognosis of hepatocellular carcinoma.
Tang, Xiaosheng; Tang, Ping; Liu, Liangliang
2017-06-23
Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.
Effects of γ-Irradiation on the Molecular Structures and Functions of Human Serum Albumin.
Hu, Xinxin; Song, Wei; Li, Wei; Guo, Changying; Yu, Zehua; Liu, Rutao
2016-11-01
In this paper, we use spectroscopic methods (fluorescence spectroscopy, UV absorption spectroscopy, and circular dichroism (CD) spectroscopy) to elucidate the effects of reactive oxygen species generated by γ-irradiation on the molecular properties of human serum albumin (HSA). The results of fluorescence spectroscopy indicated that oxidation by γ-irradiation can lead to conformational changes of HSA. Data of CD spectra suggested that with the increase of radiation dose the percentage of α-helix in HSA has decreased. The determination of protein hydrophobicity showed that the effective hydrophobicity of HSA decreased up to 62% compared to the native HSA solution due to the exposure to the γ-irradiation. Furthermore, small changes in the esterase-like activity of HSA were introduced because of oxidation. The content of bityrosine increased markedly, suggesting that the oxidized HSA was aggregated. Moreover, there was no obvious change in the molecular properties of HSA with low γ-irradiation dose. Changes happened when the irradiation dose exceeded 200 Gy. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sukhishvili, Svetlana A.; Granick, Steve
1999-05-01
We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.
Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.
Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos
2017-10-01
Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma.
Qin, Meilin; Liu, Gang; Huo, Xisong; Tao, Xuemei; Sun, Xiaomeng; Ge, Zhouhong; Yang, Juan; Fan, Jia; Liu, Lei; Qin, Wenxin
2016-01-01
It has been shown that circular RNA (circRNA) is associated with human cancers, however, few studies have been reported in hepatocellular carcinoma (HCC). To estimate clinical values of a circular RNA, Hsa_circ_0001649, in HCC. Expression level of hsa_circ_0001649 was detected in HCC and paired adjacent liver tissues by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Differences in expression level of hsa_circ_0001649 were analyzed using the paired t-test. Tests were performed between clinical information and hsa_circ_0001649 expression level by analysis of variance (ANOVA) or welch t-test and a receiver operating characteristics (ROC) curve was established to estimate the value of hsa_circ_0001649 expression as a biomarker in HCC. hsa_circ_0001649 expression was significantly downregulated in HCC tissues (p = 0.0014) based on an analysis of 89 paired samples of HCC and adjacent liver tissues and the area under the ROC curve (AUC) was 0.63. Furthermore, hsa_circ_0001649 expression was correlated with tumor size (p = 0.045) and the occurrence of tumor embolus (p = 0.017) in HCC. We first found hsa_circ_0001649 was significantly downregulated in HCC. Our findings indicate hsa_circ_0001649 might serve as a novel potential biomarker for HCC and may function in tumorigenesis and metastasis of HCC.
Frahm, Grant E; Cameron, Brooke E; Smith, Jeffrey C; Johnston, Michael J W
2013-06-01
At elevated temperatures, studies have shown that serum albumin undergoes irreversible changes to its secondary structure. Anionic fatty acids and/or anionic surfactants have been shown to stabilize human serum albumin (HSA) against thermal denaturation through bridging hydrophobic domains and cationic amino acids residues of the protein. As albumin can readily interact with a variety of liposomes, this study proposes that cardiolipin delivered via 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes can improve the thermal stability of recombinant HSA produced in Saccharomyces cerevisiae (ScrHSA) in a similar manner to anionic fatty acids. Thermal stability and structure of ScrHSA in the absence and presence of DPPC/cardiolipin liposomes was assessed with U/V circular dichroism spectropolarimetry and protein thermal stability was confirmed with differential scanning calorimetry. Although freshly prepared DPPC/cardiolipin liposomes did not improve the stability of ScrHSA, DPPC/cardiolipin liposomes incubated at room temperature for 7 d (7dRT) dramatically improved the thermal stability of the protein. Mass spectrometry analysis identified the presence of fatty acids in the 7dRT liposomes, not identified in freshly prepared liposomes, to which the improved stability was attributed. The generation of fatty acids is attributed to either the chemical hydrolysis or oxidative cleavage of the unsaturated acyl chains of cardiolipin. By modulating the lipid composition through the introduction of lipids with higher acyl chain unsaturation, it may be possible to generate the stabilizing fatty acids in a more rapid manner.
Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins
Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali
2012-01-01
Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219
Shao, Wei; Paul, Arghya; Rodes, Laetitia; Prakash, Satya
2015-04-01
Paclitaxel (PTX) is one of the most important drugs for breast cancer; however, the drug effects are limited by its systematic toxicity and poor water solubility. Nanoparticles have been applied for delivery of cancer drugs to overcome their limitations. Toward this goal, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of human serum albumin (HSA) nanoparticles for loading of antitumor agent PTX. The nanosized macromolecular SWNT-drug carrier (SWNT-HSA) was characterized by TEM, UV-Vis-NIR spectrometry, and TGA. The SWNT-based drug carrier displayed high intracellular delivery efficiency (cell uptake rate of 80%) in breast cancer MCF-7 cells, as examined by fluorescence-labeled drug carriers, suggesting the needle-shaped SWNT-HSA drug carrier was able to transport drugs across cell membrane despite its macromolecular structure. The drug loading on SWNT-based drug carrier was through high binding affinity of PTX to HSA proteins. The PTX formulated with SWNT-HSA showed greater growth inhibition activity in MCF-7 breast cancer cells than PTX formulated with HSA nanoparticle only (cell viability of 63 vs 70% in 48 h and 53 vs 62% in 72 h). The increased drug efficacy could be driven by SWNT-mediated cell internalization. These data suggest that the developed SWNT-based antitumor agent is functional and effective. However, more studies for in vivo drug delivery efficacy and other properties are needed before this delivery system can be fully realized.
Zhuang, Ze-Gang; Zhang, Jun-Ai; Luo, Hou-Long; Liu, Gan-Bin; Lu, Yuan-Bin; Ge, Nan-Hai; Zheng, Bi-Ying; Li, Rui Xi; Chen, Chen; Wang, Xin; Liu, Yu-Qing; Liu, Feng-Hui; Zhou, Yong; Cai, Xiao-Zhen; Chen, Zheng W; Xu, Jun-Fa
2017-10-01
It has been reported that circular RNA (circRNA) is associated with human cancer. However, few studies have been reported in active pulmonary tuberculosis (APTB). The global circRNA expression was detected in the peripheral blood mononuclear cells (PBMCs) of APTB patients (n=5) and health controls (HC) (n=5) by using high-throughput sequencing. According to the systematical bioinformatics analysis, the basic content of circRNAs and their fold changes in the two groups were calculated. We selected 6 significant differentially expressed circRNAs, hsa_circ_0005836, hsa_circ_0009128, hsa_circ_0003519, hsa_circ_0023956, hsa_circ_0078768, and hsa_circ_0088452 and validated the expression in PBMCs from APTB (n=10) and HC (n=10) by real-time quantitative reverse transcription-polymerase chain reactions (qRT-PCRs). Further, the verification of these specific circRNAs (hsa_circ_0005836 and hsa_circ_0009128) between APTB (n=34) and HC (n=30) in PBMCs was also conducted by qRT-PCRs. The RNA-seq data showed the significant differential expression of the 523 circRNAs between the APTB and HC groups (199 circRNAs were significantly up-regulated and 324 circRNAs were down-regulated). Hsa_circ_0005836 and hsa_circ_0009128 expression was significantly down-regulated in the PBMCs of APTB (P<0.05) in the samples of APTB compared to HC in our study. The gene ontology based enrichment analysis of the circRNA-miRNA-mRNAs network showed that cellular catabolic process (P=7.10E-08), regulation of metabolic process (P=2.10E-06), catalytic activity (P=3.67E-08), protein binding (P=1.71E-07), cell part (P=3.46E-06), intracellular part (P=1.71E-07), and intracellular (P=3.67E-08) were recognized in the comparisons between APTB and HC. Based on KEGG analysis, HTLV-I infection, regulation of actin cytoskeleton, neurotrophin signaling pathway and mTOR signaling pathway were relevant during tuberculosis bacillus infection. We found for the first time that hsa_circ_0005836 and hsa_circ_0009128 were significantly down-regulated in the PBMCs of APTB compared with HC. Our findings indicate hsa_circ_0005836 might serve as a novel potential biomarker for TB infection. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun
2018-06-01
Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.
Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O
2016-05-15
The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation required makes this method promising, compelling, and attractive alternative for the rapid determination of estrogen concentrations in biomedical and biological specimens, pharmaceuticals, or environmental samples. Published by Elsevier B.V.
Preferential solvatation of human serum albumin in dimethylsulfoxide-H2O binary solution
NASA Astrophysics Data System (ADS)
Grigoryan, K. R.
2009-12-01
The preferential solvatation of human serum albumin (HSA) in dimethylsulfoxide (DMSO) aqueous solutions were studied using the densitometry method. It has been shown that at DMSO low concentrations HSA undergoes to preferential hydration, but at DMSO higher concentrations preferential binding of DMSO molecules to protein occurs. It has been estimated that DMSO exhibits stabilizing/destabilizing effect on HSA structure which is explained in terms of hydration/solvatation of protein, on the one hand, and the medium structure enhancement/disruption around the protein molecule, on the other hand.
Naldi, Marina; Baldassarre, Maurizio; Domenicali, Marco; Giannone, Ferdinando Antonino; Bossi, Matteo; Montomoli, Jonathan; Sandahl, Thomas Damgaard; Glavind, Emilie; Vilstrup, Hendrik; Caraceni, Paolo; Bertucci, Carlo
2016-04-15
Human serum albumin (HSA) is the most abundant plasma protein, endowed with several biological properties unrelated to its oncotic power, such as antioxidant and free-radicals scavenging activities, binding and transport of many endogenous and exogenous substances, and regulation of endothelial function and inflammatory response. These non-oncotic activities are closely connected to the peculiarly dynamic structure of the albumin molecule. HSA undergoes spontaneous structural modifications, mainly by reaction with oxidants and saccharides; however, patients with cirrhosis show extensive post-transcriptional changes at several molecular sites of HSA, the degree of which parallels the severity of the disease. The present work reports the development and application of an innovative LC-MS analytical method for a rapid and reproducible determination of the relative abundance of HSA isoforms in plasma samples from alcoholic hepatitis (AH) patients. A condition of severe oxidative stress, similar to that observed in AH patients, is associated with profound changes in circulating HSA microheterogeneity. More interestingly, the high resolution provided by the analytical platform allowed the monitoring of novel oxidative products of HSA never reported before. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma
2015-02-01
The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.
Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma
2015-02-25
The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy. Copyright © 2014 Elsevier B.V. All rights reserved.
Cys34-PEGylated Human Serum Albumin for Drug Binding and Delivery
Mehtala, Jonathan G.; Kulczar, Chris; Lavan, Monika; Knipp, Gregory; Wei, Alexander
2015-01-01
Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA. PMID:25918947
Anesthetic 2,2,2-trifluoroethanol induces amyloidogenesis and cytotoxicity in human serum albumin.
Naeem, Aabgeena; Iram, Afshin; Bhat, Sheraz Ahmed
2015-08-01
Trifluoroethanol (TFE) mimics the membrane environments as it simulates the hydrophobic environment and better stabilizes the secondary structures in peptides owing to its hydrophobicity and hydrogen bond-forming properties. Its dielectric constant approximates that of the interior of proteins and is one-third of that of water. Human serum albumin (HSA) is a biological transporter. The effect of TFE on HSA gives the clue about the conformational changes taking place in HSA on transport of ligands across the biological membranes. At 25% (v/v) and 60% (v/v) TFE, HSA exhibits non-native β-sheet, altered tryptophan fluorescence, exposed hydrophobic clusters, increased thioflavin T fluorescence and prominent red shifted Congo red absorbance, and large hydrodynamic radii suggesting the aggregate formation. Isothermal titration calorimetric results indicate weak binding of TFE and HSA. This suggests that solvent-mediated effects dominate the interaction of TFE and HSA. TEM confirmed prefibrillar at 25% (v/v) and fibrillar aggregates at 60% (v/v) TFE. Comet assay of prefibrillar aggregates showed DNA damage causing cell necrosis hence confirming cytotoxic nature. On increasing concentration of TFE to 80% (v/v), HSA showed retention of native-like secondary structure, increased Trp and ANS fluorescence, a transition from β-sheet to α-helix. Thus, TFE at high concentration possess anti- aggregating potency. Copyright © 2015 Elsevier B.V. All rights reserved.
Ajmal, Mohammad Rehan; Zaidi, Nida; Alam, Parvez; Nusrat, Saima; Siddiqi, Mohd Khursheed; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan
2017-01-01
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 10 4 M -1 , and with the increase in temperature, Stern-Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV-visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug-albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (R o ) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mera, Katsumi; Nagai, Ryoji, E-mail: nagai-883@umin.ac.jp; Takeo, Kazuhiro
2011-04-08
Highlights: {yields} A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. {yields} The purified human anti-CEL autoantibody specifically reacted with CEL. {yields} Anti-CEL antibody accelerated the uptake of {sup 125}I-CEL-HSA by macrophage in vitro. {yields} Endocytic uptake of {sup 125}I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiologicalmore » role of the autoantibodies. A high titer of the autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when {sup 125}I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of {sup 125}I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.« less
Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa
2006-04-01
A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.
Wang, Yanqiu; Pang, Xiyao; Wu, Jintao; Jin, Lin; Yu, Yan; Gobin, Romila; Yu, Jinhua
2018-01-31
MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1. © 2018 Wiley Periodicals, Inc.
HPLC separation of human serum albumin isoforms based on their isoelectric points.
Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael
2014-01-01
Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Turegun, Bengi; Baker, Richard W; Leschziner, Andres E; Dominguez, Roberto
2018-01-01
The catalytic subunits of SWI/SNF-family and INO80-family chromatin remodelers bind actin and actin-related proteins (Arps) through an N-terminal helicase/SANT-associated (HSA) domain. Between the HSA and ATPase domains lies a conserved post-HSA (pHSA) domain. The HSA domain of Sth1, the catalytic subunit of the yeast SWI/SNF-family remodeler RSC, recruits the Rtt102-Arp7/9 heterotrimer. Rtt102-Arp7/9 regulates RSC function, but the mechanism is unclear. We show that the pHSA domain interacts directly with another conserved region of the catalytic subunit, protrusion-1. Rtt102-Arp7/9 binding to the HSA domain weakens this interaction and promotes the formation of stable, monodisperse complexes with DNA and nucleosomes. A crystal structure of Rtt102-Arp7/9 shows that ATP binds to Arp7 but not Arp9. However, Arp7 does not hydrolyze ATP. Together, the results suggest that Rtt102 and ATP stabilize a conformation of Arp7/9 that potentiates binding to the HSA domain, which releases intramolecular interactions within Sth1 and controls DNA and nucleosome binding.
2014-01-01
and threonine metabolism 6 40 0.006188 0.10 MP H hsa00260 Glycine, serine and threonine metabolism 3 40 0.010283 0.07 MP H hsa00280 Valine, leucine...hsa00770 Pantothenate and CoA biosynthesis 5 24 0.005066 0.07 MP M hsa04142 Lysosome 2 4 0.002426 0.10 MPO M hsa04930 Type II diabetes mellitus 3 5...of MPO and increased after exposure to all three dose levels of MP. The glycine, serine and threonine metabolism pathway is of interest because
Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping
2015-01-01
To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients' blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca(2+) concentration and prevent the AF.
Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping
2015-01-01
Objective: To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. Methods: 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients’ blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Results: Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Conclusions: Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca2+ concentration and prevent the AF. PMID:25785065
Zhang, Guowen; Ma, Yadi
2013-01-15
The mechanism of interaction between food dye amaranth and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence, UV-vis absorption, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy. Results obtained from analysis of fluorescence spectra indicated that amaranth had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The negative value of enthalpy change and positive value of entropy change elucidated that the binding of amaranth to HSA was driven mainly by hydrophobic and hydrogen bonding interactions. The surface hydrophobicity of HSA increased after binding with amaranth. The binding distance between HSA and amaranth was estimated to be 3.03 nm and subdomain IIA (Sudlow site I) was the primary binding site for amaranth on HSA. The results of CD and FT-IR spectra showed that binding of amaranth to HSA induced conformational changes of HSA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Basken, Nathan E.; Mathias, Carla J.; Green, Mark A.
2008-01-01
The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to human serum albumin (HSA), while Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) appears to only exhibit non-specific binding to human and animal serum albumins. This study examines the structural basis for HSA binding of Cu-PTSM and Cu-ATSM via competition with drugs having known albumin binding sites. Warfarin, furosemide, ibuprofen, phenylbutazone, benzylpenicillin, and cephmandole were added to HSA solutions at drug:HSA mole ratios from 0 to 8:1, followed by quantification of radiopharmaceutical binding to HSA by ultrafiltration. Warfarin, a site IIA drug, progressively displaced both [64Cu]Cu-PTSM and [64Cu]Cu-ATSM from HSA. At 8:1 warfarin:HSA mole ratios, free [64Cu]Cu-PTSM and [64Cu]Cu-ATSM levels increased 300–500%. This was in contrast to solutions containing ibuprofen, a site IIIA drug; no increase in free [64Cu]Cu-PTSM or [64Cu]Cu-ATSM was observed except at high ibuprofen:HSA ratios, where secondary ibuprofen binding to the IIA site may cause modest radiopharmaceutical displacement. By contrast, and consistent with earlier findings suggesting Cu-ETS exhibits only non-specific associations, [64Cu]Cu-ETS binding to HSA was unaffected by the addition of drugs that bind in either site. We conclude that the species-dependence of Cu-PTSM and Cu-ATSM albumin binding arises from interaction(s) with the IIA site of HSA. PMID:18937368
Danielson, Michelle E.; Beck, Thomas J.; Karlamangla, Arun S.; Greendale, Gail A.; Atkinson, Elizabeth J.; Lian, Yinjuan; Khaled, Alia S.; Keaveny, Tony M.; Kopperdahl, David; Ruppert, Kristine; Greenspan, Susan; Vuga, Marike; Cauley, Jane A.
2013-01-01
Purpose Simple 2-dimensional (2D) analyses of bone strength can be done with dual energy x-ray absorptiometry (DXA) data and applied to large data sets. We compared 2D analyses to 3-dimensional (3D) finite element analyses (FEA) based on quantitative computed tomography (QCT) data. Methods 213 women participating in the Study of Women’s Health across the Nation (SWAN) received hip DXA and QCT scans. DXA BMD and femoral neck diameter and axis length were used to estimate geometry for composite bending (BSI) and compressive strength (CSI) indices. These and comparable indices computed by Hip Structure Analysis (HSA) on the same DXA data were compared to indices using QCT geometry. Simple 2D engineering simulations of a fall impacting on the greater trochanter were generated using HSA and QCT femoral neck geometry; these estimates were benchmarked to a 3D FEA of fall impact. Results DXA-derived CSI and BSI computed from BMD and by HSA correlated well with each other (R= 0.92 and 0.70) and with QCT-derived indices (R= 0.83–0.85 and 0.65–0.72). The 2D strength estimate using HSA geometry correlated well with that from QCT (R=0.76) and with the 3D FEA estimate (R=0.56). Conclusions Femoral neck geometry computed by HSA from DXA data corresponds well enough to that from QCT for an analysis of load stress in the larger SWAN data set. Geometry derived from BMD data performed nearly as well. Proximal femur breaking strength estimated from 2D DXA data is not as well correlated with that derived by a 3D FEA using QCT data. PMID:22810918
Interactions between CXCR4 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma.
Im, K S; Graef, A J; Breen, M; Lindblad-Toh, K; Modiano, J F; Kim, J-H
2017-06-01
The CXCR4/CXCL12 axis plays an important role in cell locomotion and metastasis in many cancers. In this study, we hypothesized that the CXCR4/CXCL12 axis promotes migration and invasion of canine hemangiosarcoma (HSA) cells. Transcriptomic analysis across 12 HSA cell lines and 58 HSA whole tumour tissues identified heterogeneous expression of CXCR4 and CXCL12, which was associated with cell movement. In vitro, CXCL12 promoted calcium mobilization, cell migration and invasion that were directly proportional to surface expression of CXCR4; furthermore, these responses proved sensitive to the CXCR4 antagonist, AMD3100, in HSA cell lines. These results indicate that CXCL12 potentiates migration and invasion of canine HSA cells through CXCR4 signalling. The direct relationship between these responses in HSA cells suggests that the CXCR4/CXCL12 axis contributes to HSA progression. © 2015 John Wiley & Sons Ltd.
Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita
2018-04-24
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7 M -1 and 4.2 × 10 6 M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.
Gene expression profiling in whole blood of patients with coronary artery disease
Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.
2010-01-01
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768
Gou, Yi; Zhang, Zhenlei; Li, Dongyang; Zhao, Lei; Cai, Meiling; Sun, Zhewen; Li, Yongping; Zhang, Yao; Khan, Hamid; Sun, Hongbing; Wang, Tao; Liang, Hong; Yang, Feng
2018-11-01
Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Threadgill, D.S.; Womack, J.E.; Kraus, J.P.
1991-01-01
To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exceptionmore » of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q.« less
Pawar, Suma K; Jaldappagari, Seetharamappa
2017-09-01
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied. Copyright © 2017 John Wiley & Sons, Ltd.
Small-volume resuscitation from hemorrhagic shock with polymerized human serum albumin.
Messmer, Catalina; Yalcin, Ozlem; Palmer, Andre F; Cabrales, Pedro
2012-10-01
Human serum albumin (HSA) is used as a plasma expander; however, albumin is readily eliminated from the intravascular space. The objective of this study was to establish the effects of various-sized polymerized HSAs (PolyHSAs) during small-volume resuscitation from hemorrhagic shock on systemic parameters, microvascular hemodynamics, and functional capillary density in the hamster window chamber model. Polymerized HSA size was controlled by varying the cross-link density (ie, molar ratio of glutaraldehyde to HSA). Hemorrhage was induced by controlled arterial bleeding of 50% of the animal's blood volume (BV), and hypovolemic shock was maintained for 1 hour. Resuscitation was implemented in 2 phases, first, by infusion of 3.5% of the BV of hypertonic saline (7.5% NaCl) then followed by infusion of 10% of the BV of each PolyHSA. Resuscitation provided rapid recovery of blood pressure, blood gas parameters, and microvascular perfusion. Polymerized HSA at a glutaraldehyde-to-HSA molar ratio of 60:1 (PolyHSA(60:1)) provided superior recovery of blood pressure, microvascular blood flow, and functional capillary density, and acid-base balance, with sustained volume expansion in relation to the volume infused. The high molecular weight of PolyHSA(60:1) increased the hydrodynamic radius and solution viscosity. Pharmacokinetic analysis of PolyHSA(60:1) indicates reduced clearance and increased circulatory half-life compared with monomeric HSA and other PolyHSA formulations. In conclusion, HSA molecular size and solution viscosity affect central hemodynamics, microvascular blood flow, volume expansion, and circulation persistence during small-volume resuscitation from hemorrhagic shock. In addition, PolyHSA can be an alternative to HSA in pathophysiological situations with compromised vascular permeability. Copyright © 2012 Elsevier Inc. All rights reserved.
Sekowski, Szymon; Ionov, Maksim; Kaszuba, Mateusz; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria
2014-11-01
Tannins, secondary plant metabolites, possess diverse biological activities and can interact with biopolymers such as lipids or proteins. Interactions between tannins and proteins depend on the structures of both and can result in changes in protein structure and activity. Because human serum albumin is the most abundant protein in plasma and responsible for interactions with important biological compounds (e.g. bilirubin) and proper blood pressure, therefore, it is very important to investigate reactions between HSA and tannins. This paper describes the interaction between human serum albumin (HSA) and two tannins: bihexahydroxydiphenoyl-trigalloylglucose (BDTG) and 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-d-glucose (OGβDG), isolated from Geranium sanguineum and Oenothera gigas leafs, respectively. Optical (spectrofluorimetric) and chiral optical (circular dichroism) methods were used in this study. Fluorescence analysis demonstrated that OGβDG quenched HSA fluorescence more strongly than BDTG. Both OGβDG and BDTG formed complexes with albumin and caused a red shift of the fluorescence spectra but did not significantly change the protein secondary structure. Our studies clearly demonstrate that the tested tannins interact very strongly with human serum albumin (quenching constant K=88,277.26±407.04 M(-1) and K=55,552.67±583.07 M(-1) respectively for OGβDG and BDTG) in a manner depending on their chemical structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Dawei; Zhang, Chenyue; Lin, Jiamao; Song, Xinyu; Wang, Haiyong
2018-01-01
The aim of this study was to analyze the diagnostic and prognostic values of the circular RNA (circRNA) hsa_circ_0128298 in hepatocellular carcinoma (HCC). The global circRNA expression was measured using circRNA microarray using three pairs of cancer and noncancerous tissues from HCC patients. The microarray analysis revealed that two circRNAs were differentially expressed in the three pairs of cancerous and noncancerous tissues. The higher levels of two representative circRNAs, such as hsa_circ_0128298 and hsa_circ_0091582, were further confirmed by real-time polymerase chain reaction. In addition, the association between the expression level of hsa_circ_0128298 and the clinicopathological features of patients with HCC was further analyzed. The clinical diagnosis value was confirmed by receiver operating characteristic (ROC) curve analysis. Independent prognostic factors of patient outcome were identified using the Cox regression model. The survival data were analyzed by the Kaplan-Meier method, and the differences were evaluated using log-rank tests. Two-sided P -values <0.05 were considered statistically significant. The expression levels of hsa_circ_0128298 in HCC were significantly higher than those of paratumorous tissues ( P <0.001). Additionally, hsa_circ_0128298 was a diagnostic factor, with the area under the ROC curve of 0.668 (95% CI =0.503-0.794, P <0.001). The sensitivity and specificity values were 0.716 and 0.815, respectively. The AFP and hsa_circ_0128298 expression levels were independent prognostic factors. The overall survival of patients with low hsa_circ_0128298 expression was significantly higher than that of patients with high hsa_circ_0128298 expression. hsa_circ_0128298 may promote proliferation and metastasis and potentially represents a novel diagnostic and prognostic biomarker for HCC patients. However, studies with larger sample size are needed to confirm our conclusion.
Rehman, Md Tabish; Shamsi, Hira; Khan, Asad U
2014-06-02
The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic interactions played a vital role along with hydrogen bonding and hydrophobic interactions in stabilizing the imipenem.HSA complex at subdomain IIIA, while only electrostatic and hydrophobic interactions were present at subdomain IIA.IIB. The binding and thermodynamic parameters obtained by ITC showed that the binding of imipenem to HSA was a spontaneous process (ΔGD⁰(D)= -32.31 kJ mol(-1) for high affinity site and ΔGD⁰(D) = -23.02 kJ mol(-1) for low affinity site) with binding constants in the range of 10(4)-10(5) M(-1). Spectroscopic investigation revealed only one binding site of imipenem on HSA (Ka∼10(4) M(-1)). FRET analysis showed that the binding distance between imipenem and HSA (Trp-214) was optimal (r = 4.32 nm) for quenching to occur. Decrease in esterase-like activity of HSA in the presence of imipenem showed that Arg-410 and Tyr-411 of subdomain IIIA (Sudlow's site II) were directly involved in the binding process. CD spectral analysis showed altered conformation of HSA upon imipenem binding. Moreover, the binding of imipenem to subdomain IIIA (Sudlow's site II) of HSA also affected its folding pathway as clear from urea-induced denaturation studies.
Sun, Hanwen; He, Pan
2009-06-01
The binding of doxycycline to HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate, I=0.17, drug concentration 100 microM, HSA concentration up to 475 microM, 36.5 degrees C) was studied by CE-frontal analysis. The number of primary binding sites, binding constant and physiological protein-binding percentage were 1.9, 1.51 x 10(3) M(-1) and 59.80%, respectively. In addition, the thermodynamic parameters including enthalpy change (DeltaH), entropy change (DeltaS) and free energy change (DeltaG) of the reaction were obtained in order to characterize the acting forces between doxycycline and HSA. Furthermore, to better understand the nature of doxycycline-HSA binding and to get information about potential interaction with other drugs, displacement experiments were performed. The results showed that doxycycline binds at site II of HSA.
Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun
2018-06-05
Eu 3+ doped LaPO 4 fluorescent nanorods (LaPO 4 :Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO 4 :Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100nm and a diameter of about 10nm, can emit strong red fluorescence upon excitation at 241nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO 4 :Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 10 3 Lmol -1 . The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO 4 :Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues. Copyright © 2018 Elsevier B.V. All rights reserved.
Alahmad, Youssef; Tran, Nguyet Thuy; Le Potier, Isabelle; Forest, Eric; Jorieux, Sylvie; Taverna, Myriam
2011-01-01
We present a new CZE method, which uses a polyethylene oxide-coated capillary to separate native HSA from more than five of its structural variants. These variants include oxidized, truncated, and cysteinylated forms of HSA which can all be found in biopharmaceutical products. Both CE and MS confirmed the high degree of heterogeneity of HSA preparations. Recovery studies demonstrated that adsorption of HSA on the capillary was significantly reduced under the conditions we developed, which led to a satisfactory repeatability (RSD for migration times and relative peak areas were less than 0.2 and 7.0%, respectively). Assignment of the main peaks was attempted using in vitro degraded/stressed HSA. We used our method to test batch-to-batch comparability and detected slight quantitative differences in the proportion of native HSA in batches produced from different fractionation methods. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdollahpour, Nooshin; Soheili, Vahid; Saberi, Mohammad Reza; Chamani, Jamshidkhan
2016-12-01
Human serum albumin (HSA) is the most frequent protein in blood plasma. Albumin transports various compounds, preserves osmotic pressure, and buffers pH. A unique feature of albumin is its ability to bind drugs and other bioactive molecules. However, it is important to consider binary and ternary systems of two pharmaceuticals to estimate the effect of the first drug on the second one and physicochemical properties. Different techniques including time-resolved, second-derivative and anisotropy fluorescence spectroscopy, resonance light scattering (RLS), critical induced aggregation concentration (C CIAC ), particle size, zeta potential and stability analysis were employed in this assessment to elucidate the binding behavior of Amlodipine and Aspirin to HSA. Moreover, isothermal titration calorimetric techniques were performed and the QSAR properties were applied to analyze the hydration energy and log P. Multiple sequence alignments were also used to predict the structure and biological characteristics of the HSA binding site. Time-resolved fluorescence spectroscopy showed interaction of both drugs to HSA based on a static quenching mechanism. Subsequently, second-derivative fluorescence spectroscopy presented different values of parameter H in binary and ternary systems, which were suggested that tryptophan was in a more polar environment in the ternary system than in a binary system. Moreover, the polydispersity index and results from mean number measurements revealed that the presence of the second drug caused a decrease in the stability of systems and increased the heterogeneity of complex. It is also, observed that the gradual addition of HSA has led to a marked increase in fluorescence anisotropy (r) of Amlodipine and Aspirin which can be suggested that the drugs were located in a restricted environment of the protein as confirmed by Red Edge Excitation Shift (REES) studies. The isothermal titration calorimetric technique demonstrated that the interaction of the drugs with HSA was an enthalpically-driven process. The present experiment showed that the binding of Amlodipine and Aspirin to HSA induced a conformational change of HSA. It was also identified that the protein binding of the first drug could be affected by the second drug. Such results can be of great use for understanding the pharmacokinetic and pharmacodynamic mechanisms of drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling; Wang, Lin; Meng, Zhiyun
Highlights: • E2HSA has an extended half-life and good plasma stability. • E2HSA could improve glucose-dependent insulin secretion. • E2HSA has excellent glucoregulatory effects in vivo. • E2HSA could potentially be used as a new long-acting GLP-1 receptor agonist for type 2 diabetes management. - Abstract: Glucagon-like peptide-1 (GLP-1) has attracted considerable research interest in terms of the treatment of type 2 diabetes due to their multiple glucoregulatory functions. However, the short half-life, rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native incretin hormone. Therefore, efforts are being made to develop the long-acting incretinmore » mimetics via modifying its structure. Here we report a novel recombinant exendin-4 human serum albumin fusion protein E2HSA with HSA molecule extends their circulatory half-life in vivo while still retaining exendin-4 biological activity and therapeutic properties. In vitro comparisons of E2HSA and exendin-4 showed similar insulinotropic activity on rat pancreatic islets and GLP-1R-dependent biological activity on RIN-m5F cells, although E2HSA was less potent than exendin-4. E2HSA had a terminal elimation half-life of approximate 54 h in healthy rhesus monkeys. Furthermore, E2HSA could reduce postprandial glucose excursion and control fasting glucose level, dose-dependent suppress food intake. Improvement in glucose-dependent insulin secretion and control serum glucose excursions were observed during hyperglycemic clamp test (18 h) and oral glucose tolerance test (42 h) respectively. Thus the improved physiological characterization of E2HSA make it a new potent anti-diabetic drug for type 2 diabetes therapy.« less
Sheng, Feng; Wang, Yuning; Zhao, Xingchen; Tian, Na; Hu, Huali; Li, Pengxia
2014-07-16
Purple pigments were isolated from mulberry extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by ESI-MS/MS and high performance liquid chromatography (HPLC) techniques. The solvent system containing methyl tert-butyl ether, 1-butanol, acetonitrile, water, and trifluoroacetic acid (10:30:10:50:0.05; %, v/v) was developed in order to separate anthocyanins with different polarities. Cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-galactopyranoside) (also known as keracyanin) is the major component present in mulberry (41.3%). Other isolated pigments are cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside) and petunidin 3-O-β-glucopyranoside. The binding characteristics of keracyanin with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopy. Spectroscopic analysis reveals that HSA fluorescence quenched by keracyanin follows a static mode. Binding of keracyanin to HSA mainly depends on van der Waals force or H-bonds with average binding distance of 2.82 nm. The results from synchronous fluorescence, three-dimensional fluorescence, and CD spectra show that adaptive structure rearrangement and decrease of α-helical structure occur in the presence of keracyanin.
Naeem, Aabgeena; Amani, Samreen
2013-01-01
The misfolding and aggregation of proteins is involved in some of the most prevalent neurodegenerative disorders. The importance of human serum albumin (HSA) stems from the fact that it is involved in bio-regulatory and transport phenomena. Here the effect of acetonitrile (ACN) on the conformational stability of HSA and by comparison, ovalbumin (OVA) has been evaluated in the presence and absence of NaCl. The results show the presence of significant amount of secondary structure in HSA at 70% ACN and in OVA at 50% ACN, as evident from far-UV Circular Dichroism (CD) and Attenuated Total Reflection Fourier transformed infra red spectroscopy (ATR-FTIR). Tryptophan and 8-Anilino-1-Naphthalene-Sulphonic acid (ANS) fluorescence indicate altered tryptophan environment and high ANS binding suggesting a compact “molten globule”-like conformation with enhanced exposure of hydrophobic surface area. However, in presence of NaCl no intermediate state was observed. Detection of aggregates in HSA and OVA was possible at 90% ACN. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and ATR-FTIR. These aggregates exhibit increase Thioflavin T (Th T) fluorescence with a red shift of Congo red (CR) absorption spectrum. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis confirmed the presence of fibrillar aggregates. Single cell gel electrophoresis (SCGE) assay of these fibrillar aggregates showed the DNA damage resulting in cell necrosis confirming their genotoxic nature. Some proteins not related to any human disease form fibrils in vitro. In the present study ACN gives access to a model system to study the process of aggregation. PMID:23342075
NASA Astrophysics Data System (ADS)
Ling, Irene; Taha, Mohamed; Al-Sharji, Nada A.; Abou-Zied, Osama K.
2018-04-01
The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27 Å, which was closely reproduced by the docking analysis (29 Å) and MD simulation (32 Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5 nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui
2016-09-15
In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.
Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing
2016-07-01
Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆
Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan
2008-01-01
Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844
Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa
2017-01-01
Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effect of polymer molecular weight on chitosan-protein interaction.
Bekale, L; Agudelo, D; Tajmir-Riahi, H A
2015-01-01
We present a comprehensive study of the interactions between chitosan nanoparticles (15, 100 and 200 kDa with the same degree of deacetylation 90%) and two model proteins, i.e., bovine (BSA) and human serum albumins (HSA), with the aim of correlating chitosan molecular weight (Mw) and the binding affinity of these naturally occurring polymers to protein. The effect of chitosan on the protein secondary structure and the influence of protein complexation on the shape of chitosan nanoparticles are discussed. A combination of multiple spectroscopic methods, transmission electron microscopy (TEM) and thermodynamic analysis were used to assess the polymer-protein complex formation. Results revealed that the three chitosan nanoparticles interact with BSA to form chitosan-BSA complexes, mainly through hydrophobic contacts with the affinity order: 200>100>15 kDa. However, HSA-chitosan complexation is mainly via electrostatic interactions with the stability order: 100>200>15 kDa. Furthermore, the association between polymer and protein causes a partial protein conformational change by a major reduction of α-helix from 63% (free BSA) to 57% (chitosan-BSA) and 57% (free HSA) to 51% (chitosan-HSA). Finally, TEM micrographs clearly revealed that the binding of serum albumins with chitosan nanoparticles induces a significant change in protein morphology and the shape of the polymer. Copyright © 2014 Elsevier B.V. All rights reserved.
Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki
2014-01-01
A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2 •–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133
Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Cui, Jianguo; Su, Wei; Xiao, Qi
2016-12-01
Cadmium-free quantum dots (QDs) have attracted great attention in biological and biomedical applications due to their less content of toxic metals, but their potential toxicity investigations on molecular biology level are rarely involved. Since few studies have addressed whether InP/ZnS QDs could bind and alter the structure and function of human serum albumin (HSA), in vitro interaction between InP/ZnS QDs and HSA was systematically characterized by multispectroscopic approaches. InP/ZnS QDs could quench the intrinsic fluorescence of HSA via static mode. The binding site of InP/ZnS QDs was mainly located at subdomain IIA of HSA. Some thermodynamic parameters suggested that InP/ZnS QDs interacted with HSA mainly through electrostatic interactions. As further revealed by three-dimensional spectrometry, FT-IR spectrometry and circular dichroism technique, InP/ZnS QDs caused more global and local conformational change of HSA than CdSe/ZnS QDs, which illustrated the stronger binding interaction and higher potential toxicity of InP/ZnS QDs on biological function of HSA. Our results offer insights into the in vitro binding mechanism of InP/ZnS QDs with HSA and provide important information for possible toxicity risk of these cadmium-free QDs to human health. Copyright © 2016 Elsevier B.V. All rights reserved.
Carere, Jason; McKenna, Sarah E; Kimber, Matthew S; Seah, Stephen Y K
2013-05-21
HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.
Pehserl, Anna-Maria; Ress, Anna Lena; Stanzer, Stefanie; Resel, Margit; Karbiener, Michael; Stadelmeyer, Elke; Stiegelbauer, Verena; Gerger, Armin; Mayr, Christian; Scheideler, Marcel; Hutterer, Georg C.; Bauernhofer, Thomas; Kiesslich, Tobias; Pichler, Martin
2016-01-01
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer, is currently being studied as a monotherapy in selected molecular subtypes or in combination with other drugs in metastatic CRC. In this study, we explored sorafenib-induced cellular effects in Kirsten rat sarcoma viral oncogene homolog olog (KRAS) wild-type and KRAS-mutated CRC cell lines (Caco-2 and HRT-18), and finally profiled expression changes of specific miRNAs within the miRNome (>1000 human miRNAs) after exposure to sorafenib. Overall, sorafenib induced a time- and dose-dependent growth-inhibitory effect through S-phase cell cycle arrest in KRAS wild-type and KRAS-mutated CRC cells. In HRT-18 cells, two human miRNAs (hsa-miR-597 and hsa-miR-720) and two small RNAs (SNORD 13 and hsa-miR-3182) were identified as specifically sorafenib-induced. In Caco-2 cells, nine human miRNAs (hsa-miR-3142, hsa-miR-20a, hsa-miR-4301, hsa-miR-1290, hsa-miR-4286, hsa-miR-3182, hsa-miR-3142, hsa-miR-1246 and hsa-miR-720) were identified to be differentially regulated post sorafenib treatment. In conclusion, we confirmed sorafenib as a potential anti-neoplastic treatment strategy for CRC cells by demonstrating a growth-inhibitory and cell cycle–arresting effect of this drug. Changes in the miRNome indicate that some specific miRNAs might be relevant as indicators for sorafenib response, drug resistance and potential targets for combinatorial miRNA-based drug strategies. PMID:27916938
Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam
2018-05-18
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.
Li, Chen-Ye; Ma, Lan; Yu, Bo
2017-11-01
Circular RNAs (circRNAs) are a novel class of RNAs generated from back-splicing and characterized by covalently closed continuous loops. Recently, circRNAs have recently shown large regulation on cardiovascular system, including atherosclerosis. The present study aims to investigate the circRNA expression profile and identify their roles on vascular endothelial cells induced by oxLDL. Human circRNA microarray analysis revealed that total 943 differently expressed circRNAs were screened with 2 fold change. Hsa_circ_0003575 was validated to be significantly up-regulated in oxLDL induced HUVECs. Loss-of-function experiments indicated that hsa_circ_0003575 silencing promoted the proliferation and angiogenesis ability of HUVECs. Bioinformatics online programs predicted the potential circRNA-miRNA-mRNA network for hsa_circ_0003575. In summary, circRNA microarray analysis reveals the expression profiles of HUVECs and verifies the role of hsa_circ_0003575 on HUVECs, providing a therapeutic strategy for vascular endothelial cell injury of atherosclerosis. Copyright © 2017. Published by Elsevier Masson SAS.
Wu, Di; Yan, Jin; Wang, Jing; Wang, Qing; Li, Hui
2015-03-01
Binding interaction of human serum albumin (HSA) with allura red AC, a food colourant, was investigated at the molecular level through fluorescence, ultraviolet-visible, circular dichroism (CD) and Raman spectroscopies, as well as protein-ligand docking studies to better understand the chemical absorption, distribution and transportation of colourants. Results show that allura red AC has the ability to quench the intrinsic fluorescence of HSA through static quenching. The negative values of the thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bond and van der Waals forces are dominant in the binding between the food colourant and HSA. The CD and Raman spectra showed that the binding of allura red AC to HSA induces the rearrangement of the carbonyl hydrogen-bonding network of polypeptides, which changes the HSA secondary structure. This colourant is bound to HSA in site I, and the binding mode was further analysed with the use of the CDOCKER algorithm in Discovery Studio. Copyright © 2014 Elsevier Ltd. All rights reserved.
Insights into in vitro binding of parecoxib to human serum albumin by spectroscopic methods.
Shang, Shujun; Liu, Qingling; Gao, Jiandong; Zhu, Yulin; Liu, Jingying; Wang, Kaiyan; Shao, Wei; Zhang, Shudong
2014-10-01
Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three-dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern-Volmer quenching constants K(SV) and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 10(4) M(-1) at 298 K. It can be seen from far-UV CD spectra that the α-helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA. © 2014 Wiley Periodicals, Inc.
Joshi, Ritika; Jadhao, Manojkumar; Kumar, Himank; Ghosh, Sujit Kumar
2017-12-01
A comparative biophysical study on the individual conformational adaptation embraced by two homologous serum albumins (SA) (bovine and human) towards a potential anticancer bioorganic compound 2-(6-chlorobenzo[d] thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)- dione (CBIQD) is apparent from the discrimination in binding behavior and the ensuing consequences accomplished by combined in vitro optical spectroscopy, in silico molecular docking and molecular dynamics (MD) simulation. The Sudlow site I of HSA although anion receptive, harbors neutral CBIQD in Sudlow site I (subdomain IIA, close to Trp) of HSA, while in BSA its prefers to snugly fit into Sudlow site II (subdomain IIIA, close to Tyr). Based on discernable diminution of HSA mean fluorescence lifetime as a function of biluminophore concentration, facile occurrence of fluorescence resonance energy transfer (FRET) is substantiated as the probable quenching mechanism accompanied by structural deformations in the protein ensemble. CBIQD establishes itself within HSA close to Trp214, and consequently reduces the micropolarity of the cybotactic environment that is predominantly constituted by hydrophobic amino acid residues. The stronger association of CBIQD with HSA encourages an allosteric modulation leading to slight deformation in its secondary structure whereas for BSA the association is comparatively weaker. Sudlow site I of HSA is capable to embrace a favorable conformation like malleable gold to provide room for incoming CBIQD, whereas for BSA it behaves more like rigid cast-iron which does not admit any change thus forcing CBIQD to occupy an altogether different binding location i.e. the Sudlow site II. The anticancer CBIQD is found to be stable within the HSA scaffold as vindicated by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) obtained by MD simulation. A competitively inhibited esterase-like activity of HSA upon CBIQD binding to Lys199 and Arg257 residues, plausibly envisions that similar naphthalimide based prodrugs, bearing ester functionality, can be particularly activated by Sudlow site I of HSA. The consolidated spectroscopic research described herein may encourage design of naphthalimide based pro-drugs for effective in vivo biodistribution using HSA-based drug delivery systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Jin, Shan; Liu, Min-Da; Wu, Hong; Pang, Pai; Wang, Song; Li, Zhen-Ning; Sun, Chang-Fu; Liu, Fa-Yu
2018-06-01
Head and neck squamous cell carcinoma (HNSCC) is usually diagnosed accompanied by lymph node metastasis. C-C chemokine receptor type 7 (CCR7) is associated with the invasion and metastasis of tumors in HNSCC through various signaling pathways. The role of hsa-miR-125a-5p in HNSCC remains unclear. The present study was performed to investigate the association between hsa-miR-125a-5p and CCR7 in HNSCC. Reverse transcription-quantitative polymerase chain reaction was applied to analyze the expression of hsa-miR-125a-5p in clinical samples. Cell Counting Kit-8, Transwell and wound healing assays were used to detect cell proliferation, invasion, and metastasis, respectively, following overexpression of hsa-miR-125a-5p. Changes in protein expression of CCR7 were observed using western blotting. In the survival analysis, Student's t-tests and log rank tests were performed to analyze the association between the expression of hsa-miR-125a-5p, and HNSCC according to the Cancer Genome Atlas database. The expression of hsa-miR-125a-5p was identified to be significantly lower in cancer tissue compared with the corresponding adjacent normal tissues in clinical samples (P=0.038). The results of western blotting indicated that there was a positive regulatory association between hsa-miR-125a-5p and CCR7. Furthermore, overexpression of hsa-miR-125a-5p significantly enhanced the ability of cell proliferation, migration and invasion in HNSCC, with upregulation of CCR7. The results of survival analysis revealed that patients in the low expression group of hsa-miR-125a-5p tended to have longer survival times compared with the high expression group (P=0.045). Altogether, the data raised the possibility that hsa-miR-125a-5p has a significant role in promoting cancer in HNSCC, which may provide a basis for the treatment of HNSCC in molecular targeted therapy. Further studies are required to ascertain the role of hsa-miR-125a-5p in other HNSCC cell lines and in vivo .
Zhuang, Shulin; Wang, Haifei; Ding, Keke; Wang, Jiaying; Pan, Liumeng; Lu, Yanli; Liu, Qingjun; Zhang, Chunlong
2016-02-01
Benzotriazole UV stabilizers (BZTs) belong to one prominent group of ultraviolet (UV) stabilizers and are widely used in various plastics materials. Their large production volumes, frequent detections in the environment and potential toxicities have raised increasing public concern. BZTs can be transported in vivo by transport proteins in plasma and the binding association to transport proteins may serve as a significant parameter to evaluate the bioaccumulative potential. We utilized a novel HSA biosensor, circular dichroism spectroscopy, fluorescence spectroscopy to detect the dynamic interactions of six BZTs (UV-326, UV-327, UV-328, UV-329, UV-P, and BZT) with human serum albumin (HSA), and characterized the corresponding structure-activity relationships (SAR) by molecular dynamics simulations. All test BZTs potently bind at Sudlow site I of HSA with a binding constant of 10(4) L/mol at 298 K. Minor changes in the moieties of BZTs affect their interactions with HSA and differently induce conformations of HSA. Their binding reduced electrochemical impedance spectra and α-helix content of HSA, caused slight red-shifted emission, and changed fluorescence lifetime components of HSA in a concentration-dependent mode. UV-327 and UV-329 form hydrogen bonds with HSA, while UV-329, UV-P and BZT bind HSA with more favorable electrostatic interactions. Our in vitro and in silico study offered a significant framework toward the understanding of risk assessment of BZTs and provides guide for future design of environmental benign BZTs-related materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang
2017-09-20
BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.
NASA Astrophysics Data System (ADS)
Zohoorian-Abootorabi, Toktam; Sanee, Hamideh; Iranfar, Hediyeh; Saberi, Mohammad Reza; Chamani, Jamshidkhan
2012-03-01
This study was designed to examine the interaction of two anti-breast cancer drugs, i.e., fluoxymesterone (FLU) and cyclophosphamide (CYC), with human serum albumin (HSA) using different kinds of spectroscopic, zeta potential and molecular modeling techniques under imitated physiological conditions. The RLS technique was utilized to investigate the effect of the two anticancer drugs on changes of the protein conformation, both separately and simultaneously. Our study suggested that the enhancement in RLS intensity was attributed to the formation of a new complex between the two drugs and the protein. Both drugs demonstrated a powerful ability to quench the fluorescence of HSA, and the fluorescence quenching action was much stronger when the two drugs coexisted. The quenching mechanism was suggested to be static as confirmed by time-resolved fluorescence spectroscopy results. The effect of both drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy. Our results revealed that the fluorescence quenching of HSA originated from the Trp and Tyr residues, and demonstrated a conformational change of HSA with the addition of both drugs. The binding distances between HSA and the drugs were estimated by the Förster theory, and it was revealed that nonradiative energy transfer from HSA to both drugs occurred with a high probability. According to CD measurements, the influence of both drugs on the secondary structure of HSA in aqueous solutions was also investigated and illustrated that the α-helix content of HSA decreased with increasing drug concentration in both systems. Moreover, the zeta-potential experiments revealed that both drugs induced conformational changes on HSA. Docking studies were also performed and demonstrated that a reduction of the binding affinity between the drugs and HSA occurred in the presence of both drugs.
