Sample records for structure crystal form

  1. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalasemore » (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.« less

  2. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedronmore » motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.« less

  3. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Watanabe, Masahiro; Ishikawa, Kazuhiko

    2014-01-01

    One of the β-glucosidases from Pyrococcus furiosus (BGLPf) is found to be a hyperthermophilic tetrameric enzyme that can degrade cellooligosaccharides. Recently, the crystal structures of the tetrameric and dimeric forms were solved. Here, a new monomeric form of BGLPf was constructed by removing the C-terminal region of the enzyme and its crystal structure was solved at a resolution of 2.8 Å in space group P1. It was discovered that the mutant enzyme forms a unique dodecameric structure consisting of two hexameric rings in the asymmetric unit of the crystal. Under biological conditions, the mutant enzyme forms a monomer. This result helps explain how BGLPf has attained its oligomeric structure and thermostability. PMID:25005077

  4. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    PubMed

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  5. Preliminary crystallographic studies of four crystal forms of serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z.

    1994-01-01

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure.

  6. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  7. Unraveling Complexity in the Solid Form Screening of a Pharmaceutical Salt: Why so Many Forms? Why so Few?

    PubMed Central

    2017-01-01

    The solid form landscape of 5-HT2a antagonist 3-(4-(benzo[d]isoxazole-3-yl)piperazin-1-yl)-2,2-dimethylpropanoic acid hydrochloride (B5HCl) proved difficult to establish. Many crystalline materials were produced by solid form screening, but few forms readily grew high quality crystals to afford a clear picture or understanding of the solid form landscape. Careful control of crystallization conditions, a range of experimental methods, computational modeling of solvate structures, and crystal structure prediction were required to see potential arrangements of the salt in its crystal forms. Structural diversity in the solid form landscape of B5HCl was apparent in the layer structures for the anhydrate polymorphs (Forms I and II), dihydrate and a family of solvates with alcohols. The alcohol solvates, which provided a distinct packing from the neat forms and the dihydrate, form layers with conserved hydrogen bonding between B5HCl and the solvent, as well as stacking of the aromatic rings. The ability of the alcohol hydrocarbon moieties to efficiently pack between the layers accounted for the difficulty in growing some solvate crystals and the inability of other solvates to crystallize altogether. Through a combination of experiment and computation, the crystallization problems, form stability, and desolvation pathways of B5HCl have been rationalized at a molecular level. PMID:29018305

  8. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  9. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  10. Shaped nanocrystal particles and methods for working the same

    DOEpatents

    Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato

    2007-12-25

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  11. Shaped Nonocrystal Particles And Methods For Making The Same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2005-02-15

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  12. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.

    PubMed

    Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M

    1999-09-01

    We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.

  13. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed. PMID:24598756

  14. Two distinct crystallization processes in supercooled liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less

  15. Self-powdering and nonlinear optical domain structures in ferroelastic β‧-Gd2(MoO4)3 crystals formed in glass

    NASA Astrophysics Data System (ADS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-08-01

    Ferroelastic β'-Gd 2(MoO 4) 3, (GMO), crystals are formed through the crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called "self-powdering phenomenon during crystallization" in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.

  16. Self-powdering and nonlinear optical domain structures in ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals formed in glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Y.; Honma, T.; Komatsu, T., E-mail: komatsu@mst.nagaokaut.ac.j

    Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3}, (GMO), crystals are formed through the crystallization of 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 {mu}m spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and amore » spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO{sub 4}){sup 2-} tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkadesh, S.; Mandal, P.K.; Gautham, N., E-mail: n_gautham@hotmail.com

    Highlights: {yields} This is the first crystal structure of a four-way junction with sticky ends. {yields} Four junction structures bind to each other and form a rhombic cavity. {yields} Each rhombus binds to others to form 'infinite' 2D tiles. {yields} This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind tomore » each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.« less

  18. Crystal structure of minoxidil at low temperature and polymorph prediction.

    PubMed

    Martín-Islán, Africa P; Martín-Ramos, Daniel; Sainz-Díaz, C Ignacio

    2008-02-01

    An experimental and theoretical investigation on crystal forms of the popular and ubiquitous pharmaceutical Minoxidil is presented here. A new crystallization method is presented for Minoxidil (6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) in ethanol-poly(ethylene glycol), yielding crystals with good quality. The crystal structure is determined at low temperature, with a final R value of 0.035, corresponding to space group P2(1) (monoclinic) with cell dimensions a = 9.357(1) A, b = 8.231(1) A, c = 12.931(2) A, and beta = 90.353(4) degrees . Theoretical calculations of the molecular structure of Minoxidil are set forward using empirical force fields and quantum-mechanical methods. A theoretical prediction for Minoxidil crystal structure shows many possible polymorphs. The predicted crystal structures are compared with X-ray experimental data obtained in our laboratory, and the experimental crystal form is found to be one of the lowest energy polymorphs.

  19. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism.

    PubMed

    Price, Sarah Sally L

    2009-01-20

    The phenomenon of polymorphism, the ability of a molecule to adopt more than one crystal structure, is a well-established property of crystalline solids. The possible variations in physical properties between polymorphs make the reliable reproduction of a crystalline form essential for all research using organic materials, as well as quality control in manufacture. Thus, the last two decades have seen both an increase in interest in polymorphism and the availability of the computer power needed to make the computational prediction of organic crystal structures a practical possibility. In the past decade, researchers have made considerable improvements in the theoretical basis for calculating the sets of structures that are within the energy range of possible polymorphism, called crystal energy landscapes. It is common to find that a molecule has a wide variety of ways of packing with lattice energy within a few kilojoules per mole of the most stable structure. However, as we develop methods to search for and characterize "all" solid forms, it is also now usual for polymorphs and solvates to be found. Thus, the computed crystal energy landscape reflects and to an increasing extent "predicts" the emerging complexity of the solid state observed for many organic molecules. This Account will discuss the ways in which the calculation of the crystal energy landscape of a molecule can be used as a complementary technique to solid form screening for polymorphs. Current methods can predict the known crystal structure, even under "blind test" conditions, but such successes are generally restricted to those structures that are the most stable over a wide range of thermodynamic conditions. The other low-energy structures can be alternative polymorphs, which have sometimes been found in later experimental studies. Examining the computed structures reveals the various compromises between close packing, hydrogen bonding, and pi-pi stacking that can result in energetically feasible structures. Indeed, we have observed that systems with many almost equi-energetic structures that contain a common interchangeable motif correlate with a tendency to disorder and problems with control of the crystallization product. Thus, contrasting the computed crystal energy landscape with the known crystal structures of a given molecule provides a valuable complement to solid form screening, and the examination of the low-energy structures often leads to a rationalization of the forms found.

  20. Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S. Q.; Li, M. Z., E-mail: maozhili@ruc.edu.cn; Wu, Z. W.

    2016-04-21

    The crystallization mechanism in deeply undercooled ZrCu metallic glass-forming liquids was investigated via molecular dynamics simulations. It was found that the crystallization process is mainly controlled by the growth of crystal nuclei formed by the BCC-like atomic clusters, consistent with experimental speculations. The crystallization rate is found to relate to the number of growing crystal nuclei in the crystallization process. The crystallization rate in systems with more crystal nuclei is significantly hindered by the larger surface fractions of crystal nuclei and their different crystalline orientations. It is further revealed that in the crystallization in deeply undercooled regions, the BCC-like crystalmore » nuclei are formed from the inside of the precursors formed by the FCC-like atomic clusters, and growing at the expense of the precursors. Meanwhile, the precursors are expanding at the expense of the outside atomic clusters. This process is consistent with the so-called Ostwald step rule. The atomic structures of metallic glasses are found to have significant impact on the subsequent crystallization process. In the Zr{sub 85}Cu{sub 15} system, the stronger spatial correlation of Cu atoms could hinder the crystallization processes in deeply undercooled regions.« less

  1. Ultratight crystal packing of a 10 kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  2. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface

    PubMed Central

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y.

    2016-01-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ∼148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery. PMID:26837260

  3. Influence of moisture on the crystal forms of niclosamide obtained from acetone and ethyl acetate.

    PubMed

    Manek, Rahul V; Kolling, William M

    2004-03-04

    The purpose of this study was to elucidate the formation of crystal hydrates of niclosamide and to delineate the effect of relative humidity on the crystal forms obtained from acetone and ethyl acetate. Recrystallization of niclosamide was performed in the presence and absence of moisture. Two hydrates and their corresponding anhydrates were isolated. The hydrates obtained by the process of recrystallization from acetone (Form I) and that obtained from ethyl acetate (Form II) were classified based on differences in their dehydration profile, crystal structure, shape, and morphology. Crystals obtained in the absence of moisture were unstable, and when exposed to the laboratory atmosphere transformed to their corresponding hydrates. Differential scanning calorimetry thermograms indicate that Form I changes to an anhydrate at temperatures below 100 degrees C, while Form II dehydrates in a stepwise manner above 140 degrees C. This finding was further confirmed by thermogravimetric analysis. Dehydration of Form II was accompanied by a loss of structural integrity, demonstrating that water molecules play an important role in maintaining its crystal structure. Form I, Form II, and the anhydrate of Form II showed no significant moisture sorption over the entire range of relative humidity. Although the anhydrate of Form I did not show any moisture uptake at low humidity, it converted to the monohydrate at elevated relative humidity (>95%). All forms could be interconverted depending on the solvent and humidity conditions.

  4. The closo-Si{sub 12}C{sub 12} molecule from cluster to crystal: A theoretical prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiaofeng F., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil; Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433; Burggraf, Larry W., E-mail: xiaofeng.duan@wpafb.af.mil, E-mail: larry.burggraf@us.af.mil

    2016-03-21

    The structure of closo-Si{sub 12}C{sub 12} is unique among stable Si{sub n}C{sub m} isomers (n, m > 4) because of its high symmetry, π–π stacking of C{sub 6} rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si{sub 12}C{sub 12} molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si{sub 12}C{sub 12} molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortionmore » of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C{sub 6} rings in monomer moiety.« less

  5. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  6. New Form Discovery for the Analgesics Flurbiprofen and Sulindac Facilitated by Polymer-Induced Heteronucleation

    PubMed Central

    GRZESIAK, ADAM L.; MATZGER, ADAM J.

    2008-01-01

    The selection and discovery of new crystalline forms is a longstanding issue in solid-state chemistry of critical importance because of the effect molecular packing arrangement exerts on materials properties. Polymer-induced heteronucleation has recently been developed as a powerful approach to discover and control the production of crystal modifications based on the insoluble polymer heteronucleant added to the crystallization solution. The selective nucleation and discovery of new crystal forms of the well-studied pharmaceuticals flurbiprofen (FBP) and sulindac (SUL) has been achieved utilizing this approach. For the first time, FBP form III was produced in bulk quantities and its crystal structure was also determined. Furthermore, a novel 3:2 FBP:H2O phase was discovered that nucleates selectively from only a few polymers. Crystallization of SUL in the presence of insoluble polymers facilitated the growth of form I single crystals suitable for structure determination. Additionally, a new SUL polymorph (form IV) was discovered by this method. The crystal forms of FBP and SUL are characterized by Raman and FTIR spectroscopies, X-ray diffraction, and differential scanning calorimetry. PMID:17567888

  7. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  8. Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels

    NASA Astrophysics Data System (ADS)

    den Adel, Ruud; Heussen, Patricia C. M.; Bot, Arjen

    2010-10-01

    Mixtures of β-sitosterol and γ-oryzanol form a network in triglyceride oil that may serve as an alternative to the network of small crystallites of triglycerides occurring in regular oil structuring. The present x-ray diffraction study investigates the relation between the crystal forms of the individual compounds and the mixture in oil, water and emulsion. β-Sitosterol and γ-oryzanol form normal crystals in oil, in water, or in emulsions. The crystals are sensitive to the presence of water. The mixture of β-sitosterol + γ-oryzanol forms crystals in water and emulsions that can be traced back to the crystals of the pure compounds. Only in oil, a completely different structure emerges in the mixture of β-sitosterol + γ-oryzanol, which bears no relation to the structures that are formed by both individual compounds, and which can be identified as a self-assembled tubule (diameter 7.2±0.1 nm, wall thickness 0.8±0.2 nm).