NASA Astrophysics Data System (ADS)
Zaidan, A.; Ilhami, F.; Fahmi, M. Z.; Purwanto, B.; Kharisma, R. Z.
2017-05-01
Manganese ferrite nanoparticles (MnFe2O4) have received increasing attention due to their remarkable magnetic properties and have been used for various biomedical applications. They have potential applications in magnetic resonance imaging and hyperthermia for cancer. Both novel applications require a delivery system that will allow nanoparticle to move easily and localization of nanoparticle to the target tissue. In our work, we developed human serum albumin coated manganese ferrite magnetic nanoparticles (HSA-MF NPs). The nanoparticles were prepared using solvothermal method and modified with folic acid for targeted delivery. Structure and morphology of manganese ferrite nanoparticle were characterized by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM). The size of folic acid conjugated HSA-MF NPs (HSA-MF-FA NPs) were studied by dynamic light scattering (DLS). In the in vivo study, we used benzopyrene-induced cancer in mice. We successfully delivered HSA-MF-FA NPs through intravenous tail injection after induction of the tumour. We found that 54% of initial HSA-MF-FA NPs which previously injected localize in the target tissue. While obtained p-value from independent T-test is 0.013 which shows that there is a difference between the control group (HSA-MF NPs) and the treated group (HSA-MF-FA NPs)
Ding, Fei; Peng, Wei
2015-04-01
Naturally multifunctional Rutaceae hesperidin and its aglycone hesperetin have a great variety of biopharmaceutical activities, e.g. anti-cancer, anti-inflammatory, antioxidant and antitumor; however, the influence of the molecular structures of hesperidin and hesperetin, and in particular, the structural properties such as flexibility and dynamic features of protein on the biological activities of these bioactive compounds remains ambiguous. In the present study, the biomolecular recognition of crucial biopolymer - albumin from human serum (HSA) with Rutaceae, the recognition differences between HSA-hesperidin and HSA-hesperetin, the key elements that lead to the discrepancies as well as the structural characters of protein to the recognition processes were comparatively examined by employing biophysical approaches at the molecular scale. The results illustrated distinctly that (1) aglycone hesperetin can form stronger noncovalent bonds with HSA and possess higher recognition stability as compared with hesperidin. This phenomenon suggest that the introduction of glycoside structure into flavanone may possibly not be able to increase the noncovalent recognition of flavanone by a biopolymer, and conversely, this event will probably decrease the recognition capacity. (2) Although hesperidin and hesperetin can be located within subdomains IIA and IIIA, respectively, the conformational stability of flavanones in subdomain IIA is greater than subdomain IIIA; as a result, the recognition ability of subdomain IIIA with flavanones is patently lesser than subdomain IIA. These discrepancies likely originate from the unique characteristics of the respective cavity, or more specifically, subdomain IIA is basically a closed space, whereas subdomain IIIA is a semi-open region. Meanwhile, the detailed analyses of root-mean-square fluctuation interpreted the recognition of flavanones by subdomain IIA on HSA, which would evoke larger conformational alterations in several amino acid residues, and the similar phenomenon also resides in subdomain IIIA, which signifies that the flexible characteristics of different binding patches in protein may possess fairly notable effects on the HSA-flavanones recognition. Moreover, the integral structural changes of HSA exhibit some disparities on account of the dissimilarities of recognition capability to the protein-flavanone biointeractions, and all these conclusions received further forceful supports from fluorescence and circular dichroism experiments in solution. Perhaps the work emerged herein could not only help us to better evaluate the bioavailability of natural flavanones with or without glycoside, but to understand the sketches of the three-dimensional structure trait of certain biomacromolecules for the medicinal properties of flavonoids in the human body.
ERIC Educational Resources Information Center
Rivard, Marie-Claude; Deslandes, Rollande; Beaudoin, Charlotte
2011-01-01
This case study focuses on the groundwork aiming at developing school-family-community collaboration in the deployment of the HSA in a low socio-economic status elementary school. Two theoretical models--the HSA and Hoover-Dempsey et al. (1997, 2010) models--guided the analysis of five discussion groups (N = 31) regarding their perceptions of the…
HPLC separation of human serum albumin isoforms based on their isoelectric points
Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael
2014-01-01
Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA–SHg+), HSA with Cys34 oxidized to sulfenic acid (HSA–SOH) and HSA oxidized to sulfinate anion (HSA–SO2−) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3–585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA PMID:24316526
Circular RNA 0068669 as a new biomarker for hepatocellular carcinoma metastasis.
Yao, Ting; Chen, Qingqing; Shao, Zhouwei; Song, Zhihua; Fu, Liyun; Xiao, Bingxiu
2018-05-21
Circular RNAs (circRNAs) play important roles in disease occurrence. However, the roles of circRNAs in the diagnosis of hepatocellular carcinoma (HCC) are largely unknown. The aim of this study is to investigate the clinical diagnostic values of hsa_circ_0068669 (Alias: hsa_circ_103561), one of the representative HCC-associated circRNAs. Hsa_circ_0068669 expression levels in HCC tissues, HCC cell lines, and chronic hepatitis tissues were detected by real-time quantitative reverse transcription-polymerase chain reaction. Its expression levels between HCC tissues and adjacent non-tumorous tissues were analyzed using paired t test. Independent t test and one-way analysis of variance (ANOVA) were performed to analyze the relationships between hsa_circ_0068669 expression levels and clinicopathological factors of patients with HCC. A receiver operating characteristic (ROC) curve was established to estimate the value of hsa_circ_0068669 as a biomarker in HCC. Hsa_circ_0068669 expression was significantly downregulated in HCC tissues and HCC cell lines compared with paired non-tumorous tissues and normal hepatic cell line, respectively. Moreover, hsa_circ_0068669 expression in HCC tissues was decreased comparing with chronic hepatitis tissues. Furthermore, hsa_circ_0068669 expression was correlated with microvascular invasion and TNM stages. Our findings indicate that hsa_circ_0068669 might be served as a novel potential biomarker for HCC metastasis. © 2018 Wiley Periodicals, Inc.
Kimura, Kotaro; Yamasaki, Keishi; Nakamura, Hideaki; Haratake, Mamoru; Taguchi, Kazuaki; Otagiri, Masaki
2018-01-01
Nanoparticles prepared using human serum albumin (HSA) have emerged as versatile carriers for improving the pharmacokinetic profile of drugs. The desolvation of HSA using ethanol followed by stabilization through crosslinking with glutaraldehyde is a common technique for preparing HSA nanoparticles, but our knowledge concerning the characteristics (or functions) of HSA nanoparticles and their efficiency when loaded with drugs is limited. To address this issue in more detail, we prepared anthracycline-loaded HSA nanoparticles. Doxorubicin-loaded HSA nanoparticles with a size similar to doxorubicin-unloaded particles could be prepared by desolvating at a higher pH (8-9), and the size (100-150 nm) was optimum for delivery to tumor tissues. Using this procedure, HSA nanoparticles were loaded with other anthracycline derivatives, and all showed cytotoxicity in cancer cells. However, the efficiency of drug loading and dissolution rate were different among them possibly due to the differences in the type of association of the drugs on nanoparticles (doxorubicin and daunorubicin; covalently bound to nanoparticles, pirarubicin; both covalently bound to and adsorbed on nanoparticles, aclarubicin; adsorbed on nanoparticles). Since the formulation of such drug-loaded HSA nanoparticles should be modified for efficient delivery to tumors, the findings reported herein provide the useful information for optimizing the formulation and the production process for the HSA nanoparticles using a desolvation technique.
Dabrowski, Marcin; Cieplak, Maciej; Sharma, Piyush Sindhu; Borowicz, Pawel; Noworyta, Krzysztof; Lisowski, Wojciech; D'Souza, Francis; Kuhn, Alexander; Kutner, Wlodzimierz
2017-08-15
Nanostructured artificial receptor materials with unprecedented hierarchical structure for determination of human serum albumin (HSA) are designed and fabricated. For that purpose a new hierarchical template is prepared. This template allowed for simultaneous structural control of the deposited molecularly imprinted polymer (MIP) film on three length scales. A colloidal crystal templating with optimized electrochemical polymerization of 2,3'-bithiophene enables deposition of an MIP film in the form of an inverse opal. Thickness of the deposited polymer film is precisely controlled with the number of current oscillations during potentiostatic deposition of the imprinted poly(2,3'-bithiophene) film. Prior immobilization of HSA on the colloidal crystal allows formation of molecularly imprinted cavities exclusively on the internal surface of the pores. Furthermore, all binding sites are located on the surface of the imprinted cavities at locations corresponding to positions of functional groups present on the surface of HSA molecules due to prior derivatization of HSA molecules with appropriate functional monomers. This synergistic strategy results in a material with superior recognition performance. Integration of the MIP film as a recognition unit with a sensitive extended-gate field-effect transistor (EG-FET) transducer leads to highly selective HSA determination in the femtomolar concentration range. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature dependent rapid annealing effect induces amorphous aggregation of human serum albumin.
Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M; Al-Lohedan, Hammad; Badr, Gamal; Khan, Rizwan Hasan
2016-01-01
This study represents an analysis of the thermal aggregation of human serum albumin (HSA) induced by novel rosin modified compounds. The aggregation process causes conformational alterations in the secondary and tertiary structures of the proteins. The conversion of globular protein to amorphous aggregates was carried out by spectroscopic, calorimetric and microscopic techniques to investigate the factors that are responsible for the structural, conformational and morphological alteration in the protein. Our outcome results show that the aggregation of HSA was dependent on the hydrophobicity, charge and temperature, because the formation of amorphous aggregates occurs in the presence of a novel cationic rosin compound, quaternary amine of rosin diethylaminoethyl ester (QRMAE), at 40°C and pH 7.4 (but at 25°C on similar pH value, there was no evidence of aggregate formation). In addition, the parent compound of QRMAE, i.e., abietic acid, and other derivatives such as nonionic rosin compounds [(RMPEG-750) and (RMA-MPEG-750)] do not shows the aggregating property. This work provides precise and necessary information that aid in the understanding the effects of rosin derivative compounds on HSA. This study also restrains important information for athletes, health providers, pharmaceutical companies, industries, and soft drink-processing companies. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L.
2017-01-01
The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.
NASA Astrophysics Data System (ADS)
Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li
2011-10-01
The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.
Headache associated with sexual activity: demography, clinical features, and comorbidity.
Frese, A; Eikermann, A; Frese, K; Schwaag, S; Husstedt, I-W; Evers, S
2003-09-23
S: To provide data on the demography, clinical features, and comorbidity of headache associated with sexual activity (HSA). Between 1996 and 2001, 51 patients with the diagnosis of HSA were questioned using a structured interview. The mean age at onset was 39.2 (+/-11.1) years. There was a clear male preponderance (2.9:1). The age at onset had two peaks, with a first peak between the 20th and 24th (n = 13) years of life and a second peak between the 35th and 44th (n = 20) years of life. Eleven patients had HSA type 1 (dull subtype), which gradually increased with increasing sexual excitement. The remaining (n = 40) had HSA type 2 (explosive subtype). The pain was predominantly bilateral (67%), and diffuse or occipital (76%). The quality was nearly equally distributed among dull, throbbing, and stabbing. HSA was not dependent on specific sexual habits and most often occurred during sexual activity with the usual partner (94%) and during masturbation (35%). There was a high comorbidity with migraine (25%), benign exertional headache (29%), and tension-type headache (45%). HSA types 1 and 2 did not significantly differ in demography, clinical features, or comorbidity, except for a higher probability of stopping the attack by breaking off sexual activity in HSA type 1. There were no cases with HSA type 3 (postural subtype). Mean age at onset, a male preponderance, a predominantly bilateral and occipital pain, and a high comorbidity with other primary headaches are in concordance with case reports in the literature. The authors found two peaks for the age at onset, however. There was no clinical evidence proving subtypes 1 and 2 to be distinct disorders. HSA types 1 and 2 may be different manifestations of the same disease rather than distinct entities.
Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui
2014-01-30
The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bachmann, Katherine Neubecker; Fazeli, Pouneh K; Lawson, Elizabeth A; Russell, Brian M; Riccio, Ariana D; Meenaghan, Erinne; Gerweck, Anu V; Eddy, Kamryn; Holmes, Tara; Goldstein, Mark; Weigel, Thomas; Ebrahimi, Seda; Mickley, Diane; Gleysteen, Suzanne; Bredella, Miriam A; Klibanski, Anne; Miller, Karen K
2014-12-01
Data suggest that anorexia nervosa (AN) and obesity are complicated by elevated fracture risk, but skeletal site-specific data are lacking. Traditional bone mineral density (BMD) measurements are unsatisfactory at both weight extremes. Hip structural analysis (HSA) uses dual-energy X-ray absorptiometry data to estimate hip geometry and femoral strength. Factor of risk (φ) is the ratio of force applied to the hip from a fall with respect to femoral strength; higher values indicate higher hip fracture risk. The objective of the study was to investigate hip fracture risk in AN and overweight/obese women. This was a cross-sectional study. The study was conducted at a Clinical Research Center. PATIENTS included 368 women (aged 19-45 y): 246 AN, 53 overweight/obese, and 69 lean controls. HSA-derived femoral geometry, peak factor of risk for hip fracture, and factor of risk for hip fracture attenuated by trochanteric soft tissue (φ(attenuated)) were measured. Most HSA-derived parameters were impaired in AN and superior in obese/overweight women vs controls at the narrow neck, intertrochanteric, and femoral shaft (P ≤ .03). The φ(attenuated) was highest in AN and lowest in overweight/obese women (P < .0001). Lean mass was associated with superior, and duration of amenorrhea with inferior, HSA-derived parameters and φ(attenuated) (P < .05). Mean φ(attenuated) (P = .036), but not femoral neck BMD or HSA-estimated geometry, was impaired in women who had experienced fragility fractures. Femoral geometry by HSA, hip BMD, and factor of risk for hip fracture attenuated by soft tissue are impaired in AN and superior in obesity, suggesting higher and lower hip fracture risk, respectively. Only attenuated factor of risk was associated with fragility fracture prevalence, suggesting that variability in soft tissue padding may help explain site-specific fracture risk not captured by BMD.
Spectral and computational features of the binding between riparins and human serum albumin
NASA Astrophysics Data System (ADS)
Camargo, Cintia Ramos; Caruso, Ícaro Putinhon; Gutierrez, Stanley Juan Chavez; Fossey, Marcelo Andres; Filho, José Maria Barbosa; Cornélio, Marinônio Lopes
2018-02-01
The green Brazilian bay leaf, a spice much prized in local cuisine (Aniba riparia, Lauraceae), contains chemical compounds presenting benzoyl-derivatives named riparins, which have anti-inflammatory, antimicrobial and anxiolytic properties. However, it is unclear what kind of interaction riparins perform with any molecular target. As a profitable target, human serum albumin (HSA) is one of the principal extracellular proteins, with an exceptional capacity to interact with several molecules, and it also plays a crucial role in the transport, distribution, and metabolism of a wide variety of endogenous and exogenous ligands. To outline the HSA-riparin interaction mechanism, spectroscopy and computational methods were synergistically applied. An evaluation through fluorescence spectroscopy showed that the emission, attributed to Trp 214, at 346 nm decreased with titrations of riparins. A static quenching mechanism was observed in the binding of riparins to HSA. Fluorescence experiments performed at 298, 308 and 318 K made it possible to conduct thermodynamic analysis indicating a spontaneous reaction in the complex formation (ΔG < 0). The enthalpy-entropy balance experiment with a molecular modeling calculation revealed that hydrophobic, hydrogen bond and non-specific interactions are present for riparin I-III with HSA. The set of results from fractional fluorescence changes obtained through Schatchard was inconclusive in establishing what kind of cooperativity is present in the interaction. To shed light upon the HSA-riparins complex, Hill's approach was utilized to distinguish the index of affinity and the binding constant. A correspondence between the molecular structures of riparins, due to the presence of the hydroxyl group in the B-ring, with thermodynamic parameters and index of affinity were observed. Riparin III performs an intramolecular hydrogen bond, which affects the Hill coefficient and the binding constant. Therefore, the presence of hydroxyl groups is capable of modulating the interaction between riparins and HSA. Site marker competitive experiments indicated Site I as being the most suitable, and the molecular modeling tools reinforced the experimental results detailing the participation of residues.
Bachmann, Katherine Neubecker; Fazeli, Pouneh K.; Lawson, Elizabeth A.; Russell, Brian M.; Riccio, Ariana D.; Meenaghan, Erinne; Gerweck, Anu V.; Eddy, Kamryn; Holmes, Tara; Goldstein, Mark; Weigel, Thomas; Ebrahimi, Seda; Mickley, Diane; Gleysteen, Suzanne; Bredella, Miriam A.; Klibanski, Anne
2014-01-01
Context: Data suggest that anorexia nervosa (AN) and obesity are complicated by elevated fracture risk, but skeletal site-specific data are lacking. Traditional bone mineral density (BMD) measurements are unsatisfactory at both weight extremes. Hip structural analysis (HSA) uses dual-energy X-ray absorptiometry data to estimate hip geometry and femoral strength. Factor of risk (φ) is the ratio of force applied to the hip from a fall with respect to femoral strength; higher values indicate higher hip fracture risk. Objective: The objective of the study was to investigate hip fracture risk in AN and overweight/obese women. Design: This was a cross-sectional study. Setting: The study was conducted at a Clinical Research Center. Patients: Patients included 368 women (aged 19–45 y): 246 AN, 53 overweight/obese, and 69 lean controls. Main Outcome Measures: HSA-derived femoral geometry, peak factor of risk for hip fracture, and factor of risk for hip fracture attenuated by trochanteric soft tissue (φattenuated) were measured. Results: Most HSA-derived parameters were impaired in AN and superior in obese/overweight women vs controls at the narrow neck, intertrochanteric, and femoral shaft (P ≤ .03). The φattenuated was highest in AN and lowest in overweight/obese women (P < .0001). Lean mass was associated with superior, and duration of amenorrhea with inferior, HSA-derived parameters and φattenuated (P < .05). Mean φattenuated (P = .036), but not femoral neck BMD or HSA-estimated geometry, was impaired in women who had experienced fragility fractures. Conclusions: Femoral geometry by HSA, hip BMD, and factor of risk for hip fracture attenuated by soft tissue are impaired in AN and superior in obesity, suggesting higher and lower hip fracture risk, respectively. Only attenuated factor of risk was associated with fragility fracture prevalence, suggesting that variability in soft tissue padding may help explain site-specific fracture risk not captured by BMD. PMID:25062461
Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.
2015-01-01
This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681
Is head-shaft angle a valuable continuous risk factor for hip migration in cerebral palsy?
Chougule, Sanjay; Dabis, John; Petrie, Aviva; Daly, Karen; Gelfer, Yael
2016-12-01
Reimer's migration percentage (MP) is the most established radiographic risk factor for hip migration in cerebral palsy (CP), and it assists surgical decision-making. The head-shaft angle (HSA) measures the valgus of the head and neck in relation to the shaft and may also be a useful predictor of hip migration at a young age. This study first defined normal values and investigated whether the head-shaft angle (HSA) is a continuous risk factor for hip migration in CP. Three hundred and fifty AP pelvic radiographs of 100 consecutive children comprising the hip surveillance programme in our region were analysed for MP and HSA. Inclusion criteria were children with spastic CP and Gross Motor Function Classification System (GMFCS) levels of III-V, along with a minimum follow-up of 5 years. The mean age was 8.8 (range 3-18) years and the mean follow-up time was 7.5 (range 5-10) years. Radiographs of 103 typically developing children (TDC) were selected for the control group. The reliability of the measurements was determined. A random effects analysis was used to assess the relationship between MP and HSA for all data and for MP > 40 %. The TDC cohort had a mean HSA of 157.7° whilst that for the CP cohort was 161.7°. The value declined with age in both groups but remained consistently higher in the CP group. A random effects analysis considering the longitudinal data showed that there was no significant effect of HSA on MP. Similarly, when excluding CP patients with MP < 40 %, there was no significant effect of HSA on MP. This study found no correlation between HSA and hip migration in children with CP in this age group. Using the HSA as a routine radiographic measure in the management pathway across childhood does not offer any added value. Early enrolment onto the hip surveillance programme could offer a better prediction of hip migration using the HSA at a very young age. II retrospective prognostic study.
Iwao, Yasunori; Tomiguchi, Izumi; Domura, Ayaka; Mantaira, Yusuke; Minami, Akira; Suzuki, Takashi; Ikawa, Takashi; Kimura, Shin-Ichiro; Itai, Shigeru
2018-04-01
To develop a new strategy for inflamed site-specific drug delivery in the colon for the treatment of ulcerative colitis (UC), we leveraged on the interaction between myeloperoxidase (MPO) and human serum albumin (HSA) and prepared nanoparticles (HSA NPs) conjugated with 5-aminosalicylic acid (5-ASA). The 5-ASA-HSA NPs (nine molecules of 5-ASA per HSA molecule) were uniform particles with an average particle size of 190 nm, a zeta potential of --11.8 mV, and a polydispersity index of 0.35. This was considered a suitable particle characteristic to pass through the mucus layer and accumulate into the mucosa. The specific interaction between the 5-ASA-HSA NPs and MPO was observed using quartz crystal microbalance analysis in vitro. In addition, the 5-ASA-HSA NPs group containing one thousandth of the dose of the 5-ASA (75 μg/kg) showed significantly lower disease activity index values and colon weight/length ratios in UC model mice as similar to large amount of neat 5-ASA group (75 mg/kg), indicating that the therapeutic effect of the 5-ASA-HSA NP formulation was confirmed in vivo. Microscopic images of tissue sections of colon extracted from UC model mice demonstrated that HSA NPs and MPO were both localized in the colon, and this specific interaction between HSA NPs and MPO would be involved the in the therapeutic effect in vivo. Furthermore, in the 5-ASA and 5-ASA-HSA NPs groups, some inflammatory damage was observed in the colon, but the degree of damage was mild compared with the control and HSA NPs groups, suggesting mucosal repair and replacement with fibrous granulation tissue had occurred. Therefore, these data demonstrated that an HSA NP formulation has the potential to specifically deliver 5-ASA to an inflamed site where MPO is highly expressed. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shao, Xin; Ai, Ni; Xu, Donghang; Fan, Xiaohui
2016-05-01
Human serum albumin (HSA) binding is one of important pharmacokinetic properties of drug, which is closely related to in vivo distribution and may ultimately influence its clinical efficacy. Compared to conventional drug, limited information on this transportation process is available for medicinal herbs, which significantly hampers our understanding on their pharmacological effects, particularly when herbs and drug are co-administrated as polytherapy to the ailment. Several lines of evidence suggest the existence of Salvia miltiorrhiza-Warfarin interaction. Since Warfarin is highly HSA bound in the plasma with selectivity to site I, it is critical to evaluate the possibility of HSA-related herb-drug interaction. Herein an integrated approach was employed to analyze the binding of chemicals identified in S. miltiorrhiza to HSA. Molecular docking simulations revealed filtering criteria for HSA site I compounds that include docking score and key molecular determinants for binding. For eight representative ingredients from the herb, their affinity and specificity to HSA site I was measured and confirmed fluorometrically, which helps to improve the knowledge of interaction mechanisms between this herb and HSA. Our results indicated that several compounds in S. miltiorrhiza were capable of decreasing the binding constant of Warfarin to HSA site I significantly, which may increase free drug concentration in vivo, contributing to the herb-drug interaction observed clinically. Furthermore, the significance of HSA mediated herb-drug interactions was further implied by manual mining on the published literatures on S. miltiorrhiza.
A theoretical elucidation of glucose interaction with HSA's domains.
Nasiri, Rasoul; Bahrami, Homayoon; Zahedi, Mansour; Moosavi-Movahedi, Ali Akbar; Sattarahmady, Naghmeh
2010-10-01
The interaction of different domains belonging to Human Serum Albumin (HSA) with open form of glucose have been investigated using molecular dynamics simulation methods. Applying docking, primary structures involving interaction of some residues with glucose have been obtained. Subsequently, equilibrium geometries at 300 K and minimum geometries have been determined for each of aforementioned structures by employing MD simulation and simulated annealing. The stability of species has been evaluated using a SAWSA v2.0 model. Ultimately, NBO analysis has been carried out to specify possible hydrogen bonding regarding the HSA interaction with glucose. Results obtained show that glucose can interact with Lys195, Lys199, and Glu153. In these interactions, each lysine forms an H-bonding with glucose. The H-bonding is obtained by stretching of N-H bond belonging to NH(3)(+) group of lysine along an oxygen atom of glucose. In addition, the above mentioned lysines are protonated, and there is an electrostatic interaction between glucose with Lys195 or Lys199. In addition, an H-bonding is formed between O atom of -COO group belonging to Glu153 and H atom of OH group belonging to glucose. Because, the N-H group of Lys195 interacts with the O atom of latter OH group, reaction of Lys195 is more desirable than that of Lys199. In fact, glucose is placed in the vicinity of Lys195 along with electrostatic interaction and H-bonding to Lys195 and Lys199 as well as H-bonding with Glu153, which subsequently reacts with Lys195. Thus, Lys195 is the primary site in reaction of glucose with HSA.
Servetnick, D A; Bryant, D; Wells-Knecht, K J; Wiesenfeld, P L
1996-03-01
L-Arginine (Arg) has a structure similar to that of aminoguanidine (AG) and may inhibit glycation and advanced glycosylated end product (AGE) formation. Human serum albumin (HSA) (100mg/ml) was incubated for 2 weeks with glucose (200mM) at 37°C or with glucose and equimolar concentrations of Arg, N-α-acetyl Arg, or AG with or without 25mM diethylenetriaminepentaacetic acid (DTPA). In the absence of DTPA, electrospray ionization mass spectrometry showed a 70% reduction of covalently bound glucose in the presence of Arg and a 30% reduction with AG. Digestibility by trypsin of HSA incubated with glucose and Arg was similar to that of HSA incubated alone. This suggests less covalent modification of HSA in the presence of Arg as compared with the absence of Arg. When incubations contained DTPA, autoradiography showed less(14)C labeling of HSA subunits in the presence of Arg and AG. When theα-amino group of Arg was blocked with an acetyl group, labeling was similar to that of HSA incubated with glucose, suggesting involvement of theα-amino group in the inhibition. Fluorescence of HSA at ex370 and em440 was reduced with Arg, but AG was more effective than Arg. These results suggest that Arg, like AG, can inhibit glycation and AGE formation.
Binding properties of food colorant allura red with human serum albumin in vitro.
Wang, Langhong; Zhang, Guowen; Wang, Yaping
2014-05-01
Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics and molecular modeling approaches. An expanded UV-Vis data matrix was resolved by MCR-ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR-HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow's site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.
Forster resonance energy transfer in the system of human serum albumin-xanthene dyes
NASA Astrophysics Data System (ADS)
Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.
2016-04-01
The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.
Analysis of the structure and dynamics of human serum albumin.
Guizado, T R Cuya
2014-10-01
Human serum albumin (HSA) is a biologically relevant protein that binds a variety of drugs and other small molecules. No less than 50 structures are deposited in the RCSB Protein Data Bank (PDB). Based on these structures, we first performed a clustering analysis. Despite the diversity of ligands, only two well defined conformations are detected, with a deviation of 0.46 nm between the average structures of the two clusters, while deviations within each cluster are smaller than 0.08 nm. Those two conformations are representative of the apoprotein and the HSA-myristate complex already identified in previous literature. Considering the structures within each cluster as a representative sample of the dynamical states of the corresponding conformation, we scrutinize the structural and dynamical differences between both conformations. Analysis of the fluctuations within each cluster set reveals that domain II is the most rigid one and better matches both structures. Then, taking this domain as reference, we show that the structural difference between both conformations can be expressed in terms of twist and hinge motions of domains I and III, respectively. We also characterize the dynamical difference between conformations by computing correlations and principal components for each set of dynamical states. The two conformations display different collective motions. The results are compared with those obtained from the trajectories of short molecular dynamics simulations, giving consistent outcomes. Let us remark that, beyond the relevance of the results for the structural and dynamical characterization of HAS conformations, the present methodology could be extended to other proteins in the PDB archive.
Bonaccorsi, Gloria; Fila, Enrica; Messina, Carmelo; Maietti, Elisa; Ulivieri, Fabio Massimo; Caudarella, Renata; Greco, Pantaleo; Guglielmi, Giuseppe
2017-10-01
To evaluate (a) the performance in predicting the presence of bone fractures of trabecular bone score (TBS) and hip structural analysis (HSA) in type 2 diabetic postmenopausal women compared to a control group and (b) the fracture prediction ability of TBS versus Fracture Risk Calculator (FRAX ® ) as well as whether TBS can improve the fracture prediction ability of FRAX ® in diabetic women. Eighty diabetic postmenopausal women were matched with 88 controls without major diseases for age and body mass index. The individual 10-year fracture risk was assessed by FRAX ® tool for Europe-Italy; bone mineral density (BMD) at lumbar spine, femoral neck and total hip was evaluated through dual-energy X-ray absorptiometry; TBS measurements were taken using the same region of interest as the BMD measurements; HSA was performed at proximal femur with the HSA software. Regarding variables of interest, the only significant difference between diabetic and control groups was observed for the value of TBS (median value: 1.215; IQR 1.138-1.285 in controls vs. 1.173; IQR 1.082-1.217 in diabetic; p = 0.002). The prevalence of fractures in diabetic women was almost tripled than in controls (13.8 vs. 3.4 %; p = 0.02). The receiver operator characteristic curve analysis showed that TBS alone (AUC = 0.71) had no significantly lower discriminative power for fracture prediction in diabetic women than FRAX major adjusted for TBS (AUC = 0.74; p = 0.65). In diabetic postmenopausal women TBS is an excellent tool in identifying fragility fractures.
Liu, Yao-Zhong; Zhang, Lei; Roy-Engel, Astrid M; Saito, Shigeki; Lasky, Joseph A; Wang, Guangdi; Wang, He
2016-01-01
The health impacts of the BP oil spill are yet to be further revealed as the toxicological effects of oil products and dispersants on human respiratory system may be latent and complex, and hence difficult to study and follow up. Here we performed RNA-seq analyses of a system of human airway epithelial cells treated with the BP crude oil and/or dispersants Corexit 9500 and Corexit 9527 that were used to help break up the oil spill. Based on the RNA-seq data, we then systemically analyzed the transcriptomic perturbations of the cells at the KEGG pathway level using two pathway-based analysis tools, GAGE (generally applicable gene set enrichment) and GSNCA (Gene Sets Net Correlations Analysis). Our results suggested a pattern of change towards carcinogenesis for the treated cells marked by upregulation of ribosomal biosynthesis (hsa03008) (p = 1.97e-13), protein processing (hsa04141) (p = 4.09e-7), Wnt signaling (hsa04310) (p = 6.76e-3), neurotrophin signaling (hsa04722) (p = 7.73e-3) and insulin signaling (hsa04910) (p = 1.16e-2) pathways under the dispersant Corexit 9527 treatment, as identified by GAGE analysis. Furthermore, through GSNCA analysis, we identified gene co-expression changes for several KEGG cancer pathways, including small cell lung cancer pathway (hsa05222, p = 9.99e-5), under various treatments of oil/dispersant, especially the mixture of oil and Corexit 9527. Overall, our results suggested carcinogenic effects of dispersants (in particular Corexit 9527) and their mixtures with the BP crude oil, and provided further support for more stringent safety precautions and regulations for operations involving long-term respiratory exposure to oil and dispersants. PMID:27866042
Nagumo, Kohei; Tanaka, Motohiko; Chuang, Victor Tuan Giam; Setoyama, Hiroko; Watanabe, Hiroshi; Yamada, Naoyuki; Kubota, Kazuyuki; Tanaka, Motoko; Matsushita, Kazutaka; Yoshida, Akira; Jinnouchi, Hideaki; Anraku, Makoto; Kadowaki, Daisuke; Ishima, Yu; Sasaki, Yutaka; Otagiri, Masaki; Maruyama, Toru
2014-01-01
The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment. PMID:24416365
Circular RNA 0000096 affects cell growth and migration in gastric cancer.
Li, Peifei; Chen, Huilin; Chen, Shengcan; Mo, Xiaoyan; Li, Tianwen; Xiao, Bingxiu; Yu, Rui; Guo, Junming
2017-02-28
Circular RNAs (circRNAs) are a class of non-coding RNAs broadly expressed in cells of various species. Their role in cancers, especially in gastric cancer, is poorly understood. Circular RNA 0000096 (hsa_circ_0000096) levels in 101 paired gastric cancer tissues and adjacent non-tumorous tissues from patients with gastric cancer were detected by real-time quantitative reverse transcription-polymerase chain reaction. A receiver operating characteristic curve was generated to evaluate the diagnostic value of hsa_circ_0000096. RNA interference was used to manipulate the expression of hsa_circ_0000096. Its biological effects were evaluated by flow cytometry, real-time cell analysis, a wound scratch assay, western blot analysis and xenograft models. Hsa_circ_0000096 was found to be significantly downregulated in gastric cancer tissues and gastric cancer cell lines compared with paired adjacent non-tumorous tissues and normal gastric epithelial cells (P<0.001). Moreover, knockdown of hsa_circ_0000096 significantly inhibited cell proliferation and migration in vitro and in vivo. The results of both immunohistochemical and western blot analyses showed that the protein levels of cyclin D1, cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-2 and MMP-9 were significantly reduced in vitro and in vivo. A gastric cancer xenograft nude mouse model indicated that Ki67 and VEGF were reduced in a dose-dependent manner following knockdown of hsa_circ_0000096. However, the expression of E-cadherin increased. Hsa_circ_0000096 may be used as a potential novel biomarker for gastric cancer. It affects gastric cancer cell growth and migration by regulating cyclin D1, CDK6, MMP-2 and MMP-9.
Jiang, Ming-Ming; Mai, Zhi-Tao; Wan, Shan-Zhi; Chi, Yu-Min; Zhang, Xin; Sun, Bao-Hua; Di, Qing-Guo
2018-04-01
Circular RNAs (circRNAs) are a novel class of non-protein-coding RNA. Emerging evidence indicates that circRNAs participate in the regulation of many pathophysiological processes. This study aims to explore the expression profiles and pathological effects of circRNAs in non-small cell lung cancer (NSCLC). Human circRNAs microarray analysis was performed to screen the expression profile of circRNAs in NSCLC tissue. Expressions of circRNA and miRNA in NSCLC tissues and cells were quantified by qRTPCR. Functional experiments were performed to investigate the biological functions of circRNA, including CCK-8 assay, colony formation assay, transwell assay and xenograft in vivo assay. Human circRNAs microarray revealed a total 957 abnormally expressed circRNAs (> twofold, P < 0.05) in NSCLC tissue compared with adjacent normal tissue. In further studies, hsa_circ_0007385 was significantly up regulated in NSCLC tissue and cells. In vitro experiments with hsa_circ_0007385 knockdown resulted in significant suppression of the proliferation, migration and invasion of NSCLC cells. In vivo xenograft assay using hsa_circ_0007385 knockdown, significantly reduced tumor growth. Bioinformatics analysis and luciferase reporter assay verified the potential target miR-181, suggesting a possible regulatory pathway for hsa_circ_0007385. In summary, results suggest hsa_circ_0007385 plays a role in NSCLC tumorigenesis, providing a potential therapeutic target for NSCLC.
Wu, Ting-ying; Juan, Yu-ting; Hsu, Yang-hsin; Wu, Sze-hsien; Liao, Hsiu-ting; Fung, Raymond W.M.; Charng, Yee-yung
2013-01-01
Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the “memory” of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32-kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance but is defective in long-term acquired thermotolerance. To further explore this phenomenon, we isolated Arabidopsis defective in long-term acquired thermotolerance (dlt) mutants using a forward genetic screen. Two recessive missense alleles, dlt1-1 and dlt1-2, encode the molecular chaperone heat shock protein101 (HSP101). Results of immunoblot analyses suggest that HSP101 enhances the translation of HSA32 during recovery after heat treatment, and in turn, HSA32 retards the decay of HSP101. The dlt1-1 mutation has little effect on HSP101 chaperone activity and thermotolerance function but compromises the regulation of HSA32. In contrast, dlt1-2 impairs the chaperone activity and thermotolerance function of HSP101 but not the regulation of HSA32. These results suggest that HSP101 has a dual function, which could be decoupled by the mutations. Pulse-chase analysis showed that HSP101 degraded faster in the absence of HSA32. The autophagic proteolysis inhibitor E-64d, but not the proteasome inhibitor MG132, inhibited the degradation of HSP101. Ectopic expression of HSA32 confirmed its effect on the decay of HSP101 at the posttranscriptional level and showed that HSA32 was not sufficient to confer long-term acquired thermotolerance when the HSP101 level was low. Taken together, we propose that a positive feedback loop between HSP101 and HSA32 at the protein level is a novel mechanism for prolonging the memory of heat acclimation. PMID:23439916
Hou, Shaocong; Li, Caina; Huan, Yi; Liu, Shuainan; Liu, Quan; Sun, Sujuan; Jiang, Qian; Jia, Chunming; Shen, Zhufang
2015-01-01
Glucagon like peptide-1 (GLP-1) receptor agonists such as exendin-4 have been widely used but their short half-life limits their therapeutic value. The recombinant protein, E2HSA, is a novel, long-acting GLP-1 receptor agonist generated by the fusion of exendin-4 with human serum albumin. In mouse pancreatic NIT-1 cells, E2HSA activated GLP-1 receptor with similar efficacy as exendin-4. After single-dose administration in ICR mice, E2HSA showed prolonged glucose lowering effects which lasted up to four days and extended inhibition on gastric emptying for at least 72 hours. Chronic E2HSA treatment in db/db mice significantly improved glucose tolerance, reduced elevated nonfasting and fasting plasma glucose levels, and also decreased HbA1c levels. E2HSA also increased insulin secretion and decreased body weight and appetite. Furthermore, immunofluorescence analysis showed that E2HSA increased β-cell area, improved islet morphology, and reduced β-cell apoptosis. In accordance with the promotion of β-cell function and survival, E2HSA upregulated genes such as Irs2, Pdx-1, Nkx6.1, and MafA and downregulated the expression levels of FoxO1 and proapoptotic Bcl-2 family proteins. In conclusion, with prolonged glucose lowering effects and promoting β-cell function and survival, the fusion protein, E2HSA, is a promising new therapeutic for once weekly treatment of type 2 diabetes.
Hou, Shaocong; Li, Caina; Liu, Shuainan; Liu, Quan; Sun, Sujuan; Jia, Chunming; Shen, Zhufang
2015-01-01
Glucagon like peptide-1 (GLP-1) receptor agonists such as exendin-4 have been widely used but their short half-life limits their therapeutic value. The recombinant protein, E2HSA, is a novel, long-acting GLP-1 receptor agonist generated by the fusion of exendin-4 with human serum albumin. In mouse pancreatic NIT-1 cells, E2HSA activated GLP-1 receptor with similar efficacy as exendin-4. After single-dose administration in ICR mice, E2HSA showed prolonged glucose lowering effects which lasted up to four days and extended inhibition on gastric emptying for at least 72 hours. Chronic E2HSA treatment in db/db mice significantly improved glucose tolerance, reduced elevated nonfasting and fasting plasma glucose levels, and also decreased HbA1c levels. E2HSA also increased insulin secretion and decreased body weight and appetite. Furthermore, immunofluorescence analysis showed that E2HSA increased β-cell area, improved islet morphology, and reduced β-cell apoptosis. In accordance with the promotion of β-cell function and survival, E2HSA upregulated genes such as Irs2, Pdx-1, Nkx6.1, and MafA and downregulated the expression levels of FoxO1 and proapoptotic Bcl-2 family proteins. In conclusion, with prolonged glucose lowering effects and promoting β-cell function and survival, the fusion protein, E2HSA, is a promising new therapeutic for once weekly treatment of type 2 diabetes. PMID:26351642
Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui
2017-09-11
Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.
Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai
2018-04-24
Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.
Ali, Mohd Sajid; Altaf, Mohammad; Al-Lohedan, Hamad A
2017-08-01
Biogenic silver nanoparticles (AgNPs) have been synthesized by using Solanum tuberosum (potato) extract (PE) as a reducing as well as stabilizing agent which is reasonably cheaper, non-toxic and easily available material. The green synthesis of silver nanoparticles has been carried out by very simple method and the nanoparticles were characterized by surface plasmon band as well as TEM measurements. The PE-AgNPs were highly dispersed in the solution and found to be spherical with around 10nm in size. Interaction of these nanoparticles was studied with plasma protein HSA by means of various spectroscopies, such as, UV-visible, fluorescence, DLS, CD and FTIR spectroscopies. The HSA was found to form the protein "corona" around the starch-capped PE-AgNPs. Absorption spectroscopy revealed that the interaction between HSA and PE-AgNPs resulted in the ground state complex formation. Due to the strong absorption of PE-AgNPs, the inner filter effect was corrected for the fluorescence data. PE-AgNPs were found to quench the fluorescence of HSA with a small blue shift attributed to the increase in the hydrophobicity near tryptophan residue due to the presence of amylopectin and amylose units in the starch. The value of n, Hill's constant, was found to be >1 which determines the existence of a cooperative binding between nanoparticle and albumin. Several parameters such as Stern-Volmer and binding constants in addition to the thermodynamic parameters have been analyzed and discussed which established that the complex formation has taken place via static quenching mechanism and the corona formation between albumin and PE-AgNPs was entropy driven process. Binding of biogenic PE-AgNPs to the HSA slightly affected the secondary structure of latter with a small decrease in α-helical contents resulting in the partial unfolding of the protein, though the structural motif remained the same. Molecular docking simulations revealed various possible binding modes between PE-AgNPs and albumin. Copyright © 2017 Elsevier B.V. All rights reserved.
Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh
2017-01-01
Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (K b ) of 5.74×10 3 and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Yaheng; Li, Jiazhong; Dong, Lijun; Li, Ying; Chen, Xingguo
2008-10-01
In this study the interaction between esculin and human serum albumin (HSA) in AOT/isooctane/water microemulsions was studied for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. Fluorescence data in ω o 20 microemulsions revealed the presence of the binding site of esculin on HSA and its binding constants at four different temperatures were obtained. The affinities in microemulsions are similar to that in buffer solution. The alterations of protein secondary structure in the microemulsions in the absence and presence of esculin compared with the free form of HSA in buffer were qualitatively and quantitatively analyzed by the evidence from CD and FT-IR spectroscopes. The displacement experiments confirmed that esculin could bind to the site I of HSA, which was in agreement with the result of the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and esculin could interact with them.
Human serum albumin binding of certain antimalarials
NASA Astrophysics Data System (ADS)
Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.
2018-03-01
Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.
Cong, Shuang; Bi, Jingran; Song, Xunyu; Yu, Chenxu; Tan, Mingqian
2018-04-25
Fluorescent nanoparticles (FNPs) produced from roast meat have drawn widespread attention due to their potential hazards to human health. In this paper, the presence of ultrasmall FNPs in roast duck and their interaction with human serum albumin (HSA) were reported. The processing-induced FNPs have an average size of 1.3 nm with a relative fluorescence quantum yield of 4.4%. X-ray photoelectron spectroscopy showed that the FNPs are composed of carbon (70.48%), nitrogen (6.25%), oxygen (22.17%) and sulfur (1.11%), with hydroxyl, carboxyl and amino groups present on their surface. The presence of FNPs could cause fluorescence quenching of HSA, which was ascribed to the static quenching mechanism via the electrostatic interaction as analyzed by isothermal titration calorimetry. The α-helix contents of HSA decreased after the addition of FNPs, demonstrating that these processing-induced FNPs could cause structural alteration of HSA. These results provided insights into the formation of nanoparticles in roast duck, and offered important information about the binding mechanism of these nanoparticles with HSA, which may have physiological implications.
Min, Sun Young; Byeon, Hyeong Jun; Lee, Changkyu; Seo, Jisoo; Lee, Eun Seong; Shin, Beom Soo; Choi, Han-Gon; Lee, Kang Choon; Youn, Yu Seok
2015-10-15
Nanoparticle albumin-bound (nab™) technology is an effective way of delivering hydrophobic chemotherapeutics. We developed a one-pot/one-step formulation of paclitaxel (PTX)-bound albumin nanoparticles with embedded tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/PTX HSA-NP) for the treatment of pancreatic cancer. TRAIL/PTX HSA-NPs were fabricated using a high-pressure homogenizer at a TRAIL feeding ratio of 0.2%, 1.0%, and 2.0%. TRAIL/PTX HSA-NPs were spherical and became larger in size (170-230 nm) with increasing TRAIL amount (0.2-2.0%). The loading efficiencies of PTX were in the range of ∼86.4% and significantly low at 2.0% TRAIL (60.4%). Specifically, the inhibitory concentrations (IC50) of TRAIL (1.0 or 2.0%)/PTX HSA-NPs were >20-fold lower than that of plain PTX-HSA NP (0.032±0.06, 0.022±0.005, and 0.96±0.15 ng/ml, respectively) in pancreatic Mia Paca-2 cells. Considering TRAIL loading, bioactivity, and particle size, TRAIL(1.0%)/PTX HSA-NPs were determined as the optimal candidate for further studies. TRAIL(1.0%)/PTX HSA-NPs displayed substantially greater apoptotic activity than plain PTX HSA-NP in both FACS and TUNEL analysis. The loaded PTX and TRAIL were gradually released from the TRAIL(1.0%)/PTX HSA-NPs until ∼24 h, which is considered to be a sufficient time for delivery to the tumor tissue. TRAIL(1.0%)/PTX HSA-NP displayed markedly more antitumor efficacy than plain PTX HSA-NP in Mia Paca-2 cell-xenografted mice in terms of tumor volume (size) and weight (213.9 mm(3) and 0.18 g vs. 1126.8 mm(3) and 0.80 g, respectively). These improved in vitro and in vivo performances were due to the combined synergistic effects of PTX and TRAIL. We believe that this TRAIL/PTX HSA-NP would have potential as a novel apoptosis-based anticancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.
Guan, Zheng; Tan, Jing; Gao, Wei; Li, Xin; Yang, Yuandong; Li, Xiaogang; Li, Yingchao; Wang, Qiang
2018-06-19
Recent studies have revealed that circular RNAs (circRNAs) play important roles in the tumorigenesis of human cancer, including hepatocellular carcinoma (HCC). In present study, we screen the circular RNA expression profiles in HCC tissue and investigate the molecular roles on HCC tumorigenesis. Human circRNA microarray analysis showed there were total 1,245 differently expressed circular RNAs, including 756 up-regulated circRNAs and 489 down-regulated circRNAs, in three pairs of HCC tissue and adjacent normal tissue. Hsa_circ_0016788 was identified to be up-regulated in both HCC tissue and cell lines. Loss-of-functional experiments in vivo and vitro revealed that hsa_circ_0016788 silencing inhibited the proliferation, invasion and promoted the apoptosis in vitro, and inhibited the tumor growth in vivo. Bioinformatics tools and luciferase reporter assay validated that miR-486 targeted hsa_circ_0016788 and CDK4 accompanying with negatively correlated expression, suggesting the hsa_circ_0016788/miR-486/CDK4 pathway. Receiver operating characteristic (ROC) curve showed that hsa_circ_0016788 had high diagnostic value (AUC = 0.851). In summary, results reveal the role of hsa_circ_0016788/miR-486/CDK4 in HCC tumorigenesis, providing a novel therapeutic target for HCC. © 2018 Wiley Periodicals, Inc.
Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie
2012-10-01
To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.
Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P
2003-11-01
A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003
Song, Yu-Ze; Li, Ji-Feng
2018-01-15
Circular RNAs (circRNAs) is a novel type of non-coding RNAs generated from back splicing, which has been verified to mediate multiple tumorigenesis. However, the role of circRNA in osteosarcoma is still unclear. In the present study, we preliminarily screened the circRNAs expression profiles in osteosarcoma and investigated the potential regulation mechanism. The circRNAs expression profiles in osteosarcoma were screened using circRNA microarray analysis, and results showed that there were 1152 circRNAs up-regulated and 915 circRNAs down-regulated in tumor tissue compared to adjacent tissue. Hsa_circ_0001564, located at 5q35.3 and its associated-gene symbol is CANX, was one of the significantly overexpressed circRNAs in osteosarcoma tissue, as well as in osteosarcoma cell lines. In functional experiments, hsa_circ_001564 knockdown significantly suppressed the proliferation activity, induced cell cycle arrest in G0/G1 phase, and promoted apoptosis in HOS and MG-63 cells. Subsequently, we explored the probable mechanism of hsa_circ_001564, and fortunately, bioinformatics analysis revealed that miR-29c-3p contained the complementary binding region with hsa_circ_0001564, which was confirmed by dual-luciferase reporter assay. Moreover, rescue experiments illustrated that miR-29c-3p could reverse the oncogenesis effect of hsa_circ_001564. Our study discovers that hsa_circ_0001564 acts as miR-29c-3p sponge to mediate the tumorigenicity, which could act as a potential biomarker for the osteosarcoma and provide a novel insight for competing endogenous RNAs (ceRNAs) mechanism in osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Floris, Ilaria; Billard, Hélène; Boquien, Clair-Yves; Joram-Gauvard, Evelyne; Simon, Laure; Legrand, Arnaud; Boscher, Cécile; Rozé, Jean-Christophe; Bolaños-Jiménez, Francisco; Kaeffer, Bertrand
2015-01-01
Human breast milk is an extremely dynamic fluid containing many biologically-active components which change throughout the feeding period and throughout the day. We designed a miRNA assay on minimized amounts of raw milk obtained from mothers of preterm infants. We investigated changes in miRNA expression within month 2 of lactation and then over the course of 24 hours. Analyses were performed on pooled breast milk, made by combining samples collected at different clock times from the same mother donor, along with time series collected over 24 hours from four unsynchronized mothers. Whole milk, lipids or skim milk fractions were processed and analyzed by qPCR. We measured hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-146-5p, and hsa-let-7a, d and g (all -5p). Stability of miRNA endogenous controls was evaluated using RefFinder, a web tool integrating geNorm, Normfinder, BestKeeper and the comparative ΔΔCt method. MiR-21 and miR-16 were stably expressed in whole milk collected within month 2 of lactation from four mothers. Analysis of lipids and skim milk revealed that miR-146b and let-7d were better references in both fractions. Time series (5H-23H) allowed the identification of a set of three endogenous reference genes (hsa-let-7d, hsa-let-7g and miR-146b) to normalize raw quantification cycle (Cq) data. We identified a daily oscillation of miR-16-5p. Our assay allows exploring miRNA levels of breast milk from mother with preterm baby collected in time series over 48-72 hours.