  9. Polymorphism in phenobarbital: discovery of a new polymorph and crystal structure of elusive form V.

    PubMed

    Roy, Saikat; Goud, N Rajesh; Matzger, Adam J

    2016-03-21

    This report highlights the discovery of a new polymorph of the anticonvulsant drug phenobarbital (PB) using polymer-induced heteronucleation (PIHn) and unravelling the crystal structure of the elusive form V. Both forms are characterized by structural, thermal and VT-Raman spectroscopy methods to elucidate phase transformation behavior and shed light on stability relationships.

  10. Refined structures of three crystal forms of toxic shock syndrome toxin-1 and of a tetramutant with reduced activity.

    PubMed Central

    Prasad, G. S.; Radhakrishnan, R.; Mitchell, D. T.; Earhart, C. A.; Dinges, M. M.; Cook, W. J.; Schlievert, P. M.; Ohlendorf, D. H.

    1997-01-01

    The structure of toxic shock syndrome toxin-1 (TSST-1), the causative agent in toxic shock syndrome, has been determined in three crystal forms. The three structural models have been refined to R-factors of 0.154, 0.150, and 0.198 at resolutions of 2.05 A, 2.90 A, and 2.75 A, respectively. One crystal form of TSST-1 contains a zinc ion bound between two symmetry-related molecules. Although not required for biological activity, zinc dramatically potentiates the mitogenicity of TSST-1 at very low concentrations. In addition, the structure of the tetramutant TSST-1H [T69I, Y80W, E132K, I140T], which is nonmitogenic and does not amplify endotoxin shock, has been determined and refined in a fourth crystal form (R-factor = 0.173 to 1.9 A resolution). PMID:9194182

  11. Mechanochemical synthesis of N-salicylidene­aniline: thermosalient effect of polymorphic crystals

    PubMed Central

    Mittapalli, Sudhir; Sravanakumar Perumalla, D.

    2017-01-01

    Polymorphs of the dichloro derivative of N-salicylideneaniline exhibit mechanical responses such as jumping (Forms I and III) and exploding (Form II) in its three polymorphs. The molecules are connected via the amide N—H⋯O dimer synthon and C—Cl⋯O halogen bond in the three crystal structures. A fourth high-temperature Form IV was confirmed by variable-temperature single-crystal X-ray diffraction at 180°C. The behaviour of jumping exhibited by the polymorphic crystals of Forms I and III is due to the layered sheet morphology and the transmission of thermal stress in a single direction, compared with the corrugated sheet structure of Form II such that heat dissipation is more isotropic causing blasting. The role of weak C—Cl⋯O interactions in the thermal response of molecular crystals is discussed. PMID:28512571

  12. An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine.

    PubMed

    Florence, Alastair J; Johnston, Andrea; Price, Sarah L; Nowell, Harriott; Kennedy, Alan R; Shankland, Norman

    2006-09-01

    An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=O...H--N R2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=O...H--N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R2(2)(8) motif. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  13. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  14. Myelin structures formed by thermotropic smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik Reddy; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2014-03-01

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tube-like structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities and differences to the classical lyotropic myelin figures.

  15. A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.

    PubMed

    Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W

    2017-03-13

    The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  17. Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure

    NASA Astrophysics Data System (ADS)

    Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi

    2018-02-01

    A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.

  18. Probing the crystal structure landscape by doping: 4-bromo, 4-chloro and 4-methylcinnamic acids.

    PubMed

    Desiraju, Gautam R; Chakraborty, Shaunak; Joseph, Sumy

    2018-06-11

    Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br-atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii and others, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of pi...pi interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments.

    PubMed

    Hörer, Stefan; Reinert, Dirk; Ostmann, Katja; Hoevels, Yvette; Nar, Herbert

    2013-06-01

    Keap1 is a substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex and plays an important role in the cellular response to oxidative stress. It binds Nrf2 with its Kelch domain and thus triggers the ubiquitinylation and degradation of Nrf2. Oxidative stress prevents the degradation of Nrf2 and leads to the activation of cytoprotective genes. Therefore, Keap1 is an attractive drug target in inflammatory diseases. The support of a medicinal chemistry effort by structural research requires a robust crystallization system in which the crystals are preferably suited for performing soaking experiments. This facilitates the generation of protein-ligand complexes in a routine and high-throughput manner. The structure of human Keap1 has been described previously. In this crystal form, however, the binding site for Nrf2 was blocked by a crystal contact. This interaction was analysed and mutations were introduced to disrupt this crystal contact. One double mutation (E540A/E542A) crystallized in a new crystal form in which the binding site for Nrf2 was not blocked and was accessible to small-molecule ligands. The crystal structures of the apo form of the mutated Keap1 Kelch domain (1.98 Å resolution) and of the complex with an Nrf2-derived peptide obtained by soaking (2.20 Å resolution) are reported.

  20. Polymorphs and polymorphic cocrystals of temozolomide.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  1. Structure of the apo form of the catabolite control protein A (CcpA) from Bacillus megaterium with a DNA-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh

    2007-04-01

    Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less

  2. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  3. Formation of porous crystals via viscoelastic phase separation

    NASA Astrophysics Data System (ADS)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  4. Glass Forming Ability in Systems with Competing Orderings

    NASA Astrophysics Data System (ADS)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2018-04-01

    Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy state. The tendency for a material to form a glass when quenched is called "glass-forming ability," and it is of key significance both fundamentally and for materials science applications. Here, we consider liquids with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple or eutectic points. With simulations of two model systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming ability is caused by an increase in the structural difference between liquid and crystal: stronger competition in orderings towards the melting point minimum makes a liquid structure more disordered (more complex). This increase in the liquid-crystal structure difference can be described by a single adimensional parameter, i.e., the interface energy cost scaled by the thermal energy, which we call the "thermodynamic interface penalty." Our finding may provide a general physical principle for not only controlling the glass-forming ability but also the emergence of glassy behavior of various systems with competing orderings, including orderings of structural, magnetic, electronic, charge, and dipolar origin.

  5. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  6. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE PAGES

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  7. DNA-guided nanoparticle assemblies

    DOEpatents

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  8. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    PubMed

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Structure of a new crystal form of human Hsp70 ATPase domain.

    PubMed

    Osipiuk, J; Walsh, M A; Freeman, B C; Morimoto, R I; Joachimiak, A

    1999-05-01

    Hsp70 proteins are highly conserved proteins induced by heat shock and other stress conditions. An ATP-binding domain of human Hsp70 protein has been crystallized in two major morphological forms at pH 7.0 in the presence of PEG 8000 and CaCl2. Both crystal forms belong to the orthorhombic space group P212121, but show no resemblance in unit-cell parameters. Analysis of the crystal structures for both forms shows a 1-2 A shift of one of the subdomains of the protein. This conformational change could reflect a 'natural' flexibility of the protein which might be relevant to ATP binding and may facilitate the interaction of other proteins with Hsp70 protein.

  10. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  11. Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study

    NASA Astrophysics Data System (ADS)

    Skorepova, Eliska; Čerňa, Igor; Vlasáková, Růžena; Zvoníček, Vít; Tkadlecová, Marcela; Dušek, Michal

    2017-11-01

    Ixazomib citrate is a very recently approved anti-cancer drug. Until now, to the best of our knowledge, no one has been able to solve any crystal structures of this compound. In this work, we present the crystal structures of two isostructural solvates of ixazomib citrate. In all currently available literature, the molecule is characterized as containing a single optically active carbon atom and a borate cycle formed when ixazomib is reacted with citric acid to form a stabilized ixazomib citrate that can be administered orally. However, the crystal structures revealed that none of the up-to-date presented structural formulas of ixazomib citrate are fully accurate. In addition to the citrate ring, another 5-membered ring is formed. These two rings are connected by the boron atom, making this compound a spirocyclic borate. By spirocyclization, the boron atom becomes tetrahedral and therefore optically active. In the crystal structures, ixazomib citrate was found to be in forms of two RR and RS stereoisomers. The results are supported by solid-state and solution NMR and DFT quantum mechanical calculations.

  12. Self-organization processes and topological defects in nanolayers in a nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvyrov, A. N.; Girfanova, F. M.; Mal'tsev, I. S.

    Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C{sub nm} (where n = 2, 4, 5, 6, 7, ?, {infinity}), cones,more » and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.« less

  13. Structure of Bacillus halmapalus α-amylase crystallized with and without the substrate analogue acarbose and maltose

    PubMed Central

    Lyhne-Iversen, Louise; Hobley, Timothy J.; Kaasgaard, Svend G.; Harris, Pernille

    2006-01-01

    Recombinant Bacillus halmapalus α-amylase (BHA) was studied in two different crystal forms. The first crystal form was obtained by crystallization of BHA at room temperature in the presence of acarbose and maltose; data were collected at cryogenic temperature to a resolution of 1.9 Å. It was found that the crystal belonged to space group P212121, with unit-cell parameters a = 47.0, b = 73.5, c = 151.1 Å. A maltose molecule was observed and found to bind to BHA and previous reports of the binding of a nonasaccharide were confirmed. The second crystal form was obtained by pH-induced crystallization of BHA in a MES–HEPES–boric acid buffer (MHB buffer) at 303 K; the solubility of BHA in MHB has a retrograde temperature dependency and crystallization of BHA was only possible by raising the temperature to at least 298 K. Data were collected at cryogenic temperature to a resolution of 2.0 Å. The crystal belonged to space group P212121, with unit-cell parameters a = 38.6, b = 59.0, c = 209.8 Å. The structure was solved using molecular replacement. The maltose-binding site is described and the two structures are compared. No significant changes were seen in the structure upon binding of the substrates. PMID:16946462

  14. Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.

    PubMed

    Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen

    2016-05-04

    Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.

  15. Inorganic Crystal Structure Database (ICSD) and Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (TYPIX)—Two Tools for Inorganic Chemists and Crystallographers

    PubMed Central

    Fluck, Ekkehard

    1996-01-01

    The two databases ICSD and TYPIX are described. ICSD is a comprehensive compilation of crystal structure data of inorganic compounds (about 39 000 entries). TYPIX contains 3600 critically evaluated data sets representative of structure types formed by inorganic compounds. PMID:27805158

  16. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  17. Symmetrical polyhedra (simple crystal forms) as orbits of noncrystallographic point symmetry groups

    NASA Astrophysics Data System (ADS)

    Ovsetsina, T. I.; Chuprunov, E. V.

    2017-09-01

    Simple crystal forms are analyzed as the orbits of noncrystallographic point symmetry groups on a set of smooth or structured ("hatched") planes of crystal space. Polyhedra with symmetrically equivalent faces, obtained using noncrystallographic point symmetry groups, are considered. All possible versions of simple forms for all noncrystallographic groups are listed in a unified table.

  18. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage ϕ29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455

    2005-04-01

    ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less

  19. Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Roisin M., E-mail: r.mcmahon1@uq.edu.au; Coinçon, Mathieu; Tay, Stephanie

    The crystal structure of a P. aeruginosa DsbA1 variant is more suitable for fragment-based lead discovery efforts to identify inhibitors of this antimicrobial drug target. In the reported structures the active site of the protein can simultaneously bind multiple ligands introduced in the crystallization solution or via soaking. Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discoverymore » approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Rodnikova, M. N.

    The molecular and crystal structures of two p-(alkoxybenzylidene)-p'-toluidines C{sub 5}H{sub 11}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (1) and C{sub 8}H{sub 17}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (2), which form the nematic phase upon melting, is determined by X-ray diffraction. The geometry of the benzylideneaniline fragments in molecules 1 and 2 is actually identical. The crystal packings of 1 and 2 are characterized by the alternation of layers formed by loosely packed aliphatic fragments of molecules and layers of closely packed aromatic fragments. The packing in the aromatic regions of 1 follows the parquet pattern. The crystal packing of 2 hasmore » a stacking structure, which is formed by {pi}-stacking dimers superimposed on one another. The formation of the mesogenic phase upon melting of crystals 1 is due to the disturbance of the structurality of loose aliphatic layers with retention of the structure of the aromatic regions, which are stabilized by the cooperative effect of weak directed C-H ... {pi}-system interactions. The mesogenic phase of crystals 2 is formed upon melting as a consequence of the retention of the structure of {pi}-stacking dimers.« less

  1. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  2. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Haley; Venkat, Murugappan; Hti Lar Seng, Nang San

    2012-01-01

    The stabilizing osmolyte trimethylamine N-oxide (TMAO) is shown to be an efficient primary precipitant for protein crystal growth. In addition to TMAO, two other methylamine osmolytes, sarcosine and betaine, are shown to be effective cryoprotective agents for protein crystal cooling. Both crystallization and cryoprotection are often bottlenecks for high-resolution X-ray structure determination of macromolecules. Methylamine osmolytes are known stabilizers of protein structure. One such osmolyte, trimethylamine N-oxide (TMAO), has seen occasional use as an additive to improve macromolecular crystal quality and has recently been shown to be an effective cryoprotective agent for low-temperature data collection. Here, TMAO and the relatedmore » osmolytes sarcosine and betaine are investigated as primary precipitating agents for protein crystal growth. Crystallization experiments were undertaken with 14 proteins. Using TMAO, seven proteins crystallized in a total of 13 crystal forms, including a new tetragonal crystal form of trypsin. The crystals diffracted well, and eight of the 13 crystal forms could be effectively cryocooled as grown with TMAO as an in situ cryoprotective agent. Sarcosine and betaine produced crystals of four and two of the 14 proteins, respectively. In addition to TMAO, sarcosine and betaine were effective post-crystallization cryoprotective agents for two different crystal forms of thermolysin. Precipitation reactions of TMAO with several transition-metal ions (Fe{sup 3+}, Co{sup 2+}, Cu{sup 2+} and Zn{sup 2+}) did not occur with sarcosine or betaine and were inhibited for TMAO at lower pH. Structures of proteins from TMAO-grown crystals and from crystals soaked in TMAO, sarcosine or betaine were determined, showing osmolyte binding in five of the 12 crystals tested. When an osmolyte was shown to bind, it did so near the protein surface, interacting with water molecules, side chains and backbone atoms, often at crystal contacts.« less

  3. Structural morphology of crystals with the barite (BaSO 4) structure: A revision and extension

    NASA Astrophysics Data System (ADS)

    Hartman, P.; Strom, C. S.

    1989-09-01

    The structural morphology of crystals with the barite (BaSO 4) structure (sulphates, chromates, perchlorates, permanganates and tetrafluoroborates) has been determined with the use of computer programs. Uniquely defined F forms are {002}, {210}, {211}, {020} and {201}. Two different F slices were found for {101} and {200}, 33 for {011}. Attachment energies and specific surface energies have been calculated for an electrostatic point charge model as a function of the charge distribution in the anion. On this basis it is concluded that {101} behaves as an F form, {200} as an S form and {011} as a K form. The theoretical growth form shows {210}, {101} and {002} as main forms. A comparison is made with habits of natural and synthetic crystals. Experiments on KCIO 4 show that {011} appears at high supersaturations (>38; ;20%). It is shown that a broken bond model provides relative attachment energies that are higher by a factor of about three.

  4. Conformational flexibility and packing plausibility of repaglinide polymorphs

    NASA Astrophysics Data System (ADS)

    Rani, Dimpy; Goyal, Parnika; Chadha, Renu

    2018-04-01

    The present manuscript highlights the structural insight into the repaglinide polymorphs. The experimental screening for the possible crystal forms were carried out using various solvents, which generated three forms. The crystal structure of Form II and III was determined using PXRD pattern whereas structural analysis of Form I has already been reported. Form I, II and II was found to exist in P212121, PNA21 and P21/c space groups respectively. Conformational analysis was performed to account the conformational flexibility of RPG. The obtained conformers were further utilized to obtain the information about the crystal packing pattern of RPG polymorphs by polymorph prediction module. The lattice energy landscape, depicting the relationship between lattice energy and density of the polymorphs has been obtained for various possible polymorphs. The experimentally isolated polymorphs were successfully fitted into lattice energy landscape.

  5. Crystal water as the mol-ecular glue for obtaining different co-crystal ratios: the case of gallic acid tris-caffeine hexa-hydrate.

    PubMed

    Vella-Zarb, L; Baisch, U

    2018-04-01

    The crystal structure of the hexa-hydrate co-crystal of gallic acid and caffeine, C 7 H 6 O 5 ·3C 8 H 10 N 4 O 2 ·6H 2 O or GAL3CAF·6H 2 O , is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water mol-ecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the inter-molecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two mol-ecules is formed between the carb-oxy-lic oxygen of gallic acid and the carbonyl oxygen of caffeine with d ( D ⋯ A ) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.

  6. Observing the overall rocking motion of a protein in a crystal

    NASA Astrophysics Data System (ADS)

    Ma, Peixiang; Xue, Yi; Coquelle, Nicolas; Haller, Jens D.; Yuwen, Tairan; Ayala, Isabel; Mikhailovskii, Oleg; Willbold, Dieter; Colletier, Jacques-Philippe; Skrynnikov, Nikolai R.; Schanda, Paul

    2015-10-01

    The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall `rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.

  7. An unusual type of polymorphism in a liquid crystal

    DOE PAGES

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...

    2018-02-19

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  8. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.

    PubMed

    Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A

    2014-12-01

    In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An unusual type of polymorphism in a liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  10. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Cameron Capeletti; Guimarães, Freddy Fernandes; Ribeiro, Leandro; Martins, Felipe Terra

    2016-10-01

    The recognition of the nature of a multicomponent crystal form (solvate, salt, cocrystal or cocrystal of salt) is of great importance for pharmaceutical industry because it is directly related to the performance of a pharmaceutical ingredient, since there is interdependence between the structure, its energy and its physical properties. In this context, here we have identified the nature of multicomponent crystal forms of the anti-HIV drug lamivudine with mandelic acid through infrared spectroscopy. These investigated crystal forms were the known S-mandelic acid cocrystal of lamivudine R-mandelate trihydrate (1), a cocrystal of salt, and lamivudine R-mandelate (2), a salt. This approach also supports the identification and distinction of both ionized and unionized forms of mandelic acid in the infrared spectrum of 1. In this way, infrared spectroscopy can be useful to distinguish a cocrystal of salt from either salt or cocrystal forms. In the course of this study, for the first time we have also characterized and determined the crystal structure of R-mandelic acid cocrystal of sodium R-mandelate (3).

  11. Experimental evidence for a chiral symmetry-breaking mechanism in aspartic acid: Lattice and sub-lattice matching

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez

    2017-10-01

    A mother crystal formed from a transient molecular structure of (D+L) aspartic acid in solution is reported. Hexagonal structures with a lattice constant of 1.04 nm were crystallized from a solution in which three aspartic acid species coexist: right- and left-handed enantiomorphs, denoted D-aspartic and L-aspartic, respectively, and transitory (D+L) aspartic acid specie. Atomic force microscopy images of the crystalline deposits reveal domains of the transitory (D+L) aspartic acid crystal forming the substrate deposit on silicon wafers, and on top of this hexagonal lattice only L-aspartic acid is observed to conform and crystallize. A preferential crystallization mechanism is then observed for (D+L) aspartic acid crystals that seed only L-aspartic deposits by the geometrical matching of their multiple hexagonal lattice structures with periodicities of 1.04 nm and 0.52 nm, respectively.

  12. Synthesis and Structural Features of [4,4'-Diisopropoxyester-2,2'-bipyridine], [Dichloro(4,4'-diisopropoxyester-2,2'-bi-pyridine)-platinum(ii)] and Its Dichloromethane Solvated Pseudo-Polymorph: Versatile Supramolecular Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, Charles; Nesterov, Vladimir N.; Wang, Xiaoping

    We report that the organic ligand 4,4'-diisopropoxyester-2,2'-bipyridine, C 18H 20N 2O 4 (1), crystallizes in the triclinic crystal system P-1 and the molecule occupies a special position in the unit cell. In the crystal, molecules form stacks with partial overlapping of the pyridine rings. The Pt(II) dichloro complex of 1 crystallizes from a mixture of ethanol/hexane and from dichloromethane to form orange and yellow crystals, respectively. The orange non-solvated crystals of the (bipyridine)(dichloro)platinum(II) complex C 18H 20N 2O 4PtCl 2 (2) crystallize in the triclinic crystal system P-1 as well with two independent molecules in the unit cell. In themore » crystal packing, molecules form two types of dimers with Pt1 ··· Pt1A and Pt2···Pt2A distances of 3.478 and 5.186 angstrom respectively. The yellow crystals, as a solvated pseudo-polymorph C 18H 20N 2O 4PtCl 2·1.5 CH 2Cl 2 (3) also crystallize in the triclinic crystal system P-1 with two independent molecules in the unit cell. In the crystal packing, molecules form Pt2 ···Pt1 ···Pt1A ···Pt2A intermolecular contacts with alternating distances 3.501 and 3.431 angstrom, respectively, forming infinite chains. Graphical Abstract The dichloro(bipyridine)platinum complex, dichloro(4,4'-diisopropoxyester-2,2'-bipyridine)platinum(II), forms single crystals as a stable non-solvated form and a solvated polymorph with dramatically different supramolecular structure and short contacts.« less

  13. Synthesis and Structural Features of [4,4'-Diisopropoxyester-2,2'-bipyridine], [Dichloro(4,4'-diisopropoxyester-2,2'-bi-pyridine)-platinum(ii)] and Its Dichloromethane Solvated Pseudo-Polymorph: Versatile Supramolecular Interactions

    DOE PAGES

    Browning, Charles; Nesterov, Vladimir N.; Wang, Xiaoping; ...