Fadel, Maha; Kassab, Kawser; Youssef, Tareq
2010-09-01
The photocytotoxic effect of hypericin (Hyp) targeted by two different delivery techniques, namely, liposomes and anti-hepatocyte specific antigen (anti-HSA) was investigated. Optical absorption and steady-state fluorescence were used to analyze the conjugation of Hyp with anti-HSA model and to evaluate the encapsulation capacity and drug release in a liposome model. Particle size and thermal analysis of the prepared liposomes were performed using laser-light scattering and differential scanning calorimetry (DSC), respectively. Viability study of HepG2 cells exposed to Hyp in the two delivery systems, in the dark and following visible light irradiation, was performed in comparison to free Hyp. The intracellular uptake and localization of Hyp in HepG2 cells were analyzed by means of spectrofluorometry and fluorescence microscopy. Spectroscopic measurements demonstrated that Hyp binds to anti-HSA in its monomeric form. The photocytotoxic effect of Hyp depended clearly on the form of Hyp administered, either in free form, loaded into liposomes or conjugated with anti-HSA. While liposomes loaded with Hyp (Lip-Hyp) did not induce significant phototoxicity, both free Hyp or anti-HSA-Hyp inflicted substantial cell mortality, after photoirradiation. The intracellular uptake of Lip-Hyp by HepG2 cells was estimated to be 20% less compared to free Hyp or anti-HSA-Hyp. In spite of the equal uptake of both free Hyp and anti-HSA-Hyp, HepG2 cells demonstrated a relatively higher mortality with anti-HSA-Hyp compared to free Hyp.
Lan, Lei; Han, Yongsheng; Ren, Wei; Jiang, Jielong; Wang, Peng; Hu, Zhao
2015-06-01
The present study aimed to determine the molecular mechanisms leading to the production of advanced glycation end‑products (AGEs) and their effect on the morphology and function of rat glomerular capillary endothelial cells (GECs). Primary rat GECs were treated with AGE‑modified human serum albumin (AGE‑HSA) and divided into groups according to AGE concentration and treatment time. The structure and distribution of cytoskeletal protein F‑actin and the cortical actin binding protein, cortactin, were analyzed using immunofluorescence and confocal microscopy. As the Ras‑related C3 botulinum toxin substrate 1 (Rac1) signaling pathway was previously identified to be involved in mediating the contraction of endothelial actin‑myosin activity, Rac1 was examined subsequent to treatment of the cells with the Rac1 agonist 2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate (O‑Me‑cAMP) for 1 h using a pull‑down assay. Cell permeability was determined by the leakage rate of a fluorescein isothiocyanate fluorescent marker protein. AGE‑HSA treatment resulted in alterations in the structure and distribution of F‑actin and cortactin in a dose‑ and time‑dependent manner, while no effect was observed with HSA alone. The effect of AGE on the cytoskeleton was inhibited by the addition of O‑Me‑cAMP. AGE‑HSA significantly reduced the level of Rac1 activity (P<0.05); however, no effect was observed on total protein levels. Furthermore, AGE‑HSA treatment led to a significant increase in the permeability of endothelial cells (P<0.01), which was inhibited by O‑Me‑cAMP (P<0.01). The Rac1 signaling pathway is thus suggested to serve an important function in mediating AGE‑induced alterations in GEC morphology and function.
Bodal, Vijay Kumar; Sangwan, Shruti; Bal, Manjit Singh; Kaur, Mohanvir; Sharma, Sidarth; Kaur, Bhavleen
2017-09-27
Background: Micro RNAs (miRNAs) are small, noncoding RNA molecules. They can function as either oncogenes or tumor suppressor genes. Single nucleotide polymorphisms (SNP) present in the pre-miRNA region could affect the processing of miRNA and thus alter mature miRNA expression. The studies done so far had shown conflicting results regarding association of two common polymorphisms i.e.hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 with breast cancer. OBJECTIVE: In the study, we examined the hsa-miR-146 rs2910164 and hsa-miR-196a2 rs11614913 SNP association with breast cancer patients in north Indian women. Materials and Methods: This study included 100 breast cancer patients and 100 controls and was done over a period of two years. Genotypes of the hsa-miR-146 (rs2910164 G>C) and hsa-miR-196a2 (rs11614913 C>T) were identified by polymerase chain reaction – restriction length polymorphism (PCR-RFLP) technique in peripheral blood DNA samples. Statistical analysis: We assessed the strength of association of miRNA polymorphisms with breast cancer using Odds ratio (OR) along with 95% confidence intervals. Results: Heterozygous genotypes of hsa-miR-196a2 rs11614913 and combined hsa-miR-146 rs2910164 & hsa-miR-196a2 polymorphism were associated with significantly increased risk of breast cancer (OR-1.7, 95% CI–1.00-3.18) and (OR-1.9, 95% CI-0.85-4.46) respectively. Conclusion: Our study suggests that rs2910164 GC and rs11614913 CT genotypes may contribute to breast cancer susceptibility in north Indian women. Creative Commons Attribution License
Gou, Yi; Zhang, Yao; Zhang, Zhenlei; Wang, Jun; Zhou, Zuping; Liang, Hong; Yang, Feng
2017-06-05
We not only modified the types and numbers of coordinated ligands in a metal agent to enhance its anticancer activity, but we also designed a metal prodrug based on the N-donor residues of the human serum albumin (HSA) IIA subdomain to improve its delivery efficiency and selectivity in vivo. However, there may be a conflict in simultaneously achieving the two goals because Lys199 and His242 in the IIA subdomain of HSA can replace its two coordinated ligands, which will decrease its anticancer activity relative to the original metal agent. Thus, to improve the delivery efficiency of the metal agent and simultaneously avoid decreasing its anticancer activity in vivo, we decided to develop an anticancer metal prodrug by regulating its pharmacophore ligand so that it would not be displaced by the Lys199 residue of the folic acid (FA)-functionalized HSA nanoparticle (NP) carrier. To this end, we first synthesized two (E)-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide Schiff base (HL) Cu(II) compounds by designing a second ligand with a different coordinating atom with Cu 2+ /Cu(L)(QL)(Br) [C1, QL = quinolone] and Cu(L)(DMF)(Br) [C2, DMF = N,N-dimethylformamide]. As revealed by the structures of the two HSA complexes, the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. The QL ligand of C1 is replaced by Lys199, which coordinates with Cu 2+ , whereas the DMF ligand of C2 is kept intact and His242 is replaced with Br - of C2 and coordinates with Cu 2+ . The cytotoxicity of the Cu compounds was enhanced by the FA-HSA NPs in the Bel-7402 cells approximately 2-4-fold; however, they raise the cytotoxicity levels in the normal cells in vitro, and the FA-HSA NPs did not. Importantly, the in vivo data showed that FA-HSA-C2 NPs increased selectivity and the capacity to inhibit tumor growth and were less toxic than HSA-C2 NPs and C2. Moreover, C2/HSA-C2 NPs/FA-HSA-C2 NPs induced Bel-7402 cell death by potentially multiple mechanisms.
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-01-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein–serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. PMID:27129297
Li, Yuqin; Wang, Hao; Jia, Baoxiu; Liu, Caihong; Liu, Ke; Qi, Yongxiu; Hu, Zhide
2013-01-01
The mechanism of interaction between deoxynivalenol (DON) and human serum albumin (HSA) was studied using spectroscopic methods including fluorescence spectra, UV-VIS, Fourier transform infrared (FT-IR) and circular dichroism (CD). The quenching mechanism was investigated in terms of the association constants, number of binding sites and basic thermodynamic parameters. The distance between the HSA donor and the acceptor DON was 2.80 nm as derived from fluorescence resonance energy transfer. The secondary structure compositions of free HSA and its DON complexes were estimated by the FT-IR spectra. Alteration of the secondary protein structure in the presence of DON was confirmed by UV-VIS and CD spectroscopy. Molecular modelling revealed that a DON-protein complex was stabilised by hydrophobic forces and hydrogen bonding. It was potentially useful for elucidating the toxigenicity of DON when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.
Li, Lian-Ju; Zhu, Zhi-Wei; Zhao, Wei; Tao, Sha-Sha; Li, Bao-Zhu; Xu, Shu-Zhen; Wang, Jie-Bing; Zhang, Ming-Yue; Wu, Jun; Leng, Rui-Xue; Fan, Yin-Guang; Pan, Hai-Feng; Ye, Dong-Qing
2018-04-26
Circular RNAs (circRNAs) represent as a class of non-coding RNAs which form covalently closed RNA circles, and their extensive expression and conservation in mammals are observed. CircRNAs regulate gene expression through acting as competitive endogenous RNAs (ceRNAs) and modulating gene transcription. Accumulating evidence supports the implication of circRNAs in a variety of human diseases. Yet, study exploring the role of circRNAs in systemic lupus erythematosus (SLE) is lacking. The present study measured the circRNAs expression profiles in T cells from SLE patients and healthy controls with human circRNA microarray and identified 127 differentially expressed circRNAs in SLE patients. Downregulation of hsa_circ_0045272 in SLE T cells was verified with quantitative PCR. Jurkat cells with stable hsa_circ_0045272 knockdown were generated using specific lentiviral shRNA for functional studies. Flow cytometric analysis indicated that hsa_circ_0045272 knockdown significantly upregulated the early apoptosis of Jurkat cells. Meanwhile, enzyme-linked immunosorbent assay showed that hsa_circ_0045272 knockdown significantly enhanced IL-2 production of activated Jurkat cells. ceRNAs were then predicted for hsa_circ_0045272 and the significant downregulation of two mRNAs predicted as its ceRNAs, NM_003466 (PAX8) and NM_015177 (DTX4), but not their corresponding proteins was validated. Furthermore, dual luciferase reporter assay indicated binding of hsa_circ_0045272 with hsa-miR-6127. circRNAs-mRNAs coexpression networks showed the correlation of circRNAs with mRNAs and provided additional clues to circRNA functions. Our study demonstrated the dysregulated circRNAs in SLE and revealed function of hsa_circ_0045272 in negatively regulating apoptosis and IL-2 secretion and its potential mechanism. The implication of hsa_circ_0045272 and other abnormal circRNAs in SLE merits further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Optimal distribution of medical backpacks and health surveillance assistants in Malawi.
Kunkel, Amber G; Van Itallie, Elizabeth S; Wu, Duo
2014-09-01
Despite recent progress, Malawi continues to perform poorly on key health indicators such as child mortality and life expectancy. These problems are exacerbated by a severe lack of access to health care. Health Surveillance Assistants (HSAs) help bridge this gap by providing community-level access to basic health care services. However, the success of these HSAs is limited by a lack of supplies and long distances between HSAs and patients. To address this issue, we used large-scale weighted p-median and capacitated facility location problems to create a scalable, three-tiered plan for optimal allocation of HSAs, HSA designated medical backpacks, and backpack resupply centers. Our analysis uses real data on the location and characteristics of hospitals, health centers, and the general population. In addition to offering specific recommendations for HSA, backpack, and resupply center locations, it provides general insights into the scope of the proposed HSA backpack program scale-up. In particular, it demonstrates the importance of local health centers to the resupply network. The proposed assignments are robust to changes in the underlying population structure, and could significantly improve access to medical supplies for both HSAs and patients.
Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab
2016-10-01
Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Dong, Chengyu; Lu, Ningning; Liu, Ying
2013-01-01
This study was designed to examine the interaction of methacyline (METC) with human serum albumin (HSA) by multispectroscopy and a molecular modeling method under simulative physiological conditions. The quenching mechanism was suggested to be static quenching based on fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. According to the Vant' Hoff equation, the values of enthalpy (∆H) and entropy change (∆S) were calculated to be -95.29 kJ/mol and -218.13 J/mol/K, indicating that the main driving force of the interaction between HSA and METC were hydrogen bonds and van der Waals's forces. By performing displacement measurements, the specific binding of METC in the vicinity of Sudlow's site I of HSA was clarified. An apparent distance of 3.05 nm between Trp214 and METC was obtained via the fluorescence resonance energy transfer (FRET) method. Furthermore, the binding details between METC and HSA were further confirmed by molecular docking studies, which revealed that METC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces, hydrogen bonding, etc. The results of three-dimensional fluorescence and Fourier transform infrared (FTIR) spectroscopy showed that METC caused conformational and some microenvironmental changes in HSA and reduced the α-helix significantly in the range of 52.3-40.4% in HSA secondary structure. Moreover, the coexistence of metal ions such as Ca(2+), Al(3+), Fe(3+), Zn(2+), Cu(2+), Cr(3+) and Cd(2+) can decrease the binding constants of METC-HSA. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Seedher, N.; Kanojia, M.
2013-11-01
Glycosylation decreases the association constant values and hence the binding affinity of human serum albumin (HSA) for the antidiabetic drugs under study. The percentage of HAS-bound drug at physiological temperature was only about 21-38 % as compared to 46-74 % for non-glycosylated HSA. Thus the percentage of free drug available for an antihyperglycemic effect was about double (62-79 %) compared to the values for non-glycosylated HSA. Much higher free drug concentrations available for pharmacological effect can lead to the risk of hypoglycemia. Hydrophobic interactions were predominantly involved in the binding. In the binding of gliclazide, hydrogen bonding and electrostatic interactions were involved. Site specificity for glycosylated HSA was the same as that for non-glycosylated HSA; gliclazide and repaglinide bind only at site II whereas glimepiride and glipizide bind at both sites I and II. Glycosylation, however, caused conformational changes in albumin, and the binding region within site II was different for glycosylated and non-glycosylated albumin. Stern-Volmer analysis also indicated the conformational changes in albumin as a result of glycosylation and showed that the dynamic quenching mechanism was valid for fluorescence of both glycosylated and non-glycosylated HSA.
Comparison and analysis on the serum-binding characteristics of aspirin-zinc complex and aspirin.
Zhang, Hua-Xin; Zhang, Qun; Wang, Hong-Lin; Li, Li-Wei
2017-09-01
This study was designed to compare the protein-binding characteristics of aspirin-zinc complex (AZN) with those of aspirin itself. AZN was synthesized and interacted with a model transport protein, human serum albumin (HSA). Three-dimensional fluorescence, ultraviolet-visible and circular dichroism (CD) spectra were used to characterize the interaction of AZN with HSA under physiological conditions. The interaction mechanism was explored using a fluorescence quenching method and thermodynamic calculation. The binding site and binding locality of AZN on HSA were demonstrated using a fluorescence probe technique and Förster non-radiation energy transfer theory. Synchronous fluorescence and CD spectra were employed to reveal the effect of AZN on the native conformation of the protein. The HSA-binding results for AZN were compared with those for aspirin under consistent experimental conditions, and indicated that aspirin acts as a guide in AZN when binding to Sudlow's site I, in subdomain IIA of the HSA molecule. Moreover, compared with aspirin, AZN showed greater observed binding constants with, but smaller changes in the α-helicity of, HSA, which proved that AZN might be easier to transport and have less toxicity in vivo. Copyright © 2017 John Wiley & Sons, Ltd.
Dioxin induces expression of hsa-miR-146b-5p in human neuroblastoma cells.
Xu, Tuan; Xie, Heidi Q; Li, Yunping; Xia, Yingjie; Sha, Rui; Wang, Lingyun; Chen, Yangsheng; Xu, Li; Zhao, Bin
2018-01-01
Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect. Copyright © 2017. Published by Elsevier B.V.
[Construction and expression of recombinant human serum albumin-EPO fusion protein].
Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing
2011-05-01
OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.
Photo-isomerization and oxidation of bilirubin in mammals is dependent on albumin binding.
Goncharova, Iryna; Jašprová, Jana; Vítek, Libor; Urbanová, Marie
2015-12-01
The bilirubin (BR) photo-conversion in the human body is a protein-dependent process; an effective photo-isomerization of the potentially neurotoxic Z,Z-BR as well as its oxidation to biliverdin in the antioxidant redox cycle is possible only when BR is bound on serum albumin. We present a novel analytical concept in the study of linear tetrapyrroles metabolic processes based on an in-depth mapping of binding sites in the structure of human serum albumin (HSA). A combination of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling methods was used for recognition of the binding site for BR, its derivatives (mesobilirubin and bilirubin ditaurate), and the products of the photo-isomerization and oxidation (lumirubin, biliverdin, and xanthobilirubic acid) on HSA. The CD spectra and fluorescent quenching of the Trp-HSA were used to calculate the binding constants. The results of the CD displacement experiments performed with hemin were interpreted together with the findings of molecular docking performed on the pigment-HSA complexes. We estimated that Z,Z-BR and its metabolic products bind on two independent binding sites. Our findings support the existence of a reversible antioxidant redox cycle for BR and explain an additional pathway of the photo-isomerization process (increase of HSA binding capacity; the excess free [unbound] BR can be converted and also bound to HSA). Copyright © 2015 Elsevier Inc. All rights reserved.
Raza, Muslim; Jiang, Yang; Wei, Yun; Ahmad, Aftab; Khan, Ajmal; Qipeng, Yuan
2017-09-01
The study of molecular interactions of drug-protein are extremely important from the biological aspect in all living organisms, and therefore such type of investigation hold a tremendous significance in rational drug design and discovery. In the present study, the molecular interactions between paromomycin (PAR) and human serum albumin (HSA) have been studied by different biophysical techniques and validated by in-silico approaches. The results obtained from Ultraviolet-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FT-IR) demonstrated a remarkable change upon the complexation of PAR with HSA. Circular Dichroism (CD), Dynamic Light Scattering (DLS) and Resonance Rayleigh scattering (RRS) results revealed a significant secondary structure alteration and reduction of hydrodynamic radii upon the conjugation of PAR with HSA. The fluorescence spectroscopy results also apparently revealed the static quenching mechanism. The number of binding sites, binding constants, and Gibbs free energy values were calculated to illustrate the nature of intermolecular interactions. Similarly, the in-silico docking and molecular dynamics simulation clearly explain the theoretical basis of the binding mechanism of PAR with HSA. The experimental and docking approaches suggested that PAR binds to the hydrophobic cavity site I of HSA. The finding of present investigation will provide binding insight of PAR and associated alterations in the stability and conformation of HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohammadi, Ghobad; Faramarzi, Elahe; Mahmoudi, Majid; Ghobadi, Sirous; Ghiasvand, Ali Reza; Goicoechea, Hector C; Jalalvand, Ali R
2018-07-15
In this work, voltammetric data recorded by a glassy carbon electrode (GCE) was used to investigate the interactions of tolcapone (Tasmar, TAS) with human serum albumin (HSA) at the electrode surface. The recorded voltammetric data was also combined with spectroscopic data to construct an augmented data matrix which was analysed by multivariate curve resolution-alternating least squares (MCR-ALS) as an efficient chemometric tool to obtain more information about TAS-HSA interactions. The results of MCR-ALS confirmed formation of one complex species (HSA-TAS 2 ) and application of MCR-BANDS to the results of MCR-ALS confirmed the absence of rotational ambiguities and existing unambiguous and reliable results. Binding of TAS to HSA was also modeled by molecular docking and the results showed that the TAS was bound to sub-domain IIA of HSA which were compatible with the ones obtained by recording experimental data. Hard-modeling of combined voltammetric and spectroscopic data by EQUISPEC helped us to compute binding constant of HSA-TAS 2 complex species which was compatible with the binding constant value obtained by direct analysis of experimental data. Finally, a new electroanalytical method was developed based on TAS-HSA interactions for determination of HSA in two ranges of 0-541 nM and 541-1200 nM with a limit of detection of 0.04 nM and a sensitivity of 0.02 μA nM -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
RNA sequencing reveals significant miRNAs in Atypical endometrial hyperplasia.
Tang, Shiqian; Dai, Yinmei
2018-06-01
In this paper, we aimed to investigate the miRNAs that played a regulatory role in the development of atypical endometrial hyperplasia (AEH). RNA sequencing was performed for endometrial tissues from 3 AEH patients and 3 endometrial normal hyperplasia patients. RNA sequencing data were processed and differentially expressed (DE) miRNAs were identified between AEH and controls. The target genes for DE miRNAs were identified and mapped to the protein-protein interaction (PPI) network. The miRNA related functions were predicted and miRNA-disease gene network was constructed. Total 18 DE miRNAs were overlapped in three sample groups, among which hsa-miR-577, hsa-miR-182-5p and hsa-miR-183-5p were top three miRNAs that targeting largest number of genes. Function analysis showed that the 18 overlapped miRNAs mainly related with cancer and signaling transduction related pathways. PPI network showed that total 12 genes were among top 20 genes based on three network topological features including BCL2, UMPS, MAPK13, PRKCB, CREB1, IGF1, SP1, SMAD3, IGF1R, NOTCH2, WNT5A, TK2. Top 10 miRNAs in miRNA-disease gene network were identified such as hsa-miR-577 (degree = 17), hsa-miR-182-5p (degree = 16) and hsa-miR-3609 (degree = 13). hsa-miR-577 and hsa-miR-182-5p may play regulatory role in AEH through AMPK signal pathway and Wnt signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maji, Anukul; Beg, Maidul; Mandal, Amit Kumar; Das, Somnath; Jha, Pradeep K.; Kumar, Anoop; Sarwar, Shamila; Hossain, Maidul; Chakrabarti, Pinak
2017-08-01
This study looks into a safe, proficient and low-cost way for the preparation of novel silver nanoparticles by using 5% aqueous leaves extract of a medicinal plant, Marsilea quadrifolia (family: Marsileaceae) without using any external reducing and stabilizing agents. The synthesized AgNPs showed maximum UV-Vis absorbance at 435 nm due to surface plasmon resonance (SPR). The average diameter (∼22.5 nm) of AgNPs was measured from TEM analysis and was also supported by FE-SEM. The existence of a silver signal in EDX spectra supported the AgNPs formation and negative zeta potential value (-18.7 mV) which suggested its stability. FT-IR spectroscopic analysis showed that the functional groups like sbnd Osbnd H, sbnd Nsbnd H and sbnd Cdbnd O were responsible for the synthesis of AgNPs. The antibacterial activity of the AgNPs was tested against E. coli ATCC 25922. The anticancer potential of AgNPs was also assessed using two different cell lines, such as MCF-7 and HeLa. The interaction study of AgNPs with human serum albumin (HSA) and human hemoglobin (Hb) was performed by means of UV-Vis, fluorescence spectroscopy, Circular dichroism (CD) and zeta potential measurement. More negative zeta potential values of AgNPs-HSA/Hb (-21.1/-19.5 mV) complexes than AgNPs (-18.7 mV) indicated corresponding stability of bio-conjugates. The basic structure of HSA/Hb remained unchanged and its secondary structure was slightly changed upon interaction with the AgNPs concluded from Circular dichroism. So, it can be predicted that this AgNPs may be applied in the medical field.
Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.
2013-01-01
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509
Identification of a MicroRNA Signature for the Diagnosis of Fibromyalgia
Monsalve, Vicente; Oltra, Elisa
2015-01-01
Background Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease. Methods Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria. Results Microarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group. Conclusions We propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic. PMID:25803872
Identification of a microRNA signature for the diagnosis of fibromyalgia.
Cerdá-Olmedo, Germán; Mena-Durán, Armando Vicente; Monsalve, Vicente; Oltra, Elisa
2015-01-01
Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease. Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria. Microarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group. We propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic.
Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Utsab R.; Bhowmik, Debsindhu; Van Delinder, Kurt W.
Here, we elucidate the protein activity from the perspective of protein softness and flexibility by studying the collective phonon-like excitations in a globular protein, human serum albumin (HSA), and taking advantage of the state-of-the-art inelastic X-ray scattering (IXS) technique. Such excitations demonstrate that the protein becomes softer upon thermal denaturation due to disruption of weak noncovalent bonds. On the other hand, no significant change in the local excitations is detected in ligand- (drugs) bound HSA compared to the ligand-free HSA. These results clearly suggest that the protein conformational flexibility and rigidity are balanced by the native protein structure for biologicalmore » activity.« less
Global circular RNA expression profile of human gastric cancer and its clinical significance.
Shao, Yongfu; Li, Jinyun; Lu, Rongdan; Li, Tianwen; Yang, Yunben; Xiao, Bingxiu; Guo, Junming
2017-06-01
Circular RNAs (circRNAs) are a new class of noncoding RNAs. However, the expression profile and clinical significance of circRNAs in human gastric cancer is unclear. The global circRNA expression profile in human gastric cancer was measured by circRNA microarray. Hsa_circ_0014717, one of the most downregulated circRNAs in microarray, was selected as a targeted circRNA to explore its levels in gastric tissues and gastric juice. Freeze-thaw experiment and incubation experiment confirmed the stability of gastric juice circRNAs. A total of 308 circRNAs, including 107 (34.74%) upregulated and 201 (65.26%) downregulated circRNAs, were found significantly aberrantly expressed in gastric cancer tissues. The top ten upregulated in gastric cancer tissues were hsa_circ_0035445, hsa_circ_0003789, hsa_circ_0063809, hsa_circ_0074362, hsa_circ_0006282, hsa_circ_0011107, hsa_circ_0084606, hsa_circ_0005556, hsa_circ_0050547, and hsa_circ_0006470, while the top ten downregulated ones were hsa_circ_0007099, hsa_circ_0001897, hsa_circ_0007707, hsa_circ_0008832, hsa_circ_0001546, hsa_circ_0002089, hsa_circ_0004680, hsa_circ_0000154, hsa_circ_0004458, and hsa_circ_0008394. The hot-point chromosomes were chr1, chr2, chr3, chr9, and chr17. Hsa_circ_0014717 was significantly downregulated in 77.2% (74/96) gastric cancer tissues. Its levels in gastric cancer tissues were related to tumor stage (P = 0.037), distal metastasis (P = 0.048), tissue carcinoembryonic antigen (P = 0.001), and carbohydrate antigen 19-9 expression (P = 0.021). More importantly, hsa_circ_0014717 can stably exist in human gastric juice; and its nature meets the requirements of clinical detection. Our study uncovered the circRNA expression profile in human gastric cancer. Moreover, some circRNAs can stably exist in human body fluid, and has the potential to be used as novel biomarkers for the screening of high-risk gastric cancer patients. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Pasternak, Kamila; Nowacka, Olga; Wróbel, Dominika; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta
2014-03-01
The biostimulating activity of low level laser radiation of various wavelengths and energy doses is widely documented in the literature, but the mechanisms of the intracellular reactions involved are not precisely known. The aim of this paper is to evaluate the influence of low level laser radiation from an multiwave locked system (MLS) of two wavelengths (wavelength = 808 nm in continuous emission and 905 nm in pulsed emission) on the human erythrocyte membrane and on the secondary structure of human serum albumin (HSA). Human erythrocytes membranes and HSA were irradiated with laser light of low intensity with surface energy density ranging from 0.46 to 4.9 J cm(-2) and surface energy power density 195 mW cm(-2) (1,000 Hz) and 230 mW cm(-2) (2,000 Hz). Structural and functional changes in the erythrocyte membrane were characterized by its fluidity, while changes in the protein were monitored by its secondary structure. Dose-dependent changes in erythrocyte membrane fluidity were induced by near-infrared laser radiation. Slight changes in the secondary structure of HSA were also noted. MLS laser radiation influences the structure and function of the human erythrocyte membrane resulting in a change in fluidity.
Sudo, Hirotaka; O'driscoll, Michael; Nishiwaki, Kenji; Kawamoto, Yuji; Gammell, Philip; Schramm, Gerhard; Wertli, Toni; Prinz, Heino; Mori, Atsuhide; Sako, Kazuhiro
2012-01-01
The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. Studies using ampoules filled with ethanol-based solution and with nitrogen in the headspace demonstrated that the head space analysis (HSA) method showed sufficient sensitivity in detecting an ampoule crack. The proposed method is the use of HSA in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate the oxygen flow through the crack in the ampoule. The method was examined in comparative studies with a conventional dye ingress method, and the results showed that the HSA method exhibits sensitivity superior to the dye method. The results indicate that the HSA method in combination with the bombing treatment provides potential application as a leak test for the detection of container defects not only for ampoule products with ethanol-based solutions, but also for testing lyophilized products in vials with nitrogen in the head space. The application of a head space analyzer for oxygen concentration was examined to develop a novel ampoule leak test method. The proposed method is the use of head space analysis (HSA) in conjunction with the pretreatment of an overpressurising process known as bombing to facilitate oxygen flow through the crack in the ampoule for use in routine production. The result of the comparative study with a conventional dye leak test method indicates that the HSA method in combination with the bombing treatment can be used as a leak test method, enabling detection of container defects.
Durandin, Nikita A; Tsvetkov, Vladimir B; Bykov, Evgeny E; Kaluzhny, Dmitry N; Lavrenov, Sergey N; Tevyashova, Anna N; Preobrazhenskaya, Maria N
2016-09-01
Triarylmethane derivatives are extensively investigated as antitumor and antibacterial drug candidates alone and as photoactivatable compounds. In the series of tris(1-alkylindol-3-yl)methylium salts (TIMs) these two activities differed depending on the length of N-alkyl chain, with C4-5 derivatives being the most potent compared to the shorter or longer chain analogs and to the natural compound turbomycin A (no N-substituent). Given that the human serum albumin (HSA) is a major transporter protein with which TIMs can form stable complexes, and that the formation of these complexes might be advantageous for phototoxicity of TIMs we determined the quantitative parameters of TIMs-HSA binding using spectroscopic methods and molecular docking. TIMs bound to HSA (1:1 stoichiometry) altered the protein's secondary structure by changing the α-helix/β-turn ratio. The IIa subdomain (Sudlow site I) is the preferred TIM binding site in HSA as determined in competition experiments with reference drugs ibuprofen and warfarin. The values of binding constants increased with the number of CH2 groups from 0 to 6 and then dropped down for C10 compound, a dependence similar to the one observed for cytocidal potency of TIMs. We tend to attribute this non-linear dependence to an interplay between hydrophobicity and steric hindrance, the two key characteristics of TIMs-HSA complexes calculated in the molecular docking procedure. These structure-activity relationships provide evidence for rational design of TIMs-based antitumor and antimicrobial drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension
Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua
2017-01-01
Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings suggested that hsa_circ_0002062 and hsa_circ_0022342 may be key circRNAs for CTEPH development and that their targeted regulation may be an effective approach for treating CTEPH. PMID:28682884
Kouno, Yousuke; Anraku, Makoto; Yamasaki, Keishi; Okayama, Yoshiro; Iohara, Daisuke; Ishima, Yu; Maruyama, Toru; Kragh-Hansen, Ulrich; Hirayama, Fumitoshi; Otagiri, Masaki
2014-09-01
Sodium octanoate (Oct) and N-acetyl-l-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, exposure to light photo-degrades N-AcTrp with the formation of potentially toxic compounds. Therefore, we have examined the usefulness of N-acetyl-l-methionine (N-AcMet) in comparison with N-AcTrp for long-term stability, including photo stability, of albumin products. Recombinant human serum albumin (rHSA) with and without additives was photo-irradiated for 4weeks. The capability of the different stabilizers to scavenge reactive oxygen species (ROS) was examined by ESR spectrometry. Carbonyl contents were assessed by a spectrophotometric method using fluoresceinamine and Western blotting, whereas the structure of rHSA was examined by SDS-PAGE, far-UV circular dichroism and differential scanning calorimetry. Binding was determined by ultrafiltration. N-AcMet was found to be a superior ROS scavenger both before and after photo-irradiation. The number of carbonyl groups formed was lowest in the presence of N-AcMet. According to SDS-PAGE, N-AcMet stabilizes the monomeric form of rHSA, whereas N-AcTrp induces degradation of rHSA during photo-irradiation. The decrease in α-helical content of rHSA was the smallest in the presence of Oct, without or with N-AcMet. Photo-irradiation did not affect the denaturation temperature or calorimetric enthalpy of rHSA, when N-AcMet was present. The weakly bound N-AcMet is a superior protectant of albumin, because it is a better ROS-protector and structural stabilizer than N-AcTrp, and it is probable and also useful for other protein preparations. N-AcMet is an effective stabilizer of albumin during photo-irradiation, while N-Ac-Trp promotes photo-oxidative damage to albumin. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash
2017-02-01
Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.
Ryan, Ali; Polycarpou, Elena; Lack, Nathan A; Evangelopoulos, Dimitrios; Sieg, Christian; Halman, Alice; Bhakta, Sanjib; Eleftheriadou, Olga; McHugh, Timothy D; Keany, Sebastian; Lowe, Edward D; Ballet, Romain; Abuhammad, Areej; Jacobs, William R; Ciulli, Alessio; Sim, Edith
2017-07-01
With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc. © 2017 The British Pharmacological Society.
MicroRNA in sperm from Duroc, Landrace and Yorkshire boars
Kasimanickam, Vanmathy; Kastelic, John
2016-01-01
Sperm contain microRNAs (miRNAs), which may have roles in epigenetic control. Regarding phylogenetic relationships among various swine breeds, Yorkshire and Landrace, are considered phenotypically and genetically very similar, but distinctly different from Duroc. The objective of the present study was to compare abundance of boar sperm miRNAs in these three breeds. Overall, 252 prioritized miRNAs were investigated using real-time PCR; relative expression of miRNAs in sperm was similar in Yorkshire and Landrace boars, but significantly different compared to Duroc. Seventeen miRNAs (hsa-miR-196a-5p, hsa-miR-514a-3p, hsa-miR-938, hsa-miR-372-3p, hsa-miR-558, hsa-miR-579-3p, hsa-miR-595, hsa-miR-648, hsa-miR-524-3p, hsa-miR-512-3p, hsa-miR-429, hsa-miR-639, hsa-miR-551a, hsa-miR-624-5p, hsa-miR-585-3p, hsa-miR-508-3p and hsa-miR-626) were down-regulated (P < 0.05; fold regulation ≤−2) in Yorkshire and Landrace sperm, compared to Duroc sperm. Furthermore, three miRNAs (hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-99a-5p) were significantly up-regulated in Yorkshire and Landrace sperm compared to Duroc sperm, However, 240 miRNAs were not significantly different (within + 2 fold) between Yorkshire and Landrace sperm. We concluded that miRNAs in sperm were not significantly different between Yorkshire and Landrace boars, but there were significant differences between those two breeds and Duroc boars. Furthermore, integrated target genes for selected down-regulated miRNAs (identified via an in-silico method) appeared to participate in spermatogenesis and sperm functions. PMID:27597569
An overview on the delivery of antitumor drug doxorubicin by carrier proteins.
Agudelo, D; Bérubé, G; Tajmir-Riahi, H A
2016-07-01
Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Finotti, P; Pagetta, A; Ashton, T
2001-04-01
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.
Xu, Liang; Hu, Yan-Xi; Li, Jin; Liu, Yu-Feng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng
2017-08-01
Cytarabine is a kind of chemotherapy medication. In the present study, the molecular interaction between cytarabine and human serum albumin (HSA) was investigated via fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and molecular docking method under simulative physiological conditions. It was found that cytarabine could effectively quench the intrinsic fluorescence of HSA through a static quenching process. The apparent binding constants between drug and HSA at 288, 293 and 298K were estimated to be in the order of 10 3 L·mol -1 . The thermodynamic parameters ΔH°, ΔG°and ΔS° were calculated, in which the negative ΔG°suggested that the binding of cytarabine to HSA was spontaneous, moreover the negative ΔS°and negative ΔH°revealed that van der Waals force and hydrogen bonds were the major forces to stabilize the protein-cytarabine (1:1) complex. The competitive binding experiments showed that the primary binding site of cytarabine was located in the site I (subdomain IIA) of HSA. In addition, the binding distance was calculated to be 3.4nm according to the Förster no-radiation energy transfer theory. The analysis of CD and three-dimensional (3D) fluorescence spectra demonstrated that the binding of drug to HSA induced some conformational changes in HSA. The molecular docking study also led to the same conclusion obtained from the spectral results. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Akitomo; Ishima, Yu; Ikeda, Mayumi
Recently, hydropersulfide (RSSH) was found to exist in mammalian tissues and fluids. Cysteine hydropersulfide can be found in free cysteine residues as well as in proteins, and it has potent antioxidative activity. Human serum albumin (HSA) is the most abundant protein in mammalian serum. HSA possesses a free thiol group in Cys-34 that could be a site for hydropersulfide formation. HSA hydropersulfide of high purity as a positive control was prepared by treatment of HSA with Na{sub 2}S. The presence of HSA hydropersulfide was confirmed by spectroscopy and ESI-TOFMS analysis where molecular weights of HSA hydropersulfide by increments of approximatelymore » 32 Da (Sulfur atom) were detected. The fluorescent probe results showed that Alexa Fluor 680 conjugated maleimide (Red-Mal) was a suitable assay and bromotrimethylammoniumbimane bromide appeared to be a selective reagent for hydropersulfide. The effect of oxidative stress related disease on the existence of albumin hydropersulfides was examined in rat 5/6 nephrectomy model of chronic kidney disease (CKD). Interestingly, the level of hydropersulfides in rat 5/6 nephrectomy model serum was decreased by a uremic toxin that increases oxidative stress in rat 5/6 nephrectomy model. Furthermore, we demonstrated that the levels of HSA hydropersulfide in human subjects were reduced in CKD but restored by hemodialysis using Red-Mal assay. We conclude that HSA hydropersulfide could potentially play an important role in biological anti-oxidative defense, and it is a promising diagnostic and therapeutic marker of oxidative diseases. - Highlights: • Hydropersulfide can behave as potent antioxidants. • We firstly detected human serum albumin hydropersulfide in healthy subjects. • Human serum albumin hydropersulfide in human subjects were reduced in chronic kidney disease but restored by hemodialysis.« less
Floris, Ilaria; Billard, Hélène; Boquien, Clair-Yves; Joram-Gauvard, Evelyne; Simon, Laure; Legrand, Arnaud; Boscher, Cécile; Rozé, Jean-Christophe; Bolaños-Jiménez, Francisco; Kaeffer, Bertrand
2015-01-01
Background and Aims Human breast milk is an extremely dynamic fluid containing many biologically-active components which change throughout the feeding period and throughout the day. We designed a miRNA assay on minimized amounts of raw milk obtained from mothers of preterm infants. We investigated changes in miRNA expression within month 2 of lactation and then over the course of 24 hours. Materials and Methods Analyses were performed on pooled breast milk, made by combining samples collected at different clock times from the same mother donor, along with time series collected over 24 hours from four unsynchronized mothers. Whole milk, lipids or skim milk fractions were processed and analyzed by qPCR. We measured hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-146-5p, and hsa-let-7a, d and g (all -5p). Stability of miRNA endogenous controls was evaluated using RefFinder, a web tool integrating geNorm, Normfinder, BestKeeper and the comparative ΔΔCt method. Results MiR-21 and miR-16 were stably expressed in whole milk collected within month 2 of lactation from four mothers. Analysis of lipids and skim milk revealed that miR-146b and let-7d were better references in both fractions. Time series (5H-23H) allowed the identification of a set of three endogenous reference genes (hsa-let-7d, hsa-let-7g and miR-146b) to normalize raw quantification cycle (Cq) data. We identified a daily oscillation of miR-16-5p. Perspectives Our assay allows exploring miRNA levels of breast milk from mother with preterm baby collected in time series over 48–72 hours. PMID:26474056
Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong
2015-10-05
To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.
Sengupta, Priti; Sardar, Pinki Saha; Roy, Pritam; Dasgupta, Swagata; Bose, Adity
2018-06-01
The binding interaction of Rutin, a flavonoid, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), were investigated using different spectroscopic techniques, such as fluorescence, time-resolved single photon counting (TCSPC) and circular dichroism (CD) spectroscopy as well as molecular docking method. The emission studies revealed that the fluorescence quenching of BSA/HSA by Rutin occurred through a simultaneous static and dynamic quenching process, and we have evaluated both the quenching constants individually. The binding constants of Rutin-BSA and Rutin-HSA system were found to be 2.14 × 10 6 M -1 and 2.36 × 10 6 M -1 at 298 K respectively, which were quite high. Further, influence of some biologically significant metal ions (Ca 2+ , Zn 2+ and Mg 2+ ) on binding of Rutin to BSA and HSA were also investigated. Thermodynamic parameters justified the involvement of hydrogen bonding and weak van der Waals forces in the interaction of Rutin with both BSA and HSA. Further a site-marker competitive experiment was performed to evaluate Rutin binding site in the albumins. Additionally, the CD spectra of BSA and HSA revealed that the secondary structure of the proteins was perturbed in the presence of Rutin. Finally protein-ligand docking studies have also been performed to determine the probable location of the ligand molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
Sekula, Bartosz; Ciesielska, Anna; Rytczak, Przemyslaw; Koziołkiewicz, Maria; Bujacz, Anna
2016-07-01
Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein-serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Mehtala, Jonathan G.
Photothermally active gold nanorods were used to sensitize cells to chemotherapeutic agents by producing mildly hyperthermic effects (42-43 °C). We examined the synergistic effects of GNR-mediated mild hyperthermia (MHT) on cisplatin (CP) activity against SKOV3 ovarian cancer cells. In vitro studies were performed using CP at cytostatic concentrations (5 μM) and mPEG-stabilized GNRs (lambdamax 815 nm) with near-infrared laser excitation for MHT (or external heating as a positive control), followed by 72 hours incubation at 37 °C. The amount of PEG-GNRs needed for GNR-mediated MHT was determined to be 1 μg/mL, several times lower than the loadings used in tumor tissue ablation. A cell viability assay indicated 80% enhancement in CP-mediated cytotoxicity 3 days after GNR-mediated MHT relative to the projected additive effect. A pilot in vivo study showed preliminary results that cisplatin chemotherapy can be developed in combination with low loadings of GNR-mediated MHT for localized MHT to treat tumors. Stable aqueous dispersions of citrate-stabilized gold nanorods were prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using sodium polystyrenesulfonate (PSS) as a detergent. Nanoparticle tracking analysis (NTA) was used to measure the size of the Cit-GNR dispersions, which provides particle sizing resolution several times better than that of dynamic light scattering (DLS). Cit-GNRs were further functionalized with human serum albumin (HSA) and thiols and dithiocarbamates (DTCs) of varying molecular weights. The quality of the Cit-GNR dispersions allows us to address fundamental questions relating GNR stabilization to surface adsorption, including insights into the formation of the protein corona in serum-containing media. Mono-PEGylated human serum albumin was synthesized to investigate its ability to improve the bioavailability of the ability of paclitaxel (PTX), a poorly soluble drug. Matrix assisted laser desportion/ionization mass spectrometry was used to confirm the formation of the mono-PEGylated adduct, and HPLC analysis revealed that 70% of native HSA was converted to HSA-mPEG. A cell viability assay with MCF-7 breast cancer cells was used to measure the enhancement of the therapeutic efficacy of a PTX formulation with HSA, HSA-mPEG 5 kDa, or HSA-mPEG 20 kDa compared to PTX in PBS in the absence of HSA. We observed that the therapeutic efficacy of PTX was maximized when it was formulated in a 10:1 molar ratio with HSA, and for intermediate PTX doses (3.3 and 6.6 nM) the therapeutic efficacy of PTX with HSA-mPEG 20 kDa was greater than that for HSA-mPEG 5 kDa. These results suggest that PTX can bind to PEGylated HSA, and that most of the drug can be released.
DNA methylation regulated microRNAs in HPV-16-induced head and neck squamous cell carcinoma (HNSCC).
Sannigrahi, M K; Sharma, Rajni; Singh, Varinder; Panda, Naresh K; Rattan, Vidya; Khullar, Madhu
2018-02-17
Epigenetic modifications have been reported to play an important role in regulating gene expression and these modifications become critical when they have a role in controlling another important layer of epigenetic regulation namely microRNAs. In the present study, we have identified the microRNAs that may be regulated by promoter DNA methylation and histone acetylation in Human papilloma virus-positive head and neck squamous cell carcinoma. HPV-negative cell line (UPCI:SCC-116) and HPV-16 +ve cell line (UPCI:SCC-090) were treated with methylation inhibitor (5-aza-2'-deoxycytidine, AZA) and acetylation inhibitor (Trichostatin-A, TSA), followed by micro-array analysis. The differentially expressed miRNAs were validated in control (n = 10), HPV-16 +ve (n = 30), and HPV -ve (n = 30) HNC, TCGA (n = 529) tissue samples, and two HPV -ve (SCC116 and Hacat) and two HPV +ve (SCC090 and SiHa) cell lines. Methylation-specific PCR (MSP) and chromatin immunoprecipitation assay (CHIP) were performed to validate their regulation. In silico and in vitro analyses of identified miRNAs were done to study putative pathways they target and their possible role in carcinogenesis. Among 10 miRNAs specifically up-regulated in microarray analysis of AZA-treated SCC090 cells, we observed significantly decreased expression of hsa-miR-181c-5p, hsa-miR-132-5p, hsa-miR-658 in HPV +ve HNC cohort, TCGA tissue samples, and cell lines as compared to their HPV -ve counterpart, and their promoter region also possesses CpG islands. MSP and analysis of TCGA data (MethHC) revealed increased frequency of methylation at the promoter of hsa-miR-132-5p that is negatively correlated with its expression. In TSA-treated SCC090 cells, out of 7 miRNAs, two namely Hsa-miR-129-2-3p and Hsa-miR-449a were found to be up-regulated as compared to HPV -ve cells. However, the levels of enrichment by anti-acetyl-H3 and anti-acetyl-H4 were significantly low in cell lines compared to respective controls and both were up-regulated in HPV +ve compared to HPV -ve TCGA tissue samples. In silico analysis revealed hsa-miR-132-5p targeted canonical β-catenin/wnt pathway and modulation of down-stream genes of the pathway was observed on over-expression/inhibition of hsa-miR-132-5p. This study suggests the role of epigenetic modifications in regulating expression of miRNAs in HPV +ve HNSCC.
Ding, Fei; Zhang, Li; Diao, Jian-Xiong; Li, Xiu-Nan; Ma, Lin; Sun, Ying
2012-05-01
The complexation between the primary vector of ligands in blood plasma, human serum albumin (HSA) and a toxic anthraquinone dye alizarin complexone, was unmasked by means of circular dichroism (CD), molecular modeling, steady state and time-resolved fluorescence, and UV/vis absorption measurements. The structural investigation of the complexed HSA through far-UV CD, three-dimensional and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing with a reduction of α-helix upon conjugation. From molecular modeling and competitive ligand binding results, Sudlow's site I, which was the same as that of warfarin-azapropazone site, was appointed to retain high-affinity for alizarin complexone. Moreover, steady state fluorescence displayed that static type and Förster energy transfer is the operational mechanism for the vanish in the tryptophan (Trp)-214 fluorescence, this corroborates time-resolved fluorescence that HSA-alizarin complexone adduct formation has an affinity of 10(5) M(-1), and the driving forces were found to be chiefly π-π, hydrophobic, and hydrogen bonds, associated with an exothermic free energy change. These data should be utilized to illustrate the mechanism by which the toxicological action of anthraquinone dyes is mitigated by transporter HSA. Copyright © 2012 Elsevier Inc. All rights reserved.
The investigation of the binding of 6-mercaptopurine to site I on human serum albumin.
Sochacka, Jolanta; Baran, Wojciech
2012-12-01
6-Mercaptopurine (6-MP) is one of a large series of purine analogues which has been found active against human leukemias. The equilibrium dialysis, circular dichroism (CD) and molecular docking were employed to study the binding of 6-MP to human serum albumin (HSA). The binding of 6-MP to HSA in the equilibrium dialysis experiment was detected by measuring the displacement of 6-MP by specific markers for site I on HSA, warfarin (RWF), phenylbutazone (PhB) and n-butyl p-aminobenzoate (ABE). It was shown, according to CD data, that binding of 6-MP to HSA leads to alteration of HSA secondary structure. Based on the findings from displacement experiment and molecular docking simulation it was found that 6-MP was located within binding cavity of subdomain IIA and the space occupied by site markers overlapped with that of 6-MP. Displacement of 6-MP by the RWF or PhB was not up the level expected for a competitive mechanism, therefore displacement of 6-MP was rather by non-cooperative than that the direct competition. Instead, in case of the interaction between ABE and 6-MP, when the little enhancement of the binding of ABE by 6-MP was found, the interaction could be via a positively cooperative mechanism.