    2015-06-03

    We report that the organic ligand 4,4'-diisopropoxyester-2,2'-bipyridine, C 18H 20N 2O 4 (1), crystallizes in the triclinic crystal system P-1 and the molecule occupies a special position in the unit cell. In the crystal, molecules form stacks with partial overlapping of the pyridine rings. The Pt(II) dichloro complex of 1 crystallizes from a mixture of ethanol/hexane and from dichloromethane to form orange and yellow crystals, respectively. The orange non-solvated crystals of the (bipyridine)(dichloro)platinum(II) complex C 18H 20N 2O 4PtCl 2 (2) crystallize in the triclinic crystal system P-1 as well with two independent molecules in the unit cell. In themore » crystal packing, molecules form two types of dimers with Pt1 ··· Pt1A and Pt2···Pt2A distances of 3.478 and 5.186 angstrom respectively. The yellow crystals, as a solvated pseudo-polymorph C 18H 20N 2O 4PtCl 2·1.5 CH 2Cl 2 (3) also crystallize in the triclinic crystal system P-1 with two independent molecules in the unit cell. In the crystal packing, molecules form Pt2 ···Pt1 ···Pt1A ···Pt2A intermolecular contacts with alternating distances 3.501 and 3.431 angstrom, respectively, forming infinite chains. Graphical Abstract The dichloro(bipyridine)platinum complex, dichloro(4,4'-diisopropoxyester-2,2'-bipyridine)platinum(II), forms single crystals as a stable non-solvated form and a solvated polymorph with dramatically different supramolecular structure and short contacts.« less

  14. Structure of initial crystals formed during human amelogenesis

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  15. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubasov, I. V., E-mail: kubasov.ilya@gmail.com; Kislyuk, A. M.; Bykov, A. S.

    The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO{sub 3} and LiTaO{sub 3} bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

  16. The topological pressure-temperature phase diagram and crystal structures of the dimorphic system spiperone.

    PubMed

    Robert, B; Perrin, M-A; Coquerel, G; Céolin, R; Rietveld, I B

    2016-03-01

    The topological pressure-temperature phase diagram for the dimorphism of spiperone, a potent neuroleptic drug, has been constructed using literature data and improved crystal structures obtained with new crystallographic data from single-crystal X-ray diffraction at various temperatures. It is inferred that form II, which is the more dense form and exhibits the lower melting temperature, becomes the more stable phase under pressure. Under ambient conditions, form I is more stable. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  17. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  18. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    NASA Astrophysics Data System (ADS)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  19. Crystal structure of carnidazole form II from synchrotron X-ray powder diffraction: structural comparison with form I, the hydrated form and the low energy conformations in vacuo.

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van den Mooter, Guy; De Ridder, Dirk J A; Schenk, Henk

    2006-10-01

    The crystal structure of carnidazole form II, O-methyl [2-(2-methyl-5-nitro-1H-imidazole-1-yl)ethyl]thiocarbamate, has been determined using synchrotron X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined by the Rietveld method. For structure solution, 12 degrees of freedom were defined: one motion group and six torsions. Form II crystallizes in space group P2(1)/n, Z=4, with unit cell parameters after Rietveld refinement: a=13.915(4), b=8.095(2), c=10.649(3) A, beta=110.83(1) degrees, and V=1121.1(5) A3. The two polymorphic forms, as well as the hydrate, crystallize in the monoclinic space group P2(1)/n having four molecules in the cell. In form II, the molecules are held together by forming two infinite zig-zag chains via hydrogen bonds of the type N--H...N, the same pattern as in form I. A conformational study of carnidazole, at semiempirical PM3 level, was performed using stochastic approaches based on modification of the flexible torsion angles. The values of the torsion angles for the molecules of the two polymorphic forms and the hydrate of carnidazole are compared to those obtained from the conformational search. Form I and form II are enantiotropic polymorphic pairs this agrees with the fact that the two forms are conformational polymorphs. Copyright (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Structure of α, ω-bis-(pentane-2,4-dione-3-ylmethylsulfanyl)alkanes and even/odd crystallization effects

    NASA Astrophysics Data System (ADS)

    Khalilov, Leonard M.; Tulyabaev, Arthur R.; Mescheryakova, Ekaterina S.; Akhmadiev, Nail S.; Timirov, Yulai I.; Skaldin, Oleg A.; Akhmetova, Vnira R.

    2015-09-01

    The relationships between structural features and crystallization of the С1-С6 α,ω-bis-(pentane-2,4-dione-3-ylmethylsulfanyl)alkanes are considered. It was shown that the conjugated enol bis-pentadiones which form pseudo six-membered rings and stabilized by intramolecular hydrogen bonds favor the crystallization. Using a polarized optical technique, it has been found that crystallization rate of the melts of crystalline compounds decreases with elongation of the aliphatic chain between sulfur atoms. It is assumed that one of the main factors that contributes to probability to form single crystals is a small twist angle between two pseudo six-membered rings.

  1. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    PubMed

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  2. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  3. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  4. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate

    PubMed Central

    2013-01-01

    The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at aw (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen. PMID:24027438

  5. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate.

    PubMed

    Braun, Doris E; Bhardwaj, Rajni M; Arlin, Jean-Baptiste; Florence, Alastair J; Kahlenberg, Volker; Griesser, Ulrich J; Tocher, Derek A; Price, Sarah L

    2013-09-04

    The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at a w (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen.

  6. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    NASA Astrophysics Data System (ADS)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  7. Crystal structure and hydrogen-bonding patterns in 5-fluoro-cytosinium picrate.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-03-01

    In the crystal structure of the title compound, 5-fluoro-cytosinium picrate, C 4 H 5 FN 3 O + ·C 6 H 2 N 3 O 7 - , one N heteroatom of the 5-fluoro-cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA - ) anion. In the crystal, the 5FC + cation inter-acts with the PA - anion through three-centre N-H⋯O hydrogen bonds, forming two conjoined rings having R 2 1 (6) and R 1 2 (6) motifs, and is extended by N-H⋯O hydrogen bonds and C-H⋯O inter-actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C-F⋯π inter-actions.

  8. Crystallization of isoelectrically homogeneous cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, B.D.; Westbrook, E.M.

    1989-02-07

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-{angstrom} resolution with our electronic area detectors.more » With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Syrbu, S. A.

    The crystal and molecular structure of p-(decaoxybenzylidene)-p'-toluidine C{sub 10}H{sub 21}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} is studied. The molecule is nearly planar. In the crystal packing, loose regions formed by aliphatic fragments of molecules alternate with pseudostacks of aromatic fragments of molecules that are related by the centers of symmetry. The stacks are built of dimers, in which molecules are linked by {pi}-stacking interactions between benzene rings. There are no weak directional interactions between dimers in a stack. The presence of a single structure-forming element in the crystal, namely, the {pi}-stacking interactions in the dimers, along with the similarity ofmore » the crystal packing to that of the C{sub 8}H{sub 17}O-homologue, which forms a nematic mesophase on melting, indicate that the crystals under study should exhibit nematic properties.« less

  10. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan

    PubMed Central

    Maynard-Casely, Helen E.; Hodyss, Robert; Cable, Morgan L.; Vu, Tuan Hoang; Rahm, Martin

    2016-01-01

    Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn’s moon Titan’s lakes, an evaporite material. PMID:27158505

  12. Structural investigation of the β-cyclodextrin complexes with chiral bicyclic monoterpenes - Influence of the functionality group on the host-guest stoichiometry

    NASA Astrophysics Data System (ADS)

    Ceborska, Magdalena

    2017-10-01

    The crystal structures of the complexes of β-cyclodextrin with (+)- and (-)-camphors are presented. The comparison of the obtained crystal structures with available data for other complexes of β-cyclodextrin with chiral bicyclic monoterpenes (hydrocarbon (+)-fenchene and alcohols: (-)-isopinocampheol, and (+)-, and (-)-borneols) obtained from Cambridge Structural Database (CSD) shows the trend of alcohols to form dimeric complexes of 2:3 stoichiometry, while hydrocarbons and ketones prefer to form 2:2 host-guest inclusion complexes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotin, B. M., E-mail: bolotin70@yandex.ru; Mikhlina, Ya. A.; Arkhipova, S. A.

    The crystal and molecular structures of two crystal forms (pale yellow form 1 and yellow form 2) of N-[2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)phenyl]naphthalene-2-sulfonamide (Orlyum White 520T), which is an organic luminophore with an anomalously high Stokes shift, were determined. Crystal 2 is a solvate with para-xylene. Crystal 1 is a solvent-free form. The molecular geometry in crystal 1 differs from that in 2 only in the orientation of the SO{sub 2}Ar substituent. The bond-length distribution in the planar moiety of the molecule in crystal 1 is virtually identical to that in 2, but the bonds in the NH-SO{sub 2}Ar-bearing benzene ring in crystal 1more » are systematically longer than the corresponding bonds in crystal 2. This fact can be attributed to the crystal-packing effects. In 2 the molecules form stacked dimers with {pi}-stacking interactions between two planar conjugated tricyclic systems. The charge transfer in this system accounts for the intensification of the color of these crystals and the observed difference in the optical properties of 1 and 2.« less

  14. Crystal structure of Escherichia coli L-arabinose isomerase (ECAI), the putative target of biological tagatose production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R

    2006-07-07

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  15. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  16. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    NASA Astrophysics Data System (ADS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-03-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garman, S.C.; Sechi, S.; Kinet, J.-P.

    We have solved the structure of the human high affinity IgE receptor, Fc{var_epsilon}RI{alpha}, in six different crystal forms, showing the structure in 15 different chemical environments. This database of structures shows no change in the overall shape of the molecule, as the angle between domains 1 and 2 (D1 and D2) varies little across the ensemble. However, the receptor has local conformational variability in the C' strand of D2 and in the BC loop of D1. In every crystal form, a residue inserts between tryptophan residues 87 and 110, mimicking the position of a proline from the IgE ligand. Themore » different crystal forms reveal a distribution of carbohydrates lining the front and back surfaces of the structure. An analysis of crystal contacts in the different forms indicates regions where the molecule interacts with other proteins, and reveals a potential new binding site distal to the IgE binding site. The results of this study point to new directions for the design of molecules to inhibit the interaction of Fc{var_epsilon}RI{alpha} with its natural ligand and thus to prevent a primary step in the allergic response.« less

  18. Growth of a New Ternary BON Crystal on Si(100) by Plasma-Assisted MOCVD and Study on the Effects of Fed Gas and Growth Temperature

    NASA Astrophysics Data System (ADS)

    Chen, G. C.; Lee, S.-B.; Boo, J.-H.

    A new ternary BOxNy crystal was grown on Si(100) substrate at 500°C by low-frequency (100 kHz) radio-frequency (rf) derived plasma-assisted MOCVD with an organoborate precursor. The as-grown deposits were characterized by SEM, TED, XPS, XRD, AFM and FT-IR. The experimental results showed that BOxNy crystal was apt to be formed at N-rich atmosphere and high temperature. The decrease of hydrogen flux in fed gases was of benefit to form BON crystal structure. The crystal structure of BOxNy was as similar to that of H3BO3 in this study.

  19. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    PubMed

    Penttinen, Leena; Rutanen, Chiara; Saloheimo, Markku; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2018-01-01

    Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  20. Acemetacin cocrystal structures by powder X-ray diffraction.

    PubMed

    Bolla, Geetha; Chernyshev, Vladimir; Nangia, Ashwini

    2017-05-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R 3 2 (9) R 2 2 (8) R 3 2 (9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

  1. Acemetacin cocrystal structures by powder X-ray diffraction

    PubMed Central

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  2. New Polymorph Form of Dexamethasone Acetate.

    PubMed

    Silva, Ronaldo Pedro da; Ambrósio, Mateus Felipe Schuchter; Piovesan, Luciana Almeida; Freitas, Maria Clara Ramalho; Aguiar, Daniel Lima Marques de; Horta, Bruno Araújo Cautiero; Epprecht, Eugenio Kahn; San Gil, Rosane Aguiar da Silva; Visentin, Lorenzo do Canto

    2018-02-01

    A new monohydrated polymorph of dexamethasone acetate was crystallized and its crystal structure characterized. The different analytical techniques used for describing its structural and vibrational properties were: single crystal and polycrystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy. A Hirshfeld surface analysis was carried out through self-arrangement cemented by H-bonds observed in this new polymorph. This new polymorph form appeared because of self-arrangement via classical hydrogen bonds around the water molecule. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  4. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel† †Electronic supplementary information (ESI) available: Synthetic and crystallographic experimental details, rheology, full crystallization and calculation details. See DOI: 10.1039/c6sc04126d Click here for additional data file.

    PubMed Central

    Foster, Jonathan A.; Damodaran, Krishna K.; Maurin, Antoine; Thompson, Hugh P. G.; Cameron, Gary J.; Bernal, Jenifer Cuesta

    2017-01-01

    We report the synthesis of a bis(urea) gelator designed to specifically mimic the chemical structure of the highly polymorphic drug substance ROY. Crystallization of ROY from toluene gels of this gelator results in the formation of the metastable red form instead of the thermodynamic yellow polymorph. In contrast, all other gels and solution control experiments give the yellow form. Conformational and crystal structure prediction methods have been used to propose the structure of the gel and show that the templation of the red form by the targeted gel results from conformational matching of the gelator to the ROY substrate coupled with overgrowth of ROY onto the local periodic structure of the gel fibres. PMID:28451150

  5. Crystallization and preliminary X-ray diffraction analysis of ω-amino acid:pyruvate transaminase from Chromobacterium violaceum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Christopher; Isupov, Michail N.; Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk

    2007-02-01

    An ω-amino acid:pyruvate transaminase from C. violaceum has been purified and crystallized in two crystal forms. The structure has been solved using molecular replacement. The enzyme ω-transaminase catalyses the conversion of chiral ω-amines to ketones. The recombinant enzyme from Chromobacterium violaceum has been purified to homogeneity. The enzyme was crystallized from PEG 4000 using the microbatch method. Data were collected to 1.7 Å resolution from a crystal belonging to the triclinic space group P1, with unit-cell parameters a = 58.9, b = 61.9, c = 63.9 Å, α = 71.9, β = 87.0, γ = 74.6°. Data were also collectedmore » to 1.95 Å from a second triclinic crystal form. The structure has been solved using the molecular-replacement method.« less

  6. Crystal structure and hydrogen-bonding patterns in 5-fluoro­cytosinium picrate

    PubMed Central

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D.

    2017-01-01

    In the crystal structure of the title compound, 5-fluoro­cytosinium picrate, C4H5FN3O+·C6H2N3O7 −, one N heteroatom of the 5-fluoro­cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA−) anion. In the crystal, the 5FC+ cation inter­acts with the PA− anion through three-centre N—H⋯O hydrogen bonds, forming two conjoined rings having R 2 1(6) and R 1 2(6) motifs, and is extended by N—H⋯O hydrogen bonds and C—H⋯O inter­actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C—F⋯π inter­actions. PMID:28316809

  7. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Du, Wen-Ge Han; Noodleman, Louis

    2013-12-16

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.

  8. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  9. X-ray structural studies and physicochemical characterization of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl- 3,4-dihydro-2(1H)-pyrimidinone polymorphs.

    PubMed

    Miyamae, A; Kitamura, S; Tada, T; Koda, S; Yasuda, T

    1991-10-01

    The polymorphism of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-di hydro- 2(1 H)-pyrimidinone (FK664; 1) was characterized by using X-ray powder diffractometry, differential scanning calorimetry (DSC), and IR spectroscopy. Structures of two polymorphs (Forms A and B) were determined by X-ray crystallographic analysis. Form A crystallized in the monoclinic space group P2(1)/c, with a = 13.504(2), b = 6.733(1), c = 24.910(8) A, beta = 96.55(4) degrees, z = 4, and dcal = 1.203 g/cm3, while Form B crystallized in the same space group, with a = 8.067(2), b = 15.128(4), c = 18.657(4) A, beta = 102.34(3) degrees, z = 4, and dcal = 1.216 g/cm3. The conformational features of 1 were very similar between the two polymorphs. Compound 1, in both crystal forms, took an energetically reasonable conformation in three rigid planes, such as 2-pyrimidone, trimethylphenyl, and dimethoxyphenyl rings, but the molecules were packed in different ways between the two polymorphs. In the Form B crystal, a short contact was possible, to form pi-pi interactions between two dimethoxyphenyl groups related with the inversion center in the crystal lattice; this interaction seems to contribute to stabilizing the crystal structure of Form B. Both Forms A and B showed only one endothermic peak due to fusion at 115 and 140 degrees C, respectively, on the DSC thermograms; therefore, it is suggested that there are no transition points between the two polymorphs. The heats of fusion obtained from the DSC thermograms were 33.2(2) kJ/mol for Form A and 36.8(1) kJ/mol for Form B.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity.

    PubMed

    Sayer, Christopher; Isupov, Michail N; Westlake, Aaron; Littlechild, Jennifer A

    2013-04-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  11. Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases.

    PubMed

    Matsumura, Hiroyoshi; Xie, Yong; Shirakata, Shunsuke; Inoue, Tsuyoshi; Yoshinaga, Takeo; Ueno, Yoshihisa; Izui, Katsura; Kai, Yasushi

    2002-12-01

    Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.

  12. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  13. Conformational change of adenosine deaminase during ligand-exchange in a crystal.

    PubMed

    Kinoshita, Takayoshi; Tada, Toshiji; Nakanishi, Isao

    2008-08-15

    Adenosine deaminase (ADA) perpetuates chronic inflammation by degrading extracellular adenosine which is toxic for lymphocytes. ADA has two distinct conformations: open form and closed form. From the crystal structures with various ligands, the non-nucleoside type inhibitors bind to the active site occupying the critical water-binding-position and sustain the open form of apo-ADA. In contrast, substrate mimics do not occupy the critical position, and induce the large conformational change to the closed form. However, it is difficult to predict the binding of (+)-erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), as it possesses characteristic parts of both the substrate and the non-nucleoside inhibitors. The crystal structure shows that EHNA binds to the open form through a novel recognition of the adenine base accompanying conformational change from the closed form of the PR-ADA complex in crystalline state.

  14. Structural characterization of polymorphs and molecular complexes of finasteride

    NASA Astrophysics Data System (ADS)

    Wawrzycka, Irena; Stȩpniak, Krystyna; Matyjaszczyk, Sławomir; Kozioł, Anna E.; Lis, Tadeusz; Abboud, Khalil A.

    1999-01-01

    The molecular structure of finasteride, 17 β-( N-tert-butylcarbamoyl)-4-aza-5 α-androst-1-en-3-one, and structures of three related crystalline forms have been determined by X-ray analysis. The rigid steroid skeleton of the molecule adopts a half-chair/chair/chair/half-chair conformation. Two peptide groups, one cyclic (lactam) in the ring A and a second being a part of the substituent at C17, are the main factors influencing intermolecular contacts. Different hydrogen-bond interactions of these hydrophilic groups are observed in the crystal structures. An infinite ribbon of finasteride molecules is formed between lactam groups in the orthorhombic homomolecular crystal ( 1) obtained from an ethanol solution. The linear molecular complex finasteride-acetic acid ( 1a) is connected by hydrogen bonds between the lactam of finasteride and the carboxyl group of acetic acid. The crystallization from an ethyl acetate solution gives a complex structure of bis-finasteride monohydrate ethyl acetate clathrate ( 1b) with guest molecule disordered in channels. Crystals of a second (monoclinic) finasteride polymorph ( 2) were obtained during thermal decomposition of 1a, and sublimation of 1, 1a and 1b. Two polymorphic forms show different IR spectra.

  15. Can computed crystal energy landscapes help understand pharmaceutical solids?

    PubMed Central

    Price, Sarah L.; Braun, Doris E.; Reutzel-Edens, Susan M.

    2017-01-01

    Computational crystal structure prediction (CSP) methods can now be applied to the smaller pharmaceutical molecules currently in drug development. We review the recent uses of computed crystal energy landscapes for pharmaceuticals, concentrating on examples where they have been used in collaboration with industrial-style experimental solid form screening. There is a strong complementarity in aiding experiment to find and characterise practically important solid forms and understanding the nature of the solid form landscape. PMID:27067116

  16. Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C

    2013-10-21

    Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.

  17. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    NASA Astrophysics Data System (ADS)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  18. Crystal structure of methylprednisolone acetate form II, C 24H 32O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, Austin M.; Kaduk, James A.; Gindhart, Amy M.

    The crystal structure of methylprednisolone acetate form II, C 24H 32O 6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space groupP2 12 12 1(#19) witha= 8.17608(2),b= 9.67944(3),c= 26.35176(6) Å,V= 2085.474(6) Å 3, andZ= 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in theabplane. C–H…O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less

  20. A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction

    PubMed Central

    Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C

    2010-01-01

    Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072

  1. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  2. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  3. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of RE(Ga 1–xSi x)₂ (RE=Y, La–Nd, Sm, Gd–Yb, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang

    Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less

  4. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  5. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.

    2011-05-10

    We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts tomore » dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.« less

  6. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  8. Characterization of crystal forms of β-estradiol thermal analysis, Raman microscopy, X-ray analysis and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Variankaval, N. E.; Jacob, K. I.; Dinh, S. M.

    2000-08-01

    The structure and select crystalline properties of a common drug (estradiol) used in a transdermal drug delivery system are investigated. Four different crystal forms of estradiol (EA, EC, ED and EM) were prepared in the laboratory and characterized by thermal analysis, optical microscopy, Raman microspectroscopy, and solid-state NMR. Variable temperature X-ray studies were carried out on form A (EA) to determine whether the crystal structure changed as a function of temperature. These four forms exhibited different thermal behavior. EA and EC had similar melting points. This study clearly shows that water cannot be released from the crystal lattice of EA unless melting is achieved, and exposing EA to temperatures below the melting point only results in a partial release of hydrogen bonded water. EC was prepared by melting EA and subsequently cooling it to room temperature. Form EC was anhydrous, as it did not exhibit water loss, as opposed to EA, which had about 3.5% water in its crystal structure. ED was very difficult to prepare and manifested itself only as a mixture with EC. Its melting point was about 10°C lower than that of EC. It is thought to be an unstable form due to its simultaneous occurrence with EC and the inability to isolate it. EM is a solvate of methanol, not a polymorph. Its melting point was similar to EA and EC. From thermogravimetry/differential thermal analysis and differential scanning calorimetry data, it was apparent that estradiol formed a hemisolvate with methanol. All four forms had different morphologies. Raman microscopy was carried out on the different crystal forms. The spectra of EC and ED were almost identical. Thermal analysis revealed that this is due to the highly unstable nature of ED and its tendency to either convert spontaneously to EC or occur in mixtures with it.