Human Serum Albumin Inhibits Aβ Fibrillization through a “Monomer-Competitor” Mechanism
Milojevic, Julijana; Raditsis, Annie; Melacini, Giuseppe
2009-01-01
Human serum albumin (HSA) is not only a fatty acid and drug carrier protein, it is also a potent inhibitor of Aβ self-association in plasma. However, the mechanism underlying the inhibition of Aβ fibrillization by HSA is still not fully understood. We therefore investigated the Aβ-HSA system using a combined experimental strategy based on saturation transfer difference (STD) NMR and intrinsic albumin fluorescence experiments on three Aβ peptides with different aggregation propensities (i.e., Aβ(12–28), Aβ(1–40), and Aβ(1–42)). Our data consistently show that albumin selectively binds to cross-β-structured Aβ oligomers as opposed to Aβ monomers. The HSA/Aβ oligomer complexes have KD values in the micromolar to submicromolar range and compete with the further addition of Aβ monomers to the Aβ assemblies, thus inhibiting fibril growth (“monomer competitor” model). Other putative mechanisms, according to which albumin acts as a “monomer stabilizer” or a “dissociation catalyst”, are not supported by our data, thus resolving previous discrepancies in the literature regarding Aβ-HSA interactions. In addition, the model and the experimental approaches proposed here are anticipated to have broad relevance for the characterization of other systems that involve amyloidogenic peptides and oligomerization inhibitors. PMID:19883602
Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh
2011-01-01
Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482
Tarasova, Irina A; Lobas, Anna A; Černigoj, Urh; Solovyeva, Elizaveta M; Mahlberg, Barbara; Ivanov, Mark V; Panić-Janković, Tanja; Nagy, Zoltan; Pridatchenko, Marina L; Pungor, Andras; Nemec, Blaž; Vidic, Urška; Gašperšič, Jernej; Krajnc, Nika Lendero; Vidič, Jana; Gorshkov, Mikhail V; Mitulović, Goran
2016-09-01
Affinity depletion of abundant proteins such as HSA is an important stage in routine sample preparation prior to MS/MS analysis of biological samples with high range of concentrations. Due to the charge competition effects in electrospray ion source that results in discrimination of the low-abundance species, as well as limited dynamic range of MS/MS, restricted typically by three orders of magnitude, the identification of low-abundance proteins becomes a challenge unless the sample is depleted from high-concentration compounds. This dictates a need for developing efficient separation technologies allowing fast and automated protein depletion. In this study, we performed evaluation of a novel immunoaffinity-based Convective Interaction Media analytical columns (CIMac) depletion column with specificity to HSA (CIMac-αHSA). Because of the convective flow-through channels, the polymethacrylate CIMac monoliths afford flow rate independent binding capacity and resolution that results in relatively short analysis time compared with traditional chromatographic supports. Seppro IgY14 depletion kit was used as a benchmark to control the results of depletion. Bottom-up proteomic approach followed by label-free quantitation using normalized spectral indexes were employed for protein quantification in G1/G2 and cleavage/blastocyst in vitro fertilization culture media widely utilized in clinics for embryo growth in vitro. The results revealed approximately equal HSA level of 100 ± 25% in albumin-enriched fractions relative to the nondepleted samples for both CIMac-αHSA column and Seppro kit. In the albumin-free fractions concentrated 5.5-fold by volume, serum albumin was identified at the levels of 5-30% and 20-30% for the CIMac-αHSA and Seppro IgY14 spin columns, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Global miRNA expression and correlation with mRNA levels in primary human bone cells
Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas
2015-01-01
MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267
Topal, Taner; Polat, Hüseyin; Güler, Inan
2008-10-01
In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.
Dang, Rui-Ying; Liu, Feng-Li; Li, Yan
2017-08-19
Circular RNAs (circRNAs) are a group of non-protein-coding RNAs generated from back splicing. Emerging evidence has demonstrated its vital regulation on angiogenesis. However, the underlying mechanism responsible for circRNAs effects on vascular endothelial cells is still unclear. In the present study, we screened the expression profiles and investigated the physiological role of circRNAs in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Using circRNA microarray analysis, we identified 36 circRNAs that were significantly dysregulated including 14 down-regulated circRNAs and 22 up-regulated with 2-fold change (P < 0.05). From the over-expressed circRNAs, hsa_circ_0010729 was selected as candidate circRNA and which was validated to be significantly up-regulated using RT-PCR. In loss-of-function experiments of HUVECs, hsa_circ_0010729 knockdown suppressed the proliferation and migration ability and enhanced apoptosis. Bioinformatic prediction and luciferase assay revealed that hsa_circ_0010729 and hypoxia inducible factor 1 alpha (HIF-1α) were targeted by miR-186. Validation experiments verified that hsa_circ_0010729 was co-expressed with HIF-1α, being negatively correlated with miR-186. Moreover, rescue experiments demonstrated that miR-186 inhibitor could reverse the role of hsa_circ_0010729 knockdown on HUVECs progression. Overall, the present study identifies the crucial regulation of hsa_circ_0010729 on vascular endothelial cell proliferation and apoptosis via targeting miR-186/HIF-1α axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Serum microRNAs in clear cell carcinoma of the ovary.
Chao, Angel; Lai, Chyong-Huey; Chen, Hua-Chien; Lin, Chiao-Yun; Tsai, Chia-Lung; Tang, Yun-Hsin; Huang, Huei-Jean; Lin, Chen-Tao; Chen, Min-Yu; Huang, Kuang-Gen; Chou, Hung-Hsueh; Chang, Ting-Chang; Chen, Shu-Jen; Wang, Tzu-Hao
2014-12-01
To identify candidate microRNAs (miRNAs) in the serum of patients with clear cell carcinomas in monitoring disease progression. The sera of patients with diagnosed ovarian clear cell carcinoma were collected from 2009 to 2012. Real-time quantitative polymerase chain reaction (PCR) analysis for 270 miRNAs was performed. To offset the potential extraction bias, an equal amount of Caenorhabditis elegans cel-miR-238 was added to each serum specimen before miRNA isolation. miRNA expression was analyzed using the ΔCt method, with cel-miR-238 as controls. Twenty-one patients with clear cell carcinoma were included. In the discovery phase on four pairs of pre- and postoperative sera, 18 differentially expressed miRNAs were selected from 270 miRNAs. In the validation phase on an independent set of 11 pairs of pre- and postoperative sera, 4 miRNAs (hsa-miR-130a, hsa-miR-138, hsa-miR-187, and hsa-miR-202) were confirmed to be higher in the preoperative sera. In the application phase, hsa-miR-130a remained consistent with the different time points in seven of the 10 patients during clinical follow-up periods. More importantly, in three patients, hsa-miR-130a levels were elevated in early disease recurrences before CA125 was found to be elevated. Hsa-miR-130a may be a useful serum biomarker for detecting recurrence of ovarian clear cell cancer, and warrants further studies. Copyright © 2014. Published by Elsevier B.V.
Hao, L; Lawrence, J
2004-03-15
Magnesia partially stabilised zirconia (MgO-PSZ), a bioinert ceramic, exhibits high mechanical strength, excellent corrosion resistance and good biocompatibility, but it does not naturally form a direct bond with bone resulting in a lack of osteointegration. The surface properties and structure of a biomaterial play an essential role in protein adsorption. As such, changes in the surface properties and structure of biomaterials may in turn alter their bioactivity. So, the fundamental reactions at the interface of biomaterials and tissue should influence their integration and bone-bonding properties. To this end, CO2 laser radiation was used to modify the surface roughness, crystal size, phase and surface energy of the MgO-PSZ. The basic mechanisms active in improving the surface energy were analysed and found to be the phase change and augmented surface area. The adsorption of human serum albumin (HSA), which is a non-cell adhesive protein, was compared on the untreated and CO2 laser modified MgO-PSZ. It was observed that the thickness of the adsorbed HSA decreased as the polar surface energy of the MgO-PSZ increased, indicating that HSA adsorbed more effectively on the hydrophobic MgO-PSZ surface than the hydrophilic surface. The current study provided important information regarding protein-biomaterial interactions and possible mechanisms behind the cell interaction and in vivo behaviour.
Wang, Yong; Ni, Yongnian
2014-01-21
In recent years, great efforts have focused on the exploration and fabrication of protein nanoconjugates due to potential applications in many fields including bioanalytical science, biosensors, biocatalysis, biofuel cells and bio-based nanodevices. An important aspect of our understanding of protein nanoconjugates is to quantitatively understand how proteins interact with nanomaterials. In this report, human serum albumin (HSA) and citrate-coated silver nanoparticles (AgNPs) are selected as a case study of protein-nanomaterial interactions. UV-visible spectroscopy together with multivariate curve resolution by alternating least squares (MCR-ALS) algorithm is first exploited for the detailed study of AgNPs-HSA interactions. Introduction of the chemometrics tool allows extracting the kinetic profiles, spectra and distribution diagrams of two major absorbing pure species (AgNPs and AgNPs-HSA conjugate). These resolved profiles are then analysed to give the thermodynamic, kinetic and structural information of HSA binding to AgNPs. Transmission electron microscopy, circular dichroism spectroscopy and Fourier transform infrared spectroscopy are used to further characterize the complex system. Moreover, a sensitive spectroscopic biosensor for HSA is fabricated with the MCR-ALS resolved concentration of absorbing pure species. It is found that the linear range for the HSA nanosensor was from 1.9 nM to 45.0 nM with a detection limit of 0.9 nM. It is believed that the proposed method will play an important role in the fabrication and optimization of a robust nanobiosensor or cross-reactive sensors array for the detection and identification of biocomponents.
Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping
2017-12-01
The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.
Jurasekova, Zuzana; Marconi, Giancarlo; Sanchez-Cortes, Santiago; Torreggiani, Armida
2009-11-01
Luteolin (LUT) is a polyphenolic compound, found in a variety of fruits, vegetables, and seeds, which has a variety of pharmacological properties. In the present contribution, binding of LUT to human serum albumin (HSA), the most abundant carrier protein in the blood, was investigated with the aim of describing the binding mode and parameters of the interaction. The application of circular dichroism, UV-Vis absorption, fluorescence, Raman and surface-enhanced Raman scattering spectroscopy combined with molecular modeling afforded a clear picture of the association mode of LUT to HSA. Specific interactions with protein amino acids were evidenced. LUT was found to be associated in subdomain IIA where an interaction with Trp-214 is established. Hydrophobic and electrostatic interactions are the major acting forces in the binding of LUT to HSA. The HSA conformations were slightly altered by the drug complexation with reduction of alpha-helix and increase of beta-turns structures, suggesting a partial protein unfolding. Also the configuration of at least two disulfide bridges were altered. Furthermore, the study of molecular modeling afforded the binding geometry. 2009 Wiley Periodicals, Inc.
Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.
2010-01-01
Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701
Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P
2018-04-20
Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Al cation induces aggregation of serum proteins.
Chanphai, P; Kreplak, L; Tajmir-Riahi, H A
2017-07-15
Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.
STUDIES OF VERAPAMIL BINDING TO HUMAN SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY
Mallik, Rangan; Yoo, Michelle J.; Chen, Sike; Hage, David S.
2008-01-01
The binding of verapamil to the protein human serum albumin (HSA) was examined by using high-performance affinity chromatography. Many previous reports have investigated the binding of verapamil with HSA, but the exact strength and nature of this interaction (e.g., the number and location of binding sites) is still unclear. In this study, frontal analysis indicated that at least one major binding site was present for R- and S-verapamil on HSA, with estimated association equilibrium constants on the order of 104 M−1 and a 1.4-fold difference in these values for the verapamil enantiomers at pH 7.4 and 37°C. The presence of a second, weaker group of binding sites on HSA was also suggested by these results. Competitive binding studies using zonal elution were carried out between verapamil and various probe compounds that have known interactions with several major and minor sites on HSA. R/S-Verapamil was found to have direct competition with S-warfarin, indicating that verapamil was binding to Sudlow site I (i.e., the warfarin-azapropazone site of HSA). The average association equilibrium constant for R- and S-verapamil at this site was 1.4 (±0.1) × 104 M−1. Verapamil did not have any notable binding to Sudlow site II of HSA but did appear to have some weak allosteric interactions with L-tryptophan, a probe for this site. An allosteric interaction between verapamil and tamoxifen (a probe for the tamoxifen site) was also noted, which was consistent with the binding of verapamil at Sudlow site I. No interaction was seen between verapamil and digitoxin, a probe for the digitoxin site of HSA. These results gave good agreement with previous observations made in the literature and help provide a more detailed description of how verapamil is transported in blood and of how it may interact with other drugs in the body. PMID:18980867
Bonanata, Jenner; Turell, Lucía; Antmann, Laura; Ferrer-Sueta, Gerardo; Botasini, Santiago; Méndez, Eduardo; Alvarez, Beatriz; Coitiño, E Laura
2017-07-01
Human serum albumin (HSA) has a single reduced cysteine residue, Cys34, whose acidity has been controversial. Three experimental approaches (pH-dependence of reactivity towards hydrogen peroxide, ultraviolet titration and infrared spectroscopy) are used to determine that the pK a value in delipidated HSA is 8.1±0.2 at 37°C and 0.1M ionic strength. Molecular dynamics simulations of HSA in the sub-microsecond timescale show that while sulfur exposure to solvent is limited and fluctuating in the thiol form, it increases in the thiolate, stabilized by a persistent hydrogen-bond (HB) network involving Tyr84 and bridging waters to Asp38 and Gln33 backbone. Insight into the mechanism of Cys34 oxidation by H 2 O 2 is provided by ONIOM(QM:MM) modeling including quantum water molecules. The reaction proceeds through a slightly asynchronous S N 2 transition state (TS) with calculated Δ ‡ G and Δ ‡ H barriers at 298K of respectively 59 and 54kJmol -1 (the latter within chemical accuracy from the experimental value). A post-TS proton transfer leads to HSA-SO - and water as products. The structured reaction site cages H 2 O 2 , which donates a strong HB to the thiolate. Loss of this HB before reaching the TS modulates Cys34 nucleophilicity and contributes to destabilize H 2 O 2 . The lack of reaction-site features required for differential stabilization of the TS (positive charges, H 2 O 2 HB strengthening) explains the striking difference in kinetic efficiency for the same reaction in other proteins (e.g. peroxiredoxins). The structured HB network surrounding HSA-SH with sequestered waters carries an entropic penalty on the barrier height. These studies contribute to deepen the understanding of the reactivity of HSA-SH, the most abundant thiol in human plasma, and in a wider perspective, provide clues on the key aspects that modulate thiol reactivity against H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Nateghian, Navid; Goodarzi, Navid; Amini, Mohsen; Atyabi, Fatemeh; Khorramizadeh, Mohammad Reza; Dinarvand, Rassoul
2016-01-01
Docetaxel (DTX) is a widely used chemotherapeutic agent with very low water solubility. Conjugation of DTX to human serum albumin (HSA) is an effective way to increase its water solubility. Attachment of folic acid (FA) or biotin as targeting moieties to DTX-HSA conjugates may lead to active targeting and specific uptake by cancer cells with overexpressed FA or biotin receptors. In this study, FA or biotin molecules were attached to DTX-HSA conjugates by two different methods. In one method, FA or biotin molecules were attached to remaining NH2 residues of HSA in DTX-HSA conjugate by covalent bonds. In the second method, HSA-FA or HSA-biotin conjugates were synthesized separately and then combined by DTX-HSA conjugate in proper ratio to prepare nanoparticles containing DTX-HSA plus HSA-FA or HSA-biotin. Cell viability of different nanoparticle was evaluated on MDA-MB-231 (folate receptor positive), A549 (folate receptor negative), and 4T1 (biotin receptor positive) and showed superior cytotoxicity compared with free docetaxel (Taxotere). In vivo studies of DTX-HSA-FA and DTX-HSA-biotin conjugates in BULB/c mice, tumorized by 4T1 cell line, showed the conjugates prepared in this study were more powerful in the reduction in tumor size and increasing the survival rate when compared to free docetaxel. © 2015 John Wiley & Sons A/S.
Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua
2013-04-01
The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Enokida, Taisuke; Yamasaki, Keishi; Okamoto, Yuko; Taguchi, Kazuaki; Ishiguro, Takako; Maruyama, Toru; Seo, Hakaru; Otagiri, Masaki
2016-06-01
Sodium 4-phenylbutyrate (PB) has many pharmacological activities; therefore extending its clinical use to the treatment of a wider variety of diseases would be desirable. However, our knowledge of the binding of PB to plasma proteins is not extensive. To address this issue in more detail, we characterized the protein binding of PB. Binding experiments showed that PB mainly binds to human serum albumin (HSA) in plasma. PB was also found to bind to a single site on HSA, which was identified as site II by fluorescent probe displacement experiment. Furthermore, an appropriate alkyl chain length and a carboxylic group in the PB structure were required for PB binding to HSA, suggesting that hydrophobic (and van der Waals) and electrostatic interactions are involved as binding modes. The contributions of hydrogen bonding and/or van der Waals interactions were also indicated by thermodynamic analyses. Tyrosine411 and arginine410 were identified as being involved in the binding of PB to site II, based on binding experiments using chemically modified- and mutant-HSA preparations. In conclusion, the available evidence indicates that PB binds to site II of HSA with assistance by multiple forces and that tyrosine411 and arginine410 both play important roles in this phenomenon. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ban, J; Jug, G; Mestdagh, P; Schwentner, R; Kauer, M; Aryee, D N T; Schaefer, K-L; Nakatani, F; Scotlandi, K; Reiter, M; Strunk, D; Speleman, F; Vandesompele, J; Kovar, H
2011-05-05
EWS-FLI1 is a chromosome translocation-derived chimeric transcription factor that has a central and rate-limiting role in the pathogenesis of Ewing's sarcoma. Although the EWS-FLI1 transcriptomic signature has been extensively characterized on the mRNA level, information on its impact on non-coding RNA expression is lacking. We have performed a genome-wide analysis of microRNAs affected by RNAi-mediated silencing of EWS-FLI1 in Ewing's sarcoma cell lines, and differentially expressed between primary Ewing's sarcoma and mesenchymal progenitor cells. Here, we report on the identification of hsa-mir-145 as the top EWS-FLI1-repressed microRNA. Upon knockdown of EWS-FLI1, hsa-mir-145 expression dramatically increases in all Ewing's sarcoma cell lines tested. Vice versa, ectopic expression of the microRNA in Ewing's sarcoma cell lines strongly reduced EWS-FLI1 protein, whereas transfection of an anti-mir to hsa-mir-145 increased the EWS-FLI1 levels. Reporter gene assays revealed that this modulation of EWS-FLI1 protein was mediated by the microRNA targeting the FLI1 3'-untranslated region. Mutual regulations of EWS-FLI1 and hsa-mir-145 were mirrored by an inverse correlation between their expression levels in four of the Ewing's sarcoma cell lines tested. Consistent with the role of EWS-FLI1 in Ewing's sarcoma growth regulation, forced hsa-mir-145 expression halted Ewing's sarcoma cell line growth. These results identify feedback regulation between EWS-FLI1 and hsa-mir-145 as an important component of the EWS-FLI1-mediated Ewing's sarcomagenesis that may open a new avenue to future microRNA-mediated therapy of this devastating malignant disease.
Paris, Guillaume; Ramseyer, Christophe; Enescu, Mironel
2014-05-01
The conformational dynamics of human serum albumin (HSA) was investigated by principal component analysis (PCA) applied to three molecular dynamics trajectories of 200 ns each. The overlap of the essential subspaces spanned by the first 10 principal components (PC) of different trajectories was about 0.3 showing that the PCA based on a trajectory length of 200 ns is not completely convergent for this protein. The contributions of the relative motion of subdomains and of the subdomains (internal) distortion to the first 10 PCs were found to be comparable. Based on the distribution of the first 3 PC, 10 protein conformers are identified showing relative root mean square deviations (RMSD) between 2.3 and 4.6 Å. The main PCs are found to be delocalized over the whole protein structure indicating that the motions of different protein subdomains are coupled. This coupling is considered as being related to the allosteric effects observed upon ligand binding to HSA. On the other hand, the first PC of one of the three trajectories describes a conformational transition of the protein domain I that is close to that experimentally observed upon myristate binding. This is a theoretical support for the older hypothesis stating that changes of the protein onformation favorable to binding can precede the ligand complexation. A detailed all atoms PCA performed on the primary Sites 1 and 2 confirms the multiconformational character of the HSA binding sites as well as the significant coupling of their motions. Copyright © 2013 Wiley Periodicals, Inc.
Li, Xuejie; Zhao, Zhenzhou; Jian, Dongdong; Li, Wentao; Tang, Haiyu; Li, Muwei
2017-11-01
The purpose of this study was to identify the expression characteristics of circular RNAs in the peripheral blood of coronary artery disease patients and type 2 diabetes mellitus patients. Circular RNA in the peripheral blood from 6 control individuals, 6 coronary artery disease patients, 6 type 2 diabetes mellitus patients and 6 coronary artery disease combined with type 2 diabetes mellitus patients was collected for microarray analysis, and a further independent cohort consisting of 20 normal individuals, 20 type 2 diabetes mellitus subjects and 20 coronary artery disease subjects was used to verify the expression of five circular RNAs chosen for further analysis. The findings were then tested in a third cohort using quantitative real-time polymerase chain reaction. In total, 40 circular RNAs differentially expressed between the three experimental groups and the control group were identified by microarray analysis: 13 were upregulated in the experimental groups, while 27 were downregulated. Of the five circular RNAs chosen for further analysis, three were significantly downregulated in the experimental groups. The crude odds ratios and adjusted odds ratios of hsa-circRNA11783-2 showed significant differences in both the coronary artery disease group and type 2 diabetes mellitus group. We then verified hsa-circRNA11783-2 in the third cohort, and it remained closely related to both coronary artery disease and type 2 diabetes mellitus. Hsa-circRNA11783-2 is closely related to both coronary artery disease and type 2 diabetes mellitus.
Zheng, Hailiang; Li, Ming; Yin, Pengbin; Peng, Ye; Gao, Yuan; Zhang, Lihai; Tang, Peifu
2015-01-01
Background Calcaneal quantitative ultrasound (QUS), which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear. Design A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip. Methods We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA), and hip structural analysis (HSA) were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT) were extracted by a three-dimensional printing technique-assisted method. Pearson’s correlation between QUS measurement with DXA, HSA-derived parameters and Young’s modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward’s areas, and the femoral shaft, respectively. Results Significant correlations were found between estimated BMD (Est.BMD) and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009) was higher than that of the neck area (r = 0.297, p = 0.031) and total proximal femur (r = 0.291, p = 0.034). Furthermore, the quantitative ultrasound index (QUI) was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315–0.356, all p<0.05) as well as with the Young’s modulus of PCT from the femoral head (r = 0.589, p<0.001). Conclusion The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck or shaft. PMID:26710123
Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles
NASA Astrophysics Data System (ADS)
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Arpanaei, Ayyoob; Marvian, Amir Tayaranian
2015-04-01
Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)- N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.
Rajak, Poonam; Vijayalakshmi, M A; Jayaprakash, N S
2013-05-05
Proteins present in human serum are of immense importance in the field of biomarker discovery. But, the presence of high-abundant proteins like albumin makes the analysis more challenging because of masking effect on low-abundant proteins. Therefore, removal of albumin using highly specific monoclonal antibodies (mAbs) can potentiate the discovery of low-abundant proteins. In the present study, mAbs against human serum albumin (HSA) were developed and integrated in to an immunoaffinity based system for specific removal of albumin from the serum. Hybridomas were obtained by fusion of Sp2/0 mouse myeloma cells with spleen cells from the mouse immunized with HSA. Five clones (AHSA1-5) producing mAbs specific to HSA were established and characterized by enzyme linked immunosorbent assay (ELISA) and immunoblotting for specificity, sensitivity and affinity in terms of antigen binding. The mAbs were able to bind to both native albumin as well as its glycated isoform. Reactivity of mAbs with different mammalian sera was tested. The affinity constant of the mAbs ranged from 10(8) to 10(9)M(-1). An approach based on oriented immobilization was followed to immobilize purified anti-HSA mAbs on hydrazine activated agarose gel and the dynamic binding capacity of the column was determined. Copyright © 2013 Elsevier B.V. All rights reserved.
Anwar, Sh; Yanai, T; Sakai, H
2016-07-01
Canine haemangiosarcoma (HSA), like human angiosarcoma, is an uncommon malignant vascular endothelial cell tumour associated with a poor prognosis. The peroxiredoxin (PRDX) family of peroxidases, which comprises six members in mammals (PRDX1-6), might contribute to cancer cell survival in the face of oxidative stress as these proteins exhibit frequent upregulation in cancer cells. In this study, we investigated the expression levels of PRDX6 in spontaneously arising primary canine HSAs by immunohistochemical analysis, identifying marked expression of this protein. Both PRDX6 mRNA and protein were overexpressed in HSA cell lines compared with normal canine endothelial cells, although some variation was observed between the different HSA cell lines. Small interfering RNA-induced downregulation of PRDX6 promoted apoptosis in the HSA cell lines. The observation that PRDX6 suppression increased the cytotoxicity of these cells suggests that PRDX6 might play an important cytoprotective role. Copyright © 2016 Elsevier Ltd. All rights reserved.
HSA: a heuristic splice alignment tool.
Bu, Jingde; Chi, Xuebin; Jin, Zhong
2013-01-01
RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.
Co-expression analysis reveals key gene modules and pathway of human coronary heart disease.
Tang, Yu; Ke, Zun-Ping; Peng, Yi-Gen; Cai, Ping-Tai
2018-02-01
Coronary heart disease is a kind of disease which causes great injury to people world-widely. Although gene expression analyses had been performed previously, to our best knowledge, systemic co-expression analysis for this disease is still lacking to date. Microarray data of coronary heart disease was downloaded from NCBI with the accession number of GSE20681. Co-expression modules were constructed by WGCNA. Besides, the connectivity degree of eigengenes was analyzed. Furthermore, GO and KEGG enrichment analysis was performed on these eigengenes in these constructed modules. A total of 11 co-expression modules were constructed by the 3000 up-regulated genes from the 99 samples with coronary heart disease. The average number of genes in these modules was 270. The interaction analysis indicated the relative independence of gene expression in these modules. The functional enrichment analysis showed that there was a significant difference in the enriched terms and degree among these 11 modules. The results showed that modules 9 and 10 played critical roles in the occurrence of coronary disease. Pathways of hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) were thought to be closely related to the occurrence and development of coronary heart disease. Our result demonstrated that modules 9 and 10 were the most critical modules in the occurrence of coronary heart disease. Pathways as hsa00190 (oxidative phosphorylation) and (hsa01130: biosynthesis of antibiotics) had the potential to serve as the prognostic and predictive marker of coronary heart disease. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour
2013-10-01
In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.
Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)
Gomes, Larissa Luz; Moreira, Fabiano Cordeiro; Hamoy, Igor Guerreiro; Santos, Sidney; Assumpção, Paulo; Santana, Ádamo L.; Ribeiro-dos-Santos, Ândrea
2014-01-01
In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained “in silico” must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development. PMID:24966529
NASA Astrophysics Data System (ADS)
Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei
2016-05-01
Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.
Sone, Teruki; Ito, Masako; Fukunaga, Masao; Tomomitsu, Tatsushi; Sugimoto, Toshitsugu; Shiraki, Masataka; Yoshimura, Takeshi; Nakamura, Toshitaka
2014-07-01
Weekly administration of teriparatide has been shown to reduce the risk of vertebral and non-vertebral fractures in patients with osteoporosis at higher fracture risk in Japan. However, its efficacy for hip fracture has not been established. To gain insight into the effect of weekly teriparatide on the hip, hip structural analysis (HSA) based on dual-energy X-ray absorptiometry (DXA) was performed using the data of 209 postmenopausal osteoporotic women who had participated in the original randomized, multicenter, double-blind, placebo-controlled trial assessing the effects of once-weekly 56.5 μg teriparatide for 72 weeks. The DXA scans, obtained at baseline, 48 weeks and 72 weeks, were analyzed to extract bone mineral density (BMD) and cross-sectional geometrical indices at the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft. Compared with placebo after 72 weeks, the teriparatide group showed significantly higher BMD, average cortical thickness, bone cross-sectional area, and section modulus, and lower buckling ratio at both the NN and IT regions. No significant expansion of periosteal diameter was observed at these regions. There were no significant differences in BMD and HSA indices at the shaft region. The results indicate that overall structural strength in the proximal femur increased compared to placebo, suggesting that once-weekly teriparatide effectively reverses changes in hip geometry and strength with aging. Copyright © 2014. Published by Elsevier Inc.
Identifying key genes associated with acute myocardial infarction.
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-10-01
This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.
Identifying key genes associated with acute myocardial infarction
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-01-01
Abstract Background: This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Methods: Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. Result: A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21–5p and hsa-miR-30c-5p were obviously decreased in AMI. Conclusion: A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs. PMID:29049183
Wong, Richard W; Gonsalves, Mishka N; Huber, Michael L; Rich, Lon; Strom, Adam
2015-10-01
To investigate: 1) acanthocytosis and presence of acanthocytes in peritoneal fluid as a diagnostic marker for hemangiosarcoma (HSA) in dogs with non-traumatic hemoabdomen; and 2) the association between other erythrocyte, biochemical, and hematologic abnormalities as a mean of differentiating HSA from other disease. Prospective double-blinded cohort study. Dogs (n = 40) with non-traumatic hemoabdomen. Dogs diagnosed with hemoabdomen (January 2012 to May 2013) had cytologic evaluation of abdominal effusion and peripheral blood smears. Peripheral blood CBC, PT, and aPTT, as well as blood and effusion acanthocytes, keratocytes, schistocytes, lactate, glucose, PCV, and TP results were compared using the paired t-test or Fisher's exact test. Based on histologic confirmation of HSA, dogs were divided into 2 groups (HSA, non-HSA) and variables compared. There was no significant difference in erythrocyte morphology in abdominal effusion or peripheral blood between dogs with HSA or non-HSA related hemoabdomen. Platelet concentration and peripheral blood PCV were significantly lower in the HSA group. A reliable preoperative biochemical or cytologic test to differentiate between HSA and non-HSA related hemoabdomen was not identified. © Copyright 2015 by The American College of Veterinary Surgeons.
Zhang, Qing; Yu, Hui; Zhang, Feng-zhen; Shen, Zhi-cheng
2013-10-01
Human serum albumin (HSA) is widely utilized for medical purposes and biochemical research. Transgenic rice has proved to be an attractive bioreactor for mass production of recombinant HSA (rHSA). However, transgene spread is a major environmental and food safety concern for transgenic rice expressing proteins of medical value. This study aimed to develop a selectively terminable transgenic rice line expressing HSA in rice seeds, and a simple process for recovery and purification of rHSA for economical manufacture. An HSA expression cassette was inserted into a T-DNA vector encoding an RNA interference (RNAi) cassette suppressing the CYP81A6 gene. This gene detoxifies the herbicide bentazon and is linked to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) cassette which confers glyphosate tolerance. ANX Sepharose Fast Flow (ANX FF) anion exchange chromatography coupled with Butyl Sepharose High Performance (Butyl HP) hydrophobic interaction chromatography was used to purify rHSA. A transgenic rice line, HSA-84, was obtained with stable expression of rHSA of up to 0.72% of the total dry weight of the dehusked rice seeds. This line also demonstrated high sensitivity to bentazon, and thus could be killed selectively by a spray of bentazon. A two-step chromatography purification scheme was established to purify the rHSA from rice seeds to a purity of 99% with a recovery of 62.4%. Results from mass spectrometry and N-terminus sequencing suggested that the purified rHSA was identical to natural plasma-derived HSA. This study provides an alternative strategy for large-scale production of HSA with a built-in transgene safety control mechanism.
Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila
2014-01-01
About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203
Trescher, Karola; Dzilic, Elda; Kreibich, Maximilian; Gasser, Harald; Aumayr, Klaus; Kerjaschki, Dontscho; Pelzmann, Brigitte; Hallström, Seth; Podesser, Bruno K
2015-03-01
Currently available cardioplegic solutions provide excellent protection in patients with normal surgical risk; in high-risk patients, however, such as in emergency coronary artery bypass surgery, there is still room for improvement. As most of the cardioplegic solutions primarily protect myocytes, the addition of substances for protection of the endothelium might improve their protective potential. The nitric oxide donor, S-nitroso human serum albumin (S-NO-HSA), which has been shown to prevent endothelial nitric oxide synthase uncoupling, was added to the newly developed histidine-tryptophan-ketoglutarat (HTK-N) cardioplegia in an isolated heart perfusion system after subjecting rats to acute myocardial infarction (MI) and reperfusion. In male Sprague-Dawley rats, acute MI was induced by ligation for 1 h of the anterior descending coronary artery. After 2 h of in vivo reperfusion hearts were evaluated on an isolated erythrocyte-perfused working heart model. Cold ischaemia (4°C) for 60 min was followed by 45 min of reperfusion. Cardiac arrest was induced either with HTK (n = 10), HTK-N (n = 10) or HTK-N + S-NO-HSA (n = 10). In one group (HTK-N + S-NO-HSA plus in vivo S-NO-HSA; n = 9) an additional in vivo infusion of S-NO-HSA was performed. Post-ischaemic recovery of cardiac output (HTK: 77 ± 4%, HTK-N: 86 ± 7%, HTK-N + S-NO-HSA: 101 ± 5%, in vivo S-NO-HSA: 93 ± 8%), external heart work (HTK: 79 ± 5%, HTK-N: 83 ± 3%, HTK-N + S-NO-HSA: 101 ± 8%, in vivo S-NO-HSA: 109 ± 13%), coronary flow (HTK: 77 ± 4%, HTK-N: 94 ± 6%, HTK-N + S-NO-HSA: 118 ± 15%, in vivo S-NO-HSA: 113 ± 3.17%) [HTK-N + S-NO-HSA vs HTK P < 0.001; HTK-N + S-NO-HSA vs HTK-N P < 0.05] and left atrial diastolic pressure (HTK: 122 ± 31%, HTK-N: 159 ± 43%, HTK-N + S-NO-HSA: 88 ± 30, in vivo S-NO-HSA: 62 ± 10%) [HTK-N + S-NO-HSA vs HTK P < 0.05; in vivo S-NO-HSA vs HTK-N P < 0.05] were significantly improved in both S-NO-HSA-treated groups compared with HTK and HTK-N, respectively. This was accompanied by better preservation of high-energy phosphates (adenosine triphosphate; energy charge) and ultrastructural integrity on transmission electron microscopy. However, no additional benefit of in vivo S-NO-HSA infusion was observed. Addition of the NO donor, S-NO-HSA refines the concept of HTK-N cardioplegia in improving post-ischaemic myocardial perfusion. HTK-N with S-NO-HSA is a possible therapeutic option for patients who have to be operated on for acute MI. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Circular RNA hsa_circ_0001982 Promotes Breast Cancer Cell Carcinogenesis Through Decreasing miR-143.
Tang, Yi-Yin; Zhao, Ping; Zou, Tian-Ning; Duan, Jia-Jun; Zhi, Rong; Yang, Si-Yuan; Yang, De-Chun; Wang, Xiao-Li
2017-11-01
Circular RNAs (circRNAs) are a type of noncoding RNAs generated from back-splicing, which have been verified to mediate multiple tumorigenesis. With the development of high-throughput sequencing, massive circRNAs are discovered in tumorous tissue. However, the potential physiological effect of circRNAs in breast cancer is still unknown. The purpose of this study is to investigate the expression profile of circRNA in breast cancer tissue and explore the in-depth regulatory mechanism in breast cancer tumorigenesis. In the present study, we screened the circRNA expression profiles in breast cancer tissue using circRNA microarray analysis. Totally 1705 circRNAs were identified to be significantly aberrant. Among these dysregulated circRNAs, hsa_circ_0001982 was markedly overexpressed in breast cancer tissue and cell lines. Bioinformatics analysis predicted that miR-143 acted as target of hsa_circ_0001982, which was confirmed by Dual-luciferase reporter assay. Loss-of-function and rescue experiments revealed that hsa_circ_0001982 knockdown suppressed breast cancer cell proliferation and invasion and induced apoptosis by targeting miR-143. In summary, our study preliminarily investigates the circRNA expression in breast cancer tissue and explores the role of competing endogenous RNA (ceRNA) mechanism in the progression, providing a novel insight for breast cancer tumorigenesis.
Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking.
He, Yang; Wang, Yiwei; Tang, Lifei; Liu, Hui; Chen, Wei; Zheng, Zhongliang; Zou, Guolin
2008-03-01
Puerarin is a widely used compound in Chinese traditional medicine and exhibits many pharmacological activities. Binding of puerarin to human serum albumin (HSA) was investigated by ultraviolet absorbance, fluorescence, circular dichroism and molecular docking. Puerarin caused a static quenching of intrinsic fluorescence of HSA, the quenching data was analyzed by Stern-Volmer equation. There was one primary puerarin binding site on HSA with a binding constant of 4.12 x 10(4) M(-1) at 298 K. Thermodynamic analysis by Van Hoff equation found enthalpy change (DeltaH(0)) and entropy change (DeltaS(0)) were -28.01 kJ/mol and -5.63 J/mol K respectively, which indicated the hydrogen bond and Van der Waas interaction were the predominant forces in the binding process. Competitive experiments showed a displacement of warfarin by puerarin, which revealed that the binding site was located at the drug site I. Puerarin was about 2.22 nm far from the tryptophan according to the observed fluorescence resonance energy transfer between HSA and puerarin. Molecular docking suggested the hydrophobic residues such as tyrosine (Tyr) 150, Tyr 148, Tyr 149 and polar residues such as lysine (Lys) 199, Lys 195, arginine 257 and histidine 242 played an important role in the binding reaction.
Investigation of the interaction between naringin and human serum albumin
NASA Astrophysics Data System (ADS)
Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide
2008-03-01
The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.
Sagmeister, Peter; Gibson, Matthew A; McDade, Kyle H; Gailer, Jürgen
2016-08-01
Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs. Copyright © 2016 Elsevier B.V. All rights reserved.
Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah
2016-12-01
In the present study, new Schiff base complexes with the composition [M(NCS) 2 (L1) 2 ]·nH 2 O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS) 2 (L2) 2 ], M=Co (3) and Ni (4) as well as [M(NCS) 2 (L3) 2 ], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10 6 moldm -3 ) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations. Copyright © 2016 Elsevier B.V. All rights reserved.
Qinga, Lin-Sen; Xue, Ying; Zheng, Yi; Xiong, Jing; Liao, Xun; Ding, Li-Sheng; Li, Bo-Gang; Liu, Yi-Ming
2010-07-09
Dioscorea nipponica and the preparations made from it have been used for long to prevent and treat coronary heart disease in traditional Chinese medicine. A group of steroidal saponins present in the plant are believed to be the active ingredients. It has been a challenge to study the individual saponins separately due to the similarities in their chemical and physical properties. In this work, human serum albumin (HSA) functionalized magnetic nanoparticles (MNPs) were used to isolate and identify saponin ligands that bind to HSA from D. nipponica extract. Electrospray ionization mass spectrometry (ESI-MS) was used for compound identification and semi-quantification. Three saponins, i.e. dioscin, gracillin, and pseudo-protodioscin showed affinity to HSA-MNPs and thus isolated effectively from the extract. The other two saponins detected in the extract (i.e. protodioscin and 26-O-β-D-glucopyranosyl-3β,20α,26-triol-25(R)-Δ(5,22)-dienofurostan-3-O-α-L-rhamnopyranosyl (1→2)-[α-L-rhamnopyranosyl (1→4)]-β-D-glucopyranoside) exhibited no affinity at all. Among the three saponins fished out, dioscin bound to HSA much stronger than gracillin and pseudo-protodioscin did. The results indicated that affinity interaction between HSA immobilized on MNPs and small molecule compounds were highly dependent on chemical structures and, potentially, medicinal usefulness. The present work demonstrates a facile and effective way to isolate and identify ligands of receptors from medicinal plants.
Zaki, Mehvash; Afzal, Mohd; Ahmad, Musheer; Tabassum, Sartaj
2016-08-01
New copper(II)-based complex (1) was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. The in vitro binding studies of complex 1 with CT DNA and HSA have been investigated by employing biophysical techniques to examine the binding propensity of 1 towards DNA and HSA. The results showed that 1 avidly binds to CT DNA via electrostatic mode along with the hydrogen bonding interaction of NH2 and CN groups of Schiff base ligand with the base pairs of DNA helix, leads to partial unwinding and destabilization of the DNA double helix. Moreover, the CD spectral studies revealed that complex 1 binds through groove binding interaction that stabilizes the right-handed B-form of DNA. Complex 1 showed an impressive photoinduced nuclease activity generating single-strand breaks in comparison with the DNA cleavage activity in presence of visible light. The mechanistic investigation revealed the efficiency of 1 to cleave DNA strands by involving the generation of reactive oxygen species. Furthermore, the time dependent DNA cleavage activity showed that there was gradual increase in the amount of NC DNA on increasing the photoexposure time. However, the interaction of 1 and HSA showed that the change of intrinsic fluorescence intensity of HSA was induced by the microenvironment of Trp residue. Copyright © 2016 Elsevier B.V. All rights reserved.
Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K
2014-11-01
New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Mann, Tobias; Baumhauer, Judith F; O'Keefe, Regis J; Harrast, John; Hurwitz, Shepard R; Voloshin, Ilya
2014-11-01
Primary glenohumeral osteoarthritis is a common indication for shoulder arthroplasty. Historically, both total shoulder arthroplasty (TSA) and hemi-shoulder arthroplasty (HSA) have been used to treat primary glenohumeral osteoarthritis. The choice between procedures is a topic of debate, with HSA proponents arguing that it is less invasive, faster, less expensive, and technically less demanding, with quality of life outcomes equivalent to those of TSA. More recent evidence suggests TSA is superior in terms of pain relief, function, ROM, strength, and patient satisfaction. We therefore investigated the practice of recently graduated orthopaedic surgeons pertaining to the surgical treatment of this disease. We hypothesized that (1) recently graduated, board eligible, orthopaedic surgeons with fellowship training in shoulder surgery are more likely to perform TSA than surgeons without this training; (2) younger patients are more likely to receive HSA than TSA; (3) patient sex affects the choice of surgery; (4) US geographic region affects practice patterns; and (5) complication rates for HSA and TSA are not different. We queried the American Board of Orthopaedic Surgery's database to identify practice patterns of orthopaedic surgeons taking their board examination. We identified 771 patients with primary glenohumeral osteoarthritis treated with TSA or HSA from 2006 to 2011. The rates of TSA and HSA were compared based on the treating surgeon's fellowship training, patient age and sex, US geographic region, and reported surgical complications. Surgeons with fellowship training in shoulder surgery were more likely (86% versus 72%; OR 2.32; 95% CI, 1.56-3.45, p<0.001) than surgeons without this training to perform TSA rather than HSA. The mean age for patients receiving HSA was not different from that for patients receiving TSA (66 versus 68, years, p=0.057). Men were more likely to receive HSA than TSA when compared to women (RR 1.54; 95% CI, 1.19-2.00, p=0.0012). The proportions of TSA and HSA were similar regardless of US geographic region (Midwest HSA 21%, TSA 79%; Northeast HSA 25%, TSA 75%; Northwest HSA 16%, TSA 84%; South HSA 27%, TSA 73%; Southeast HSA 24%, TSA 76%; Southwest HSA 23%, TSA 77%; overall p=0.708). The overall complication rates were not different with the numbers available: 8.4% (15/179) for HSA and 8.1% (48/592) for TSA (p=0.7555). The findings of this study are at odds with the recommendations in the current clinical practice guidelines for the treatment of glenohumeral osteoarthritis published by the American Academy of Orthopaedic Surgeons. These guidelines favor using TSA over HSA in the treatment of shoulder arthritis. Further investigation is needed to clarify if these practice patterns are isolated to recently graduated board eligible orthopaedic surgeons or if the use of HSA continues with orthopaedic surgeons applying for recertification. Level III, therapeutic study. See Instructions for Authors for a complete description of levels of evidence.
Xing, Lichen; Zhang, Leiming; Feng, Yali; Cui, Zhe; Ding, Lin
2018-06-01
Retinoblastoma (RB) is the most common intraocular malignancy in infants and children with high mortality rate in developing countries. Emerging evidence demonstrated that abnormally expressed circular RNAs (circRNAs) are involved in tumorigenesis and progression in several malignancies. However, their clinical values, biological functions and mechanisms in RB has not been reported before. Recently, hsa_circ_0001649 was found to play imperative roles in cholangiocarcinoma, gastric cancer, and hepatocellular carcinoma. In the current study, qRT-PCR was performed to detect the expression of hsa_circ_0001649 in RB samples and cells. The correlations between hsa_circ_0001649 expression and clinicopathologic characteristics were further analyzed. In addition, we up-regulated hsa_circ_0001649 in Y79 cells and knocked down hsa_circ_0001649 in WERI-Rb1 cells to explore its effect on cell proliferation and apoptosis. The animal study was performed to confirm the in vitro results. Furthermore, AKT/mTOR signaling pathway was detected to clarify the molecular mechanisms of hsa_circ_0001649 exerts in RB cell growth. The results indicated that hsa_circ_0001649 was decreased in RB tissues and cells, and this downregulation was associated with larger tumor size and advanced intraocular international retinoblastoma classify (IIRC) stage in RB patients. Additionally, hsa_circ_0001649 could act as an independent prognostic predictor for overall survival in patients with RB. Moreover, hsa_circ_0001649 inhibits cell growth and promotes cell apoptosis in RB cells. AKT/mTOR signaling pathway is involved in the cell growth alteration affected by hsa_circ_0001649. Overall, hsa_circ_0001649 might be a potentially useful prognostic biomarker and therapeutic target for RB. Copyright © 2018. Published by Elsevier Masson SAS.
Zhou, Ting; Lu, Saihua; Liu, Xiufeng; Zhang, Ye; Xu, Feng
2013-01-01
Human serum albumin (HSA) is an ideal natural colloid that has been widely used in clinical practice for supplemental albumin or as a plasma substitute during therapeutic plasma exchanges to redress hypoproteinemia. However, a paucity of well-designed clinical trials, a lack of a clear cut survival benefit, and frequent case reports of adverse drug reaction (ADR) make the use of HSA controversial. This study aims to review and to comment on the reported ADRs of HSA in the People’s Republic of China, so as to provide the basis for rational HSA use in clinical settings. Data on the ADR case reports from HSA administration between January 1990 and December 2012 available from the China National Knowledge Infrastructure (CNKI) database, Wanfang data (WF), and Chinese Biomedical Literature (CBM) were reviewed. The reasons for using HSA, the types of ADRs, the causality of ADRs and the rationality for HSA administration were extracted and analyzed. In total, 61 cases of ADR reports were identified of which the primary disease of patients using HSA was malignant tumor (34.42%). The primary ADR was anaphylaxis (59.02%). Of the 61 cases, 30 were caused by irrational use of HSA. The most common irrational use was off-label use (56.67%), followed by inappropriate infusion rate. Therefore, we conclude that to avoid the occurrence of ADRs, guidelines for using HSA are needed to guarantee its rational use and HSA should be used strictly according to these guidelines. In addition, medical staff, including clinical pharmacists and nurses, should pay more attention to the patients who inject HSA to ensure its safe use in the clinic. PMID:24348023
Salas-Huetos, Albert; Blanco, Joan; Vidal, Francesca; Godo, Anna; Grossmann, Mark; Pons, Maria Carme; F-Fernández, Silvia; Garrido, Nicolás; Anton, Ester
2015-09-01
To compare the microRNA (miRNA) expression profile in spermatozoa from three infertile populations vs. a group of fertile men. Evaluation of the expression level of 736 miRNAs in human spermatozoa using TaqMan quantitative reverse transcription-polymerase chain reaction. University research facility. Semen samples with a single seminal alteration were collected from infertile individuals: asthenozoospermic (n = 10), teratozoospermic (n = 10), and oligozoospermic (n = 10). None. Correlation of the expression level of each miRNA with seminal parameters, age, and chromosome instability; clustering of the individuals according to their miRNA expression profiles and influence of the seminogram, age, chromosome instability, and assisted reproductive technology outcome in the clustering; analysis of the differentially expressed miRNAs (DE-miRNAs) in each infertile population; genome annotation of these DE-miRNAs; and ontological analysis of their predicted targets. The hsa-miR-34b-3p correlated with age, the hsa-miR-629-3p with sperm motility, and the hsa-miR-335-5p, hsa-miR-885-5p, and hsa-miR-152-3p with sperm concentration. The individuals clustered into two groups, and only the seminogram was differentially distributed. We identified 32 DE-miRNAs in the asthenozoospermic group, 19 in the teratozoospermic group, and 18 in the oligozoospermic group. The up-regulated miRNAs presented an enriched localization in introns, affecting relevant genes for spermatogenesis. The predicted targets of the DE-miRNAs contained critical genes associated to infertility, and their ontological analysis revealed significantly associated functions related to the seminal alterations of each group. Spermatozoa from patients with seminal alterations exhibit a differential miRNA profile. This provides new evidence that miRNAs have an essential role in spermatogenesis, contributing to the mechanisms involved in human fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Vuković, Mira; Gvozdenović, Branislav S; Ranković, Milena; McCormick, Bryan P; Vuković, Danica D; Gvozdenović, Biljana D; Kastratović, Dragana A; Marković, Srdjan Z; Ilić, Miodrag; Jakovljević, Mihajlo B
2015-01-01
Administration of human serum albumin (HSA) solutions for the resuscitation of critically ill patients remains controversial. The objective of this study was to assess the effect of continuing medical education (CME) on health care professionals' clinical decision making with regard to HSA administration and the costs of quality (COQ). A quasi-experimental study of time series association of CME intervention with COQ and use of HSA solution was conducted at the Surgery Department of the Hospital Valjevo, Serbia. The CME contained evidence-based criteria for HSA solution administration in surgical patients. The preintervention period was defined as January 2009 to May 2011. CME was provided in June 2011, with the postintervention period June 2011 to May 2012. Total mortality rate, the rate of nonsurgical mortality, the rate of surgical mortality, the rate of sepsis patient mortality, index of irrational use of HSA solutions, and number of hospital days per hospitalized patient were collected for each month as quality indicators. Statistical analysis was performed by multivariate autoregressive integrated moving average (MARIMA) modeling. The specification of the COQ was performed according to a traditional COQ model. The CME intervention resulted in an average monthly reduction of the hospital days per hospitalized patient, the rate of sepsis patient mortality, index of irrational use of HSA solutions, and COQ for $593,890.77 per year. Didactic CME presenting evidence-based criteria for HSA administration was associated with improvements in clinical decisions and COQ. In addition, this study demonstrates that models combining MARIMA and traditional COQ models can be useful in the evaluation of CME interventions aimed at reducing COQ. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
Acetoacetate promotes the formation of fluorescent advanced glycation end products (AGEs).