  9. A flow-free droplet-based device for high throughput polymorphic crystallization.

    PubMed

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.

  10. Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang

    2018-05-01

    Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.

  11. Atomic structures of corkscrew-forming segments of SOD1 reveal varied oligomer conformations.

    PubMed

    Sangwan, Smriti; Sawaya, Michael R; Murray, Kevin A; Hughes, Michael P; Eisenberg, David S

    2018-02-17

    The aggregation cascade of disease-related amyloidogenic proteins, terminating in insoluble amyloid fibrils, involves intermediate oligomeric states. The structural and biochemical details of these oligomers have been largely unknown. Here we report crystal structures of variants of the cytotoxic oligomer-forming segment residues 28-38 of the ALS-linked protein, SOD1. The crystal structures reveal three different architectures: corkscrew oligomeric structure, nontwisting curved sheet structure and a steric zipper proto-filament structure. Our work highlights the polymorphism of the segment 28-38 of SOD1 and identifies the molecular features of amyloidogenic entities. © 2018 The Protein Society.

  12. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties.

    PubMed

    Tsutsumi, Shunichirou; Iida, Motoo; Tada, Norio; Kojima, Takashi; Ikeda, Yukihiro; Moriwaki, Toshiya; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2011-12-15

    Miconazole salts and cocrystals were studied to improve the physicochemical properties of miconazole. Maleate, hemifumarate, and hemisuccinate were prepared and characterized by powder X-ray diffractometry, differential scanning calorimetry, and single crystal X-ray diffractometry. The intrinsic dissolution rate and stability of each miconazole crystal form were compared to those of freebase and nitrate to evaluate the optimal crystal form. Crystal structure analysis indicated that maleate was a salt formed by proton transfer from the acid to the imidazole group of miconazole. Hemifumarate and hemisuccinate were determined to be cocrystals formed by hydrogen bonding between the acids and the base in their crystal lattices. Intrinsic dissolution tests showed that the formation of salts and cocrystals improved the dissolution rate of miconazole. Stability tests of preliminary formulations prepared with each crystal form indicated that maleate and hemifumarate were unstable at 80°C and generated a specific degraded product, i.e., a Michael adduct, between miconazole and the acids. Hemisuccinate had a superior intrinsic dissolution rate and stability, and is thus considered a promising crystal form of miconazole. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  14. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different morphology formation in comparison to that of the pristine (as-received) P3HT. As a result, single P3HT crystals with high surface energy chain folds were analyzed and determined. Previous reported results of infinite melting enthalpy of extended chain P3HT crystals are much higher than the result discovered in this study. The findings in this study revealed that the infinite melting enthalpy of chain-folded P3HT crystals is considerably decreased due to the presence of this P3HT chain-folded surface energy. In this study, the kinetics and mechanism of P3HT crystallization under shear-flow was thoroughly investigated as well. A homogeneous nucleation of P3HT was observed that allows one dimensional fibril crystal growth. The micrometer long P3HT crystals are formed and limited by the contact time between the P3HT molecules. Furthermore, it was found that phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles inhibit the crystallization of P3HT under shear. However, the shear-flow leads to nanophase agglomeration of PCBM and creates percolation of P3HT fibril crystal networks and the PCBM phase separated domains that apparently present better pathways for transporting electrons and holes. Interestingly, the structured liquid was simply applied onto substrates with a paintbrush resulting in similar device performance to those made with current techniques in which the morphology is commonly formed during application or post-processing steps. These detailed findings are given and discussed in the thesis.

  15. Study of Polymer Crystallization by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol

    When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.

  16. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Lydia M.; Celeste, Lesa R.; Lovelace, Leslie L.

    Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed thatmore » hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.« less

  17. Unusual Crystallization Behavior Close to the Glass Transition

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.

  18. Zn3Sb4O6F6: Hydrothermal synthesis, crystal structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Ali, Sk Imran; Zhang, Weiguo; Halasyamani, P. Shiv; Johnsson, Mats

    2017-12-01

    Zn3Sb4O6F6 has been synthesized hydrothermally at 230 °C. The crystal structure was determined from single crystal X-ray diffraction data. It crystallizes in the cubic non-centrosymmetric space group I-43m with the unit cell parameter a = 8.1291(4) Å and is isostructural with M3Sb4O6F6 (M = Co, Ni). The new compound is the first oxofluoride containing Zn2+ and a p-element cation with a stereochemically active lone pair. The crystal structure is made up by [ZnO2F4] octahedra forming a network via corner sharing at F-atoms and [SbO3] trigonal pyramids that form [Sb4O6] cages that connect via the O-atoms to the Zn-atoms. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation on Zn3Sb4O6F6 indicate an SHG intensity of approximately 40 × α-SiO2.

  19. A new crystal form of a hyperthermophilic endocellulase

    PubMed Central

    Kataoka, Misumi; Ishikawa, Kazuhiko

    2014-01-01

    The hyperthermophilic glycoside hydrolase family endocellulase 12 from the archaeon Pyrococcus furiosus (EGPf; Gene ID PF0854; EC 3.2.1.4) catalyzes the hydrolytic cleavage of the β-1,4-glucosidic linkage in β-glucan in lignocellulose biomass. A crystal of EGPf was previously prepared at pH 9.0 and its structure was determined at an atomic resolution of 1.07 Å. This article reports the crystallization of EGPf at the more physiologically relevant pH of 5.5. Structure determination showed that this new crystal form has the symmetry of space group C2. Two molecules of the enzyme are observed in the asymmetric unit. Crystal packing is weak at pH 5.5 owing to two flexible interfaces between symmetry-related molecules. Comparison of the EGPf structures obtained at pH 9.0 and pH 5.5 reveals a significant conformational difference at the active centre and in the surface loops. The interfaces in the vicinity of the flexible surface loops impact the quality of the EGPf crystal. PMID:25005081

  20. Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.

    PubMed

    Dharmaiah, Srisathiyanarayanan; Bindu, Lakshman; Tran, Timothy H; Gillette, William K; Frank, Peter H; Ghirlando, Rodolfo; Nissley, Dwight V; Esposito, Dominic; McCormick, Frank; Stephen, Andrew G; Simanshu, Dhirendra K

    2016-11-01

    Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.

  1. Specific Features of the Domain Structure of BaTiO3 Crystals during Thermal Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Kiselev, D. A.; Ilina, T. S.; Malinkovich, M. D.; Sergeeva, O. N.; Bolshakova, N. N.; Semenova, E. M.; Kuznetsova, Yu. V.

    2018-04-01

    This paper presents the results of the study of the domain structure of barium titanate crystals in a wide temperature range including the Curie point ( T C) using the polarization-optical method in the reflected light and the force microscopy of the piezoelectric response. It is shown that a new a-c domain structure forms during cyclic heating of the crystal above T C and subsequent cooling to the ferroelectric phase. The role of uncompensated charges appeared on the crystal surface during the phase transition and their influence on the formation of the domain structure during cooling are discussed.

  2. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  3. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal

    NASA Astrophysics Data System (ADS)

    Guo, Changyan; Zhang, Haobin; Wang, Xiaochuan; Xu, Jinjiang; Liu, Yu; Liu, Xiaofeng; Huang, Hui; Sun, Jie

    2013-09-01

    Co-crystallization is an effective way to improve performance of the high explosive 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20). A new CL-20/caprolactam (CPL) cocrystal has been prepared by a rapid solvent evaporation method, and the crystal structure investigations show that the cocrystal is formed by strong intermolecular hydrogen bond interaction. The cocrystal can only be prepared with low moisture content of the air, because water in the air has a profound effect on the cocrystal formation, and it can lead to crystal form conversion of CL-20, but not the formation of cocrystal. The CL20/CPL explosive possess very low sensitivity, and may be used as additive in explosives formulation to desensitize other high explosives.

  4. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  5. Crystal Structures of T Cell Receptor (Beta) Chains Related to Rheumatoid Arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,H.; van Vranken, S.; Zhao, Y.

    The crystal structures of the V{beta}17+ {beta} chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1{sub F104{yields}Y/C187{yields}S}) forms, respectively. These TCR {beta} chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 V{beta}17 closely resemble those of a V{beta}17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three V{beta}17 structures. At the side-chain level, conformationalmore » differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the V{beta} regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 V{beta}17, implying that there is considerable variability in the structures of very similar {beta} chains. Structural alignments also reveal a considerable variation in the V{beta}-C{beta} associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the V{beta} domains of known TCR structures indicate that there are significant similarities among V{beta} regions that are MAM-reactive, whereas there appear to be significant structural differences among those V{beta} regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.« less

  6. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  7. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs

    DOE PAGES

    Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...

    2017-05-15

    Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less

  8. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    PubMed Central

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-01-01

    The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-­aminotransferases. PMID:23519665

  9. Combinatorial and High Throughput Discovery of High Temperature Piezoelectric Ceramics

    DTIC Science & Technology

    2011-10-10

    the known candidate piezoelectric ferroelectric perovskites. Unlike most computational studies on crystal chemistry, where the starting point is some...studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data driven approach to initiate our...experimental measurements reported in the literature. Given that our models are based solely on crystal and electronic structure data and did not

  10. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  11. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    PubMed

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  12. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria

    2015-05-19

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. Furthermore, the angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  13. A first principles prediction of the crystal structure of C6Br2ClFH2

    NASA Astrophysics Data System (ADS)

    Misquitta, Alston J.; Welch, Gareth W. A.; Stone, Anthony J.; Price, Sarah L.

    2008-04-01

    We have constructed an intermolecular potential for the 1,3-dibromo-2-chloro-5-fluorobenzene molecule from first principles using SAPT(DFT) interaction energy calculations and the Williams-Stone-Misquitta method for obtaining molecular properties in distributed form. This molecule was included in the fourth Blind Test of crystal structure prediction organised by the Cambridge Crystallographic Data Centre. Using our potential, we have predicted the crystal structure of CBrClFH and found the lowest energy solution to be in excellent agreement with the experimentally observed crystal when it was subsequently revealed.

  14. Crystal structure of rivastigmine hydrogen tartrate Form I (Exelon®), C 14H 23N 2O 2(C 4H 5O 6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.

    2016-03-08

    The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space groupP2 1(#4) witha= 17.538 34(5),b= 8.326 89(2),c= 7.261 11(2) Å,β= 98.7999(2)°,V= 1047.929(4) Å 3, andZ= 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bondsmore » form a corrugated network in thebc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H···O hydrogen bonds. Several C–H···O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File ™as entry 00-064-1501.« less

  15. Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Fayzullin, Robert R.; Samigullina, Aida I.; Zakharychev, Dmitry V.

    2013-08-01

    Valuable precursors of popular chiral drugs propranolol and pindolol, 3-(1-naphthyloxy)-propane-1,2-diol 3 and 3-(4-indolyloxy)-propane-1,2-diol 4 were investigated by IR spectroscopy, DSC, and X-ray diffraction methods. Both compounds, crystallizing from enantiopure feed material, form "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic fragments of the molecules, acts as the basic crystal-forming motif. Diol 4 prone to spontaneous resolution and conserves its packing pattern crystallizing from racemate. Under the same conditions, diol 3 forms weakly stable solid racemic compound. Some reasons for such a behavior are identified and discussed.

  16. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  17. Real-time molecular scale observation of crystal formation.

    PubMed

    Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny

    2017-04-01

    How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.

  18. Discovery of a diamond-based photonic crystal structure in beetle scales.

    PubMed

    Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H

    2008-05-01

    We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.

  19. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    PubMed

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaslet, H.; Rosenfeld, R.; Giffin, M.

    The crystal structures of wild-type HIV protease (HIV PR) in the absence of substrate or inhibitor in two related crystal forms at 1.4 and 2.15 {angstrom} resolution are reported. In one crystal form HIV PR adopts an 'open' conformation with a 7.7 {angstrom} separation between the tips of the flaps in the homodimer. In the other crystal form the tips of the flaps are 'curled' towards the 80s loop, forming contacts across the local twofold axis. The 2.3 {angstrom} resolution crystal structure of a sixfold mutant of HIV PR in the absence of substrate or inhibitor is also reported. Themore » mutant HIV PR, which evolved in response to treatment with the potent inhibitor TL-3, contains six point mutations relative to the wild-type enzyme (L24I, M46I, F53L, L63P, V77I, V82A). In this structure the flaps also adopt a 'curled' conformation, but are separated and not in contact. Comparison of the apo structures to those with TL-3 bound demonstrates the extent of conformational change induced by inhibitor binding, which includes reorganization of the packing between twofold-related flaps. Further comparison with six other apo HIV PR structures reveals that the 'open' and 'curled' conformations define two distinct families in HIV PR. These conformational states include hinge motion of residues at either end of the flaps, opening and closing the entire {beta}-loop, and translational motion of the flap normal to the dimer twofold axis and relative to the 80s loop. The alternate conformations also entail changes in the {beta}-turn at the tip of the flap. These observations provide insight into the plasticity of the flap domains, the nature of their motions and their critical role in binding substrates and inhibitors.« less

  1. Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.

    PubMed Central

    Prasad, G. S.; Stura, E. A.; McRee, D. E.; Laco, G. S.; Hasselkus-Light, C.; Elder, J. H.; Stout, C. D.

    1996-01-01

    We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein. PMID:8976551

  2. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  3. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    PubMed

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  4. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    PubMed Central

    Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.

    2005-01-01

    The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme. PMID:16508111

  5. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]arene

    NASA Astrophysics Data System (ADS)

    Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K.

    2012-03-01

    L-Carnitine is essential for the transport of long-chain fatty acids from cytosol into mitochondria for generating metabolic energy. The survey of crystal structures of carnitine-containing proteins in the Protein Data Bank reveals that carnitine can take several conformations with the quarternary trimethylammonium terminal being always bound to aromatic residues through cation-π interactions in acyltransferases or carnitine-binding proteins. In order to demonstrate the importance of cation-π interaction as a carnitine recognition mechanism in the artificial receptor-ligand system that mimics the carnitine-binding sites, we have determined the crystal structure of a complex formed between L-carnitine and pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT) as a carnitine receptor, 2PCT·2(L-carnitine)·4EtOH. There form two crystallographically independent monomeric [PCT·L-carnitine] substructures, which further form an obliquely arranged capsule-like dimeric [PCT·L-carnitine]2 structure through a pair of O-H (PCT)···O (L-carnitine) hydrogen bonds. This is the first report of PCT complex with chiral molecules. In each of the two monomeric [PCT·L-carnitine] substructures, the L-carnitine molecule takes the elongated form with an intramolecular hydrogen bond between the hydroxyl group and the carboxylate oxygen, and the cationic trimethylammonium moiety is incorporated into the cavity of the bowl-shaped PCT molecule through cation-π interactions. These features are similar to those at the D-carnitine-binding site in the crystal structure of the glycine betaine/carnitine/choline-binding protein complex.

  6. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.

  7. The Third Ambient Aspirin Polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtukenberg, Alexander G.; Hu, Chunhua T.; Zhu, Qiang

    Polymorphism in aspirin (acetylsalicylic acid), one of the most widely consumed medications, was equivocal until the structure of a second polymorph II, similar in structure to the original form I, was reported in 2005. Here, the third ambient polymorph of aspirin is described. Lastly, it was crystallized from the melt and its structure was determined using a combination of X-ray powder diffraction analysis and crystal structure prediction algorithms.

  8. The Third Ambient Aspirin Polymorph

    DOE PAGES

    Shtukenberg, Alexander G.; Hu, Chunhua T.; Zhu, Qiang; ...

    2017-05-17

    Polymorphism in aspirin (acetylsalicylic acid), one of the most widely consumed medications, was equivocal until the structure of a second polymorph II, similar in structure to the original form I, was reported in 2005. Here, the third ambient polymorph of aspirin is described. Lastly, it was crystallized from the melt and its structure was determined using a combination of X-ray powder diffraction analysis and crystal structure prediction algorithms.

  9. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE PAGES

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...

    2016-06-10

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  10. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  11. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.

  12. Formation of the Structure of a Eutectic Alloy of the Nb - Si System During Directed Crystallization with Liquid-Metal Coolant

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. A.; Echin, A. B.; Kolodyazhnyi, M. Yu.; Surova, V. A.

    2017-11-01

    Peculiarities of the structure of a refractory eutectic alloy of the Nb - Si system, formed by the method of directed crystallization with liquid-metal coolant, have been studied. Characteristic zones of microstructure of the ingot obtained upon directed crystallization are considered, the alloy composition is analyzed, and volume fractions of phases in the Nb - Si composite are determined.

  13. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  14. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels.

    PubMed

    Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang

    2016-11-01

    Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    PubMed

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  16. Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Roy; A Bhardwaj; G Cingolani

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less

  17. Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Roy; A Bhardwaj; G Cingoloni

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometrymore » of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.« less

  18. Studies of Nucleation, Growth, Specific Heat, and Viscosity of Undercooled Melts of Quasicrystals and Polytetrahedral-Phase-Forming Alloys

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.

    2001-01-01

    Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.

  19. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  20. A photonic crystal ring resonator formed by SOI nano-rods.

    PubMed

    Chiu, Wei-Yu; Huang, Tai-Wei; Wu, Yen-Hsiang; Chan, Yi-Jen; Hou, Chia-Hunag; Chien, Huang Ta; Chen, Chii-Chang

    2007-11-12

    The design, fabrication and measurement of a silicon-on-insulator (SOI) two-dimensional photonic crystal ring resonator are demonstrated in this study. The structure of the photonic crystal is comprised of silicon nano-rods arranged in a hexagonal lattice on an SOI wafer. The photonic crystal ring resonator allows for the simultaneous separation of light at wavelengths of 1.31 and 1.55mum. The device is fabricated by e-beam lithography. The measurement results confirm that a 1.31mum/1.55mum wavelength ring resonator filter with a nano-rod photonic crystal structure can be realized.

  1. Low cost solution-based materials processing methods for large area OLEDs and OFETs

    NASA Astrophysics Data System (ADS)

    Jeong, Jonghwa

    In Part 1, we demonstrate the fabrication of organic light-emitting devices (OLEDs) with precisely patterned pixels by the spin-casting of Alq3 and rubrene thin films with dimensions as small as 10 mum. The solution-based patterning technique produces pixels via the segregation of organic molecules into microfabricated channels or wells. Segregation is controlled by a combination of weak adsorbing characteristics of aliphatic terminated self-assembled monolayers (SAMs) and by centrifugal force, which directs the organic solution into the channel or well. This novel patterning technique may resolve the limitations of pixel resolution in the method of thermal evaporation using shadow masks, and is applicable to the fabrication of large area displays. Furthermore, the patterning technique has the potential to produce pixel sizes down to the limitation of photolithography and micromachining techniques, thereby enabling the fabrication of high-resolution microdisplays. The patterned OLEDs, based upon a confined structure with low refractive index of SiO2, exhibited higher current density than an unpatterned OLED, which results in higher electroluminescence intensity and eventually more efficient device operation at low applied voltages. We discuss the patterning method and device fabrication, and characterize the morphological, optical, and electrical properties of the organic pixels. In part 2, we demonstrate a new growth technique for organic single crystals based on solvent vapor assisted recrystallization. We show that, by controlling the polarity of the solvent vapor and the exposure time in a closed system, we obtain rubrene in orthorhombic to monoclinic crystal structures. This novel technique for growing single crystals can induce phase shifting and alteration of crystal structure and lattice parameters. The organic molecules showed structural change from orthorhombic to monoclinic, which also provided additional optical transition of hypsochromic shift from that of the orthorhombic form. An intermediate form of the crystal exhibits an optical transition to the lowest vibrational energy level that is otherwise disallowed in the single-crystal orthorhombic form. The monoclinic form exhibits entirely new optical transitions and showed a possible structural rearrangement for increasing charge carrier mobility, making it promising for organic devices. These phenomena can be explained and proved by the chemical structure and molecular packing of the monoclinic form, transformed from orthorhombic crystalline structure.

  2. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1

    PubMed Central

    Clifton, Matthew C.; Dranow, David M.; Leed, Alison; Fulroth, Ben; Fairman, James W.; Abendroth, Jan; Atkins, Kateri A.; Wallace, Ellen; Fan, Dazhong; Xu, Guoping; Ni, Z. J.; Daniels, Doug; Van Drie, John; Wei, Guo; Burgin, Alex B.; Golub, Todd R.; Hubbard, Brian K.; Serrano-Wu, Michael H.

    2015-01-01

    Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors. PMID:25909780

  3. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides.

    PubMed

    Wang, Xiaoguang; Yang, Pei; Mondiot, Frederic; Li, Yaoxin; Miller, Daniel S; Chen, Zhan; Abbott, Nicholas L

    2015-12-07

    We report that assemblies formed by eight oligopeptides at phospholipid-decorated interfaces of thermotropic liquid crystals (LCs) trigger changes in ordering of the LCs that are dependent on the secondary structures of the oligopeptides (as characterized in situ using infrared-visible sum-frequency spectroscopy).

  4. Crystalline structures, thermal properties and crystallizing mechanism of polyamide 6 nanotubes in confined space

    NASA Astrophysics Data System (ADS)

    Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang

    2016-09-01

    The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.

  5. Carboplatin binding to histidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the brominemore » form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.« less

  6. Molecular and crystal structure and the Hirshfeld surface analysis of 1-amino-1-deoxy-α-D-sorbopyranose and 1-amino-1-deoxy-α-D-psicopyranose ("D-sorbosamine" and "D-psicosamine") derivatives

    NASA Astrophysics Data System (ADS)

    Mossine, Valeri V.; Barnes, Charles L.; Mawhinney, Thomas P.

    2018-05-01

    Sorbosamine and psicosamine are the last two 1-amino-1-deoxy-hexuloses for which no structural data were available. We report on a13C NMR and a single crystal X-ray diffraction study of 1-deoxy-1-(N-methylphenylamino)-D-sorbose (1) and 1-deoxy-1-(N-methylphenylamino)-D-psicose (2). In solutions, both aminosugars are conformationally unstable and establish equilibria, with 90.7% α-pyranose, 3.8% α-furanose, 1.0% β-pyranose, 0.5% β-furanose, and 4.0% acyclic keto form for 1 and 32.4% α-furanose, 27.2% α-pyranose, 21.0% β-pyranose, 9.1% β-furanose, and 11.0% acyclic keto form for 2. X-ray diffraction data provided detailed structural information on 1 and 2 in the α-pyranose form. Both molecules adopt the 5C2 ring conformations, the bond distances and valence angles compare well with respective pyranose structures. All hydroxyl groups in crystal structures of both 1 and 2 participate in two-dimensional hydrogen bonding networks, the H-bonding pattern in 1 is dominated by co-crystallized water molecules. The Hirshfeld surface analysis revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of 2 featuring short H⋯H contacts. Other structural features found in 2 are a significant planarity of the tertiary amino group (the pyramid heights are 0.127 Å in 2 vs 0.231 Å in 1), a concomitant non-involvement of the amine nitrogen in heteroatom contacts, and a unique anti-periplanar conformation around the C1sbnd C2 bond.