Bohlooli, Mousa; Ghaffari-Moghaddam, Mansour; Khajeh, Mostafa; Aghashiri, Zohre; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar
2016-12-01
Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer's and Parkinson's disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs.
NASA Astrophysics Data System (ADS)
Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan
2015-02-01
Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei
2016-05-15
Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔH(θ)) and entropy change (ΔS(θ)) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.
Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia
2018-01-27
Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.
Lomis, Nikita; Westfall, Susan; Farahdel, Leila; Malhotra, Meenakshi; Shum-Tim, Dominique; Prakash, Satya
2016-01-01
Human serum albumin nanoparticles (HSA-NPs) are widely-used drug delivery systems with applications in various diseases, like cancer. For intravenous administration of HSA-NPs, the particle size, surface charge, drug loading and in vitro release kinetics are important parameters for consideration. This study focuses on the development of stable HSA-NPs containing the anti-cancer drug paclitaxel (PTX) via the emulsion-solvent evaporation method using a high-pressure homogenizer. The key parameters for the preparation of PTX-HSA-NPs are: the starting concentrations of HSA, PTX and the organic solvent, including the homogenization pressure and its number cycles, were optimized. Results indicate a size of 143.4 ± 0.7 nm and 170.2 ± 1.4 nm with a surface charge of −5.6 ± 0.8 mV and −17.4 ± 0.5 mV for HSA-NPs and PTX-HSA-NPs (0.5 mg/mL of PTX), respectively. The yield of the PTX-HSA-NPs was ~93% with an encapsulation efficiency of ~82%. To investigate the safety and effectiveness of the PTX-HSA-NPs, an in vitro drug release and cytotoxicity assay was performed on human breast cancer cell line (MCF-7). The PTX-HSA-NPs showed dose-dependent toxicity on cells of 52%, 39.3% and 22.6% with increasing concentrations of PTX at 8, 20.2 and 31.4 μg/mL, respectively. In summary, all parameters involved in HSA-NPs’ preparation, its anticancer efficacy and scale-up are outlined in this research article. PMID:28335244
NASA Astrophysics Data System (ADS)
Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.
2012-04-01
Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).
Jalalvand, Ali R; Ghobadi, Sirous; Goicoechea, Hector C; Gu, Hui-Wen; Sanchooli, Esmael
2018-05-16
In this work, voltammetric data recorded at a glassy carbon electrode (GCE) were separately used to investigate the interactions of entacapone (Comtan, CAT) with human serum albumin (HSA). Then, an augmented data matrix was constructed by the combination of voltammetric and spectroscopic data and simultaneously analysed by multivariate curve resolution-alternating least squares (MCR-ALS) to obtain more information about CAT-HSA interactions. The absence of rotational ambiguities in results obtained by MCR-ALS was verified with the help of MCR-BANDS and we confirmed that the results were unambiguous and reliable. Binding of CAT to HSA was also modeled by molecular docking and the results were compatible with those of obtained by recording experimental data. Hard-modeling of combined voltammetric and spectroscopic data by EQUISPEC as an efficient chemometric algorithm helped us to compute binding constant of CAT-HSA complex specie which was in a good agreement with the binding constant value obtained by direct analysis of experimental data. For electrochemical sensing of serum albumin two amperometric measurements were performed to determine HSA in 2-27 nM and 27-70 nM with a limit of detection of 0.51 nM and a sensitivity of 1.84 μA nM -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Walker, Mary Ellen; Anonson, June; Szafron, Michael
2015-01-01
The relationship between political environment and health services accessibility (HSA) has not been the focus of any specific studies. The purpose of this study was to address this gap in the literature by examining the relationship between political environment and HSA. This relationship that HSA indicators (physicians, nurses and hospital beds per 10 000 people) has with political environment was analyzed with multiple least-squares regression using the components of democracy (electoral processes and pluralism, functioning of government, political participation, political culture, and civil liberties). The components of democracy were represented by the 2011 Economist Intelligence Unit Democracy Index (EIUDI) sub-scores. The EIUDI sub-scores and the HSA indicators were evaluated for significant relationships with multiple least-squares regression. While controlling for a country's geographic location and level of democracy, we found that two components of a nation's political environment: functioning of government and political participation, and their interaction had significant relationships with the three HSA indicators. These study findings are of significance to health professionals because they examine the political contexts in which citizens access health services, they come from research that is the first of its kind, and they help explain the effect political environment has on health. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Marukhyan, Seda S.; Gasparyan, Vardan K.
2017-02-01
Quantitative determination of HSA was conducted by competitive immunoassay. Inhibition of aggregation of antibody conjugated quantum dots (QD) with albumin conjugated silver nanoparticles (AgNPs) in the presence of HSA was conducted. If antibody-loaded CdSe QDs aggregate with HSA-coated silver nanoparticles the distance between the two kinds of nanoparticles will be reduced enough to cause fluorescence resonance energy transfer (FRET). In this case the yellow fluorescence of the Ab-QDs is quenched. However if HSA (antigen) is added to the Ab-QDs their surface will be blocked and they cannot aggregate any longer with the HSA-AgNPs. Hence, fluorescence will not be quenched. The drop of the intensity of fluorescence (peaking at 570 nm) is inversely correlated with the concentration of HSA in the sample. The method allows to determine HSA in the 30-600 ng·mL-1 concentration range.
Goldammer, T.; Weikard, R.; Miziara, M.N.; Brunner, R.M.; Agarwala, R.; Schäffer, A.A.; Womack, J.E.; Amaral, M.E.J.
2013-01-01
A preliminary radiation hybrid (RH) map containing 50 loci on chromosome 7 of the domestic river buffalo Bubalus bubalis (BBU; 2n = 50) was constructed based on a comparative mapping approach. The RH map of BBU7 includes thirty-seven gene markers and thirteen microsatellites. All loci have been previously assigned to Bos taurus (BTA) chromosome BTA6, which is known for its association with several economically important milk production traits in cattle. The map consists of two linkage groups spanning a total length of 627.9 cR5,000. Comparative analysis of the BBU7 RH5,000 map with BTA6 in cattle gave new evidence for strong similarity between the two chromosomes over their entire length and exposed minor differences in locus order. Comparison of the BBU7 RH5,000 map with the Homo sapiens (HSA) genome revealed similarity with a large chromosome segment of HSA4. Comparative analysis of loci in both species revealed more variability than previously known in gene order and several chromosome rearrangements including centromere relocation. The data obtained in our study define the evolutionary conserved segment on BBU7 and HSA4 to be between 3.5 megabases (Mb) and 115.8 Mb in the HSA4 (genome build 36) DNA sequence. PMID:18253035
Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.
Garg, Archit; Manidhar, Darla Mark; Gokara, Mahesh; Malleda, Chandramouli; Suresh Reddy, Cirandur; Subramanyam, Rajagopal
2013-01-01
Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA) at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5) M(-1), -7.175 Kcal M(-1) for coumarin derivative (CD) enamide; 0.837±0.01×10(5) M(-1), -6.685 Kcal M(-1) for coumarin derivative (CD) enoate, and 0.606±0.01×10(5) M(-1), -6.49 Kcal M(-1) for coumarin derivative methylprop (CDM) enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.
Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Sanganeria, Purva; Chandra, Sudeshna; Bahadur, Dhirendra; Khanna, Aparna
2015-03-01
Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml-1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.
Big endothelin-1 as a tumour marker for canine haemangiosarcoma.
Fukumoto, Shinya; Miyasho, Taku; Hanazono, Kiwamu; Saida, Kaname; Kadosawa, Tsuyoshi; Iwano, Hidetomo; Uchide, Tsuyoshi
2015-06-01
Haemangiosarcoma (HSA) is an important malignant neoplasm of dogs that originates from vascular endothelial cells. This study explored the suitability of using serum big endothelin-1 (ET-1) as a tumour marker for canine spontaneous HSA. Serum big ET-1 was measured in dogs with splenic HSA (n = 14), splenic malignant tumours other than HSA (n = 10), benign splenic lesions (n = 11) and normal healthy dogs (n = 17) by ELISA. Serum big ET-1 levels in dogs with HSA were significantly (P < 0.01) higher than in other dogs. High sensitivity (100%, 95% confidence interval 86-100%) and specificity (95%, 95% confidence interval 86-95%) for HSA diagnosis were obtained using a cut-off of 17 pg/mL according to receiver operating characteristic (ROC) curves (area under ROC curve 0.93). PPET1, ETA, VEGF and Hif1-α mRNA expression, measured by real-time PCR, were elevated in HSA compared with normal tissues. These findings suggest that elevated serum big ET-1 could be used as a diagnostic marker for canine HSA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Huan; Wu, Yi; Song, Jun-Feng
2015-10-15
In this work, the adsorption of human serum albumin (HSA) on the bare multiwall carbon nanotube (MWNT) was investigated by a new electrochemical method, termed as zero current potentiometry. For this, a MWNT strip was prepared by directly adhering MWNTs on the transparent adhesive tape surface. Moreover, when HSA adsorbed onto MWNT at the MWNT/solution interface, an interface potential Ψ yielded. The interface potential Ψ as the zero current potential Ezcp simply related to it was monitored by zero current potentiometry. The relationship between the zero current potential Ezcp, the HSA concentration and others was established in simple stoichiometric relation. Based on this, both the adsorption of HSA on MWNT and the HSA determination can be studied. For the HSA determination, the theoretic conclusion consisted with experimental results. The zero current potential Ezcp was proportional to the HSA concentration in the range of 2.8 × 10(-8) - 3.4 × 10(-7)M with the limit of detection 2 × 10(-8)M. The linear regression equation was Ezcp/V (vs, SCE) = (0.159 ± 0.01) + (0.358 ± 0.02) × 10(6)CHSA (µM). This determination was fast, high sensitive and good selective. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan
2015-02-25
Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Weidong; Wen, Dacheng; Gong, Lulu; Wang, Yu; Liu, Zefeng; Yin, Fangying
2018-06-02
The importance of circular RNAs (circRNAs) in human cancers has gradually been acknowledged. In hepatocellular carcinoma (HCC), several circRNAs have been reported to regulate tumor growth and metastasis. However, the role of hsa_circ_0000673 in HCC remains largely unknown. In this study, we found that hsa_circ_0000673 was significantly upregulated in HCC tissues compared to adjacent non-tumor tissues. Moreover, we found that hsa_circ_0000673 knockdown markedly inhibited the proliferation and invasion of HCC cells in vitro. Besides, hsa_circ_0000673 silence led to delayed tumor growth in vivo. In terms of mechanism, we showed that hsa_circ_0000673 directly associated with miR-767-3p in HCC cells. Via inhibiting miR-767-3p, hsa_circ_0000673 promoted HCC cell proliferation and invasion. Furthermore, we demonstrated that SET was a downstream effector of hsa_circ_0000673/miR-767-3p signaling. We showed that miR-767-3p could significantly promote SET expression by sponging miR-767-3p in HCC cells. Finally, rescue assays indicated that SET expression was essential for the effects of hsa_circ_0000673/miR-767-3p signaling on HCC cell proliferation and invasion. Taken together, our findings demonstrated that hsa_circ_0000673 promoted HCC malignant behaviors via regulating miR-767-3p/SET pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min
2017-02-01
Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.
Identification of differentially expressed circular RNAs in human colorectal cancer.
Zhang, Peili; Zuo, Zhigui; Shang, Wenjing; Wu, Aihua; Bi, Ruichun; Wu, Jianbo; Li, Shaotang; Sun, Xuecheng; Jiang, Lei
2017-03-01
Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p < 0.0001) and hsa_circRNA_104700 ( p = 0.0003) were significantly lower in colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p < 0.0001) and 0.616 ( p < 0.0001), respectively. In conclusion, these results suggest that hsa_circRNA_103809 and hsa_circRNA_104700 may be potentially involved in the development of colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.
Integrated Quantitative Transcriptome Maps of Human Trisomy 21 Tissues and Cells
Pelleri, Maria Chiara; Cattani, Chiara; Vitale, Lorenza; Antonaros, Francesca; Strippoli, Pierluigi; Locatelli, Chiara; Cocchi, Guido; Piovesan, Allison; Caracausi, Maria
2018-01-01
Down syndrome (DS) is due to the presence of an extra full or partial chromosome 21 (Hsa21). The identification of genes contributing to DS pathogenesis could be the key to any rational therapy of the associated intellectual disability. We aim at generating quantitative transcriptome maps in DS integrating all gene expression profile datasets available for any cell type or tissue, to obtain a complete model of the transcriptome in terms of both expression values for each gene and segmental trend of gene expression along each chromosome. We used the TRAM (Transcriptome Mapper) software for this meta-analysis, comparing transcript expression levels and profiles between DS and normal brain, lymphoblastoid cell lines, blood cells, fibroblasts, thymus and induced pluripotent stem cells, respectively. TRAM combined, normalized, and integrated datasets from different sources and across diverse experimental platforms. The main output was a linear expression value that may be used as a reference for each of up to 37,181 mapped transcripts analyzed, related to both known genes and expression sequence tag (EST) clusters. An independent example in vitro validation of fibroblast transcriptome map data was performed through “Real-Time” reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93, p < 0.0001) with data obtained in silico. The availability of linear expression values for each gene allowed the testing of the gene dosage hypothesis of the expected 3:2 DS/normal ratio for Hsa21 as well as other human genes in DS, in addition to listing genes differentially expressed with statistical significance. Although a fraction of Hsa21 genes escapes dosage effects, Hsa21 genes are selectively over-expressed in DS samples compared to genes from other chromosomes, reflecting a decisive role in the pathogenesis of the syndrome. Finally, the analysis of chromosomal segments reveals a high prevalence of Hsa21 over-expressed segments over the other genomic regions, suggesting, in particular, a specific region on Hsa21 that appears to be frequently over-expressed (21q22). Our complete datasets are released as a new framework to investigate transcription in DS for individual genes as well as chromosomal segments in different cell types and tissues. PMID:29740474
An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer.
Fort, Rafael Sebastián; Mathó, Cecilia; Oliveira-Rizzo, Carolina; Garat, Beatriz; Sotelo-Silveira, José Roberto; Duhagon, María Ana
2018-01-01
Prostate cancer is a major health problem worldwide due to its high incidence morbidity and mortality. There is currently a need of improved biomarkers, capable to distinguish mild versus aggressive forms of the disease, and thus guide therapeutic decisions. Although miRNAs deregulated in cancer represent exciting candidates as biomarkers, its scientific literature is frequently fragmented in dispersed studies. This problem is aggravated for miRNAs belonging to miRNA gene clusters with shared target genes. The miRNA cluster composed by hsa-mir-130b and hsa-mir-301b precursors was recently involved in prostate cancer pathogenesis, yet different studies assigned it opposite effects on the disease. We sought to elucidate the role of the human miR-130b/301b miRNA cluster in prostate cancer through a comprehensive data analysis of most published clinical cohorts. We interrogated methylomes, transcriptomes and patient clinical data, unifying previous reports and adding original analysis using the largest available cohort (TCGA-PRAD). We found that hsa-miR-130b-3p and hsa-miR-301b-3p are upregulated in neoplastic vs normal prostate tissue, as well as in metastatic vs primary sites. However, this increase in expression is not due to a decrease of the global DNA methylation of the genes in prostate tissues, as the promoter of the gene remains lowly methylated in normal and neoplastic tissue. A comparison of the levels of human miR-130b/301b and all the clinical variables reported for the major available cohorts, yielded positive correlations with malignance, specifically significant for T-stage, residual tumor status and primary therapy outcome. The assessment of the correlations between the hsa-miR-130b-3p and hsa-miR-301b-3p and candidate target genes in clinical samples, supports their repression of tumor suppressor genes in prostate cancer. Altogether, these results favor an oncogenic role of miR-130b/301b cluster in prostate cancer.
Silva, Dilson; Cortez, Célia Martins; Silva, Camila M C; Missailidis, Sotiris
2013-10-05
Aptamers are short, single stranded oligonucleotide or peptide molecules that bind a specific target molecule and can be used for the delivery of therapeutic agents and/or for imaging and clinical diagnosis. Several works have been developed aiming at the production of aptamers and the study of their applications, but few results have been reported on plasmatic dynamics of such products. Aptamers against the heparanase enzyme have been previously described. In this work, the interactions of two constructs of the most promising anti-heparanase aptamer (molecular weights about 9200Da and 22000Da) to human and bovine serum albumins were studied by fluorescence quenching technique. Stern-Volmer graphs were plotted and quenching constants were estimated. Stern-Volmer plots obtained from experiments carried out at 25°C and 37°C showed that the quenching of fluorescence of HSA and BSA by the low molecular weight aptamer was a collisional phenomenon (estimated Stern-Volmer constant: 3.22 (±0.01)×10(5)M(-1) for HSA at 37°C and 2.47 (±0.01)×10(5)M(-1) for HSA at 25°C), while the high molecular weight aptamer quenched albumins by static process (estimated Stern-Volmer constant: 4.05 (±0.01)×10(5)M(-1) for HSA at 37°C and 6.20 (±0.01)×10(5)M(-1) for HSA at 25°C), interacting with those proteins constituting complexes. Linear Stern-Volmer plot from HSA titrated with the low MW aptamer suggested the existence of a single binding site for the quencher in this albumin. Differently, for aptamer 2, the slightly downward curvature of the Stern-Volmer plot of the titration for that albumin suggested a possible conformational change that led to the exposition of lower affinity binding sites in HSA at 25°C. Similarly, although short aptamerdoes not appear to form a stable complex (collisional interaction), the longer aptamer is found to form a stable complex with HSA. In addition, the behaviour of quenching curves for HSA and BSA and values estimated for ratio R1/R2 from model developed by Silva et al. suggest that the primary binding site in both aptamers is located closer to the tryptophan residue in sub domain IIA. It is likely that both aptamers are competing for the same primary site in albumin. Copyright © 2013 Elsevier B.V. All rights reserved.
Pakzad, Iraj; Rezaee, Abbas; Rasaee, Mohammad J; Hossieni, Ahmad Zavaran; Tabbaraee, Bahman; Kazemnejad, Anoshirvan
2010-01-01
The immunogenic Brucella abortus ribosomal protein L7/L12 and Lipopolysaccharide (LPS) are promising candidate antigens for the development of subunit vaccines against brucellosis. This study was aimed to evaluate the protection of combination of recombinant HSA-L7/L12 fusion protein with LPS in Balb/c mouse. The recombinant HSA-L7/L12 fusion protein in Saccharomyces cerevisiae was expressed and purified by affinity chromatography column. LPS was extracted by n-butanol, purified by ultracentrifugation. BALB/c mouses were immunized in 9 groups with PBS, HSA, tHSA-L7/L12, L7/L12, LPS, LPS+ HSA, LPS+ tHSA-L7/L12, LPS+ L7/L12, B. abortus S19. ELISA, LTT tests and challenging two weeks after last injection were carried out. Bacterial count of spleen of immunized BALB/c mouse was done four weeks after challenging with virulent strain B. abortus 544. In ELISA test the specific antibodies of tHSA-L7/L12 exhibited a dominance of immunoglobulin IgG1 over IgG2a. LPS-HSA and tHSA-L7/L12 + LPS produced a significantly higher antibody titer than LPS alone and L7/L12+LPS (P < 0.05). The predominant IgG subtype for LPS and L7/L12+LPS were IgG3. However, tHSA-L7/L12+ LPS and LPS+ HAS elicited predominantly IgG1 and IgG3 subtypes. In addition, the tHSA-L7/L12 fusion protein and L7/L12 elicited a strong T-cell proliferative response upon restimulation in vitro with recombinant tHSA-L7/L12 and L7/L12, suggesting the induction of a cellular immunity response in vivo. However, there was no significant difference proliferative response in L7/L12 and tHSA-L7/L12 fusion protein (P > 0.05). The combination of tHSA-L7/L12 fusion protein with LPS and B. abortus S19 induce higher level of protection against challenge with the virulent strain B. abortus 544 in BALB/c mice than other groups (P = 0.005). The combination of tHSA-L7/L12 fusion protein with LPS had higher protective ability than LPS and fusion protein distinctly.
Yılmaz, Şenay Görücü; Erdal, Mehmet Emin; Özge, Aynur Avcı; Sungur, Mehmet Ali
2016-08-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. However, biomarkers that require testing in the brain tissue pose a formidable practical barrier to AD diagnostic innovation. MicroRNAs (miRNAs) are responsible for control of gene expression at the posttranscriptional level and are essential for the function of neuronal networks and neuronal survival. miRNA expression can impact the regulation of APP (amyloid beta A4 precursor protein), PSEN1 (presenilin 1), PSEN2 (presenilin 2), and BACE1 (beta-secretase 1) genes in the brain that were previously implicated in AD pathophysiology. Little is known, however, on the extent to which peripheral tissue (e.g., whole blood) miRNA variation might offer clinical predictive value for AD. Moreover, few studies have examined multiple peripheral miRNA expression data at the same time. We report here, to the best of our knowledge, the first whole-blood-based and parallel study of seven miRNAs (hsa-miR-9-5p, hsa-miR-29a-3p, hsa-miR-106a-5p, hsa-miR-106b-5p, hsa-miR-107, hsa-miR-125a-3p, and hsa-miR-125b-5p) in relation to AD susceptibility. Notably, these miRNAs are situated "upstream" to the genes implicated in AD. We measured the whole-blood miRNA expression by a real-time polymerase chain reaction in a large study sample (n = 281), comprising patients with AD (n = 172) and healthy controls (n = 109). A reduction in whole-blood expression of hsa-miR-9-5p, hsa-miR-106a-5p, hsa-miR-106b-5p, and hsa-miR-107 was significantly associated with an increased risk of AD (p < 0.05). Notably, after receiver operating characteristics curve analyses, hsa-miR-106a-5p displayed, as a predictor variable, 93% specificity and 68% sensitivity. On the other hand, the expression of hsa-miR-29a-3p, hsa-miR-125a-3p, and hsa-miR-125b-5p was not significantly different between patients and controls (p > 0.05). In conclusion, these observations warrant replication in larger samples while making a contribution to translational research, precision medicine, and biomarker literatures, by expanding the current efforts for AD diagnostic innovation to the realm of epigenomic pathways such as miRNA expression variation among patients.
Winzen, S; Schoettler, S; Baier, G; Rosenauer, C; Mailaender, V; Landfester, K; Mohr, K
2015-02-21
Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.
A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly
de Andrade, Tathiana Azevedo; Evangelista, Adriane Feijo; Campos, Antonio Hugo Froes; Poles, Wagner Augusto; Borges, Natalia Morais; Camillo, Claudia Malheiros Coutinho; Soares, Fernando Augusto; Vassallo, Jose; Paes, Roberto Pinto; Zerbini, Maria Claudia; Scapulatempo, Cristovam; Alves, Antonio Correa
2014-01-01
Currently, there is no characteristic microRNA (miRNA) expression pattern in Epstein-Barr virus+ diffuse large B-cell lymphoma of the elderly (EBV+DLBCLe). This study aims to characterize a signature profile and identify miRNAs that can be used as biomarkers and alternative therapeutic targets for EBV+DLBCLe. Seventy-one DLBCL patients aged 50 years and older were included and four EBV+ and four EBV– samples were analyzed in two miRNA array platforms (pilot study). A larger multicenter cohort (29 EBV+DLBCLe and 65 EBV–DLBCL patients) was used to validate the results by real-time polymerase chain reaction. In the pilot study, 9% of DLBCL were EBV+DLBCLe by in situ hybridization. In multicenter study, EBV+DLBCLe group showed a predominance of non-germinal center B-cell origin. Overall survival duration of EBV+DLBCLe was significantly inferior to that of EBV–DLBCL patients. We found 10 deregulated miRNAs in the two groups, but only seven were statistically different. We confirmed overexpression of hsa-miR-126, hsa-miR-146a, hsa-miR-146b, hsa-miR-150, and hsa-miR-222 and underexpression of hsa-miR-151 in EBV+DLBCLe cases compared to EBV–DLBCL cases. Hsa-miR-146b and hsa-miR-222 showed high specificity for identifying EBV+DLBCLe. The present study proposed a miRNA signature for EBV+DLBCLe and our findings suggest that hsa-miR-146b and hsa-miR-222 could be biomarkers and therapeutic targets. PMID:25544772
Wu, Zhen; Shi, Wangping; Jiang, Chendi
2018-08-25
Circular RNAs (circRNAs) are a novel class of noncoding RNAs, whose importance in cancer has been gradually acknowledged. However, the functions of circRNAs in tumorigenesis have not been fully understood. In the present study, we identified a novel circRNA hsa_circ_0002052 significantly downregulated in osteosarcoma (OS) tissues and cell lines. Moreover, we found that hsa_circ_0002052 could act as a biomarker to indicate the prognosis of OS patients. Functionally, we showed that hsa_circ_0002052 overexpression significantly suppressed OS cell proliferation, migration and invasion while promoting apoptosis in vitro. Similarly, in vivo assay indicated that ectopic expression of hsa_circ_0002052 impaired OS cell growth. In terms of mechanism, we found that hsa_circ_0002052 inhibited miR-1205 while miR1205 targeted APC2, a negative regulator of Wnt/β-catenin signaling pathway. By releasing the inhibition of miR-1205 on APC2 expression, hsa_circ_0002052 suppressed the activation of Wnt/β-catenin signaling pathway, leading to attenuated OS progression. Taken together, our study for the first time revealed a suppressive circRNA hsa_circ_0002052 involved in OS progression. Our study suggested hsa_circ_0002052/miR-1205/APC2/Wnt/β-catenin axis might be a potential target for OS therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Vukićević, Milica; Tønnesen, Hanne Hjorth
2016-01-01
Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect.
NASA Astrophysics Data System (ADS)
Mertz, Damien; Affolter-Zbaraszczuk, Christine; Barthès, Julien; Cui, Jiwei; Caruso, Frank; Baumert, Thomas F.; Voegel, Jean-Claude; Ogier, Joelle; Meyer, Florent
2014-09-01
In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing.In this article, we address the design of innovative human serum albumin (HSA)-based nanoparticles loaded with silencing RNA and grafted with gadolinium complexes having average sizes ranging from ca. 50 to 150 nm according to the siRNA/HSA composition. The non-covalent siRNA/HSA assembly is formed on isobutyramide-modified mesoporous silica and the self-supported HSA-based nanoparticles are obtained following the silica template dissolution. These original protein particles provide simultaneous magnetic resonance imaging contrast enhancement and cellular in vitro gene silencing. Electronic supplementary information (ESI) available: Experimental details and supporting Fig. S1-S4. See DOI: 10.1039/c4nr02623c
VAC protocol for treatment of dogs with stage III hemangiosarcoma.
Alvarez, Francisco J; Hosoya, Kenji; Lara-Garcia, Ana; Kisseberth, William; Couto, Guillermo
2013-01-01
Hemangiosarcomas (HSAs) are aggressive tumors with a high rate of metastasis. Clinical stage has been considered a negative prognostic factor for survival. The study authors hypothesized that the median survival time (MST) of dogs with metastatic (stage III) HSA treated with a vincristine, doxorubicin, and cyclophosphamide (VAC) chemotherapy protocol would not be different than those with stage I/II HSA. Sixty-seven dogs with HSA in different anatomic locations were evaluated retrospectively. All dogs received the VAC protocol as an adjuvant to surgery (n = 50), neoadjuvant (n = 3), or as the sole treatment modality (n = 14). There was no significant difference (P = 0.97) between the MST of dogs with stage III and stage I/II HSA. For dogs presenting with splenic HSA alone, there was no significant difference between the MST of dogs with stage III and stage I/II disease (P = 0.12). The overall response rate (complete response [CR] and partial response [PR]) was 86%). No unacceptable toxicities were observed. Dogs with stage III HSA treated with the VAC protocol have a similar prognosis to dogs with stage I/II HSA. Dogs with HSA and evidence of metastases at the time of diagnosis should not be denied treatment.
Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.
Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R
2007-08-15
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.
NASA Astrophysics Data System (ADS)
Melnikov, A. G.; Dyachuk, O. A.; Melnikov, G. V.
2015-03-01
We have studied the processes of quenching of photoexcited states of fluorescent probes and quenching of the fluorescence of the chromophores of human serum albumin (HSA) by heavy metal ions (HM): cations Tl+, Pb2+, Cu2+, Cd2+, and the anion of iodine (I-). We used the dye from xanthene series - eosin as a fluorescent probe. By quenching of the fluorescence of protein chromophores we found an influence of HM on the structure of proteins, resulting in a shift of the peak of the fluorescence of HSA tryptophanyl. This can be explained by proteins denaturation under the influence of heavy metals and penetration of water into the inner environment of HSA tryptophan. It was established that the constant of the quenching of the probe phosphorescence is much higher than the fluorescence, which is explained by significantly longer lifetime of the photoexcited states of fluorescent probes in the triplet state than in the singlet.
Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurthi A
2015-06-01
This study was designed to examine the interaction of sulfamethoxazole (SMZ) with human serum albumin(HSA). Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of human serum albumin by SMZ was static mechanism. The binding constant values for the SMZ-HSA system were obtained to be 22,500 L/mol at 288 K, 15,600 L/mol at 298 K, and 8500 L/mol at 308 K. The distance r between donor and acceptor was evaluated according to the theory of Föster energy transfer. The results of spectroscopic analysis and molecular modeling techniques showed that the conformation of human serum albumin had been changed in the presence of SMZ. The thermodynamic parameters, namely enthalpy change (∆ H 0 ) -36.0 kJ/mol, entropy change (∆ S 0 ) -41.3 J/mol K and free energy change (∆ G 0 ) -23.7 kJ/mol, were calculated by using van׳t Hoff equation. The effect of common ions on the binding of SMZ to HSA was tested.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
NASA Astrophysics Data System (ADS)
Naveenraj, Selvaraj; Solomon, Rajadurai Vijay; Mangalaraja, Ramalinga Viswanathan; Venuvanalingam, Ponnambalam; Asiri, Abdullah M.; Anandan, Sambandam
2018-03-01
The interaction of Acid Orange 10 (AO10) with bovine serum albumin (BSA) was investigated comparatively with that of human serum albumin (HSA) using multispectroscopic techniques for understanding their toxic mechanism. Further, density functional theory calculations and docking studies have been carried out to gain more insights into the nature of interactions existing between AO10 and serum albumins. The fluorescence results suggest that AO10 quenched the fluorescence of BSA through the combination of static and dynamic quenching mechanism. The same trend was followed in the interaction of AO10 with HSA. In addition to the type of quenching mechanism, the fluorescence spectroscopic results suggest that the binding occurs near the tryptophan moiety of serum albumins and the binding. AO10 has more binding affinity towards BSA than HSA. An AO10-Trp model has been created to explicitly understand the Csbnd Htbnd π interactions from Bader's quantum theory of atoms in molecules analysis which confirmed that AO10 bind more strongly with BSA than that of HSA due to the formation of three hydrogen bonds with BSA whereas it forms two hydrogen bonds in the case of HSA. These obtained results provide an in-depth understanding of the interaction of the acid azo dye AO10 with serum albumins. This interaction study provides insights into the underlying reasons for toxicity of AO10 relevant to understand its effect on bovids and humans during the blood transportation process.
Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum.
Avgoustiniatos, Efstathios S; Scott, William E; Suszynski, Thomas M; Schuurman, Henk-Jan; Nelson, Rebecca A; Rozak, Phillip R; Mueller, Kate R; Balamurugan, A N; Ansite, Jeffrey D; Fraga, Daniel W; Friberg, Andrew S; Wildey, Gina M; Tanaka, Tomohiro; Lyons, Connor A; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K
2012-01-01
Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.
Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Zhang, Yunxia; Pang, Wenyi; Zhai, Zhenguo
2017-01-01
The aim of this study was to understand the importance of chronic thromboembolic pulmonary hypertension- (CTEPH-) associated microRNAs (miRNAs). miRNAs differentially expressed in CTEPH samples compared with control samples were identified, and the target genes were predicted. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. Finally, the miRNAs were detected using RT-PCR. Among the downregulated miRNAs, MiR-3148 regulated the most target genes and was significantly enriched in pathways in cancer, glioma, and ErbB signaling pathway. Furthermore, the number of target genes coregulated by miR-3148 and other miRNAs was the most. AR (androgen receptor), a target gene of hsa-miR-3148, was enriched in pathways in cancer. PRKCA (Protein Kinase C Alpha), also a target gene of hsa-miR-3148, was enriched in 15 of 16 KEGG pathways, such as pathways in cancer, glioma, and ErbB signaling pathway. In addition, the RT-PCR results showed that the expression of hsa-miR-3148 in CTEPH samples was significantly lower than that in control samples (P < 0.01). MiR-3148 may play an important role in the development of CTEPH. The key mechanisms for this miRNA may be hsa-miR-3148-AR-pathways in cancer or hsa-miR-3148-PRKCA-pathways in cancer/glioma/ErbB signaling pathway. PMID:28904974
Sheffield, William P; Eltringham-Smith, Louise J
2011-12-20
The transglutaminase activated factor XIII (FXIIIa) acts to strengthen pathological fibrin clots and to slow their dissolution, in part by crosslinking active α(2)-antiplasmin (α(2)AP) to fibrin. We previously reported that a yeast-derived recombinant fusion protein comprising α(2)AP residues 13-42 linked to human serum albumin (HSA) weakened in vitro clots but failed to become specifically incorporated into in vivo clots. In this study, our aims were to improve both the stability and clot localization of the HSA fusion protein by replacing α(2)AP residues 13-42 with shorter sequences recognized more effectively by FXIIIa. Expression plasmids were prepared encoding recombinant HSA with the following N-terminal 23 residue extensions: H(6)NQEQVSPLTLLAG(4)Y (designated XL1); H(6)DQMMLPWAVTLG(4)Y (XL2); H(6)WQHKIDLPYNGAG(4)Y (XL3); and their 17 residue non-His-tagged equivalents (XL4, XL5, and XL6). The HSA moiety of XL4- to XL6-HSA proteins was C-terminally His-tagged. All chimerae were efficiently secreted from transformed Pichia pastoris yeast except XL3-HSA, and following nickel chelate affinity purification were found to be intact by amino acid sequencing, as was an N-terminally His-tagged version of α(2)AP(13-42)-HSA. Of the proteins tested, XL5-HSA was cross-linked to biotin pentylamine (BPA) most rapidly by FXIIIa, and was the most effective competitor of α(2)AP crosslinking not only to BPA but also to plasma fibrin clots. In the mouse ferric chloride vena cava thrombosis model, radiolabeled XL5-HSA was retained in the clot to a greater extent than recombinant HSA. In the rabbit jugular vein stasis thrombosis model, XL5-HSA was also retained in the clot, in a urea-insensitive manner indicative of crosslinking to fibrin, to a greater extent than recombinant HSA. Fusion protein XL5-HSA (DQMMLPWAVTLG4Y-HSAH6) was found to be more active as a substrate for FXIIIa-mediated transamidation than seven other candidate fusion proteins in vitro. The improved stability and reactivity of this chimeric protein was further evidenced by its incorporation into in vivo clots formed in thrombosis models in both mice and rabbits.
Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer.
Huang, Mei; He, Yi-Ren; Liang, Li-Chuan; Huang, Qiang; Zhu, Zhi-Qiang
2017-09-14
To determine whether circular RNAs (circRNAs) are involved in pathological processes of gastric cancer (GC). Three circRNAs with differential expression in GC and colorectal cancer were randomly selected for validation by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using 20 pairs of gastric tissues and normal tissues. Based on the predicted circRNA-miRNA network, we then focused on hsa_circ_0000745, which was found to be down-regulated in 20 GC tissues compared with normal tissues. The hsa_circ_0000745 levels were further analyzed by qRT-PCR in 60 GC tissues and paired adjacent non-tumor tissues, as well as 60 plasma samples from GC patients and 60 plasma samples from healthy controls. The associations between the levels of hsa_circ_0000745 and the clinicopathological features of GC patients were statistically assessed. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of hsa_circ_0000745 in GC. Hsa_circ_0000745 was down-regulated in GC tissues vs non-tumorous tissues ( P < 0.001) and in plasma samples from patients with GC vs healthy controls ( P < 0.001). The expression level of hsa_circ_0000745 in GC tissues correlated with tumor differentiation, while the expression level in plasma correlated with tumor-node-metastasis stage. The area under the ROC curve (AUC) of hsa_circ_0000745 in plasma was 0.683, suggesting good diagnostic value. Plasma hsa_circ_0000745 level combined with carcinoembryogenic antigen (CEA) level increased the AUC to 0.775. Hsa_circ_0000745 plays an important role in GC and its expression level in plasma in combination with CEA level is a promising diagnostic marker for this malignancy.
McCann, Mark J; Rotjanapun, Kunjana; Hesketh, John E; Roy, Nicole C
2017-05-01
Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA-mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.
Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan
2018-01-01
Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of hydration on interstitial distribution of charged albumin in rat dermis in vitro
Wiig, Helge; Tenstad, Olav; Bert, Joel L
2005-01-01
At physiological pH, negatively charged glycosaminoglycans in the extracellular matrix may influence distribution volume of macromolecular probes, a phenomenon of importance for hydration of the interstitium and therefore for body fluid balance. We hypothesized that such charge effect was dependent on hydration. Human serum albumin (HSA) (the pH value for the isoelectric point (pI) = 4.9) was made neutral by cationization (cHSA) (pI = 7.6). Rat dermis was studied in vitro in a specially designed equilibration cell allowing control of hydration. Using a buffer containing labelled native HSA and cHSA, the distribution volumes were calculated relative to that of 51Cr-EDTA, an extracellular tracer. During changes in hydration (H), defined as (wet weight – dry weight) (dry weight)−1), the slope of the equation describing the relationship between extracellular fluid volume (Vx) (in g H2O (g dry weight)−1) and H (Vx = 0.925 H + 0.105) differed significantly from that for available volumes of cHSA (Va,cHSA = 0.624 H – 0.538) and HSA (Va,HSA = 0.518 H – 0.518). A gradual reduction in H led to a reduction in difference between available volumes for the two albumin species. Screening the fixed charges by 1 m NaCl resulted in similar available and excluded volumes of native HSA and neutral cHSA. We conclude that during gradual dehydration, there is a reduced effect of fixed negative charges on interstitial exclusion of charged macromolecules. This effect may be explained by a reduced hydration domain surrounding tissue and probe macromolecules in conditions of increased electrostatic interactions. Furthermore, screening of negative charges suggested that hyaluronan associated with collagen may influence intrafibrillar volume of collagen and thereby available and excluded volume fraction. PMID:16210353
Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya
2014-01-01
Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.
Pfaunmiller, Erika L.; Anguizola, Jeanethe A.; Milanuk, Mitchell L.; Carter, NaTasha; Hage, David S.
2016-01-01
Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limits of detection, and analysis time. All these methods gave detection limits in the range of 8–19 ng/mL and precisions ranging from ± 5% to ± 10% when using an injection flow rate of 0.10 mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest. PMID:26777776
Li, Yongsheng; Xu, Juan; Chen, Hong; Bai, Jing; Li, Shengli; Zhao, Zheng; Shao, Tingting; Jiang, Tao; Ren, Huan; Kang, Chunsheng; Li, Xia
2013-01-01
Glioma is the most common and fatal primary brain tumour with poor prognosis; however, the functional roles of miRNAs in glioma malignant progression are insufficiently understood. Here, we used an integrated approach to identify miRNA functional targets during glioma malignant progression by combining the paired expression profiles of miRNAs and mRNAs across 160 Chinese glioma patients, and further constructed the functional miRNA–mRNA regulatory network. As a result, most tumour-suppressive miRNAs in glioma progression were newly discovered, whose functions were widely involved in gliomagenesis. Moreover, three miRNA signatures, with different combinations of hub miRNAs (regulations≥30) were constructed, which could independently predict the survival of patients with all gliomas, high-grade glioma and glioblastoma. Our network-based method increased the ability to identify the prognostic biomarkers, when compared with the traditional method and random conditions. Hsa-miR-524-5p and hsa-miR-628-5p, shared by these three signatures, acted as protective factors and their expression decreased gradually during glioma progression. Functional analysis of these miRNA signatures highlighted their critical roles in cell cycle and cell proliferation in glioblastoma malignant progression, especially hsa-miR-524-5p and hsa-miR-628-5p exhibited dominant regulatory activities. Therefore, network-based biomarkers are expected to be more effective and provide deep insights into the molecular mechanism of glioma malignant progression. PMID:24194606
Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.
Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne
2017-07-01
The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel humic acid-bonded magnetite nanoparticles for protein immobilization.
Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra
2014-09-01
The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Yi; Yao, Yue; Zhong, Xiangyu; Leng, Kaiming; Qin, Wei; Qu, Lijun; Cui, Yunfu; Jiang, Xingming
2018-02-05
Cholangiocarcinoma (CCA) is one of the most aggressive malignancies with increasing worldwide incidence and is characterized by unfavorable prognosis due to its early invasive characteristics and poor response to chemotherapy or radiotherapy. Accumulating evidence has indicated that aberrantly expressed circular RNAs (circRNAs) are involved in cancer development and progression. However, their clinical values and biological roles in CCA remain unclear. Hsa_circ_0001649, a novel cancer-related circRNA, has been previously reported to be downregulated in hepatocellular carcinoma and gastric cancer. In the present study, qRT-PCR was carried out to measure the expression of hsa_circ_0001649 in CCA tissue samples and cell lines, and the correlation between hsa_circ_0001649 expression and clinicopathologic features was analyzed. The biological functions of hsa_circ_0001649 in CCA cells were evaluated both in vitro and in vivo. As a result, hsa_circ_0001649 was aberrantly downregulated in CCA tissues and cells, and this downregulation was associated with tumor size and differentiation grade in CCA. In addition, hsa_circ_0001649 overexpression caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion; inducing cell apoptosis in KMBC and Huh-28 cells. On the contrary, silencing of hsa_circ_0001649 caused the opposite phenotypes. Furthermore, tumor xenograft study confirmed the in vitro results. Collectively, our findings suggest that hsa_circ_0001649 might be a rational CCA-related therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.
Yuan, Qifeng; Li, Lin; Pian, Yaya; Hao, Huaijie; Zheng, Yuling; Zang, Yating; Jiang, Hua; Jiang, Yongqiang
2016-04-01
Staphylococcus enterotoxin B (SEB) is a superantigen that can induce massive activation of T cells with specific Vβ and inflammatory cytokine cascades, which mediate shock. To date, no SEB vaccine has been developed for preventing toxic shock syndrome (TSS). Here, we evaluated the therapeutic effect of a fusion protein human serum albumin-Vβ (HSA-Vβ) on TSS induced by SEB. Compared with Vβ, the preparation of HSA-Vβ was much easier to handle owing to its solubility. Affinity testing showed that HSA-Vβ had high affinity for SEB. In vitro results showed that HSA-Vβ could effectively inhibit interferon (IFN)-γ and tumor necrosis factor (TNF)-α secretion by human peripheral blood mononuclear cells. Moreover, in vivo, HSA-Vβ reduced IFN-γ and TNF-α levels in the serum and protected mice from SEB lethal challenge when administered simultaneously with SEB or 30 min after SEB. In summary, we simplified the preparation of Vβ by fusion with HSA, creating the HSA-Vβ protein, which effectively inhibited cytokine production and protected mice from lethal challenge with SEB. These data indicated that HSA-Vβ may represent a novel therapeutic strategy for the treatment of SEB-induced TSS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garcia, J J; Blanca, M; Moreno, F; Vega, J M; Mayorga, C; Fernandez, J; Juarez, C; Romano, A; de Ramon, E
1997-01-01
The quantitation of in vitro IgE antibodies to the benzylpenicilloyl determinant (BPO) is a useful tool for evaluating suspected penicillin allergic subjects. Although many different methods have been employed, few studies have compared their diagnostic specificity and sensitivity. In this study, the sensitivity and specificity of three different radio allergo sorbent test (RAST) methods for quantitating specific IgE antibodies to the BPO determinant were compared. Thirty positive control sera (serum samples from penicillin allergic subjects with a positive clinical history and a positive penicillin skin test) and 30 negative control sera (sera from subjects with no history of penicillin allergy and negative skin tests) were tested for BPO-specific IgE antibodies by RAST using three different conjugates coupled to the solid phase: benzylpenicillin conjugated to polylysine (BPO-PLL), benzylpenicillin conjugated to human serum albumin (BPO-HSA), and benzylpenicillin conjugated to an aminospacer (BPO-SP). Receiver operator control curves (ROC analysis) were carried out by determining different cut-off points between positive and negative values. Contingence tables were constructed and sensitivity, specificity, negative predictive values (PV-), and positive predictive values (PV+) were calculated. Pearson correlation coefficients (r) and intraclass correlation coefficients (ICC) were determined and the differences between methods were compared by chi 2 analysis. Analysis of the areas defined by the ROC curves showed statistical differences among the three methods. When cut-off points for optimal sensitivity and specificity were chosen, the BPO-HSA assay was less sensitive and less specific and had a lower PV- and PV+ than the BPO-PLL and BPO-SP assays. Assessment of r and ICC indicated that the correlation was very high, but the concordance between the PLL and SP methods was higher than between the PLL and HSA or SP and HSA methods. We conclude that for quantitating IgE antibodies by RAST to the BPO determinant, BPO-SP or BPO-PLL conjugates offer advantages in sensitivity and specificity compared with BPO-HSA. These results support and extend previous in vitro studies by our group and highlight the importance of the carrier for RAST assays.
Park, Sungjin; Moon, SeongRyeol; Lee, Kiyoung; Park, Ie Byung; Lee, Dae Ho; Nam, Seungyoon
2018-01-01
Diabetic nephropathy (DN), a major diabetic microvascular complication, has a long and growing list of biomarkers, including microRNA biomarkers, which have not been consistent across preclinical and clinical studies. This meta-analysis aims to identify significant blood- and urine-incident microRNAs as diagnostic/prognostic biomarker candidates for DN. PubMed, Web of Science, and Cochrane Library were searched from their earliest records through 12th Dec 2016. Relevant publications for the meta-analysis included (1) human participants; (2) microRNAs in blood and urine; (3) DN studies; and (4) English language. Four reviewers, including two physicians, independently and blindly extracted published data regarding microRNA profiles in blood and/or urine from subjects with diabetic nephropathy. A random-effect model was used to pool the data. Statistical associations between diabetic nephropathy and urinary or blood microRNA expression levels were assessed. Fourteen out of 327 studies (n=2,747 patients) were selected. Blood or urinary microRNA expression data of diabetic nephropathy were pooled for this analysis. The hsa-miR-126 family was significantly (OR: 0.57; 95% CI: 0.44-0.74; p-value < 0.0001) downregulated in blood from patients with diabetic kidney disease, while its urinary level was upregulated (OR: 2931.12; 95% CI: 9.96-862623.21; p-value = 0.0059). The hsa-miR-770 family microRNA were significantly (OR: 10.24; 95% CI: 2.37-44.25; p-value = 0.0018) upregulated in both blood and urine from patients with diabetic nephropathy. Our meta-analysis suggests that hsa-miR-126 and hsa-miR-770 family microRNA may have important diagnostic and pathogenetic implications for DN, which warrants further systematic clinical studies. © 2018 The Author(s). Published by S. Karger AG, Basel.
Binding of Sulpiride to Seric Albumins
da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins
2016-01-01
The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031
Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng
2015-05-06
In this work, a facile colorimetric method is developed for quantitative detection of human serum albumin (HSA) based on the antiaggregation effect of gold nanoparticles (Au NPs) in the presence of HSA. The citrate-capped Au NPs undergo a color change from red to blue when melamine is added as a cross-linker to induce the aggregation of the NPs. Such an aggregation is efficiently suppressed upon the adsorption of HSA on the particle surface. This method provides the advantages of simplicity and cost-efficiency for quantitative detection of HSA with a detection limit of ∼1.4 nM by monitoring the colorimetric changes of the Au NPs with UV-vis spectroscopy. In addition, this approach shows good selectivity for HSA over various amino acids, peptides, and proteins and is qualified for detection of HSA in a biological sample. Such an antiaggregation effect can be further extended to fabricate an INHIBIT logic gate by using HSA and melamine as inputs and the color changes of Au NPs as outputs, which may have application potentials in point-of-care medical diagnosis.
Rimac, Hrvoje; Dufour, Claire; Debeljak, Željko; Zorc, Branka; Bojić, Mirza
2017-07-11
Human serum albumin (HSA) binds a variety of xenobiotics, including flavonoids and warfarin. The binding of another ligand to the IIA binding site on HSA can cause warfarin displacement and potentially the elevation of its free concentration in blood. Studies dealing with flavonoid-induced warfarin displacement from HSA provided controversial results: estimated risk of displacement ranged from none to serious. To resolve these controversies, in vitro study of simultaneous binding of warfarin and eight different flavonoid aglycons and glycosides to HSA was carried out by fluorescence spectroscopy as well as molecular docking. Results show that warfarin and flavonoids do not share the same binding region in binding to HSA. Interactions were only observed at high warfarin concentrations not attainable under recommended dosing regimes. Docking experiments show that flavonoid aglycons and glycosides do not bind at warfarin high affinity sites, but rather to different regions within the IIA HSA subdomain. Thus, the risk of clinically significant warfarin-flavonoid interaction in binding to HSA should be regarded as negligible.
NASA Astrophysics Data System (ADS)
Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.
2010-01-01
The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.
NASA Astrophysics Data System (ADS)
Siddaramaiah, Manjunath; Satyamoorthy, Kapaettu; Rao, Bola Sadashiva Satish; Roy, Suparna; Chandra, Subhash; Mahato, Krishna Kishore
2017-03-01
In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using "Scratch protein predictor" at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.
Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun
2017-08-01
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4 L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.
Dyrlund, Thomas F; Kirkegaard, Kirstine; Poulsen, Ebbe Toftgaard; Sanggaard, Kristian W; Hindkjær, Johnny J; Kjems, Jørgen; Enghild, Jan J; Ingerslev, Hans Jakob
2014-11-01
Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. Using advanced mass spectrometry and high confidence criteria for accepting proteins (P < 0.01), a total of 110 proteins other than HSA were identified. The average HSA content was found to be 94% (92-97%) of total protein. Other individual proteins accounted for up to 4.7% of the total protein. Analysis of purified HSA strongly suggests that these non-declared proteins are introduced to the media when the albumin is added. GO analysis showed that many of these proteins have roles in defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. For six of the commercial embryo culture media only one batch was analyzed. However, this does not affect the overall conclusions. The results showed that the HSA added to IVF media contained many other proteins and that the amount varies from batch to batch. These variations in protein profiles are problematic when attempting to identify proteins derived from the embryos. Therefore, when studying the embryo secretome and analyzing conditioned media with the aim of finding potential biomarkers that can distinguish normal and abnormal embryo development, it is important that the medium used in the experimental and control groups is from the same batch. Furthermore, the proteins present in unconditioned media could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring. The study was supported by the Danish Agency for Science, Technology and Innovation. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from Merck Sharp & Dohme Corp and Ferring. The authors declare no conflicts of interest. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli
2016-03-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below
Therapeutic potential of endothelin inhibitors in canine hemangiosarcoma.
Fukumoto, Shinya; Saida, Kaname; Sakai, Hiroki; Ueno, Hiroshi; Iwano, Hidetomo; Uchide, Tsuyoshi
2016-08-15
Hemangiosarcoma (HSA) that originates from vascular endothelial cells is the most common splenic malignant neoplasm in dogs, as it accounts for approximately 20% of all canine soft tissue sarcomas. In this study, inhibitory effects of endothelin receptor antagonists on the growth of HSA cells were examined using cell lines established from canine HSA. The preproendothelin-1 (PPET-1), endothelin type A receptor (ETA) and endothelin type B receptor (ETB) mRNA expression levels in HSA cell lines (n=5) were analyzed quantitatively by real-time RT-PCR. These levels were compared with those in HSA tissues (n=11) and those in normal splenic tissues (n=6). ETA and ETB protein expression was examined by western blot. The production and secretion of endothelin-1 (ET-1) and big ET-1 by cell lines were analyzed by measuring the levels in the culture medium by ELISA. The inhibitory effects of endothelin receptor antagonists (ambrisentan, BQ788 and bosentan) on cell growth were evaluated by WST-8 assay. The PPET1 and ETA mRNA expression levels were elevated in HSA tissues and HSA cell lines compared with normal tissues. In cell lines, the production of ET-1 and big ET-1 peptide as well as the expression of ETA protein were detected, but the levels of ETB were not measured. Ambrisentan and bosentan inhibited growth activity in cell lines. Ambrisentan was more effective than bosentan. These findings demonstrate the importance of the ETA axis in canine HSA as well as the potential of ETA inhibitors in the treatment of canine HSA. Copyright © 2015 Elsevier Inc. All rights reserved.
Hamam, Rimi; Ali, Arwa M; Alsaleh, Khalid A; Kassem, Moustapha; Alfayez, Musaed; Aldahmash, Abdullah; Alajez, Nehad M
2016-05-16
Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples from 23 BC and 9 normals identified 18 up-regulated miRNAs in BC patients (p(corr) < 0.05). Nine miRNAs (hsa-miR-4270, hsa-miR-1225-5p, hsa-miR-188-5p, hsa-miR-1202, hsa-miR-4281, hsa-miR-1207-5p, hsa-miR-642b-3p, hsa-miR-1290, and hsa-miR-3141) were subsequently validated using qRT-PCR in a cohort of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal subtype. Therefore, we developed a novel approach which led to the identification of a novel microRNA panel which was upregulated in BC patients with potential utilization in disease diagnosis and stratification.
Anticancer effects of resveratrol in canine hemangiosarcoma cell lines.
Carlson, A; Alderete, K S; Grant, M K O; Seelig, D M; Sharkey, L C; Zordoky, B N M
2018-06-01
Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation. © 2017 John Wiley & Sons Ltd.
Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader
2014-10-01
Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Zhenzhou; Li, Xuejie; Jian, Dongdong; Hao, Peiyuan; Rao, Lixin; Li, Muwei
2017-03-01
The purpose of the current study was to investigate the characteristic expression of circular RNAs (circRNAs) in the peripheral blood of type 2 diabetes mellitus (T2DM) patients and their potential as diagnostic biomarkers for pre-diabetes and T2DM. CircRNAs in the peripheral blood from six healthy individuals and six T2DM patients were collected for microarray analysis, and an independent cohort study consisting of 20 normal cases, 20 pre-diabetes patients and 20 T2DM patients was conducted to verify the five chosen circRNAs. We then tested hsa_circ_0054633 in a third cohort (control group, n = 60; pre-diabetes group, n = 63; and T2DM group, n = 64) by quantitative real-time polymerase chain reaction (Q-PCR). In total, 489 circRNAs were discovered to be differentially expressed between the two groups, and of these, 78 were upregulated and 411 were downregulated in the T2DM group. Five circRNAs were then selected as candidate biomarkers and further verified in a second cohort. Hsa_circ_0054633 was found to have the largest area under the curve (AUC). The diagnostic capacity of hsa_circ_0054633 was tested in a third cohort. After introducing the risk factors of T2DM, the hsa_circ_0054633 AUCs for the diagnosis of pre-diabetes and T2DM slightly increased from 0.751 (95% confidence interval [0.666-0.835], P < 0.001) to 0.841 ([0.773-0.910], P < 0.001) and from 0.793 ([0.716-0.871], P < 0.001) to 0.834 ([0.762-0.905], P < 0.001), respectively. Hsa_circ_0054633 presented a certain diagnostic capability for pre-diabetes and T2DM.
Van der Geize, Robert; Yam, Katherine; Heuser, Thomas; Wilbrink, Maarten H.; Hara, Hirofumi; Anderton, Matthew C.; Sim, Edith; Dijkhuizen, Lubbert; Davies, Julian E.; Mohn, William W.; Eltis, Lindsay D.
2007-01-01
Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacterium tuberculosis, degrades an exceptionally broad range of organic compounds. Transcriptomic analysis of cholesterol-grown RHA1 revealed a catabolic pathway predicted to proceed via 4-androstene-3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and mce4 genes in RHA1 substantiated their roles in cholesterol catabolism. Moreover, the hsaC− mutant accumulated 3,4-DHSA, indicating that HsaCRHA1, formerly annotated as a biphenyl-degrading dioxygenase, catalyzes the oxygenolytic cleavage of steroid ring A. Bioinformatic analyses revealed that 51 rhodococcal genes specifically expressed during growth on cholesterol, including all predicted to specify the catabolism of rings A and B, are conserved within an 82-gene cluster in M. tuberculosis H37Rv and Mycobacterium bovis bacillus Calmette–Guérin. M. bovis bacillus Calmette–Guérin grew on cholesterol, and hsaC and kshA were up-regulated under these conditions. Heterologously produced HsaCH37Rv and HsaDH37Rv transformed 3,4-DHSA and its ring-cleaved product, respectively, with apparent specificities ≈40-fold higher than for the corresponding biphenyl metabolites. Overall, we annotated 28 RHA1 genes and proposed physiological roles for a similar number of mycobacterial genes. During survival of M. tuberculosis in the macrophage, these genes are specifically expressed, and many appear to be essential. We have delineated a complete suite of genes necessary for microbial steroid degradation, and pathogenic mycobacteria have been shown to catabolize cholesterol. The results suggest that cholesterol metabolism is central to M. tuberculosis's unusual ability to survive in macrophages and provide insights into potential targets for novel therapeutics. PMID:17264217
Van der Geize, Robert; Yam, Katherine; Heuser, Thomas; Wilbrink, Maarten H; Hara, Hirofumi; Anderton, Matthew C; Sim, Edith; Dijkhuizen, Lubbert; Davies, Julian E; Mohn, William W; Eltis, Lindsay D
2007-02-06
Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacterium tuberculosis, degrades an exceptionally broad range of organic compounds. Transcriptomic analysis of cholesterol-grown RHA1 revealed a catabolic pathway predicted to proceed via 4-androstene-3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and mce4 genes in RHA1 substantiated their roles in cholesterol catabolism. Moreover, the hsaC(-) mutant accumulated 3,4-DHSA, indicating that HsaC(RHA1), formerly annotated as a biphenyl-degrading dioxygenase, catalyzes the oxygenolytic cleavage of steroid ring A. Bioinformatic analyses revealed that 51 rhodococcal genes specifically expressed during growth on cholesterol, including all predicted to specify the catabolism of rings A and B, are conserved within an 82-gene cluster in M. tuberculosis H37Rv and Mycobacterium bovis bacillus Calmette-Guérin. M. bovis bacillus Calmette-Guérin grew on cholesterol, and hsaC and kshA were up-regulated under these conditions. Heterologously produced HsaC(H37Rv) and HsaD(H37Rv) transformed 3,4-DHSA and its ring-cleaved product, respectively, with apparent specificities approximately 40-fold higher than for the corresponding biphenyl metabolites. Overall, we annotated 28 RHA1 genes and proposed physiological roles for a similar number of mycobacterial genes. During survival of M. tuberculosis in the macrophage, these genes are specifically expressed, and many appear to be essential. We have delineated a complete suite of genes necessary for microbial steroid degradation, and pathogenic mycobacteria have been shown to catabolize cholesterol. The results suggest that cholesterol metabolism is central to M. tuberculosis's unusual ability to survive in macrophages and provide insights into potential targets for novel therapeutics.
hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma.
Zhu, Xiaoli; Wang, Xiyong; Wei, Shuzhen; Chen, Yan; Chen, Yang; Fan, Xiaobo; Han, Shuhua; Wu, Guoqiu
2017-07-01
Circular RNAs (circRNAs) are associated with cancer progression and metastasis, although little is known about their role in lung adenocarcinoma (LAC). In the present study, microarrays were first used to screen for tumour-specific circRNA candidates in LAC tissue. Thirty-nine circRNAs were found to be up-regulated and 20 were down-regulated (fold change > 2.0). Among them, hsa_circ_0013958 was further confirmed to be up-regulated in all of the LAC tissues, cells and plasma. In addition, hsa_circ_0013958 levels were associated with TNM stage (P = 0.009) and lymphatic metastasis (P = 0.006). The area under the receiver operating characteristic curve was 0.815 (95% confidence interval = 0.727-0.903; P < 0.001). In addition, to further illustrate the bioactivities of hsa_circ_0013958 in LAC, siRNA-mediated inhibition of hsa_circ_0013958 was performed in vitro. The results showed that hsa_circ_0013958 promoted cell proliferation and invasion and inhibited cell apoptosis in LAC. Moreover, hsa_circ_0013958 was identified as a sponge of miR-134, and thus it up-regulated oncogenic cyclin D1, which plays a pivotal role in the development of non-small cell lung cancer. In conclusion, our results suggested that hsa_circ_0013958 could be used as a potential non-invasive biomarker for the early detection and screening of LAC. © 2017 Federation of European Biochemical Societies.
A Sandwich ELISA for Adducts of Polycyclic Aromatic Hydrocarbons with Human Serum Albumin1
Chung, Ming Kei; Riby, Jacques; Li, He; Iavarone, Anthony T.; Williams, Evan R.; Zheng, Yuxin; Rappaport, Stephen M.
2010-01-01
Adducts of benzo[α]pyrene-diolepoxide (BPDE)2 with blood nucleophiles have been used as biomarkers of exposure to polycyclic aromatic hydrocarbons (PAHs). The most popular such assay is a competitive ELISA which employs monoclonal antibody 8E11 to detect benzo[α]pyrene tetrols following hydrolysis of BPDE adducts from lymphocyte DNA or human serum albumin (HSA). Here we use 8E11 as the capture antibody in a sandwich ELISA to detect BPDE-HSA adducts directly in 1 mg samples of HSA or 20 μL of serum/plasma. The assay employs an anti-HSA antibody for detection, which is amplified by an avidin/biotinylated horseradish peroxidase complex. The sandwich ELISA has advantages of specificity and simplicity and is about 10 times more sensitive than the competitive ELISA. To validate the assay, HSA samples were assayed from three populations with known high (coke-oven workers), medium (steel-factory control workers), and low (volunteer subjects) PAH exposures (n = 30). The respective geometric mean levels of BPDE-HSA adducts, i.e., 67.8, 14.7 and 1.93 ng/mg HSA (1,010, 220 and 28.9 fmol BPDE equivalents/mg HSA), were significantly different (p < 0.05). The sandwich ELISA will be useful for screening PAH exposures in large epidemiologic studies and can be extended to other adducts for which capture antibodies are available. PMID:20083082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less
Liu, Wei; Ma, Weiming; Yuan, Yuan; Zhang, Youwei; Sun, Sanyuan
2018-06-12
Lung cancer characterized with malignant cell growth is the leading cause of cancer-related deaths. In recent years, several circular RNAs (circRNAs) have been reported to participate in lung cancer progression. However, the correlation between circular RNA (circRNA) and lung cancer still remains to be further investigated. In this study, we screened out a highly expressed circular RNA hsa_circRNA_103809 in lung cancer tissues. We showed hsa_circRNA_103809 could serve as a prognostic biomarker for patients with lung cancer. Furthermore, we found that hsa_circRNA_103809 knockdown significantly suppressed lung cancer cell proliferation and invasion in vitro and delayed tumor growth in vivo. In mechanism, we identified hsa_circRNA_103809 as a sponge of miR-4302 targeting ZNF121. By sequestering miR-4302, hsa_circRNA_103809 promoted the expression of ZNF121 which consequently enhanced MYC protein level in lung cancer cells. Through rescue assays, we demonstrated hsa_circRNA_103809 contributed to lung cancer cell proliferation and invasion via facilitating ZNF121-dependent MYC expression by sponging miR-4302. In conclusion, our findings illustrated a novel hsa_circRNA_103809/miR-4302/ZNF121/MYC regulatory signaling pathway in lung cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Caina; Hou, Shaocong; Liu, Shuainan; Huan, Yi; Sun, Sujuan; Liu, Quan; Shen, Zhufang
2017-06-19
E2HSA is a genetic fusion protein that consists of two tandem exendin-4 molecules that are covalently bonded to recombinant human serum albumin via a peptide linker. Previous studies have demonstrated that E2HSA significantly decreased blood glucose levels, improved β-cell function and promoted β-cell proliferation in diabetic db/dB mice. This study aimed to evaluate the benefits of E2HSA on glucose and lipid metabolism in a spontaneous diabetes animal model, KKAy mice. E2HSA was acutely administered at doses of 1, 3 and 9 mg/kg by subcutaneous injection in diabetic KKAy mice with exendin-4 (2 μg/kg) as a positive reference, and then the non-fasting blood glucose and food intake levels were dynamically monitored. In addition, different doses of E2HSA were injected once daily, as well as with exendin-4 twice daily, for 7 weeks to evaluate the effect on glucose and lipid metabolism, as well as the body weight, food and water intake. Single injection of E2HSA decreased non-fasting blood glucose and food intake levels in a dose-dependent manner for 4 days and 2 days, respectively. Repeated injections with E2HSA significantly decreased variations in blood glucose levels with a reduction of HbA1c levels by 1.6% at a 9 mg/kg dose, simultaneously increased fasting blood insulin levels, inhibited fasting blood glucagon levels, improved the impaired oral glucose tolerance and enhanced glucose infusion rate, which is the gold standard for evaluating β-cell function. Moreover, repeated injections with E2HSA also ameliorated the dyslipidemia and reduced body weight, food and water intake in diabetic KKAy mice. E2HSA significantly reduced blood glucose levels over a prolonged duration, enhanced β-cell function, and ameliorated dyslipidemia and obesity in diabetic KKAy mice. Thus, E2HSA may be a new candidate for the treatment of type 2 diabetes.
Rodriguez, A M; Graef, A J; LeVine, D N; Cohen, I R; Modiano, J F; Kim, J-H
2015-01-01
Sphingosine-1-phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT-PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high-performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca(2+) mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Canine HSA cells expressed higher levels of S1P1 mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1 , decreased S1P1 protein expression and induced apoptosis of HSA cells. S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Yu, Dianke; Wu, Leihong; Gill, Pritmohinder; Tolleson, William H; Chen, Si; Sun, Jinchun; Knox, Bridgett; Jin, Yaqiong; Xiao, Wenming; Hong, Huixiao; Wang, Yong; Ren, Zhen; Guo, Lei; Mei, Nan; Guo, Yongli; Yang, Xi; Shi, Leming; Chen, Yinting; Zeng, Linjuan; Dreval, Kostiantyn; Tryndyak, Volodymyr; Pogribny, Igor; Fang, Hong; Shi, Tieliu; McCullough, Sandra; Bhattacharyya, Sudeepa; Schnackenberg, Laura; Mattes, William; Beger, Richard D; James, Laura; Tong, Weida; Ning, Baitang
2018-02-01
Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine. In the current study, the mRNA and microRNA (miRNA) expression profiles derived from next generation sequencing data for APAP-treated (5 and 10 mM) HepaRG cells and controls were analyzed systematically. Putative miRNAs targeting key dysregulated genes involved in APAP hepatotoxicity were selected using in silico prediction algorithms, un-biased gene ontology, and network analyses. Luciferase reporter assays, RNA electrophoresis mobility shift assays, and miRNA pull-down assays were performed to investigate the role of miRNAs affecting the expression of dysregulated genes. Levels of selected miRNAs were measured in serum samples obtained from children with APAP overdose (58.6-559.4 mg/kg) and from healthy controls. As results, 2758 differentially expressed genes and 47 miRNAs were identified. Four of these miRNAs (hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p) suppressed drug metabolizing enzyme (DME) levels involved in APAP-induced liver injury by downregulating HNF1A, HNF4A and NR1I2 expression. Exogenous transfection of these miRNAs into HepaRG cells effectively rescued them from APAP toxicity, as indicated by decreased alanine aminotransferase levels. Importantly, hsa-miR-320a and hsa-miR-877-5p levels were significantly elevated in serum samples obtained from children with APAP overdose compared to health controls. Collectively, these data indicate that hsa-miR-224-5p, hsa-miR-320a, hsa-miR-449a, and hsa-miR-877-5p suppress DME expression involved in APAP-induced hepatotoxicity and they contribute to an adaptive response in hepatocytes.
Langer, K; Anhorn, M G; Steinhauser, I; Dreis, S; Celebi, D; Schrickel, N; Faust, S; Vogel, V
2008-01-22
Nanoparticles prepared from human serum albumin (HSA) are versatile carrier systems for drug delivery and can be prepared by an established desolvation process. A reproducible process with a low batch-to-batch variability is required for transfer from the lab to an industrial production. In the present study the batch-to-batch variability of the starting material HSA on the preparation of nanoparticles was investigated. HSA can build dimers and higher aggregates because of a free thiol group present in the molecule. Therefore, the quality of different HSA batches was analysed by size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC). The amount of dimerised HSA detected by SEC did not affect particle preparation. Higher aggregates of the protein detected in two batches by AUC disturbed nanoparticle formation at pH values below 8.0. At pH 8.0 and above monodisperse particles between 200 and 300 nm could be prepared with all batches, with higher pH values leading to smaller particles. Besides human derived albumin a particle preparation was also feasible based on recombinant human serum albumin (rHSA). Under comparable preparation conditions monodisperse nanoparticles could be achieved and the same effects of protein aggregates on particle formation were observed. For nanoparticulate drug delivery systems the enzymatic degradation is a crucial parameter for the release of an embedded drug. For this reason, besides the particle preparation process, particle degradation in the presence of different enzymes was studied. Under acidic conditions HSA as well as rHSA nanoparticles could be digested by pepsin and cathepsin B. At neutral pH trypsin, proteinase K, and protease were suitable for particle degradation. It could be shown that the kinetics of particle degradation was dependent on the degree of particle stabilisation. Therefore, the degree of particle stabilisation will influence drug release after cellular accumulation of HSA nanoparticles.
[Study on the interaction of doxycycline with human serum albumin].
Hu, Tao-Ying; Chen, Lin; Liu, Ying
2014-05-01
The present study was designed to investigate the interaction of doxycycline (DC) with human serum albumin (HSA) by the inner filter effects, displacement experiments and molecular docking methods, based on classic multi-spectroscopy. With fluorescence quenching method at 298 and 310 K, the binding constants Ka, were determined to be 2. 73 X 10(5) and 0. 74X 10(5) L mol-1, respectively, and there was one binding site between DC and HSA, indicating that the binding of DC to HSA was strong, and the quenching mechanism was a static quenching. The thermodynamic parameters (enthalpy change, AH and enthropy change, delta S) were calculated to be -83. 55 kJ mol-1 and -176. 31 J mol-1 K-1 via the Vant' Hoff equation, which indicated that the interaction of DC with HSA was driven mainly by hydrogen bonding and van der Waals forces. Based on the Föster's theory of non-radiation energy transfer, the specific binding distance between Trp-214 (acceptor) and DC (donor) was 4. 98 nm, which was similar to the result confirmed by molecular docking. Through displacement experiments, sub-domain IIA of HSA was assigned to possess the high-affinity binding site of DC. Three-dimensional fluorescence spectra indicated that the binding of DC to HSA induced the conformation change of HSA and increased the disclosure of some part of hydrophobic regions that had been buried before. The results of FTIR spectroscopy showed that DC bound to HSA led to the slight unfolding of the polypeptide chain of HSA. Furthermore, the binding details between DC and HSA were further confirmed by molecular docking methods, which revealed that DC was bound at sub-domain IIA through multiple interactions, such as hydrophobic effect, polar forces and pi-pi interactions. The experimental results provide theoretical basis and reliable data for the study of the interaction between small drug molecule and human serum albumin
NASA Astrophysics Data System (ADS)
Sattar, Zohreh; Iranfar, Hediye; Asoodeh, Ahmad; Saberi, Mohammad Reza; Mazhari, Mahboobeh; Chamani, Jamshidkhan
2012-11-01
Human serum albumin (HSA) and holo transferrin (TF) are two serum carrier proteins that are able to interact with each other, thereby altering their binding behavior toward their ligands. During the course of this study, the interaction between HSA-PPIX and TF, in the presence and absence of lomefloxacin (LMF), was for the first time investigated using different spectroscopic and molecular modeling techniques. Fluorescence spectroscopy experiments were performed in order to study conformational changes of proteins. The RLS technique was utilized to investigate the effect of LMF on J-aggregation of PPIX, which is the first report of its kind. Our findings present clear-cut evidence for the alteration of interactions between HSA and TF in the presence of PPIX and changes in drug-binding to HSA and HSA-PPIX complex upon interaction with TF. Moreover, molecular modeling studies suggested that the binding site for LMF became switched in the presence of PPIX, and that LMF bound to the site IIA of HSA. The obtained results should give new insight into research in this field and may cast some light on the dynamics of drugs in biological systems.
Giuffrida, M A; Bacon, N J; Kamstock, D A
2017-12-01
Hemangiosarcoma (HSA) of bone and telangiectatic osteosarcoma (tOSA) can appear similar histologically, but differ in histogenesis (malignant endothelial cells versus osteoblasts), and may warrant different treatments. Immunohistochemistry (IHC) for endothelial cell marker factor VIII-related antigen/von Willebrand factor (FVIII-RAg/vWF) is a well-documented ancillary test to confirm HSA diagnoses in soft tissues, but its use in osseous HSA is rarely described. Archived samples of 54 primary appendicular bone tumours previously diagnosed as HSA or tOSA were evaluated using combination routine histopathology (RHP) and IHC. Approximately 20% of tumours were reclassified on the basis of FVIII-RAg/vWF immunoreactivity, typically from an original diagnosis of tOSA to a reclassified diagnosis of HSA. No sample with tumour osteoid clearly identified on RHP was immunopositive for FVIII-RAg/vWF. RHP alone was specific but not sensitive for diagnosis of HSA, compared with combination RHP and IHC. Routine histopathological evaluation in combination with FVIII-RAg/vWF IHC can help differentiate canine primary appendicular HSA from tOSA. © 2016 John Wiley & Sons Ltd.
Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min
2014-01-03
This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.
Liu, Yanhua; Lu, Cuntao; Zhou, Yizhou; Zhang, Zhihong; Sun, Li
2018-07-20
As the development of sequencing technology, more and more circular RNAs (circRNAs) are identified in human cancer tissues. Increasing evidences imply circRNAs are important regulators in tumor progression. Nevertheless, how circRNAs participate in breast cancer development and progression is not well understood. In the present study, we identified a novel circRNA hsa_circ_0008039 with upregulated expression level in breast cancer tissues. By functional experiments, we found that hsa_circ_0008039 depletion significantly suppressed the proliferation, arrested cell-cycle progression and reduced migration in breast cancer. Mechanistic investigations suggested that hsa_circ_0008039 served as a competing endogenous RNA (ceRNA) of miR-432-5p. Subsequently, E2F3 was identified as the functional target of miR-432-5p and overexpression of hsa_circ_0008039 elevated E2F3 expression in breast cancer. On the whole, our study indicated that hsa_circ_0008039 exerted oncogenic roles in breast cancer and suggested the hsa_circ_0008039/miR-432-5p/E2F3 axis might be a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.
Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin
NASA Astrophysics Data System (ADS)
Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin
2008-11-01
Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.
Pharmacokinetic Correlates of the Effects of a Heroin Vaccine on Heroin Self-Administration in Rats
Raleigh, Michael D.; Pentel, Paul R.; LeSage, Mark G.
2014-01-01
The purpose of this study was to evaluate the effects of a morphine-conjugate vaccine (M-KLH) on the acquisition, maintenance, and reinstatement of heroin self-administration (HSA) in rats, and on heroin and metabolite distribution during heroin administration that approximated the self-administered dosing rate. Vaccination with M-KLH blocked heroin-primed reinstatement of heroin responding. Vaccination also decreased HSA at low heroin unit doses but produced a compensatory increase in heroin self-administration at high unit doses. Vaccination shifted the heroin dose-response curve to the right, indicating reduced heroin potency, and behavioral economic demand curve analysis further confirmed this effect. In a separate experiment heroin was administered at rates simulating heroin exposure during HSA. Heroin and its active metabolites, 6-acetylmorphine (6-AM) and morphine, were retained in plasma and metabolite concentrations were reduced in brain in vaccinated rats compared to controls. Reductions in 6-AM concentrations in brain after vaccination were consistent with the changes in HSA rates accompanying vaccination. These data provide evidence that 6-AM is the principal mediator of heroin reinforcement, and the principal target of the M-KLH vaccine, in this model. While heroin vaccines may have potential as therapies for heroin addiction, high antibody to drug ratios appear to be important for obtaining maximal efficacy. PMID:25536404
NASA Astrophysics Data System (ADS)
Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra
2018-04-01
Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.
NASA Astrophysics Data System (ADS)
Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi
2005-11-01
The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.
NASA Astrophysics Data System (ADS)
Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi
2009-11-01
The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.
Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi
2009-11-01
The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants (K(a)) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02x10(7) and 2.07x10(4)L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S(0)-->S(1) transition of esculin (lambda(ex)(max) approximately 340nm) appears, which is similar to the lambda(em)(max) of BSA and HSA. The critical distance (R(0)) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.
NASA Astrophysics Data System (ADS)
Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel
2017-08-01
Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.
Kim, Sang-Hoon; Choi, Jeong-Hee; Park, Hae-Sim
2005-06-01
Beta-lactam antibiotics, such as cefaclor, may cause IgE-mediated anaphylactic reactions. However, the clinically available serologic test has not been widely accepted, and the antigenic determinants of these drugs are unclear. To describe 4 cases of anaphylaxis caused by cefaclor in which a specific IgE response to cefaclor was demonstrated. Four patients with anaphylaxis to cefaclor and 35 nonatopic controls never exposed to cefaclor were studied. Skin tests and oral challenges with this drug were performed. The specific IgE response to the antigenic determinant of cefaclor-human serum albumin (HSA) conjugate was compared in each patient. The serum specific IgE to cefaclor-HSA conjugate was detected using enzyme-linked immunosorbent assay (ELISA). Also, ELISA inhibition studies using various concentrations of cefaclor-HSA, HSA alone, and free cefaclor were performed, as were hapten inhibition studies using cefaclor, cephalexin, cefadroxil, ampicillin, ceftriaxone, and cefotaxime. Three patients showed high levels of serum specific IgE to cefaclor-HSA and marked inhibition patterns to free cefaclor and cefaclor-HSA conjugate on ELISA inhibition testing. Hapten inhibition testing in 3 individual serum samples showed 2 different patterns. In patient 3, significant dose-dependent inhibitions (up to 92%) were noted with additions of free cefaclor and cefaclor-HSA conjugate, and lesser inhibitions (up to 74%) were noted with cephalexin, which shares the aminobenzyl side chain. In patients 1 and 2, marked dose-dependent inhibitions were noted only with additions of cefaclor-HSA conjugate and free cefaclor, whereas minimal inhibitions were noted with the other 5 compounds. The specific IgE response to cefaclor-HSA conjugate in patients with cefaclor anaphylaxis occurs against the hapten, in which heterogeneity of the antigenic determinant was noted to depend on the individual.
Zhu, Fenlu; Heditke, Sarah; Kurtzberg, Joanne; Waters-Pick, Barbara; Hari, Parameswaran; Margolis, David A; Keever-Taylor, Carolyn A
2015-12-01
Removing DMSO post-thaw results in: reduced infusion reactions, improved recovery and stability of viable CD34+ cells. Validated methods use 5%-8.3% Dextran 40 with 2.5%-4.2% HSA for this purpose. Recent shortages of clinical grade Dextran require identification of suitable alternatives. PBPC were used to compare a standard 2X wash medium of 5 parts 10% Dextran 40 in saline (DEX) with 1 part 25% HSA (8.3% DEX/ 4.2% HSA) with Hydroxyethyl Starch (HES)-based solutions. Cells in replicate bags were diluted with an equal volume of wash solution, equilibrated 5 minutes, the bag filled with wash medium, pelleted and the supernatant expressed. Bags were restored to the frozen volume in wash medium and tested by single platform flow cytometry and CFU. Total viability, viable TNC, MNC, and CD34+ cell recovery, and CD34+ cell viability were compared immediately post-thaw and after 90 minutes. 5.2% HES/4.2% HSA did not differ from our standard in CD34 recovery or viability. Due to concerns that high concentrations of HES could affect renal function we tested 0.6% HES/2.5% HSA resulting in significantly poorer CD34 recovery and viability. Results improved using 2.4% HES/4.2% HSA and when 0.6% HES/4.2%HSA was used no significant differences were seen. CFU assays confirmed no differences between the standard dextran arm and HES at 2.4% or 0.6% so long as HSA was at 4.2%. We conclude that HES from 0.6% to 5.2% with 4.2% HSA is a suitable substitute for Dextran 40 as a reconstitution/washing medium for PBPC products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Curcumin-incorporated albumin nanoparticles and its tumor image
NASA Astrophysics Data System (ADS)
Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying
2015-01-01
Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.
Curcumin-incorporated albumin nanoparticles and its tumor image.
Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying
2015-01-30
Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.
Three-dimensional structure of human serum albumin
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; He, Xiao-Min; Twigg, Pamela D.; Casale, Elena
1991-01-01
The binding locations to human serum albumin (HSA) of several drug molecules were determined at low resolution using crystallographic methods. The principal binding sites are located within subdomains IIA and IIIA. Preliminary studies suggest that an approach to increasing the in vivo efficacy of drugs which are rendered less effective or ineffective by virtue of their interaction with HSA, would be the use of competitive displacement in drug therapies and/or the development of a general inhibitor to the site within subdomain IIIA. These findings also suggest that the facilitated transfer of various ligands across organ/circulatory interfaces such as liver, kidney, and brain may be associated with binding to the IIIA subdomain.
Clinical outcome in 20 cases of lingual hemangiosarcoma in dogs: 1996-2011.
Burton, J H; Powers, B E; Biller, B J
2014-09-01
With the exception of solar-induced dermal hemangiosarcoma (HSA), the biologic behaviour of canine HSA is characterised by rapid tumour growth, a high metastatic rate and short survival times. Outcome of dogs with HSA of the tongue has not been previously reported. The purpose of this study was to assess outcome and prognostic factors in dogs with lingual HSA. Clinical data was collected retrospectively and histopathology was reviewed for 20 dogs. Median progression free survival was 524 days and the median overall survival time was 553 days. All dogs had low or intermediate grade tumours; most tumours were small and located on the ventral surface of the tongue. Prognostic factors significantly associated with increased survival included small tumour size and absence of clinical signs of an oral mass at the time of diagnosis. Dogs with HSA confined to the tongue may have a better prognosis compared with HSA in other organs. © 2012 John Wiley & Sons Ltd.
Role of monocyte recruitment in hemangiosarcoma metastasis in dogs.
Regan, D P; Escaffi, A; Coy, J; Kurihara, J; Dow, S W
2017-12-01
Canine hemangiosarcoma (HSA) is a highly malignant tumour associated with short survival times because of early and widespread metastasis. In humans and rodents, monocytes play key roles in promoting tumour metastasis through stimulating tumour cell extravasation, seeding, growth and angiogenesis. Therefore, we investigated the potential association between monocyte infiltration and tumour metastasis in HSA and other common canine tumours. Immunohistochemistry was used to quantify CD18 + monocytes within metastases. We found that HSA metastases had significantly greater numbers of CD18 + monocytes compared with metastases from other tumour types. HSA cells were the highest producers of the monocyte chemokine CCL2, and stimulated canine monocyte migration in a CCL2 dependent manner. These results are consistent with the hypothesis that overexpression of CCL2 and recruitment of large numbers of monocytes may explain in part the aggressive metastatic nature of canine HSA. Thus, therapies designed to block monocyte recruitment may be an effective adjuvant strategy for suppressing HSA metastasis in dogs. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl
Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identificationmore » possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.« less
NASA Astrophysics Data System (ADS)
Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.
2010-06-01
Fluorescence studies on furosemide (FUR) binding to bovine serum albumin (BSA) showed the existence of three or four binding sites in the tertiary structure of the protein. Two of them are located in subdomain IIA, while the others in subdomains IB and/or IIIA. Furosemide binding in subdomain IB is postulated on the basis of run of Stern-Volmer plot indicating the existence of two populations of tryptophans involved in the interaction with FUR. In turn, the significant participation of tyrosil residues in complex formation leads to the consideration of the subdomain IIIA as furosemide low-affinity binding site. The effect of increasing concentration of fatty acid on FUR binding in all studied binding sites was also investigated and compared with the previous results obtained for human serum albumin (HSA). For BSA the lesser impact of fatty acid on affinity between drug and albumin was observed. This is probably a result of more significant role of tyrosines in the complex formation and different polarity of microenvironment of the fluorophores when compared HSA and BSA. The most distinct differences between FUR-BSA and FUR-HSA binding parameters are observed when third fatty acid molecule is bound with the protein and rotation of domains I and II occurs. However these structural changes mostly affect FUR low affinity binding sites.
Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C
2011-05-24
The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).
Hand surface area estimation formula using 3D anthropometry.
Hsu, Yao-Wen; Yu, Chi-Yuang
2010-11-01
Hand surface area is an important reference in occupational hygiene and many other applications. This study derives a formula for the palm surface area (PSA) and hand surface area (HSA) based on three-dimensional (3D) scan data. Two-hundred and seventy subjects, 135 males and 135 females, were recruited for this study. The hand was measured using a high-resolution 3D hand scanner. Precision and accuracy of the scanner is within 0.67%. Both the PSA and HSA were computed using the triangular mesh summation method. A comparison between this study and previous textbook values (such as in the U.K. teaching text and Lund and Browder chart discussed in the article) was performed first to show that previous textbooks overestimated the PSA by 12.0% and HSA by 8.7% (for the male, PSA 8.5% and HSA 4.7%, and for the female, PSA 16.2% and HSA 13.4%). Six 1D measurements were then extracted semiautomatically for use as candidate estimators for the PSA and HSA estimation formula. Stepwise regressions on these six 1D measurements and variable dependency test were performed. Results show that a pair of measurements (hand length and hand breadth) were able to account for 96% of the HSA variance and up to 98% of the PSA variance. A test of the gender-specific formula indicated that gender is not a significant factor in either the PSA or HSA estimation.
Interaction of glucocorticoids and progesterone derivatives with human serum albumin.
Abboud, Rola; Akil, Mohammad; Charcosset, Catherine; Greige-Gerges, Hélène
2017-10-01
Glucocorticoids (GCs) and progesterone derivatives (PGDs) are steroid hormones with well-known biological activities. Their interaction with human serum albumin (HSA) may control their distribution. Their binding to albumin is poorly studied in literature. This paper deals with the interaction of a series of GCs (cortisol, cortisone, prednisolone, prednisone, 6-methylprednisolone and 9-fluorocortisol acetate) and PGDs (progesterone, hydroxylated PGDs, methylated PGDs and dydrogesterone) with HSA solution (pH 7.4) at molar ratios steroid to HSA varying from 0 to 10. Similar titrations were conducted using Trp aqueous solution. Fluorescence titration method and Fourier transform infrared spectroscopy (FTIR) are used. PGDs (except dydrogesterone), cortisone and 9-fluorocortisol acetate affected weakly the fluorescence of Trp in buffer solution while they decreased in a dose-dependent manner that of HSA. Their binding constants to HSA were then calculated. Moreover, displacement experiment was performed using bilirubin as a site marker. The binding constant of bilirubin to albumin was determined in the absence and presence of a steroid at a molar ratio steroid to HSA of 1. The results indicate that the steroids bind to HSA at site I in a pocket different from that of bilirubin. Furthermore, the peak positions of amide I and amide II bands of HSA were shifted in the presence of progesterone, dydrogesterone and GCs. Also a variation was observed in amide I region indicating the formation of hydrogen bonding between albumin and steroids. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral Sclerosis.
Takahashi, Ikuko; Hama, Yuka; Matsushima, Masaaki; Hirotani, Makoto; Kano, Takahiro; Hohzen, Hideki; Yabe, Ichiro; Utsumi, Jun; Sasaki, Hidenao
2015-10-24
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease, which leads to the loss of upper and lower motor neurons, with a currently unknown etiology. Specific biomarkers could help in early detection and diagnosis, and could also act as indicators of disease progression and therapy effectiveness. MicroRNAs (miRNAs) are small (18-25 nucleotides), single-stranded non-coding RNA molecules that play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression, and are essential for nervous system development. Many of the genes associated with genetic ALS have pathological biological pathways related to RNA metabolism, and their pathogenesis may be affecting the maturing processes of miRNA. We compared miRNA from the plasma of sALS patients and healthy controls using two cohorts; a discovery cohort analyzed with microarray (16 sALS patients and ten healthy controls) and a validation cohort confirmed with qPCR (48 sALS patients, 47 healthy controls and 30 disease controls). We measured the total amount of extracted RNA along with a spike-in control that ensured the quality of our quantification. A percentage of the 10-40 nt RNAs extracted from the total RNA showed a significant increase in ALS patients. There was a negative correlation between total RNA concentration and disease duration from onset to end point. Three of the miRNAs were up-regulated and six were down-regulated significantly in the discovery cohort. Since an internal control is required as a sample stability indicator of both the patients and controls in microarray analysis, we selected the miRNA showing the smallest dispersion and equivalency between the two groups' mean value, and decided to use hsa-miR-4516. We found hsa-miR-4649-5p to be up-regulated, and hsa-miR-4299 to be down-regulated, where each was not influenced by clinical characteristics. EPHA4, a target gene linked to the nervous system which has also been reported to be a disease modifier of ALS, is the common and most notable target gene of hsa-miR-4649-5p and hsa-miR-4299. We have shown the relationship circulating plasma miRNA has with both healthy controls and diseased patients. Hsa-miR-4649-5p and hsa-miR-4299 have the potential to be ALS diagnosis biomarkers.
Xu, Zhicheng; Yang, Weibing; Dong, Chuan
2005-09-15
A new intramolecular charge transfer fluorescence probe, namely, 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC), exhibited dramatic enhancement of fluorescence intensity with an accompanying blue shift of the emission maximum when the concentration of human serum albumin (HSA) was increased. Binding to HSA also caused a progressive shift in the absorption spectrum of DMADHC, and a clear isosbestic point appeared. The binding site number and binding constant were calculated. Thermodynamic parameters were given and possible binding site was speculated. The optimum conditions for the determination of HSA were also investigated. A new, fast, and simple spectrofluorimetric method for the determination of HSA was developed. In the detection of HSA in samples of human plasma, this method gave values close to that of the Erythrosin B method.
Zhang, Jianhua; Zhao, Xinyuan; Zhang, Jin; Zheng, Xuerong; Li, Fenxia
2018-06-22
Cervical cancer (CC) is one of the most prevalent malignances among women. However, the mechanism underlying CC development remains elusive. Recently, circular RNAs (circRNAs) have been known as important regulators in tumorigenesis. Whether circRNAs are involved in CC requires to be determined. In the present study, we found that circRNA hsa_circ_0023404 was significantly upregulated in CC tissues compared to adjacent normal tissues. And its overexpression was correlated with poor prognosis in CC patients. Functionally, we showed that knockdown of hsa_circ_0023404 significantly suppressed the proliferation, arrested the cell-cycle progression and inhibited cell migration and invasion in CC. In terms of mechanism, we found that hsa_circ_0023404 acted as a sponge of miR-136 and miR-136 targeted TFCP2, which is an activator of YAP signaling pathway. We showed that hsa_circ_0023404 activated YAP pathway in CC via promoting TFCP2 expression by sponging miR-136, leading to CC development and progression. Taken together, our study for the first time demonstrated the pivot role of hsa_circ_0023404 and revealed a novel regulatory loop of hsa_circ_0023404/miR-136/TFCP2/YAP axis in CC progression. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan
2017-03-01
An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift ( 10 nm) and smaller Stokes' shift ( 5980 cm- 1) in BSA than HSA (Stokes'shift 6600 cm- 1), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (Ka 5.2 × 106 M- 1) than the DMOBA-HSA complex (Ka 1.0 × 106 M- 1). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5 Å) than HSA (25.4 Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the formation of the HSA-DMOBA complex. Electrostatic interactions contribute significantly in the binding of DMOBA to HSA (- 2.09 kcal/mol) compared to BSA (- 0.47 kcal/mol). Electrostatic surface potential calculation reveals that the DMOBA binding site within HSA is highly charged compared to BSA.
Transverse mode analysis of optofluidic intracavity spectroscopy of canine hemangiosarcoma
NASA Astrophysics Data System (ADS)
Wang, Weina; Thamm, Douglas H.; Kisker, David W.; Lear, Kevin L.
2010-02-01
The label-free technique of optofluidic intracavity spectroscopy (OFIS) uses the optical transmission spectrum of a cell in a microfluidic optical resonator to distinguish cancerous and non-cancerous cells. Based on their distinctive characteristic transmission spectra, canine hemangiosarcoma (HSA) cancer cells and normal peripheral blood mononuclear cells (PBMCs) have been differentiated using the OFIS technique with high statistical significance (p<10- 6). 95% sensitivity and 98% specificity were achieved simultaneously. A cell lens model explains trends in the transverse mode pattern in the transmission spectra of HSA cells and allows extraction of cell focal length.
Clinical relevance of valgus deformity of proximal femur in cerebral palsy.
Lee, Kyoung Min; Kang, Jong Yeol; Chung, Chin Youb; Kwon, Dae Gyu; Lee, Sang Hyeong; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok
2010-01-01
Proximal femoral deformity related to physis has not been studied in patients with cerebral palsy (CP). This study was performed to investigate the clinical relevance of neck shaft angle (NSA), head shaft angle (HSA), and proximal femoral epiphyseal shape in patients with CP, which represent the deformities of metaphysis, physis, and epiphysis, respectively. Three hundred eighty-four patients with CP (mean age 9.1 y, 249 males and 135 females) were included. Extent of involvement and functional states [Gross Motor Function Classification System (GMFCS) level] were obtained. Radiographic measurements including NSA, HSA, and qualitative shape of the proximal femoral epiphysis were evaluated and analyzed according to extent of involvement and GMFCS level. Reliability and correlation with each measurement were assessed. Multiple regression test was performed to examine the significant contributing factors to migration percentage (MP) that represents hip instability. NSA showed excellent interobserver reliability with intraclass correlation coefficients of 0.976. Correlation with the MP was higher in the NSA (r=0.419, P<0.001) than in the HSA (r=0.256, P<0.001). NSA, HSA, and MP tended to increase with increasing GMFCS level, and proportion of valgus deformed proximal femoral epiphysis also increased with increasing GMFCS level, which means valgus deformity and unstable hips in the less favorable functional states. Multiple regression analysis revealed NSA, GMFCS level, and shape of the proximal femoral epiphysis to be significant factors affecting MP. NSA appeared to be more clinically relevant than HSA in evaluating proximal femoral deformity in patients with CP. Shape of proximal femoral epiphysis is believed to have clinical implications in terms of hip instability. Diagnostic level II.
Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.
Cohen, Sarit; Margel, Shlomo
2012-08-14
The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon cancer and others.
Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices.
Ko, Euna; Tran, Van-Khue; Geng, Yanfang; Kim, Min Ki; Jin, Ga Hyun; Son, Seong Eun; Hur, Won; Seong, Gi Hun
2018-01-01
Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10 μ g/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1 μ g/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.
A computational method for predicting regulation of human microRNAs on the influenza virus genome
2013-01-01
Background While it has been suggested that host microRNAs (miRNAs) may downregulate viral gene expression as an antiviral defense mechanism, such a mechanism has not been explored in the influenza virus for human flu studies. As it is difficult to conduct related experiments on humans, computational studies can provide some insight. Although many computational tools have been designed for miRNA target prediction, there is a need for cross-species prediction, especially for predicting viral targets of human miRNAs. However, finding putative human miRNAs targeting influenza virus genome is still challenging. Results We developed machine-learning features and conducted comprehensive data training for predicting interactions between H1N1 genome segments and host miRNA. We defined our seed region as the first ten nucleotides from the 5' end of the miRNA to the 3' end of the miRNA and integrated various features including the number of consecutive matching bases in the seed region of 10 bases, a triplet feature in seed regions, thermodynamic energy, penalty of bulges and wobbles at binding sites, and the secondary structure of viral RNA for the prediction. Conclusions Compared to general predictive models, our model fully takes into account the conservation patterns and features of viral RNA secondary structures, and greatly improves the prediction accuracy. Our model identified some key miRNAs including hsa-miR-489, hsa-miR-325, hsa-miR-876-3p and hsa-miR-2117, which target HA, PB2, MP and NS of H1N1, respectively. Our study provided an interesting hypothesis concerning the miRNA-based antiviral defense mechanism against influenza virus in human, i.e., the binding between human miRNA and viral RNAs may not result in gene silencing but rather may block the viral RNA replication. PMID:24565017
An immunohistochemical analysis of canine haemangioma and haemangiosarcoma.
Sabattini, S; Bettini, G
2009-01-01
The aim of the present study was to investigate immunohistochemically aspects of the biology of canine endothelial neoplasia. Forty samples of canine cutaneous and visceral haemangiosarcoma (HSA), 29 samples of cutaneous and visceral haemangioma (HA) and 10 control samples of granulation tissue (GT) were labelled with antisera specific for vimentin, smooth muscle actin, von Willebrand factor (vWF), CD117 (KIT), vascular endothelial growth factor receptor-3 (VEGFR-3), vascular endothelial growth factor-C (VEGFC) and CD44. Further antisera were employed to determine the level of cellular proliferation (MIB-1 index) and toluidine blue staining was used to detect populations of tumour-infiltrating mast cells (MCs). There was greater expression of CD117, VEGFR-3 and CD44 in HSA than in HA, suggesting that these proteins might be suitable targets for the future development of novel therapeutic approaches to canine HSA. Marked infiltration of MC was detected in HA, suggesting a possible role for these cells in the pathogenesis of benign vascular neoplasia in the dog.
Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin
NASA Astrophysics Data System (ADS)
Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea
2018-02-01
A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.
Ding, Zhaoyang; Cao, Xuejun
2013-12-17
Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris-HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum.
2013-01-01
Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315
Fabrication of free-standing albumin-nanosheets having heterosurfaces.
Okamura, Yosuke; Goto, Takahiro; Niwa, Daisuke; Fukui, Yoshihito; Otsuka, Masanobu; Motohashi, Norikazu; Osaka, Tetsuya; Takeoka, Shinji
2009-04-01
Sheet-shaped carriers, having both obverse and reverse surfaces and thus a large contact area for targeting a site, have several advantages over spherical-shaped carriers, which have an extremely small contact area for targeting sites. Here, we proposed a novel method to prepare a free-standing ultrathin and biocompatible nanosheet having heterosurfaces, by a combination of four processes: (1) specific adsorption of recombinant human serum albumin (rHSA) molecules onto a patterned octadecyltrimethoxysilane self-assembled monolayer region (ODS-SAM), (2) preparation of nanosheets of rHSA molecules bearing thiol groups (SH-rHSA) via two-dimensionally disulfide crosslinking, (3) surface modification of the resulting nanosheet, and (4) preparation of the free-standing nanosheet by detachment from the ODS-SAM. The SH-rHSA molecules at pH 5.0 and a concentration of 1 microg/mL were specifically adsorbed on the patterned ODS-SAM regions by hydrophobic interaction, and were two-dimensionally crosslinked in the presence of copper ion as an oxidant. The rHSA-nanosheets were then simply detached from the ODS-SAM by treatment with surfactant. We succeeded in the preparation of rectangular (10 microm x 30 microm) and ultrathin (4.5 +/- 1.0 nm) rHSA-nanosheets on a patterned ODS-SAM, and could also obtain free-standing rHSA-nanosheets having heterosurfaces by surface modification with fluorescent latex beads. Thus, the rHSA-nanosheets having heterosurfaces could be regarded as a new biomaterial for drug carriers, hemostatic reagents, wound dressing for burn injury, and so forth. Copyright 2008 Wiley Periodicals, Inc.
Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis
Xin, Lei; Gao, Jun; Wang, Dan; Lin, Jin-Huan; Liao, Zhuan; Ji, Jun-Tao; Du, Ting-Ting; Jiang, Fei; Hu, Liang-Hao; Li, Zhao-Shen
2017-01-01
Chronic pancreatitis (CP) is an inflammatory disease characterized by progressive fibrosis of pancreas. Early diagnosis will improve the prognosis of patients. This study aimed to obtain serum miRNA biomarkers for early diagnosis of CP. In the current study, we analyzed the differentially expressed miRNAs (DEmiRs) of CP patients from Gene Expression Omnibus (GEO), and the DEmiRs in plasma of early CP patients (n = 10) from clinic by miRNA microarrays. Expression levels of DEmiRs were further tested in clinical samples including early CP patients (n = 20), late CP patients (n = 20) and healthy controls (n = 18). The primary endpoints were area under curve (AUC) and expression levels of DEmiRs. Four DEmiRs (hsa-miR-320a-d) were obtained from GEO CP, meanwhile two (hsa-miR-221 and hsa-miR-130a) were identified as distinct biomarkers of early CP by miRNA microarrays. When applied on clinical serum samples, hsa-miR-320a-d were accurate in predicting late CP, while hsa-miR-221 and hsa-miR-130a were accurate in predicting early CP with AUC of 100.0% and 87.5%. Our study indicates that miRNA expression profile is different in early and late CP. Hsa-miR-221 and hsa-miR-130a are biomarkers of early CP, and the panel of the above 6 serum miRNAs has the potential to be applied clinically for early diagnosis of CP. PMID:28074846
Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling
2015-03-02
Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.
Calcium-dependent interaction of monomeric S100P protein with serum albumin.
Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E
2018-03-01
S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2009-03-01
We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.
Cohen, Sarit; Pellach, Michal; Kam, Yossi; Grinberg, Igor; Corem-Salkmon, Enav; Rubinstein, Abraham; Margel, Shlomo
2013-03-01
Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Surface imprinted beads for the recognition of human serum albumin.
Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra
2007-04-15
The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.
Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance.
Tian, Mengqian; Chen, Ruoyu; Li, Tianwen; Xiao, Bingxiu
2018-03-01
Circular RNAs (circRNAs) play a crucial role in the occurrence of several diseases including cancers. However, little is known about circRNAs' diagnostic values for gastric cancer, one of the worldwide most common diseases of mortality. The hsa_circ_0003159 levels in 108 paired gastric cancer tissues and adjacent non-tumorous tissues from surgical patients with gastric cancer were first detected by real-time quantitative reverse transcription-polymerase chain reaction. Then, the relationships between hsa_circ_0003159 expression levels in gastric cancer tissues and the clinicopathological factors of patients with gastric cancer were analyzed. Finally, its diagnostic value was evaluated through the receiver operating characteristic curve. Compared with paired adjacent non-tumorous tissues, hsa_circ_0003159 expression was significantly down-regulated in gastric cancer tissues. What is more, we found that hsa_circ_0003159 expression levels were significantly negatively associated with gender, distal metastasis, and tumor-node-metastasis stage. All of the results suggest that hsa_circ_0003159 may be a potential cancer marker of patients with gastric cancer. © 2017 Wiley Periodicals, Inc.
Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza
2015-09-01
Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong
2015-10-01
Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource.
NASA Astrophysics Data System (ADS)
Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander
2016-04-01
Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.
Chen, Hong-Qiang; Zhao, Ji; Li, Yan; He, Li-Xiong; Huang, Yu-Jing; Shu, Wei-Qun; Cao, Jia; Liu, Wen-Bin; Liu, Jin-Yi
2018-06-01
Microcystin (MC) is a cyclic heptapeptide compound which could lead to the development of hepatocellular carcinoma. However, the underlying epigenetic regulation mechanism is largely unknown. In this study, microcystin-LR (L: lysine, R: arginine, MC-LR) was used to induce the malignant transformation of human hepatocyte L02 cell line. The profile of gene expression, microRNA (miRNA) and DNA methylation were detected through high-throughput sequencing. Compared with control group, the expression of 826 genes and 187 miRNAs changed significantly in MC-LR treated group. DNA methylation sequencing analysis showed that 2592 CpG sites differentially methylated in promoter or the coding DNA sequence (CDS) of genes, while DNA methyltransferase 3 alpha (DNMT3a) and DNA methyltransferase 3 beta (DNMT3b) were dramatically up-regulated. Functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that significantly changed mRNAs and microRNAs were mainly involved in the formation of cancer, proliferation, invasion, migration and metabolism. MiRNA-mRNA network and mRNA-mRNA network analysis showed that hsa-miR-320a, hsa-miR-331-3p, hsa-miR-26a-5p, hsa-miR-196a-5p, hsa-miR-221-3p, coiled-coil domain containing 180 (CCDC180), melanoma antigen gene family member D1 (MAGED1), membrane spanning 4-domains A7 (MS4A7), hephaestin like 1 (HEPHL1), BH3 (Bcl-2 homology 3)-like motif containing, cell death inducer (BLID), matrix metallopeptidase 13 (MMP13), guanylate binding protein 5 (GBP5), adipogenesis regulatory factor (ADIRF), formin homology 2 domain containing 1 (FHDC1), protein kinase CAMP-dependent type II regulatory subunit beta (PRKAR2B), nodium leak channel, non-selective (NALCN), myosin light chain kinase 3 (MYLK3), epidermal growth factor receptor (EGFR) and zinc finger protein 704 (ZNF704) were key miRNAs and genes in the malignant transformation induced by MC-LR in L02 cells. Moreover, we found that expression of MYLK3, EGFR and ZNF704 were regulated by DNA methylation and miRNAs, and these genes affected the cell cycle and cell division. Our study suggested that characteristic gene alterations regulated by DNA methylation and miRNA could play an important role in environmental MC-LR induced hepatic carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Min; Song, Haibin; Wang, Shuyi; Zhang, Chunxiao; Zheng, Liang; Chen, Fangfang; Shi, Dongdong; Chen, Yuanyuan; Yang, Chaogang; Xiang, Zhenxian; Liu, Qing; Wei, Chen; Xiong, Bin
2017-03-29
With persistent inconsistencies in colorectal cancer (CRC) miRNAs expression data, it is crucial to shift toward inclusion of a "pre-laboratory" integrated analysis to expedite effective precision medicine and translational research. Aberrant expression of hsa-miRNA-195 (miR-195) which is distinguished as a clinically noteworthy miRNA has previously been observed in multiple cancers, yet its role in CRC remains unclear. In this study, we performed an integrated analysis of seven CRC miRNAs expression datasets. The expression of miR-195 was validated in The Cancer Genome Atlas (TCGA) datasets, and an independent validation sample cohort. Colon cancer cells were transfected with miR-195 mimic and inhibitor, after which cell proliferation, colony formation, migration, invasion, and dual luciferase reporter were assayed. Xenograft mouse models were used to determine the role of miR-195 in CRC tumorigenicity in vivo. Four downregulated miRNAs (hsa-let-7a, hsa-miR-125b, hsa-miR-145, and hsa-miR-195) were demonstrated to be potentially useful diagnostic markers in the clinical setting. CRC patients with a decreased level of miR-195-5p in tumor tissues had significantly shortened survival as revealed by the TCGA colon adenocarcinoma (COAD) dataset and our CRC cohort. Overexpression of miR-195-5p in DLD1 and HCT116 cells repressed cell growth, colony formation, invasion, and migration. Inhibition of miR-195-5p function contributed to aberrant cell proliferation, migration, invasion, and epithelial mesenchymal transition (EMT). We identified miR-195-5p binding sites within the 3'-untranslated region (3'-UTR) of the human yes-associated protein (YAP) mRNA. YAP1 expression was downregulated after miR-195-5p treatment by qRT-PCR analysis and western blot. Four downregulated miRNAs were shown to be prime candidates for a panel of biomarkers with sufficient diagnostic accuracy for CRC in a clinical setting. Our integrated microRNA profiling approach identified miR-195-5p independently associated with prognosis in CRC. Our results demonstrated that miR-195-5p was a potent suppressor of YAP1, and miR-195-5p-mediated downregulation of YAP1 significantly reduced tumor development in a mouse CRC xenograft model. In the clinic, miR-195-5p can serve as a prognostic marker to predict the outcome of the CRC patients.
MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1.
Li, Jindong; Feng, Qingchuan; Wei, Xudong; Yu, Yongkui
2016-11-01
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence, it is imperative to determine reliable biomarkers of lung cancer prognosis. MicroRNA-490-3p has been previously reported to be a positive prognostic biomarker for hepatocellular cancer. However, its role in human lung cancer has not yet been elucidated. Here, we report that hsa-miR-490-3p expression is significantly higher in human lung cancer tissue specimens and cell line. Gain- and loss-of-function studies of hsa-miR-490-3p showed that it regulates cell proliferation and is required for induction of in vitro migration and invasion-the latter being a hallmark of epithelial to mesenchymal transition. In situ analysis revealed that hsa-miR-490-3p targets poly r(C)-binding protein 1 (PCBP1), which has been previously shown to be a negative regulator of lung cancer metastasis. Reporter assays confirmed PCBP1 as a bona fide target of miR-490-3p, and metagenomic analysis revealed an inverse relation between expression of miR-490-3p and PCBP1 in metastatic lung cancer patients. In fact, PCBP1 expression, as detected by immunohistochemistry, was undetectable in advanced stages of lung cancer patients' brain and lymph node tissues. Xenograft tail vein colonization assays proved that high expression of miR-490-3p is a prerequisite for metastatic progression of lung cancer. Our results suggest that hsa-miR-490-3p might be a potential biomarker for lung cancer prognosis. In addition, we can also conclude that the lung cancer cells have evolved refractory mechanisms to downregulate the expression of the metastatic inhibitor, PCBP1.
Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando
2017-07-01
The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.
Meng, Xiaoli; Earnshaw, Caroline J; Tailor, Arun; Jenkins, Rosalind E; Waddington, James C; Whitaker, Paul; French, Neil S; Naisbitt, Dean J; Park, B Kevin
2016-10-17
Amoxicillin-clavulanate (AC) is one of the most common causes of drug induced liver injury (DILI). The association between AC-DILI and HLA alleles and the detection of drug-specific T cells in patients with AC-DILI indicate that the adaptive immune system is involved in the disease pathogenesis. In this study, mass spectrometric methods were employed to characterize the antigen formed by AC in exposed patients and the antigenic determinants that stimulate T cells. Amoxicillin formed penicilloyl adducts with lysine residues on human serum albumin (HSA) in vitro, with K190 and K199 being the most reactive sites. Amoxicillin-modified K190 and K199 have also been detected in all patients, and more extensive modification was observed in patients exposed to higher doses of amoxicillin. In contrast, the binding of clavulanic acid to HSA was more complicated. Multiple adducts were identified at high concentrations in vitro, including those formed by direct binding of clavulanic acid to lysine residues, novel pyrazine adducts derived from binding to the degradation products of clavulanic acid, and a cross-linking adduct. Stable adducts derived from formylacetic acid were detected in all patients exposed to the drug. Importantly, analysis of hapten-protein adducts formed in the cell culture medium revealed that the highly drug-specific T-cell responses were likely driven by the markedly different haptenic structures formed by these two drugs. In this study, the unique haptenic structures on albumin in patients formed by amoxicillin and clavulanic acid have been characterized and shown to function as chemically distinct antigens which can stimulate separate, specific T-cell clones.
Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.
2016-01-01
The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the gold surface. Therefore, the cysteine side chain of albumins is important for the colloidal stabilization of GNPs rather than as the reducing agent for the synthesis. Despite the presence of more reactive gold species at more acidic pH values, i.e., below 6.0, in these conditions the loss of native albumin structure impaired GNP synthesis. Alkaline pH values (9–12) combined the unfavorable conditions of denaturated protein structure with less reactive gold species. Therefore, an optimal condition for the synthesis of GNPs using serum albumins involves more reactive gold salt species combined with a reducing and negatively charged form of the protein, all favored at pH 6–7. PMID:27066476
Wan, Aini; Xu, Dongsheng; Liu, Kedong; Peng, Lin; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong
2017-08-09
Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.
DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS
Mallik, Rangan; Hage, David S.
2008-01-01
An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436
Petty, Robert D; McCarthy, Neil E; Le Dieu, Rifca; Kerr, Jonathan R
2016-01-01
Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.
Petty, Robert D.; McCarthy, Neil E.; Le Dieu, Rifca; Kerr, Jonathan R.
2016-01-01
Background Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. Methods miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Results Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. Conclusion This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function. PMID:26967895
Maiti, Jyotirmay; Biswas, Suman; Chaudhuri, Ankur; Chakraborty, Sandipan; Chakraborty, Sibani; Das, Ranjan
2017-03-15
An environment sensitive fluorophore, 4-(5-(4-(dimethylamino)phenyl)oxazol-2-yl)benzoic acid (DMOBA), that closely mimics biologically active 2,5-disubstituited oxazoles has been designed to probe two homologous serum proteins, human serum albumin (HSA) and bovine serum albumin (BSA) by means of photophysical and molecular modeling studies. This fluorescent analogue exhibits solvent polarity sensitive fluorescence due to an intramolecular charge transfer in the excited state. In comparison to water, the steady state emission spectra of DMOBA in BSA is characterized by a greater blue shift (~10nm) and smaller Stokes' shift (~5980cm -1 ) in BSA than HSA (Stokes'shift~6600cm -1 ), indicating less polar and more hydrophobic environment of the dye in the former than the latter. The dye-protein binding interactions are remarkably stronger for BSA than HSA which is evident from higher value of the association constant for the DMOBA-BSA complex (K a ~5.2×10 6 M -1 ) than the DMOBA-HSA complex (K a ~1.0×10 6 M -1 ). Fӧrster resonance energy transfer studies revealed remarkably less efficient energy transfer (8%) between the donor tryptophans in BSA and the acceptor DMOBA dye than that (30%) between the single tryptophan moiety in HSA and the dye, which is consistent with a much larger distance between the donor (tryptophan)-acceptor (dye) pair in BSA (34.5Å) than HSA (25.4Å). Site specific competitive binding assays have confirmed on the location of the dye in Sudlow's site II of BSA and in Sudlow's site I of HSA, respectively. Molecular modeling studies have shown that the fluorescent analogue is tightly packed in the binding site of BSA due to strong steric complementarity, where, binding of DMOBA to BSA is primarily dictated by the van der Waals and hydrogen bonding interactions. In contrast, in HSA the steric complementarity is less significant and binding is primarily guided by polar interactions and van der Waals interactions appear to be less significant in the formation of the HSA-DMOBA complex. Electrostatic interactions contribute significantly in the binding of DMOBA to HSA (-2.09kcal/mol) compared to BSA (-0.47kcal/mol). Electrostatic surface potential calculation reveals that the DMOBA binding site within HSA is highly charged compared to BSA. Copyright © 2016 Elsevier B.V. All rights reserved.
Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer.
Ji, Wenxin; Qiu, Chunli; Wang, Mao; Mao, Ning; Wu, Shaofeng; Dai, Yinhai
2018-02-26
The circRNAs are differentially expressed in a wide range of cancers in regulating their initiation and progression, and could be used to make a diagnosis for some diseases like tumor as a new biomarker. However, the correlation and the mechanism of action between circRNAs and colorectal cancer (CRC) are still unclear. In this study, by using qRT-PCRs, we detected the expression level of hsa_circ_0001649 in tissue and serum samples from CRC patients, and the cultured cell has been detected. We found that the hsa_circ_0001649 in CRC is significantly lower than the expression level of correspondent nontumorous tissues (n = 64, P < 0.01). We also tested the HCT116 cell lines, and the similar result is observed (n = 15, P < 0.01). Moreover, we detected the serum samples obtained before and after surgery, showing significantly the expression level of hsa_circ_0001649 in the same patient is up-regulated after surgery (n = 18, P < 0.01). Besides, we analyzed the correlation between clinicopathological date and the expression level of hsa_circ_0001649, we found that hsa_circ_0001649 expression level is closely associated with pathological differentiation (P = 0.037), and the result also illustrated that the expression level of hsa_circ_0001649 is no direct correlation with age, gender, TMN stage, lymphatic metastasis, CEA, CA19-9, and CA-724 levels. The area under the receiver operating characteristic (ROC) curve was 0.857. In conclusion, this study showed that the expression level of hsa_circ_0001649 was down-regulated in CRC and could use it as a new biomarker for specific and sensitive inspection of CRC. Copyright © 2018 Elsevier Inc. All rights reserved.
Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P
1995-10-01
P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.
Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu
2018-01-15
Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.
Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen
2016-08-12
The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.
Feroz, S R; Mohamad, S B; Lee, G S; Malek, S N A; Tayyab, S
2015-06-01
6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties. The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA). Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments. Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA. All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds. Copyright © 2015 Elsevier GmbH. All rights reserved.
IgE antibody responses to platinum group metals: a large scale refinery survey.
Murdoch, R D; Pepys, J; Hughes, E G
1986-01-01
All 306 South African platinum refinery workers (116 white, 190 coloured) accepted for employment on grounds of absence of evidence of atopy were investigated using the skin prick test and RAST to detect sensitivity to platinum, palladium, and rhodium salts. RAST studies were made for these, together with HSA and DNP-HSA RAST. Of the 306 workers, 38 had a positive skin prick test to the platinum halide salts; of these, one gave a positive reaction to the palladium salt and six to the rhodium salt. There were no isolated positives to the rhodium and palladium halide salts. Total IgE levels were raised in 24 of the 38 (63%) platinum salt prick test positive workers compared with only 43 of the 268 (16%) prick test negative group (p less than 0.001). Positive RASTs were obtained in 62% of those with positive skin tests to the platinum salts. Four of the six giving positive rhodium salt skin tests gave a positive RAST to rhodium salt. Of these, two gave positive RASTS to HSA and all four to DNP-HSA. The palladium salt RAST was negative in the single skin test reactor. In the platinum salt skin test positive group a raised HSA RAST was obtained in 10.5% compared with only 2.5% in the skin negative group. Twenty one per cent of the platinum salt skin positive group had a raised RAST score to DNP-HSA with only 3.5% (4/116) in the skin test negative group, of whom three also had a raised HSA RAST. The latter findings are suggestive of IgE antibody production to new antigenic determinants in HSA produced by conjugation with the platinum salts. PMID:2936374
Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua
2016-01-01
Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148
Lan, Xiabin; Cao, Jun; Xu, Jiajie; Chen, Chao; Zheng, Chuanming; Wang, Jiafeng; Zhu, Xuhang; Zhu, Xin; Ge, Minghua
2018-05-22
Circular RNA (circRNA) is a new type of noncoding RNA that can serve as ideal biomarkers. Evidence has showed that circRNAs play an important role in carcinogenesis and cancer development. However, little is known about the diagnostic value of circRNAs in papillary thyroid carcinoma (PTC) as well as their associations with clinicopathologic characteristics of patients with PTC. The expression levels of hsa_circ_0137287 were detected in 120 PTC and 60 adjacent noncancerous thyroid tissues by quantitative real-time polymerase chain reaction. The relationships between the expression of hsa_circ_0137287 in PTC and the clinicopathologic factors were analyzed. Finally, receiver operating characteristic (ROC) curves were generated to assess the diagnostic value of hsa_circ_0137287 as a biomarker for PTC. The expression of hsa_circ_0137287 was significantly downregulated in PTC tissues compared with adjacent noncancerous tissues (P < .0001). Downregulation of hsa_circ_0137287 correlated with aggressive clinicopathologic characteristics of PTC such as extrathyroidal extension (P < .001), lymph node metastasis (P = .022), advanced T stage (P < .001) and larger tumor size (P < .001). The ROC curves revealed that hsa_circ_0137287 had a potential diagnostic value in predicting malignancy, extrathyroidal extension and lymph node metastasis. The area under curves were 0.8973 (95% CI = 0.8452-0.9494, P < .0001), 0.6885 (95%CI = 0.5908-0.7862, P = .0009), and 0.6691(95%CI = 0.5641-0.7742, P = .0034), respectively. Our findings suggest that hsa_circ_0137287 may serve as a novel biomarker for PTC. © 2018 Wiley Periodicals, Inc.
Diketo modification of curcumin affects its interaction with human serum albumin.
Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K
2018-06-15
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.
Guvendeger Doksat, Neslim; Zahmacioglu, Oguzhan; Ciftci Demirci, Arzu; Kocaman, Gizem Melissa; Erdogan, Ayten
2017-04-16
Numerous studies in youth and adults suggest strong association between substance use disorders and non-suicidal self-injury (NSSI) and suicidal behaviors. There is paucity of studies exploring the association of substance use with history of suicide attempts (HSA) and NSSI in children and adolescents in Turkey. We aimed to examine the prevalence of NSSI and HSA and their relationship with substance use and family characteristics among youth seeking treatment for substance use in Turkey. Participants were children and adolescents who were admitted to the Bakirkoy Trainee and Research Hospital for Psychiatric and Neurologic Disorders in Istanbul between January 2011 and December 2013. Two thousand five hundred eighteen participants were included. Questionnaires were applied to all patients. The association of NSSI and HSA with substance use, family characteristics, and subject characteristics were analyzed. The prevalence of NSSI and HSA behaviors among substance using youth in our sample were 52% and 21% respectively. Cannabis and cocaine use was found to be a significant risk factor for HSA, and polysubstance use was associated with both NSSI and HSA. Parental separation/divorce, parental mental disorders, alcohol and drug use, and crime were the risk factors for HSA. A positive history of physical and sexual abuse increased the risk of HAS, and a history of neglect increased the risk of NSSI. Conclusions/importance: We suggest that results showing relationship between substance use and associated social features with NSSI and HSA may contribute to elaborating effective and targeted preventive and intervention programs for these high-risk youth groups in Turkey.
Diketo modification of curcumin affects its interaction with human serum albumin
NASA Astrophysics Data System (ADS)
Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.
2018-06-01
Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.
NASA Astrophysics Data System (ADS)
Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.
2015-03-01
Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.
Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László
2009-01-01
There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.
The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life
Chen, Lei; Lu, Jing; Kong, XiangYin; Huang, Tao; Li, HaiPeng
2016-01-01
A drug’s biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives. PMID:27780226
Interaction of Merocyanine 540 with serum albumins: photophysical and binding studies.
Banerjee, Mousumi; Pal, Uttam; Subudhhi, Arijita; Chakrabarti, Abhijit; Basu, Samita
2012-03-01
Photophysical studies on binding interactions of a negatively charged anti-tumor photosensitizer, Merocyanine 540 (MC 540), with serum proteins, bovine serum albumin (BSA) and human serum albumin (HSA), have been performed using absorption and steady-state as well as time-resolved fluorescence techniques. Formation of ground state complex has been confirmed from the detailed studies of absorption spectra of MC 540 in presence of SAs producing isosbestic points. Binding between the proteins and MC 540, which perturbs the existing equilibrium between the fluorescent monomer and its non-fluorescent dimer, induces a remarkable enhancement in fluorescence anisotropy and intensity of MC 540 along with a red shift of its maximum. The binding stoichiometry of MC 540 and SAs are more than 1.0 which depicts that two types of complexes, i.e., 1:1 and 2:1 are formed with addition of varied concentration of protein. Both the steady-state and time-resolved fluorescence results show that in 2:1 complex one of the MC 540 molecules is exposed towards aqueous environment with a greater extent when bound with HSA compared to BSA due to the structural flexibility of that protein. Thermodynamic analyses using van't Hoff plot indicate that the binding between MC 540 and individual SA is an entropy-driven phenomenon. The probable hydrophobic binding site has been located by denaturation of proteins, micropolarity measurement and Förster resonance energy transfer and that is further supported by molecular docking studies. Changes in circular dichroism spectra of BSA in presence of MC 540 depict secondary structural changes of the protein. The induced-CD shows that BSA due to its rigid structure generates chirality in MC 540 much more efficiently compared to HSA. Copyright © 2011 Elsevier B.V. All rights reserved.
Arylamine N-Acetyltransferases in Mycobacteria
Sim, Edith; Sandy, James; Evangelopoulos, Dimitrios; Fullam, Elizabeth; Bhakta, Sanjib; Westwood, Isaac; Krylova, Anna; Lack, Nathan; Noble, Martin
2008-01-01
Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure. PMID:18680471
Code of Federal Regulations, 2010 CFR
2010-04-01
... also contributes $500 for the calendar year to the HSA of each full-time management nonhighly... for the calendar year to the HSA of each full-time nonhighly compensated employee who is an eligible individual with self-only HDHP coverage. Employer A makes no contribution to the HSA of any full-time highly...
Chen, Yihui; Miclea, Razvan; Srikrishnan, Thamarapu; Balasubramanian, Sathyamangalam; Dougherty, Thomas J; Pandey, Ravindra K
2005-07-01
A series of pyropheophorbide-a and bacteriopurpurinimides were investigated to understand the correlation between HSA (site II) binding affinity and in vivo photosensitizing activity. In our study, photosensitizers that bound to site II of HSA produced a significant difference in the circular dichroism spectra of the corresponding complexes, especially at Soret band region of the photosensitizers. Our results suggest that CD spectroscopy of the photosensitizer-HSA complexes could be a valuable tool in screening new photosensitizers before evaluating them for in vivo efficacy.
NASA Astrophysics Data System (ADS)
Muniz da Silva Fragoso, Viviane; Patrícia de Morais e Coura, Carla; Paulino, Erica Tex; Valdez, Ethel Celene Narvaez; Silva, Dilson; Cortez, Celia Martins
2017-11-01
The aim of this work was to apply mathematical-computational modeling to study the interactions of haloperidol (HLP) and biperiden (BPD) with human (HSA) and bovine (BSA) serum albumin in order to verify the competition of these drugs for binding sites in HSA, using intrinsic tryptophan fluorescence quenching data. The association constants estimated for HPD-HSA was 2.17(±0.05) × 107 M-1, BPD-HSA was 2.01(±0.03) × 108 M-1 at 37 °C. Results have shown that drugs do not compete for the same binding sites in albumin.
ENTRAPMENT OF PROTEINS IN GLYCOGEN-CAPPED AND HYDRAZIDE-ACTIVATED SUPPORTS
Jackson, Abby J.; Xuan, Hai; Hage, David S.
2010-01-01
A method is described for the entrapment of proteins in hydrazide-activated supports using oxidized glycogen as a capping agent. This approach is demonstrated using human serum albumin (HSA) as a model binding agent. After optimization of this method, a protein content of 43 (± 1) mg HSA/g support was obtained for porous silica. The entrapped HSA supports could retain a low mass drug (S-warfarin) and had activities and equilibrium constants comparable to those for soluble HSA. It was also found that this approach could be used with other proteins and binding agents that had masses between 5.8 and 150 kDa. PMID:20470745
Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi
2016-07-01
Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.
Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi
2016-01-01
Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334
Kivity, Yogev; Huppert, Jonathan D
2016-03-01
To examine emotion regulation (ER) among individuals with high (HSA) and low social anxiety (LSA) and the effects of 1 week of practiced cognitive reappraisal using self-report, daily diary measures and lab tasks. HSAs received reappraisal (HSA-R; n = 43) or monitoring (HSA-M; n = 40) instructions. LSAs received monitoring instructions (LSA-M; n = 41). Self-report measures of social anxiety and ER, and a lab task of reappraisal were administered at baseline and after 1 week. Daily diaries of anxiety and ER were also collected. At baseline, HSAs compared with LSAs reported lower self-efficacy of reappraisal and higher frequency and self-efficacy of suppression, but no differences emerged in the reappraisal task. Following the intervention, the HSA-R compared with the HSA-M reported lower symptom severity, greater self-efficacy of reappraisal but equal daily anxiety. HSA-R used reappraisal mostly combined with suppression (74.76% of situations). Post hoc analyses demonstrated that clinical diagnosis, but not severity, moderated the intervention effect. The results demonstrate the efficacy of a short intervention in social anxiety, and provide additional areas of research for improving its treatment. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium
2018-02-01
Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.
Song, Guowei; Hu, Yaning; Liu, Yusheng; Jiang, Rui
2018-05-20
Layer-by-layer heparinization of therapeutic cells prior to transplantation is an effective way to inhibit the instant blood-mediated inflammatory reactions (IBMIRs), which are the major cause of early cell graft loss during post-transplantation. Here, a conjugate of heparin-binding peptide (HBP) and human serum albumin (HSA), HBP-HSA, was synthesized by using heterobifunctional crosslinker. After the first heparin layer was coated on human umbilical vein endothelial cells (HUVECs) by means of the HBP-polyethylene glycol-phospholipid conjugate, HBP-HSA and heparin were then applied to the cell surface sequentially to form multiple layers. The immobilization and retention of heparin were analyzed by confocal microscopy and flow cytometry, respectively, and the cytotoxity of HBP-HSA was further evaluated by cell viability assay. Results indicated that heparin was successfully introduced to the cell surface in a layer-by-layer way and retained for at least 24 h, while the cytotoxity of HBP-HSA was negligible at the working concentration. Accordingly, this conjugate provides a promising method for co-immobilization of heparin and HSA to the cell surface under physiological conditions with improved biocompatibility.
Superior serum half life of albumin tagged TNF ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus
2010-06-11
Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined bymore » ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.« less
Protein-based nanotubes for biomedical applications
NASA Astrophysics Data System (ADS)
Komatsu, Teruyuki
2012-03-01
This review presents highlights of our latest results of studies directed at developing protein-based smart nanotubes for biomedical applications. These practical biocylinders were prepared using an alternate layer-by-layer (LbL) assembly of protein and oppositely charged poly(amino acid) into a nanoporous polycarbonate (PC) membrane (pore diameter, 400 nm), with subsequent dissolution of the template. The tube wall typically comprises six layers of poly-l-arginine (PLA) and human serum albumin (HSA) [(PLA/HSA)3]. The obtained (PLA/HSA)3 nanotubes (NTs) can be dispersed in aqueous medium and are hydrated significantly. Several ligands for HSA, such as zinc(ii) protoporphyrin IX (ZnPP), were bound to the HSA component in the cylindrical wall. Similar NTs comprising recombinant HSA mutant, which has a strong binding affinity for ZnPP, captured the ligand more tightly. The Fe3O4-coated NTs can be collected easily by exposure to a magnetic field. The hybrid NTs bearing a single avidin layer as an internal wall captured biotin-labeled nanoparticles into the central channel when their particle size is sufficiently small to enter the pores. The NTs with an antibody surface interior entrapped human hepatitis B virus with size selectivity. It is noteworthy that the infectious Dane particles were encapsulated completely into the hollows. Other HSA-based NTs having an α-glucosidase inner wall hydrolysed a glucopyranoside to yield α-d-glucose. A perspective of the practical use of the protein-based NTs is also described.
Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao
2018-02-01
In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.
Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry
2008-03-01
Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.
Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin.
Bhattacharya, Arpan; Bhowmik, Soumitra; Singh, Amit K; Kodgire, Prashant; Das, Apurba K; Mukherjee, Tushar Kanti
2017-10-10
The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.
Jiang, Min; Lash, Gendie E; Zhao, Xueqing; Long, Yan; Guo, Caijiao; Yang, Hongling
2018-05-07
Circular RNAs (circRNAs) are transcribed prevalently in the genome; however, their potential roles in multiple cardiovascular diseases, particularly preeclampsia (PE), are not yet well understood. This study investigated the expression profiles of circRNAs and explored circRNA-mediated pregnancy-associated plasma protein A (PAPP-A) expression as a potential biomarker for PE before 20 weeks of pregnancy. A nested case-control two-phase screening/validation study was performed in pregnant women before 20 weeks of gestation (before clinical diagnosis) at Guangzhou Women and Children's Medical Center from 2012 to 2015. In the screening phase, circRNA expression profiles of blood cells were assessed using a human circRNA microarray, which was designed to detect simultaneously 5396 circRNAs, in 5 patients with PE and 5 age- and gestational week-matched controls. In the validation phase, 18 circRNAs in blood cells predicted by bioinformatics tools were validated by quantitative reverse transcription PCR in a cohort of 60 patients (PE and age-, gestational week-, and sample storage time-matched controls). Then, we examined the involvement of circRNAs in PE-related pathways via interactions with miRNAs by multiple bioinformatics approaches. Bioinformatics analysis predicted that hsa_circ_0004904 and hsa_circ_0001855 miRNA sponges directly target PAPP-A. PAPP-A was verified in the serum of the same cohort of patients using an enzyme-linked immunosorbent assay. Finally, we combined PAPP-A with circRNAs to create a novel preclinical diagnostic model for PE with logistic regression and evaluated the efficiency of this model with receiver operating curve analysis. Volcano plot analysis using various parameters showed that circRNAs were differentially expressed among both groups (P < 0.01, fold change > 2). In the screening phase, we found that 2178 circRNAs were differentially expressed between the control and PE groups, in which 884 circRNAs were downregulated and 1294 circRNAs were upregulated in the PE group compared with the control group. In the validation phase, two circRNAs, hsa_circ_0004904 and hsa_circ_0001855, were significantly upregulated in PE patients compared with healthy pregnant women (P < 0.05). PAPP-A expression levels, related to the two circRNAs based on bioinformatics prediction, were increased in the PE group compared with the control group. The area under the curve of the combined model was 0.94 in the predicted PE subjects. This is the first study to report circRNA profiling in patients with PE prior to the onset of symptoms. Our data suggested that hsa_circ_0004904 and hsa_circ_0001855 combined with PAPP-A might be promising biomarkers for the detection of PE. Moreover, circRNAs may provide new insights into the potential mechanisms underlying the pathophysiology of PE. © 2018 The Author(s). Published by S. Karger AG, Basel.
Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie
2017-05-01
To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bujard, Alban; Sol, Marine; Carrupt, Pierre-Alain; Martel, Sophie
2014-10-15
The parallel artificial membrane permeability assay (PAMPA) is a high-throughput screening (HTS) method that is widely used to predict in vivo passive permeability through biological barriers, such as the skin, the blood brain barrier (BBB) and the gastrointestinal tract (GIT). The PAMPA technique has also been used to predict the dissociation constant (Kd) between a compound and human serum albumin (HSA) while disregarding passive permeability. Furthermore, the assay is based on the use of two separate 5-point kinetic experiments, which increases the analysis time. In the present study, we adapted the hexadecane membrane (HDM)-PAMPA assay to both predict passive gastrointestinal absorption via the permeability coefficient logPe value and determine the Kd. Two assays were performed: one in the presence and one in the absence of HSA in the acceptor compartment. In the absence of HSA, logPe values were determined after a 4-h incubation time, as originally described, but the dimethylsulfoxide (DMSO) percentage and pH were altered to be compatible with the protein. In parallel, a second PAMPA assay was performed in the presence of HSA during a 16-h incubation period. By adding HSA, a variation in the amount of compound crossing the membrane was observed compared to the permeability measured in the absence of HSA. The concentration of compound reaching the acceptor compartment in each case was used to determine both parameters (logPe and logKd) using numerical simulations, which highlighted the originality of this method because these calculations required only two endpoint measurements instead of a complete kinetic study. It should be noted that the amount of compound that reaches the acceptor compartment in the presence of HSA is modulated by complex dissociation in the receptor compartment. Only compounds that are moderately bound to albumin (-3
Finotello, R; Henriques, J; Sabattini, S; Stefanello, D; Felisberto, R; Pizzoni, S; Ferrari, R; Marconato, L
2017-06-01
Haemangiosarcoma (HSA) has an aggressive biological behaviour and carries a poor prognosis, with less than 10% of treated dogs surviving longer than 1 year. In this retrospective study a varied metronomic chemotherapy (MC) regimen preceded by adjuvant doxorubicin-based maximum-tolerated dose chemotherapy (MTDC) was compared with MTDC, in terms of efficacy [time to metastasis, (TTM) and survival time (ST)] and safety in dogs with biologically aggressive HSA. Dogs were eligible if they had no metastasis after MTDC and received either no further chemotherapy or MC maintenance. Twelve dogs received MTDC, and 10 received MC thereafter. Median TTM and ST were significantly longer for dogs receiving MTDC-MC (not reached versus 150 days, P = 0.028; and not reached versus 168 days, P = 0.030, respectively). Treatment was well tolerated. MTDC followed by MC is safe and suggests improved TTM and ST in dogs with surgically removed, biologically aggressive HSA that are treated in the microscopic setting. © 2016 John Wiley & Sons Ltd.
Monkos, Karol
2013-03-01
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.
Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration
Lana-Elola, Eva; Gibbins, Dorota; La Russa, Federica; Wiseman, Frances; Williamson, Matthew; Saccon, Rachele; Olerinyova, Anna; Mahmood, Radma; Nye, Emma; Cater, Heather; Yu, Y. Eugene; Bennett, David L. H.; Greensmith, Linda; Fisher, Elizabeth M. C.
2018-01-01
Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied—the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction. PMID:29746474
High-Throughput Sequencing of Plasma MicroRNA in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis
Brenu, Ekua W.; Ashton, Kevin J.; Batovska, Jana; Staines, Donald R.; Marshall-Gradisnik, Sonya M.
2014-01-01
Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers. PMID:25238588
Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg
2014-05-01
Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.
Hyperferritinemia in Dogs with Splenic Hemangiosarcoma
CHIKAZAWA, Seishiro; HORI, Yasutomo; HOSHI, Fumio; KANAI, Kazutaka; ITO, Naoyuki; HIGUCHI, Seiichi
2013-01-01
ABSTRACT Serum ferritin concentration increases in dogs in association with various diseases. In this study, we measured serum ferritin levels in dogs with splenic masses, using a sandwich ELISA assay. Eleven dogs with hemangiosarcoma (HSA), six with hematoma, 1 with hemangioma and 3 with lymphoma were enrolled. All dogs with HSA had serum ferritin concentrations above the normal limit (1,357 ng/ml, mean + 2× standard deviation of normal). Increased serum ferritin concentrations have also been observed in few cases of hematoma, hemangioma and lymphoma. Therefore, hyperferritinemia is not specific for splenic HSA, but may have clinical usefulness as a sensitive test for the disease. Further evaluation of serum ferritin concentrations in dogs with splenic HSA is needed. PMID:23803459
Hyperferritinemia in dogs with splenic hemangiosarcoma.
Chikazawa, Seishiro; Hori, Yasutomo; Hoshi, Fumio; Kanai, Kazutaka; Ito, Naoyuki; Higuchi, Seiichi
2013-11-01
Serum ferritin concentration increases in dogs in association with various diseases. In this study, we measured serum ferritin levels in dogs with splenic masses, using a sandwich ELISA assay. Eleven dogs with hemangiosarcoma (HSA), six with hematoma, 1 with hemangioma and 3 with lymphoma were enrolled. All dogs with HSA had serum ferritin concentrations above the normal limit (1,357 ng/ml, mean + 2× standard deviation of normal). Increased serum ferritin concentrations have also been observed in few cases of hematoma, hemangioma and lymphoma. Therefore, hyperferritinemia is not specific for splenic HSA, but may have clinical usefulness as a sensitive test for the disease. Further evaluation of serum ferritin concentrations in dogs with splenic HSA is needed.
James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha
2015-01-01
Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488
Association of Genetic Variants of Small Non-Coding RNAs with Survival in Colorectal Cancer
Pao, Jiunn-Bey; Lu, Te-Ling; Ting, Wen-Chien; Chen, Lu-Min; Bao, Bo-Ying
2018-01-01
Background: Single nucleotide polymorphisms (SNPs) of small non-coding RNAs (sncRNAs) can influence sncRNA function and target gene expression to mediate the risk of certain diseases. The aim of the present study was to evaluate the prognostic relevance of sncRNA SNPs for colorectal cancer, which has not been well characterized to date. Methods: We comprehensively examined 31 common SNPs of sncRNAs, and assessed the impact of these variants on survival in a cohort of 188 patients with colorectal cancer. Results: Three SNPs were significantly associated with survival of patients with colorectal cancer after correction for multiple testing, and two of the SNPs (hsa-mir-196a-2 rs11614913 and U85 rs714775) remained significant in multivariate analyses. Additional in silico analysis provided further evidence of this association, since the expression levels of the target genes of the hsa-miR-196a (HOXA7, HOXB8, and AKT1) were significantly correlated with colorectal cancer progression. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that hsa-miR-196a is associated with well-known oncogenic pathways, including cellular protein modification process, mitotic cell cycle, adherens junction, and extracellular matrix receptor interaction pathways. Conclusion: Our results suggest that SNPs of sncRNAs could play a critical role in cancer progression, and that hsa-miR-196a might be a valuable biomarker or therapeutic target for colorectal cancer patients. PMID:29483812
Wang, Xiyong; Zhu, Xiaoli; Zhang, Hongming; Wei, Shuzhen; Chen, Yan; Chen, Yang; Wang, Fei; Fan, Xiaobo; Han, Shuhua; Wu, Guoqiu
2018-02-19
Recent reports have indicated that circular RNA (circRNA) may regulate Lung adenocarcinoma (LAC) development. Our previous studies showed that hsa_circ_0012673 was up-regulated in a circRNA microarray. However, its expression level in LAC has not been verified, and the underlying molecular mechanisms in LAC are unknown. In this study, we found that the expression of hsa_circ_0012673 was up-regulated in LAC tissues compared to pair-matched adjacent non-tumor tissues (P = 0.0079), and that the expression level was associated with tumour size (P = 0.015). Furthermore, hsa_circ_0012673 was primarily localized in the cytoplasm and promoted cell proliferation of LAC cells by sponging miR-22, which targeted erb-b2 receptor tyrosine kinase 3 (ErbB3) in LAC. Hsa_circ_0012673 promotes LAC proliferation by suppressing miR-22, which targets ErbB3. Copyright © 2018 Elsevier Inc. All rights reserved.
Understanding the interaction between human serum albumin and anti-bacterial/ anti-cancer compounds.
Rehman, Md Tabish; Khan, Asad U
2015-01-01
Human serum albumin (HSA) is the most important carrier of exogenous and endogenous molecules in human plasma. Understanding and characterizing the interaction of drugs with HSA has attracted enormous research interests from decades. The nature and magnitude of these bindings have direct consequence on drug delivery, pharmacokinetics, pharmacodynamics, therapeutic efficacy and drug designing. An overview of HSA and antibacterial/ anti-cancer ligands interaction is the need of the hour as these drugs together constitute more than half of the total drug consumption in the world. In this review, the information on the number of binding sites, binding strength, the nature of binding interactions and the location of binding sites of such drugs on the HSA are summarised. The effect of such drugs on the overall conformation, stability and function of HSA is also reviewed. This review will help to gain useful insights into the significance of the binding of anti-bacterial and anti-cancer drugs with plasma protein and the effect of binding on its overall distribution and pharmacological activities.
Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa
2016-07-01
Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.
Pathobiology of Hemangiosarcoma in Dogs: Research Advances and Future Perspectives
Kim, Jong-Hyuk; Graef, Ashley J.; Dickerson, Erin B.; Modiano, Jaime F.
2015-01-01
Hemangiosarcoma (HSA) is an aggressive and common cancer in dogs. While cutaneous masses are often treatable by tumor excision, visceral tumors are almost always incurable. Treatment advances for this disease have been limited due to a poor understanding of the overall tumor biology. Based upon its histological appearance, HSA has been presumed to originate from transformed endothelial cells; however, accumulating data now suggest a pluripotent bone marrow progenitor as the cell of origin for this disease. More recently, the identification of a novel subclassification of HSAs has provided a foundation to further our understanding of the cellular characteristics of HSA tumor cells, along with those of the cells comprising the tumor microenvironment. These discoveries hold promise for the development of new approaches to improve treatments for canine HSA, as well as to establish the utility of this disease as a spontaneous model to understand the pathogenesis and develop new treatments for vascular tumors of humans. In this review, we will provide a brief historical perspective and pathobiology of canine HSA, along with a focus on the recent advances in the molecular and cellular understanding of these tumors. In addition, future directions that should continue to improve our understanding of HSA pathogenesis will be discussed. PMID:29061949
Formation mechanism of human serum albumin monolayers on positively charged polymer microparticles.
Nattich-Rak, Małgorzata; Sadowska, Marta; Adamczyk, Zbigniew; Cieśla, Michał; Kąkol, Małgorzata
2017-11-01
Human serum albumin (HSA) adsorption on positively and negatively charged polystyrene microparticles was studied at various pHs and NaCl concentrations. Thorough electrophoretic mobility measurements were carried out that enabled to monitor in situ the progress of protein adsorption. The maximum coverage of irreversibly adsorbed HSA on microparticles was determined by different concentration depletion methods, one of them involving AFM imaging of residual molecules. An anomalous adsorption of HSA on the positive microparticles was observed at pH 3.5 where the maximum coverage attained 1.0mgm -2 for NaCl concentrations of 0.05M despite that the molecules were on average positively charged. For comparison, the maximum coverage of HSA on negatively charged microparticles was equal to 1.3mgm -2 at this pH and NaCl concentration. At pH 7.4 the maximum coverage on positive microparticles was equal to 2.1mgm -2 for 0.05M NaCl concentration. On the other hand, for negative microparticles, negligible adsorption of HSA was observed at pH 7.4 and 9.7. These experimental data were adequately interpreted in terms of the random sequential adsorption approach exploiting the bead model of the HSA molecule. Different orientations of adsorbed molecules, inert alia, the edge-on orientation prevailing for positively charged microparticles at pH 7.4, were confirmed. This was explained in terms of a heterogeneous charge distribution over the HSA molecule prevailing for a wide range of pHs. Copyright © 2017 Elsevier B.V. All rights reserved.
Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo.
Yang, Byungseop; Lim, Sung In; Kim, Jong Chul; Tae, Giyoong; Kwon, Inchan
2016-05-09
Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.
Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms
NASA Astrophysics Data System (ADS)
Manjunath, S.; Rao, Bola Sadashiva Satish; Satyamoorthy, Kapaettu; Mahato, Krishna Kishore
2014-02-01
Autofluorescence characteristics of human serum albumin (HSA) are highly sensitive to its local environment. Identification and characterization of the proteins in normal and disease conditions may have great clinical implications. Aim of the present study was to understand how autofluorescence properties of HSA varies with denaturation under urea (3.0M, 6.0M, 9.0M) and guanidine hydrochloride (GnHCl) (2.0M, 4.0M, 6.0M) as well as digestion with trypsin. Towards this, we have recorded the corresponding autofluorescence spectra of HSA at 281nm laser excitation and compared the outcomes. Although, HSA contains 1 tryptophan and 17 tyrosine residues, it has shown intense autofluorescence due to tryptophan as compared to the tyrosine in native form, which may be due to the fluorescence resonance energy transfer (FRET) from tyrosine to tryptophan. As the unfolding progresses in denatured and digested forms of the protein, a clear increase in tyrosine fluorescence as compared to tryptophan was observed, which may be due to the increase of tryptophan - tyrosine separation disturbing the FRET between them resulting in differences in the overall autofluorescence properties. The decrease in tryptophan fluorescence of around 17% in urea denatured, 32% in GnHCl denatured and 96% in tryptic digested HSA was observed as compared to its native form. The obtained results show a clear decrease in FRET between tyrosine and tryptophan residues with the progression of unfolding and urea seems to be less efficient than GnHCl in unfolding of HSA. These results demonstrate the potential of autofluorescence in characterizing proteins in general and HSA in particular.
Benedetti, Brad T.; Peterson, Erica J.; Kabolizadeh, Peyman; Martínez, Alberto; Kipping, Ralph; Farrell, Nicholas P.
2012-01-01
The overall efficacy of platinum based drugs is limited by metabolic deactivation through covalent drug–protein binding. In this study the factors affecting cytotoxicity in the presence of glutathione, human serum albumin (HSA) and whole serum binding with cisplatin, BBR3464, and TriplatinNC, a “noncovalent” derivative of BBR3464, were investigated. Upon treatment with buthionine sulfoximine (BSO), to reduce cellular glutathione levels, cisplatin and BBR3464-induced apoptosis was augmented whereas TriplatinNC-induced cytotoxicity was unaltered. Treatment of A2780 ovarian carcinoma cells with HSA-bound cisplatin (cisplatin/HSA) and cisplatin preincubated with whole serum showed dramatic decreases in cytotoxicity, cellular accumulation, and DNA adduct formation compared to treatment with cisplatin alone. Similar effects are seen with BBR3464. In contrast, TriplatinNC, the HSAbound derivative (TriplatinNC/HSA), and TriplatinNC pretreated with whole serum retained identical cytotoxic profiles and equal levels of cellular accumulation at all time points. Confocal microscopy of both TriplatinNC-NBD, a fluorescent derivative of TriplatinNC, and TriplatinNC-NBD/HSA showed nuclear/nucleolar localization patterns, distinctly different from the lysosomal localization pattern seen with HSA. Cisplatin-NBD, a fluorescent derivative of cisplatin, was shown to accumulate in the nucleus and throughout the cytoplasmwhile the localization of cisplatin-NBD/HSA was limited to lysosomal regions of the cytoplasm. The results suggest that TriplatinNCcan avoid high levels of metabolic deactivation currently seen with clinical platinum chemotherapeutics, and therefore retain a unique cytotoxic profile after cellular administration. PMID:21548575
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer
2012-01-01
Background The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon cancer and others. PMID:22891637
Jurjević, Ivana; Miyajima, Masakazu; Ogino, Ikuko; Akiba, Chihiro; Nakajima, Madoka; Kondo, Akihide; Kikkawa, Mika; Kanai, Mitsuyasu; Hattori, Nobutaka; Arai, Hajime
2016-01-01
Background: Patients presenting with the classical idiopathic normal pressure hydrocephalus (iNPH) triad often show additional parkinsonian spectrum signs. Accurate differential diagnosis strongly influences the long-term outcome of cerebrospinal fluid (CSF) shunting. Objective: The aim of this study was to find potential CSF microRNA (miRNA) biomarkers for NPH mimics with parkinsonian syndromes that can reliably distinguish them from iNPH patients. Methods: Two cohorts of 81 patients (cohort 1, n = 55; cohort 2, n = 26) with possible iNPH who were treated in two centers between January 2011 and May 2014 were studied. In both cohorts, CSF samples were obtained from patients clinically diagnosed with iNPH (n = 21 and n = 10, respectively), possible iNPH with parkinsonian spectrum (PS) (n = 18, n = 10, respectively), possible iNPH with Alzheimer’s disease (AD) (n = 16), and non-affected elderly individuals (NC) (n = 6). A three-step qRT-PCR analysis of the CSF samples was performed to detect miRNAs that were differentially expressed in the groups. Results: The expression of hsa-miR-4274 in CSF was decreased in both cohorts of PS group patients (cohort 1: p < 0.0001, cohort 2: p < 0.0001), and was able to distinguish PS from iNPH with high accuracy (area under the curve = 0.908). The CSF concentration of hsa-miR-4274 also correlated with the specific binding ratio of ioflupane (123I) dopamine transporter scan (r = –0.494, p = 0.044). By contrast, the level of hsa-miR-4274 was significantly increased in the PS group after CSF diversion. Conclusion: Levels of CSF hsa-miR-4274 can differentiate PS from patients with iNPH, AD, and NC. This may be clinically useful for diagnostic purposes and predicting shunt treatment responses. PMID:27911315
Jurjević, Ivana; Miyajima, Masakazu; Ogino, Ikuko; Akiba, Chihiro; Nakajima, Madoka; Kondo, Akihide; Kikkawa, Mika; Kanai, Mitsuyasu; Hattori, Nobutaka; Arai, Hajime
2017-01-01
Patients presenting with the classical idiopathic normal pressure hydrocephalus (iNPH) triad often show additional parkinsonian spectrum signs. Accurate differential diagnosis strongly influences the long-term outcome of cerebrospinal fluid (CSF) shunting. The aim of this study was to find potential CSF microRNA (miRNA) biomarkers for NPH mimics with parkinsonian syndromes that can reliably distinguish them from iNPH patients. Two cohorts of 81 patients (cohort 1, n = 55; cohort 2, n = 26) with possible iNPH who were treated in two centers between January 2011 and May 2014 were studied. In both cohorts, CSF samples were obtained from patients clinically diagnosed with iNPH (n = 21 and n = 10, respectively), possible iNPH with parkinsonian spectrum (PS) (n = 18, n = 10, respectively), possible iNPH with Alzheimer's disease (AD) (n = 16), and non-affected elderly individuals (NC) (n = 6). A three-step qRT-PCR analysis of the CSF samples was performed to detect miRNAs that were differentially expressed in the groups. The expression of hsa-miR-4274 in CSF was decreased in both cohorts of PS group patients (cohort 1: p < 0.0001, cohort 2: p < 0.0001), and was able to distinguish PS from iNPH with high accuracy (area under the curve = 0.908). The CSF concentration of hsa-miR-4274 also correlated with the specific binding ratio of ioflupane (123I) dopamine transporter scan (r = -0.494, p = 0.044). By contrast, the level of hsa-miR-4274 was significantly increased in the PS group after CSF diversion. Levels of CSF hsa-miR-4274 can differentiate PS from patients with iNPH, AD, and NC. This may be clinically useful for diagnostic purposes and predicting shunt treatment responses.
Immunogencity of HSA-L7/L12 (Brucella abortus ribosomal protein) in an animal model.
Pakzad, Iraj; Rezaee, Abbas; Rasaee, Mohammad Javad; Tabbaraee, Bahman; Delpisheh, Ali
2009-03-01
The immunogenic Brucella abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of subunit vaccines against brucellosis. This study was aimed to evaluate the protection of recombinant Human Serum Albumin (HAS)-L7/L12 fusion protein in Balb/c mice. The amplified L7/L12 gene was cloned in pYHSA5 vector, pYHSA5-L7/L12 construct was transformed in Saccharomyces cerevisiae and the expressed protein from supernatant was purified by affinity chromatography. Balb/c mice were immunized in five groups by tHSA-L7/L12 fusion protein (group 1), Brucella abortus S19 (group 2), HSA (group 3), recombinant L7/L12 (group 4), PBS (group 5). ELISA to detect antibody production, LTT test to assess antigen specific lymphocyte response were conducted prior to virulent B. abortus strain 544 challenge two weeks after the last injection. Bacterial counts from spleens of immunized mice were done four weeks after challenge. In ELISA tests, the specific antibodies exhibited a dominance of immunoglobulin IgG1 over IgG2a. In addition, the tHSA-L7/L12 fusion protein and L7/L12 elicited a strong T-cell proliferative response upon restimulation in vitro with recombinant tHSA-L7/L12 and L7/L12, suggesting the induction of a cellular immunity response in vivo. However, there was no significant difference in proliferative response of L7/L12 and tHSA-L7/L12 fusion protein (p>0.05). The L7/L12 and tHSA-L7/L12 fusion protein vaccines could also induce significant protection against challenge with the virulent strain B. abortus 544 in Balb/c mice (p< or =0.05). The tHSA-L7/L12 fusion protein, similar to L7/L12 has the ability to induce antigen specific lymphocyte proliferation, stimulate humoral immunity and engender protection.
Maeda, Hitoshi; Hirata, Kenshiro; Watanabe, Hiroshi; Ishima, Yu; Chuang, Victor Tuan Giam; Taguchi, Kazuaki; Inatsu, Akihito; Kinoshita, Manabu; Tanaka, Motohiko; Sasaki, Yutaka; Otagiri, Masaki; Maruyama, Toru
2015-02-01
Since reactive oxygen species (ROS) derived from Kupffer cells (KC), especially CD68(+) KC, play a key role in the induction of hepatic oxidative stress and injuries, we developed a polythiolated- and mannosylated human serum albumin (SH-Man-HSA), which functions as a novel nanoantioxidant for delivering thiol to CD68(+) KC. In vitro electron paramagnetic resonance coupled with pharmacokinetics and immunohistochemical studies showed that SH-Man-HSA possessed powerful radical-scavenging activity and rapidly and selectively delivered thiols to the liver via mannose receptor (CD206) on CD68(+) cells. SH-Man-HSA significantly improved the survival rate of concanavalin-A (Con-A)-treated mice. Moreover, SH-Man-HSA exhibited excellent hepatoprotective functions, not by decreasing tumor necrosis factor or interferon-γ production that is closely associated with Con-A-induced hepatitis, but by suppressing ROS production. Interestingly, the protective effect of SH-Man-HSA was superior to N-acetyl cysteine (NAC). This could be attributed to the difference in the inhibition of hepatic oxidative stress between the two antioxidants depending on their potential for thiol delivery to the liver. Similar results were also observed for acetaminophen (APAP)-induced hepatopathy models. Flow cytometric data further confirmed that an increase in F4/80(+)/ROS(+) cells was dramatically decreased by SH-Man-HSA. The administration of SH-Man-HSA at 4 hours following a Con-A or APAP injection also exhibited a profound hepatoprotective action against these hepatitis models, whereas this was not observed for NAC. It can be concluded therefore that SH-Man-HSA has great potential for use in a rescue therapy for hepatopathy as a nanoantioxidant because of its ability to efficiently and rapidly deliver thiols to CD68(+)/CD206(+) KC. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Solvent induced modifications to fiber nanostructure and morphology for 12HSA molecular gels
NASA Astrophysics Data System (ADS)
Gao, Jie
Molecular organogels are thermo reversible quasi-solid materials, which are formed by low molecular weight organogelators (LMOGs) undergoing supramolecular aggregation via non-covalent interactions, forming a three-dimensional fibrillar network. Numerous applications of molecular organogels are been investigated as edible oils, drug release matrices and personal care products. The chemistry of the organic phase (i.e., solvent) influences every level of structure in organogels. Different solvents induce LMOG to assemble into "crystal like" fibers, which have more than one crystal form, lamellar arrangement and domain size. Differences in these solid states are known to affect the macroscopic properties of the gel, including critical gelator concentration (CGC), melting point, melting enthalpy and opacity.12-hydroxystearic acid (12HSA) was examined in several classes of organic solvents with different function groups. These gels, sols or precipitates were analyzed using a series of techniques including: powder x-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), pulsed nuclear magnetic resonance spectroscopy (pNMR) and microscopy. Specifically, certain solvents caused 12HSA to self-assemble into a triclinic parallel polymorphic form with subcell spacing of ~4.6, 3.9, and 3.8 A and an interdigitated unit cell with a lamellar arrangement (38~44 A). This polymorphic form corresponded to a less effective sphereultic supramolecular crystalline network, which immobilizes solvents at CGC greater than 1.5 wt %. The other group of solvents induce a hexagonal subcell spacing (i.e., unit sub cell spacing ~4.1 A) and are arranged in a multi lamellar fashion with a unit cell greater than the bimolecular length of 12HSA (~54 A).This polymorphic form corresponds to fibrillar aggregates with a CGC less than 1 wt %.
Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A
2016-06-28
Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Shiri, Ron S.; Vootukuru, Meg; Coletti, Alessandro
2015-01-01
Norden E. Huang et al. had proposed and published the Hilbert-Huang Transform (HHT) concept correspondently in 1996, 1998. The HHT is a novel method for adaptive spectral analysis of non-linear and non-stationary signals. The HHT comprises two components: - the Huang Empirical Mode Decomposition (EMD), resulting in an adaptive data-derived basis of Intrinsic Mode functions (IMFs), and the Hilbert Spectral Analysis (HSA1) based on the Hilbert Transform for 1-dimension (1D) applied to the EMD IMF's outcome. Although paper describes the HHT concept in great depth, it does not contain all needed methodology to implement the HHT computer code. In 2004, Semion Kizhner and Karin Blank implemented the reference digital HHT real-time data processing system for 1D (HHT-DPS Version 1.4). The case for 2-Dimension (2D) (HHT2) proved to be difficult due to the computational complexity of EMD for 2D (EMD2) and absence of a suitable Hilbert Transform for 2D spectral analysis (HSA2). The real-time EMD2 and HSA2 comprise the real-time HHT2. Kizhner completed the real-time EMD2 and the HSA2 reference digital implementations respectively in 2013 & 2014. Still, the HHT2 outcome synthesis remains an active research area. This paper presents the initial concepts and preliminary results of HHT2-based synthesis and its application to processing of signals contaminated by Radio-Frequency Interference (RFI), as well as optical systems' fringe detection and mitigation at design stage. The Soil Moisture Active Passive (SMAP mission (SMAP) carries a radiometer instrument that measures Earth soil moisture at L1 frequency (1.4 GHz polarimetric - H, V, 3rd and 4th Stokes parameters). There is abundant RFI at L1 and because soil moisture is a strategic parameter, it is important to be able to recover the RFI-contaminated measurement samples (15% of telemetry). State-of-the-art only allows RFI detection and removes RFI-contaminated measurements. The HHT-based analysis and synthesis facilitates recovery of measurements contaminated by all kinds of RFI, including jamming [7-8]. The fringes are inherent in optical systems and multi-layer complex contour expensive coatings are employed to remove the unwanted fringes. HHT2-based analysis allows test image decomposition to analyze and detect fringes, and HHT2-based synthesis of useful image.
Shevde, Lalita A; Metge, Brandon J; Mitra, Aparna; Xi, Yaguang; Ju, Jingfang; King, Judy A; Samant, Rajeev S
2010-01-01
Abstract The growth of cancer cells as multicellular spheroids has frequently been reported to mimic the in vivo tumour architecture and physiology and has been utilized to study antitumour drugs. In order to determine the distinctive characteristics of the spheroid-derived cells compared to the corresponding monolayer-derived cells, we enriched multicellular spheroid-forming subpopulations of cells from three human breast cancer cell lines (MCF7, MCF10AT and MCF10DCIS.com). These spheroid-derived cells were injected into female athymic nude mice to assess their tumorigenic potential and were profiled for their characteristic miRNA signature. We discovered that the spheroid-derived cells expressed increased levels of osteopontin (OPN), an oncogenic protein that has been clinically correlated with increased tumour burden and adverse prognosis in patients with breast cancer metastasis. Our studies further show that increased OPN levels are brought about in part, by decreased levels of hsa-mir-299–5p in the spheroid-forming population from all three cell lines. Moreover, the spheroid-forming cells can organize into vascular structures in response to nutritional limitation; these structures recapitulate a vascular phenotype by the expression of endothelial markers CD31, Angiopoeitin-1 and Endoglin. In this study, we have validated that hsa-mir-299–5p targets OPN; de novo expression of OPN in turn plays a critical role in enhancing proliferation, tumorigenicity and the ability to display vasculogenic mimicry of the spheroid-forming cells. PMID:19538464
Kurogi, Ryota; Nakamizo, Akira; Suzuki, Satoshi O; Mizoguchi, Masahiro; Yoshimoto, Koji; Amano, Toshiyuki; Amemiya, Takeo; Takagishi, So; Iihara, Koji
2018-03-09
OBJECTIVE Human bone marrow-derived mesenchymal stem cells (hMSCs) show tropism for brain tumors and may be a useful vehicle for drug or gene delivery to malignant gliomas. Recently, some microRNAs (miRNAs) have been shown to suppress the invasiveness of malignant gliomas. METHODS To test their potential to become vehicles for the delivery of miRNA to malignant gliomas, hMSCs were engineered so that hMSC secretion of miRNAs that inhibit glioma cell invasion was enabled without altering the hMSC tropism for glioma cells. RESULTS In coculture, hMSCs cotransfected with hsa-miR-145-5p and -31-5p miRNAs showed markedly reduced invasion by U87 glioma cells in a contact-dependent manner both in vitro and ex vivo, with invasion of hMSCs cotransfected with these 2 miRNAs by the U87 cells reduced to 60.7% compared with control cells. According to a Matrigel invasion assay, the tropism of the hMSCs for U87 cells was not affected. In glioma cell lines U251 and LN229, hMSCs exhibited tropism in vivo, and invasion of hMSCs cotransfected with hsa-miR-145-5p and -31-5p was also significantly less than that of control cells. When U87 cells were coimplanted into the striatum of organotypic rat brain slices with hMSCs cotransfected with hsa-miR-145 and -31-5p, the relative invasive area decreased by 37.1%; interestingly, these U87 cells showed a change to a rounded morphology that was apparent at the invasion front. Whole-genome microarray analysis of the expression levels of 58,341 genes revealed that the co-overexpression of hsa-miR-145-5p and -31-5p downregulated FSCN1 expression in U87 cells. CONCLUSIONS This study demonstrates that miRNA overexpression in hMSCs can alter the function of glioma cells via contact-dependent transfer. Co-overexpression of multiple miRNAs may be a useful and novel therapeutic strategy. The study results suggest that hMSCs can be applied as a delivery vehicle for miRNAs.
Haenisch, Sierk; Zhao, Yi; Chhibber, Aparna; Kaiboriboon, Kitti; Do, Lynn V; Vogelgesang, Silke; Barbaro, Nicholas M; Alldredge, Brian K; Lowenstein, Daniel H; Cascorbi, Ingolf; Kroetz, Deanna L
2015-05-01
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported. We hypothesized that in MTLE altered miRNA-mediated regulation of target genes could be involved in hippocampal cell remodeling. A miRNA screen was performed in hippocampal focal and non-focal brain tissue samples obtained from the temporal neocortex (both n=8) of MTLE patients. Out of 215 detected miRNAs, two were differentially expressed (hsa-miR-34c-5p: mean increase of 5.7 fold (p=0.014), hsa-miR-212-3p: mean decrease of 76.9% (p=0.0014)). After in-silico target gene analysis and filtering, reporter gene assays confirmed RNA interference for hsa-miR-34c-5p with 3'-UTR sequences of GABRA3, GRM7 and GABBR2 and for hsa-miR-212-3p with 3'-UTR sequences of SOX11, MECP2, ADCY1 and ABCG2. Reporter gene assays with mutated 3'-UTR sequences of the transcription factor SOX11 identified two different binding sites for hsa-miR-212-3p and its primary transcript partner hsa-miR-132-3p. Additionally, there was an inverse time-dependent expression of Sox11 and miR-212-3p as well as miR-132-3p in rat neonatal cortical neurons. Transfection of neurons with anti-miRs for miR-212-3p and miR-132-3p suggest that both miRNAs work synergistically to control Sox11 expression. Taken together, these results suggest that differential miRNA expression in neurons could contribute to an altered function of the transcription factor SOX11 and other genes in the setting of epilepsy, resulting not only in impaired neural differentiation, but also in imbalanced neuronal excitability and accelerated drug export. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pronkin, P. G.; Tatikolov, A. S.
2015-07-01
The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.
Marley, K; Maier, C S; Helfand, S C
2012-09-01
Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. © 2012 Blackwell Publishing Ltd.
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Interleukin-8 Promotes Canine Hemangiosarcoma Growth by Regulating the Tumor Microenvironment
Kim, Jong-Hyuk; Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C.; Robinson, Sally; Sharkey, Leslie C.; O’Brien, Timothy D.; Dickerson, Erin B.; Modiano, Jaime F.
2014-01-01
Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. PMID:24582862
Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment.
Kim, Jong-Hyuk; Frantz, Aric M; Anderson, Katie L; Graef, Ashley J; Scott, Milcah C; Robinson, Sally; Sharkey, Leslie C; O'Brien, Timothy D; Dickerson, Erin B; Modiano, Jaime F
2014-04-15
Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into "IL-8 high" and "IL-8 low" groups. Genome-wide gene expression profiling showed that samples in the "IL-8 high" tumor group were enriched for genes associated with a "reactive microenvironment," including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. Copyright © 2014 Elsevier Inc. All rights reserved.
Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer.
Chen, Shijun; Li, Tianwen; Zhao, Qianfu; Xiao, Bingxiu; Guo, Junming
2017-03-01
Circular RNAs (circRNA) are an abundant class of non-coding RNAs in mammalian cells. However, their value in the diagnosis of cancers remains unknown. In this study, we focused on hsa_circ_0000190, which was found to be down-regulated in gastric cancer tissues in our previous microarray screening. The hsa_circ_0000190 levels in 104 paired gastric cancer tissues and adjacent non-tumor tissues, 104 plasma samples from patients with gastric cancer and 104 plasma samples from health controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Then, the association between the expression level of hsa_circ_0000190 and the clinicopathological features of patients with gastric cancer was further analyzed. A receiver operating characteristic (ROC) curve was generated to evaluate the diagnostic value. Hsa_circ_0000190 was first found to be down-regulated in gastric cancer tissues (P<0.001) and plasma samples from patients with gastric cancer (P<0.001). Its expression levels were significantly correlated with tumor diameter (P=0.034), lymphatic metastasis (P=0.026), distal metastasis (P=0.001), TNM stage (P=0.001), and CA19-9 levels (P=0.019). The areas under the ROC curve (AUC) of hsa_circ_0000190 in tissues and plasma were up to 0.75 and 0.60, respectively. The sensitivity and specificity of the combination were 0.712 and 0.750; the AUC was increased to 0.775. These results indicated that hsa_circ_0000190 may be a novel non-invasive biomarker for the diagnosis of gastric cancer. Its AUC, sensitivity and specificity are better than commonly used biomarkers such as CEA and CA19-9. Copyright © 2017 Elsevier B.V. All rights reserved.
Takahashi, Kenzo; Kobayashi, Jun; Nomura-Baba, Marika; Kakimoto, Kazuhiro; Nakamura, Yasuhide
2013-01-01
In 2013, the fifth Tokyo International Conference on African Development (TICAD V) will be hosted by the Japanese government. TICAD, which has been held every five years, has played a catalytic role in African policy dialogue and a leading role in promoting the human security approach (HSA). We review the development of the HSA in the TICAD dialogue on health agendas and recommend TICAD’s role in the integration of the HSA beyond the 2015 agenda. While health was not the main agenda in TICAD I and II, the importance of primary health care, and the development of regional health systems was noted in TICAD III. In 2008, when Japan hosted both the G8 summit and TICAD IV, the Takemi Working Group developed strong momentum for health in Africa. Their policy dialogues on global health in Sub-Saharan Africa incubated several recommendations highlighting HSA and health system strengthening (HSS). HSA is relevant to HSS because it focuses on individuals and communities. It has two mutually reinforcing strategies, a top-down approach by central or local governments (protection) and a bottom-up approach by individuals and communities (empowerment). The “Yokohama Action Plan,” which promotes HSA was welcomed by the TICAD IV member countries. Universal health coverage (UHC) is a major candidate for the post-2015 agenda recommended by the World Health Organization. We expect UHC to provide a more balanced approach between specific disease focus and system-based solutions. Japan’s global health policy is coherent with HSA because human security can be the basis of UHC-compatible HSS. PMID:24155655
NASA Astrophysics Data System (ADS)
Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees
2013-03-01
The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.
Yamauchi, Y; Litwin, A; Adams, L; Zimmer, H; Hess, E V
1975-01-01
The antihypertensive drug hydralazine can induce in man a syndrome similar to spontaneous systemic lupus erythematosus (SLE). The pathogenesis of this drug-induced syndrome is not understood. In this investigation, five groups of rabbits were studied: group I, 10 rabbits hyperimmunized with hydralazine conjugated to human serum albumin (HSA) in complete Freund's adjuvant (CFA); group II, four rabbits with HSA in CFA; group III, four rabbits with CFA alone; group IV, five rabbits with hydralazine conjugated to rabbit serum albumin (RSA); and group V, four rabbits with a major metabolite of hydralazine conjugated to HSA. The rabbits immunized with hydralazine-HSA developed rising titers of antibodies to hydralazine and progressively increasing amounts of antibodies to both single-stranded and native DNA. The antibodies to DNA were cross-reactive with hydralazine as determined by inhibition of DNA binding and DNA hemagglutination tests. Similar results were obtained in rabbits immunized with the metabolite-HSA compound except the major hapten antibody response was to the metabolite. The DNA antibodies in this group were also capable of being absorbed by metabolite-HSA as well as hydralazine-HSA, indicative of the cross-reactivity between hydralazine and its metabolite. Immunization with hydralazine-RSA caused rabbits to produce antibodies to hydralazine but not to DNA, indicating the requirement for an immune response to the carrier protein in order for antibodies reactive with DNA to be produced. Thus, hyperimmunization of rabbits with hydralazine-protein conjugates may provide a useful animal model of SLE. The data suggests that an immune response to hydralazine may be important in human hydralazine-induced SLE. Images PMID:808562
Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma.
Andersen, Nicholas J; Nickoloff, Brian J; Dykema, Karl J; Boguslawski, Elissa A; Krivochenitser, Roman I; Froman, Roe E; Dawes, Michelle J; Baker, Laurence H; Thomas, Dafydd G; Kamstock, Debra A; Kitchell, Barbara E; Furge, Kyle A; Duesbery, Nicholas S
2013-09-01
Angiosarcoma is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human angiosarcoma, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive extracellular signal-regulated kinase (ERK) activation. The mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multireceptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human angiosarcoma, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was upregulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human angiosarcoma. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human angiosarcoma, and it highlights the use of spontaneous canine cancers as a model of human disease.
Jenkinson, Claire; Jenkins, Rosalind E; Aleksic, Maja; Pirmohamed, Munir; Naisbitt, Dean J; Park, B Kevin
2010-03-01
Exposure to p-phenylenediamine (PPD) is associated with the development of T-cell-mediated allergic contact dermatitis. The purpose of this study was to define the nature of the interaction of PPD with the protein and the antigenic determinant that stimulates T cells. Mass spectrometry was employed to show that PPD oxidation products bind irreversibly to cysteine (Cys, position 34) in human serum albumin (HSA). A modified tryptic peptide was characterized with an increase in mass of 106 Da, corresponding to the addition of PPD and not to the secondary products of self conjugation. Lymphocytes from 10 PPD-allergic patients, but not tolerant/naive individuals, were stimulated with PPD and PPD-modified HSA. A total of 70 PPD-specific and 10 PPD-HSA-specific CD4+, CD8+, and CD4+CD8+, Th2-secreting T-cell clones were generated from three allergic patients. In total, 40 clones were stimulated with both PPD and PPD-modified HSA. PPD-modified HSA triggered T-cell responses through a classical hapten mechanism involving processing. Presentation of PPD to several clones was dependent on protein complex formation (42 out of 48) and processing (32 out of 68); however, 12% of clones were triggered with PPD directly. These data identify Cys as the single target for PPD-HSA binding, and show that PPD protein adducts are antigenic determinants in patients with contact dermatitis.
NASA Astrophysics Data System (ADS)
Liu, Bing-Mi; Zhang, Jun; Hao, Ai-Jun; Xu, Liang; Wang, Dan; Ji, Hui; Sun, Shi-Jie; Chen, Bo-Qi; Liu, Bin
2016-02-01
The impacts of rutin and baicalin on the interaction of curcumin (CU) with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopies under imitated physiological conditions. The results showed that the fluorescence quenching of HSA by CU was a simultaneous static and dynamic quenching process, irrespective of the presence or absence of flavonoids. The binding constants between CU and HSA in the absence and presence of rutin and baicalin were 2.268 × 105 M- 1, 3.062 × 105 M- 1, and 3.271 × 105 M- 1, indicating that the binding affinity was increased in the case of two flavonoids. Furthermore, the binding distance determined according to Förster's theory was decreased in the presence of flavonoids. Combined with the fact that flavonoids and CU have the same binding site (site I), it can be concluded that they may simultaneously bind in different regions in site I, and formed a ternary complex of flavonoid-HSA-CU. Meanwhile, the results of fluorescence quenching, CD and three-dimensional fluorescence spectra revealed that flavonoids further strengthened the microenvironmental and conformational changes of HSA induced by CU binding. Therefore, it is possible to develop a novel complex involving CU, flavonoid and HSA for CU delivery. The work may provide some valuable information in terms of improving the poor bioavailabiliy of CU.
NASA Astrophysics Data System (ADS)
Israel, Liron L.; Kovalenko, Elena I.; Boyko, Anna A.; Sapozhnikov, Alexander M.; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena; Lellouche, Jean-Paul
2015-01-01
Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)3/4+-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)3/4+-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)3/4+-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)3/4+-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders.
Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage
Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee
2016-01-01
Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154
Serra, S; De Simeis, D
2018-03-01
The preparation of the high-value flavour γ-dodecalactone is based on the biotransformation of natural 10-HSA, which is in turn obtained by microbial hydration of oleic acid. We want to establish a reliable baker's yeast-mediated procedure for 10-HSA preparation. The previously reported yeast-mediated hydration procedures are unreliable because bacteria-free baker's yeast is not able to hydrate oleic acid. The actual responsible for performing this reaction are the bacterial contaminants present in baker's yeast. Moreover, we demonstrated that the enantioselectivity in the production of (R)-10-HSA is affected mainly by the temperature used in the biotransformation. We demonstrated that Saccharomyces cerevisiae is not able to hydrate oleic acid, whereas different bacterial strains present in baker's yeast transform oleic acid into (R)-10-HSA. We reported a general procedure for the preparation of (R)-10-HSA starting from oleic acid and using commercially available baker's yeast. This study holds both scientific and industrial interest. It unambiguously establishes that the eukaryote micro-organisms present in baker's yeast are not able to hydrate oleic acid. The isolation of oleic acid hydrating bacterial strains from commercial baker's yeast points to their prospective use for the industrial synthesis of 10-HSA. © 2017 The Society for Applied Microbiology.
Kinoshita, Ryo; Ishima, Yu; Chuang, Victor T G; Nakamura, Hideaki; Fang, Jun; Watanabe, Hiroshi; Shimizu, Taro; Okuhira, Keiichiro; Ishida, Tatsuhiro; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru
2017-09-01
In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane ® ). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao
2015-12-01
To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.
Abbasi, Sana; Paul, Arghya; Shao, Wei; Prakash, Satya
2012-01-01
Most anticancer drugs are greatly limited by the serious side effects that they cause. Doxorubicin (DOX) is an antineoplastic agent, commonly used against breast cancer. However, it may lead to irreversible cardiotoxicity, which could even result in congestive heart failure. In order to avoid these harmful side effects to the patients and to improve the therapeutic efficacy of doxorubicin, we developed DOX-loaded polyethylenimine- (PEI-) enhanced human serum albumin (HSA) nanoparticles. The formed nanoparticles were ~137 nm in size with a surface zeta potential of ~+15 mV, prepared using 20 μg of PEI added per mg of HSA. Cytotoxicity was not observed with empty PEI-enhanced HSA nanoparticles, formed with low-molecular weight (25 kDa) PEI, indicating biocompatibility and safety of the nanoparticle formulation. Under optimized transfection conditions, approximately 80% of cells were transfected with HSA nanoparticles containing tetramethylrhodamine-conjugated bovine serum albumin. Conclusively, PEI-enhanced HSA nanoparticles show potential for developing into an effective carrier for anticancer drugs. PMID:22187654
Pan, Fang; Xu, Tianci; Yang, Lijun; Jiang, Xiaoqing; Zhang, Lei
2014-11-11
Bisphenol F (BPF) as an endocrine disrupting compounds (EDCs) pollutant in the environment poses a great threat to human health. To evaluate the toxicity of BPF at the protein level, the effects of BPF on human serum albumin (HSA) were investigated at three temperatures 283, 298, and 308 K by multiple spectroscopic techniques. The experimental results showed that BPF effectively quenched the intrinsic fluorescence of HSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and the binding subdomain were measured, and indicated that BPF could spontaneously bind with HSA on subdomain IIA through H-bond and van der Waals interactions. Furthermore, the conformation of HSA was demonstrably changed in the presence of BPF. The work provides accurate and full basic data for clarifying the binding mechanisms of BPF with HSA in vivo and is helpful for understanding its effect on protein function during its transportation and distribution in blood. Copyright © 2014 Elsevier B.V. All rights reserved.
Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel
2011-01-01
The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called "nanophotothermolysis". We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion.
Gökoğlu, Elmas; Kıpçak, Fulya; Seferoğlu, Zeynel
2014-11-01
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6-diaminoacridine derivatives obtained from proflavine, which are 3,6-diphenoxycarbonyl aminoacridine and 3,6-diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet-visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA-derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern-Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6-diethoxycarbonyl aminoacridine, 3,6-diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non-radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.
Omidfar, Kobra; Khorsand, Behnosh; Larijani, Bagher
2012-02-01
A new competitive immunostrip assay was developed to detect human serum albumin (HSA) in urine sample with use of conjugated monoclonal antibody gold nanoparticles (mAb-AuNPs) and mobile crystalline material (MCM)-41-HSA bioconjugate. To prepare the immunostrip, the colloidal AuNPs with an average particle diameter of 20 nm, was synthesized, labeled with antibody and applied on the conjugate pad as the detection reagent. Then, HSA was attached to the MCM-41 mesoporous nanoparticles and immobilized to a nitrocellulose membrane as the test line. In the optimized investigational conditions, the immunostrip could detect HSA in a high linear range (from 1 to 200 μg/ml) and low detection limit (ng/ml). The reliability of the testing procedure was examined by performing the immunostrip test with 30 urine samples and comparing the results with those obtained via immunoturbidimetry. The immunostrip was adequately sensitive and accurate for a rapid screening of HSA in the urine. This new strategy for competitive immunostrip design can be used and developed for other antigen based immunostrip assay.
NASA Astrophysics Data System (ADS)
Luik, A. I.; Naboka, Yu. N.; Mogilevich, S. E.; Hushcha, T. O.; Mischenko, N. I.
1998-09-01
The effect of pH and binding of ten physiologically active compounds (isoproterenol, yohimbine, propranolol, clonidine, phenylephrine, carbachol, tripeptide fMLP, diphenhydramine, chlorpromazine and atropine) on the molecular structure of human serum albumin (HSA) has been studied using the dynamic light scattering. It was found that albumin globule has the most compact configuration (Stokes diameter 59-62 Å) at physiological pH 7.4. The changes in pH, both increase to 8.0 and decrease to 5.4, result in the growth of globule size to 72-81 Å. At acidic shift of pH an additional peak arises in the correlation spectra caused by the light scattering on the structures with the Stokes diameters of 29-37 Å. Those conform to the sizes of the albumin subdomains. The indicated peak is not displayed at basic shift of pH. The interaction with propranolol, clonidine, phenylephrine, carbachol and tripeptide fMLP which hinder adenylate cyclase (AdC) and activate Ca-polyphosphoinositide (Ca-PPI) signaling system of a cell initiates structural rearrangements similar to acidic transitions. Isoproterenol, yohimbine diphenhydramine, chlorpromazine and atropine, which activate AdC and hinder Ca-PPI, cause conformational changes of HSA similar to basic transitions.
Impact of Hypothermic Stress During Special Operations Training of Chilean Military Forces.
Nieto Jimenez, Claudio; Cajigal Vargas, Jorge; Triantafilo Vladilo, Vjera Sofia; Naranjo Orellana, Jose
2018-02-07
The Chilean Army considers processes that can optimize physical capacities for responding to the impact of situations and given stressors. The study of the effect of hypothermia as a stressor agent (HSA) and its relationship with cardiovascular, hematological, anthropometric, endocrine, and immunological parameters has not been fully addressed experimentally in military populations. To identify the endocrine, hematological, cardiovascular, and immunological changes caused by HSA and to associate these variables with body composition and physical fitness in the military special operation courses of the Chilean Army. Forty-two male subjects were exposed to remain in cold water (10.6 °C) in the context of regular military operations training, the longest time of exposure was determined by individual volitional limits. The measurements were taken in pre-hypothermia conditions, then 2 d later under acute hypothermia condition, and finally during the course period of lesser physical and psychological stressors where the baseline measurements were taken. The statistical analysis consisted of testing normality of the distribution through the Shapiro-Wilk test, assessing the equality of variances through the Levene test, and variance analysis by applying the ANOVA test (analysis of variance). The Bonferroni test was used for multiple comparison correction and the Pearson test for correlations between two variables. The level of significance was of p < 0.05. The main finding of this study is that HSA has a significant impact at the cardiovascular level and produces an increment in the cell population of the immune and hematologic systems. Significant hormonal changes were observed: ACTH (r = 0.50, p < 0.002), cortisol (r = 0.32, p < 0.03), free testosterone (r = 0.13, p < 0.002), total testosterone r = 0.31, p < 0.002), and anthropometrics (r= -0.51, p < 0.05). However, there is no significant correlation between physical fitness and HAS. All subjects experienced hypothermia stress elicited by immersion in cold water. This was evidenced by the decrease in core temperature as well as cardiovascular, endocrine, anthropometric, and immunological changes. Individual differences exist between subjects and their resistance to hypothermia in cold water. These differences are not explained by the physical fitness profile but rather respond to a greater body adiposity index and minor changes in the adrenocorticotropic hormone and cortisol hormone. An acute hypothermia stress condition also affects the anabolic/catabolic environment. Finally, HSA produces an increase in the cell population of the immune system. The authors believe that this study allows to standardize HSA exposure times during regular military operations training by identifying the physiological impacts under this extreme environment. At present, the availability of intra-abdominal temperature measurement apparatus with capsule thermometers raises the interest of corroborating the findings of the current study through the use of such measuring devices. Likewise, an interesting line of research for the future would be to compare the HSA against a psychological evaluation with the purpose of identifying the stress management mechanisms among subjects of these characteristics and include heart rate variability measurements as an indicator of sympathetic stress. © Association of Military Surgeons of the United States 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Shengmian; Xu, Lili; Wang, Lisheng; Liang, Aihui; Jiang, Zhiliang
2013-01-01
Graphite oxide (GO) was prepared by the Hummer procedure, and can be dispersed to stable colloid solution by ultrasonic wave. The GO exhibited an absorption peak at 313 nm, and a resonance Rayleigh scattering (RRS) peak at 490 nm. In pH 4.6 HAc-NaAc buffer solution, human serum albumin (HSA) combined with GO probe to form large HSA-GO particles that caused the RRS peak increasing at 490 nm. The increased RRS intensity was linear to HSA concentration in the range 0.50-200 µg/mL. Thus, a new and simple RRS method was proposed for the determination of HSA in samples, with a recovery of 98.1-104%. Copyright © 2012 John Wiley & Sons, Ltd.
How Awkward! Social Anxiety and the Perceived Consequences of Social Blunders
Moscovitch, David A.; Rodebaugh, Thomas L.; Hesch, Benjamin D.
2011-01-01
Seventy high socially anxious (HSA) and 74 low socially anxious (LSA) participants rated perceived interpersonal and emotional consequences of both (a) autobiographical social blunders recalled from their own lives and (b) imagined blunders presented in standardized hypothetical social scenarios. Ratings of participants’ autobiographical blunders were also provided by research assistants who were blind to hypotheses. Results indicated that HSA participants overestimated the negative consequences of their own autobiographical blunders. These negative perceptions among HSA participants extended to imagined blunders, even when participants were instructed to imagine a third party other than themselves as the person committing the blunder. This pattern of results suggests the conclusion that the perceived consequences of social blunders among HSA individuals are driven by the belief that social standards are high, inflexible, or both. PMID:22137365
NASA Astrophysics Data System (ADS)
Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie
2016-02-01
Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07308a
Cytotoxic activity and structural features of Ru(II)/phosphine/amino acid complexes.
Dos Santos, Edjane R; Graminha, Angelica E; Schultz, Mario S; Correia, Isabel; Selistre-de-Araújo, Heloisa S; Corrêa, Rodrigo S; Ellena, Javier; Lacerda, Elisângela de Paula S; Pessoa, João Costa; Batista, Alzir A
2018-05-01
Thirteen new ruthenium amino acid complexes were synthesized and characterized. They were obtained by the reaction of α-amino acids (AA) with [RuCl 2 (P-P)(N-N)], where P-P=1,4-bis(diphenylphosphino)butane (dppb) or 1,3-bis(diphenylphosphino)propane (dppp) and N-N=4,4'-dimethyl-2,2'-bipyridine (4'-Mebipy), 5,5'-dimethyl-2,2'-bipyridine (5'-Mebipy) or 4,4'-Methoxy-2-2'-bipyridine (4'-MeObipy). This afforded a family of complexes formulated as [Ru(AA-H)(P-P)(N-N)]PF 6 , where AA=glycine (Gly), L-alanine (Ala), L-valine (Val), L-tyrosine (Tyr), L-tryptophan (Trp), L-histidine (His) and L-methionine (Met). All compounds were characterized by elemental analysis, spectroscopic and electrochemical techniques. The [Ru(AA-H)(P-P)(N-N)]PF 6 complexes are octahedral (the AA-H ligand binding involves N-amine and O-carboxylate), diamagnetic (low-spin d 6 , S=0) and present bands due to electronic transitions in the visible region. 1 H, 13 C{ 1 H} and 31 P{ 1 H} NMR spectra of the complexes indicate the presence of C 2 symmetry, and the identification of diastereoisomers. In vitro cytotoxicity assays of the compounds and cisplatin were carried out using MDA-MB-231 (human breast) tumor cell line and a non-tumor breast cell line (MCF-10A). Most complexes present promising results with IC 50 values comparable with the reference drug cisplatin and high selectivity indexes were found for the complexes containing L-Trp. The binding of two Ru-precursors of the type [RuCl 2 (dppb)(NN)] (N-N=4'-MeObipy or 4'-Mebipy) to the blood transporter protein human serum albumin (HSA) was evaluated by fluorescence and circular dichroism spectroscopy. Both complexes bind HSA, probably in the hydrophobic pocket near Trp214, and the Ru-complex containing 4'-MeObipy shows higher affinity for HSA than the 4'-Mebipy one. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-assembled albumin nanoparticles as a nanocarrier for aclacinomycin A
NASA Astrophysics Data System (ADS)
Gong, Guangming; Liu, Wenya; Wang, Shudong
2016-11-01
This study aimed to reduce the cytotoxicity and improve the targeting of aclacinomycin (ACM) by covalently coupling it with amino-oxyacetic acid (AOA) to generate an active intermediate, AOA-ACM. AOA-ACM was conjugated with self-assembled human serum albumin (HSA) nanoparticles constructed using tris(2-carboxyethyl)phosphine (TCEP) as disulfide bond breaking molecules in an ‘opening stage-intermediate-closing stage’ route, in which the hydrophobic interaction, interchange of sulfhydryl and hydrogen bond may be the key factors in the assembling process. Conjugation between ACM and albumin nanoparticles was found to occur at an ACM ketone site using 1H-NMR and 13C-NMR matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass analysis indicated that the drug loading efficiency of ACM conjugated with HSA nanoparticles (NPs-ACM) was 7.4% (molar ratio = 6:1). The release of NPs-ACM was pH dependent. In vivo studies indicated that NPs-ACM exhibited fourfold higher tumor targeting capability on S180-tumor-bearing mice compared with the free ACM (p < 0.05). The cytotoxictiy and cardiotoxicity of NPs-ACM was reduced compared with the free ACM. Albumin carrier altered the blood pharmacokinetics and distribution of ACM. Hence, the NPs-ACM prodrug is ideal tumor targeting drug carriers for ACM, and the easy approach developed in this study for active intermediate and prodrug preparation can be applied to other pharmacological substances containing ketone groups. The method of preparing HSA-blank nanoparticles through TCEP reduction could be adopted to improve the water solubility of lipophilic drugs and their tumor-targeting specificity by fabricating HSA-lipophilic drug nanoparticles.
MiR-3613-3p affects cell proliferation and cell cycle in hepatocellular carcinoma
Zhang, Donghui; Liu, Enqin; Kang, Jian; Yang, Xin; Liu, Hong
2017-01-01
Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with poor sensitivity to chemotherapy drugs and poor prognosis among patients. In the present study, we downloaded the original data from the Gene Expression Omnibus and compared gene expression profiles of liver cancer cells in patients with HCC with those of colon epithelial cells of healthy controls to identify differentially expressed genes (DEGs). After filtering target microRNAs (miRNA) from core DEGs, we cultured HepG2 cells in vitro, knocked down the miRNA and core mRNAs, and analyzed the effects. We found 228 differentially expressed genes between liver cancer tissue and healthy control tissue. We also integrated the protein-proteininteraction network and module analysis to screen 13 core genes, consisting of 12 up-regulated genes and 1 down-regulated gene. Five core genes were regulated hsa-miR-3613-3p, therefor we hypothesized that hsa-miR-3613-3p was a critical miRNA. After the transfection procedure, we found that changes in hsa-miR-3613-3p were the most obvious. Therefore, we speculated that hsa-miR-3613-3p was a main target miRNA. In addition, we transfected with si (BIRC5, CDK1, NUF2, ZWINT and SPC24), to target genes that can be targeted by miR-3613-3p. Our data shows that BIRC5, NUF2, and SPC24 may be promising liver cancer biomarkers that may not only predict disease occurrence but also potential personalized treatment options. PMID:29190974
Chang, Lun-Ching; Lin, Hui-Min; Sibille, Etienne; Tseng, George C
2013-12-21
As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations. We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HS(A): DE genes with non-zero effect sizes in all studies, (2) HS(B): DE genes with non-zero effect sizes in one or more studies and (3) HS(r): DE gene with non-zero effect in "majority" of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively. The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HS(A), HS(B), and HS(r)). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website.
Wangt, Dan-Chen; Hu, Li-Hui; Zhou, Yu-Hui; Huang, Yu-Ting; Li, Xinhua; Zhu, Jun-Jie
2014-04-01
An isothermal, highly sensitive and specific assay for the detection of hsa-miR-21 with the integration of QDs tagging and rolling circle amplification was offered. In addition, a dual channel strategy for miRNA detection was proposed: anodic stripping voltammetry (ASV) and fluorescent method were both performed for the final Cd2+ signal readout. The designed strategy exhibited good specificity to hsa-miR-21 and presented comparable detection results by detection methods.
Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers.
Rawlings-Goss, Renata A; Campbell, Michael C; Tishkoff, Sarah A
2014-08-28
MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have not comprehensively taken into account genetic variability affecting miRNA expression and/or function in populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are needed to assess global patterns of miRNA variation within and between diverse human populations and their effect on clinically relevant miRNA genes. Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations. We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division (p < 10(-7)), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7 PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker, was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect miRNA expression levels in vivo and subsequently breast cancer mortality. MiRNA expression profiles represent a promising new category of disease biomarkers. However, population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in part to health disparities observed in multiple forms of cancer, specifically breast cancer, and will be an essential consideration when assessing the utility of miRNA biomarkers for the clinic.
NASA Astrophysics Data System (ADS)
Mocanu, Mihaela N.; Yan, Fei
2018-02-01
The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.
NASA Astrophysics Data System (ADS)
Masyeni, S.; Hadi, U.; Kuntaman; Yohan, B.; Margyaningsih, N. I.; Sasmono, R. T.
2018-03-01
Pathogenesis of dengue infection is still obscure. Recently, the role of microRNA has been associated with the cytokine storm which leads to plasma leakage in endothelial cells. The objective of our study was to determine whether particular microRNA is overexpressed in PBMCs infected with DENV and to assess its correlation to the expression of suppressor of cytokine signaling 3 (SOCS3) proteins to increase the production of pro-inflammatory cytokines. We report the result of a preliminary study on the expression of microRNA hsa-let-7e. The peripheral blood mononuclear cells (PBMCs) from the healthy volunteer were infected with the clinical isolate of DENV-2. RNA was extracted with miRCURYLNATMExiqon. Quantitative Real-Time PCR was used to measure the relative expression of hsa-let-7e micro RNA and the mRNA of SOCS3 proteins. MicroRNA hsa-let-7e expression was increased in PBMCs upon DENV-2 infection. The relative expression of hsa-let-7e is detected at 1.46 folds relative to uninfected PBMCs in 4 hours post-infection and decreased in 19 hours post infection. In contrast, the expression of mRNA of SOCS3 was inversely expressed with hsa-let-7 expression. MicroRNA was overexpressed in PBMCs upon infection with DENV-2. This microRNA may bind the SOCS3 and contribute to the pathogenesis of dengue infection.
Grosser, Oliver S; Ruf, Juri; Kupitz, Dennis; Pethe, Annette; Ulrich, Gerhard; Genseke, Philipp; Mohnike, Konrad; Pech, Maciej; Richter, Wolf S; Ricke, Jens; Amthauer, Holger
2016-06-01
Perfusion scintigraphy using (99m)Tc-labeled albumin aggregates is mandatory before hepatic radioembolization with (90)Y-microspheres. As part of a prospective trial, the intrahepatic and intrapulmonary stability of 2 albumin compounds, (99m)Tc-MAA (macroaggregated serum albumin [MAA]) and (99m)Tc-HSA (human serum albumin [HSA]), was assessed. In 24 patients with metastatic colorectal cancer, biodistribution (liver, lung) and liver-lung shunt (LLS) of both tracers (12 patients each) were assessed by sequential planar scintigraphy (1, 5, and 24 h after injection). Liver uptake of both albumin compounds decreased differently. Although initial LLSs at 1 h after injection were similar in both groups, MAA-LLS increased significantly from 1 (3.9%) to 5 h (7.7%) and 24 h (9.9%) after injection, respectively. HSA-LLS did not change significantly (1 to 5 h), indicating a steady state of pulmonary and intrahepatic degradation. Compared with (99m)Tc-MAA-microspheres, (99m)Tc-HSA-microspheres are likely more resistant to degradation over time, allowing a reliable LLS determination even at later time points. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Wang, Jiaman; Ma, Liang; Zhang, Yuhao; Jiang, Tao
2017-02-01
The interaction of Deltamethrin (DM) with human serum albumin (HSA) under the condition of simulating human blood pH environment (pH = 7.4) was investigated by fluorescence, UV-Vis absorbance and circular dichroism (CD) spectroscopy. It was shown that DM was a static quencher of HSA. The binding constants (Ka) are 3.598 × 104 L mol-1 (25 °C); the thermodynamic parameters (ΔH = -3.269 × 104 kJ mol-1, ΔS = -22.81 kJ mol-1 k-1, ΔG = -25889.8 kJ mol-1) obtained with the thermodynamic equation. The hydrogen bond and Vander Waals were the main driving force. The effect of DM on the conformation of HSA was observed by three-dimensional (3D) fluorescence and circular dichroism spectra, indicating that the interaction between DM and HSA was achieved through the binding of DM with the tryptophan and tyrosine residues of HSA. The study on the interaction of DM and Bovine Serum Albumin (BSA) was researched and compared. Difference exists in the interactions of with each of the serum albumins. We will verify and supplement that DM residue in animals and human metabolism, toxicology and other mechanisms are different.
Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel
2011-01-01
The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called “nanophotothermolysis”. We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion. PMID:21720504
76 FR 43382 - Proposed Collection; Comment Request for Form 5498-SA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Form 5498-SA, HSA, Archer MSA, or Medicare Advantage MSA Information. DATES: Written comments should [email protected] . SUPPLEMENTARY INFORMATION: Title: HSA, Archer MSA, or Medicare Advantage MSA Information.... [[Page 43383
Bose, Debosreeta; Sarkar, Deboleena; Chattopadhyay, Nitin
2010-01-01
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of alpha-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.
Tabassum, Sartaj; Zaki, Mehvash; Ahmad, Musheer; Afzal, Mohd; Srivastav, Saurabh; Srikrishna, Saripella; Arjmand, Farukh
2014-08-18
New Cu(II) complex 1 of indole-3-propionic acid and 1,10-phenanthroline was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. In vitro DNA binding studies of 1 was performed by employing UV-vis and fluorescence spectroscopic techniques. The binding affinity towards human serum albumin (HSA) was also investigated to understand the carrier role in body system, as the time dependent HPLC experiment of 1 revealed that bonded drug with protein releases slowly in presence of DNA. Complex 1 exhibited good anti-tumor activity (GI50 values <10 μg/ml), and to elucidate the mechanism of tumor inhibition, topoisomerase I enzymatic activity was carried out and further validated by cell imaging studies which clearly showed its nuclear localization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Interaction of Human Serum Albumin with Metal Protoporphyrins
NASA Astrophysics Data System (ADS)
Hu, Jie; Brancaleon, Lorenzo
2015-03-01
Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.
Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish
Rajendran, R. Samuel; Shen, Chia-Ning; Chen, Te-Hao; Yen, Chueh-Chuan; Chuang, Chih-Kuang; Lin, Dar-Shong; Hsiao, Chung-Der
2012-01-01
Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity. PMID:22623957