  7. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  8. Connectivity of glass structure. Oxygen number

    NASA Astrophysics Data System (ADS)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  9. Tautomeric and ionisation forms of dopamine and tyramine in the solid state

    NASA Astrophysics Data System (ADS)

    Cruickshank, Laura; Kennedy, Alan R.; Shankland, Norman

    2013-11-01

    Crystallisation of the phenylethylamine neurotransmitter dopamine from basic aqueous solution yielded the 3-phenoxide Zwitterionic tautomer, despite this being a minority form in the solution state. In the crystal structure, dopamine has a dimeric [OCCOH]2 hydrogen bonded catechol motif that expands through Nsbnd H⋯O interactions to give a 2-dimensional sheet of classical hydrogen bonds. These sheets are further interconnected by Nsbnd H⋯π interactions. The structurally related base tyramine crystallises under similar conditions as a hemihydrate with all four possible species of tyramine present (cationic, anionic, Zwitterionic and neutral) in the crystal structure. Single crystal X-ray diffraction studies at 121 and 293 K showed dynamic hydrogen atom disorder for the phenol/phenoxide group, suggesting that the tyramine speciation observed arises from a solid-state process.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  11. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  12. Crystal Structure of Toxoplasma gondii Porphobilinogen Synthase

    PubMed Central

    Jaffe, Eileen K.; Shanmugam, Dhanasekaran; Gardberg, Anna; Dieterich, Shellie; Sankaran, Banumathi; Stewart, Lance J.; Myler, Peter J.; Roos, David S.

    2011-01-01

    Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors. PMID:21383008

  13. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithianantham, Stanley; Xu, Minghua; Wu, Nan

    2006-12-01

    The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: themore » intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.« less

  14. Ab initio crystal structure prediction of magnesium (poly)sulfides and calculation of their NMR parameters.

    PubMed

    Mali, Gregor

    2017-03-01

    Ab initio prediction of sensible crystal structures can be regarded as a crucial task in the quickly-developing methodology of NMR crystallography. In this contribution, an evolutionary algorithm was used for the prediction of magnesium (poly)sulfide crystal structures with various compositions. The employed approach successfully identified all three experimentally detected forms of MgS, i.e. the stable rocksalt form and the metastable wurtzite and zincblende forms. Among magnesium polysulfides with a higher content of sulfur, the most probable structure with the lowest formation energy was found to be MgS 2 , exhibiting a modified rocksalt structure, in which S 2- anions were replaced by S 2 2- dianions. Magnesium polysulfides with even larger fractions of sulfur were not predicted to be stable. For the lowest-energy structures, 25 Mg quadrupolar coupling constants and chemical shift parameters were calculated using the density functional theory approach. The calculated NMR parameters could be well rationalized by the symmetries of the local magnesium environments, by the coordination of magnesium cations and by the nature of the surrounding anions. In the future, these parameters could serve as a reference for the experimentally determined 25 Mg NMR parameters of magnesium sulfide species.

  15. Specific features of the structural and magnetic states of a Zn1 - x Ni x Se crystal ( x = 0.0025) at low temperatures

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.

    2008-12-01

    The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.

  16. Layered Structure and Swelling Behavior of a Multiple Hydrate-Forming Pharmaceutical Compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Y.; Xu, W; Stephens, P

    2009-01-01

    Investigation of one anhydrous and four hydrated forms of a pharmaceutical compound (1) using both single-crystal and high-resolution powder X-ray diffraction methods revealed a two-dimensional framework which, upon exposure to moisture, absorbed water between the layers, causing the lattice to expand by as much as 20% of the axial length along a. The single-crystal structure was solved and refined for the pentahydrate form in space group C2 with unit cell parameters a = 36.961(5) Angstroms, b = 7.458(2) Angstroms, c = 20.691(4) Angstroms, e = 99.461(1), and V = 5626(4) Angstroms3. In the single-crystal structure the water layers were parallelmore » to the bc plane and sandwiched by the crystalline compound 1 framework. Upon a change of relative humidity, water goes in and out of the interlayer space with the retention of the layer structure of the development compound. Starting from the anhydrous form, each additional water of hydration increased the interlayer spacing of the pharmaceutical solid by 1.3 Angstroms, half the size of a water molecule. In an exploratory formulation, this expansion of interlayer spacing caused tablets to crack upon storage at high relative humidity.« less

  17. Biomineral nanoparticles are space-filling

    NASA Astrophysics Data System (ADS)

    Yang, Li; Killian, Christopher E.; Kunz, Martin; Tamura, Nobumichi; Gilbert, P. U. P. A.

    2011-02-01

    Sea urchin biominerals have been shown to form from aggregating nanoparticles of amorphous calcium carbonate (ACC), which then crystallize into macroscopic single crystals of calcite. Here we measure the surface areas of these biominerals and find them to be comparable to those of space-filling macroscopic geologic calcite crystals. These biominerals differ from synthetic mesocrystals, which are invariably porous. We propose that space-filling ACC is the structural precursor for echinoderm biominerals.Sea urchin biominerals have been shown to form from aggregating nanoparticles of amorphous calcium carbonate (ACC), which then crystallize into macroscopic single crystals of calcite. Here we measure the surface areas of these biominerals and find them to be comparable to those of space-filling macroscopic geologic calcite crystals. These biominerals differ from synthetic mesocrystals, which are invariably porous. We propose that space-filling ACC is the structural precursor for echinoderm biominerals. This article was submitted as part of a Themed Issue on Crystallization and Formation Mechanisms of Nanostructures. Other papers on this topic can be found in issue 11 of vol. 2 (2010). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale

  18. MAIN software for density averaging, model building, structure refinement and validation

    PubMed Central

    Turk, Dušan

    2013-01-01

    MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms. PMID:23897458

  19. Crystal structure of 4,5-dinitro-1 H-imidazole

    DOE PAGES

    Windler, G. Kenneth; Scott, Brian L.; Tomson, Neil C.; ...

    2015-01-01

    Here, the title compound, C 3H 2N 4O 4, forms crystals with two molecules in the asymmetric unit which are conformationally similar. With the exception of the O atoms of the nitro groups, the molecules are essentially planar. In the crystal, adjacent molecules are associated by N—H...N hydrogen bonds involving the imidazole N—H donors and N-atom acceptors of the unsaturated nitrogen of neighboring rings, forming layers parallel to (010).

  20. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, P. Manish; Brannigan, James A., E-mail: jab@ysbl.york.ac.uk; Prabhune, Asmita

    The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants willmore » provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme.« less

  1. Understanding polymorphism in organic semiconductor thin films through nanoconfinement.

    PubMed

    Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B

    2014-12-10

    Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.

  2. Crystal structure of enolase from Drosophila melanogaster.

    PubMed

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  3. Deducing 2D crystal structure at the liquid/solid interface with atomic resolution: a combined STM and SFG study.

    PubMed

    McClelland, Arthur A; Ahn, Seokhoon; Matzger, Adam J; Chen, Zhan

    2009-11-17

    Sum frequency generation vibrational spectroscopy (SFG) has been applied to study two-dimensional (2D) crystals formed by an isophthalic acid diester on the surface of highly oriented pyrolytic graphite, providing complementary measurements to scanning tunneling microscopy (STM) and computational modeling. SFG results indicate that both aromatic and C=O groups in the 2D crystal tilt from the surface. This study demonstrates that a combination of SFG and STM techniques can be used to gain a more complete picture of 2D crystal structure, and it is necessary to consider solvent-2D crystal interactions and dynamics in the computer models to achieve an accurate representation of interfacial structure.

  4. Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poor, Catherine B.; Chen, Peng R.; Duguid, Erica

    2010-01-20

    SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds withmore » surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.« less

  5. Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Yasuhiro; Fukatsu, Akinobu; Wang, Yangyang

    2014-01-01

    Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remainedmore » until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.« less

  6. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less

  7. Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles.

    PubMed

    Matsumura, Shunichi; Kajiyama, Satoshi; Nishimura, Tatsuya; Kato, Takashi

    2015-10-01

    Chitin/CaCO3 hybrids with helical structures are formed through a biomineralization-inspired crystallization process under ambient conditions. Liquid-crystalline chitin whiskers are used as helically ordered templates. The liquid-crystalline structures are stabilized by acidic polymer networks which interact with the chitin templates. The crystallization of CaCO3 is conducted by soaking the templates in the colloidal suspension of amorphous CaCO3 (ACC) at room temperature. At the initial stage of crystallization, ACC particles are introduced inside the templates, and they crystallize to CaCO3 nanocrystals. The acidic polymer networks induce CaCO3 crystallization. The characterization of the resultant hybrids reveals that they possess helical order and homogeneous hybrid structures of chitin and CaCO3 , which resemble the structure and composition of the exoskeleton of crustaceans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen-bonded structures from adamantane-based catechols

    NASA Astrophysics Data System (ADS)

    Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro

    2018-07-01

    Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.

  9. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes showmore » activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.« less

  10. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  11. Method for estimating the morphological significance of simple forms of crystals from X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treivus, E. B., E-mail: sbobr1@bk.ru

    2010-09-15

    When developing V.I. Mikheev and I.I. Shafranovskii's method for estimating the morphological significance of faces of different simple forms from X-ray reflection intensities, a way to approximately evaluate the morphological significance of simple forms on crystals from the structure amplitudes of the corresponding atomic planes is proposed. The potential for this approach is demonstrated by the examples of marcasite and zircon.

  12. Crystal structure of cbbF from Zymomonas mobilis and its functional implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hyo-Jeong; Park, Suk-Youl; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr

    2014-02-28

    Highlights: • The crystal structure of one cbbF from Zymomonas mobilis was revealed. • Scores of residues form two secondary structures with a non-polar protruded residue. • It exists as a dimeric form in solution. - Abstract: A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the β1- and β2-strands and one mobile loop. However, FBP has another phosphate andmore » FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a β-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two β-strands of β1 and β2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.« less

  13. Packing interface energetics in different crystal forms of the λ Cro dimer.

    PubMed

    Ahlstrom, Logan S; Miyashita, Osamu

    2014-07-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. © 2013 Wiley Periodicals, Inc.

  14. Packing Interface Energetics in Different Crystal Forms of the λ Cro Dimer

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2014-01-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them, in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. PMID:24218107

  15. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms.

    PubMed

    Yoshida, Hisashi; Kawai, Fumihiro; Obayashi, Eiji; Akashi, Satoko; Roper, David I; Tame, Jeremy R H; Park, Sam-Yong

    2012-10-26

    Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A comparative study of two polymorphs of L-aspartic acid hydrochloride.

    PubMed

    Benali-Cherif, Rim; Takouachet, Radhwane; Bendeif, El-Eulmi; Benali-Cherif, Nourredine

    2014-07-01

    Two polymorphs of L-aspartic acid hydrochloride, C4H8NO4(+)·Cl(-), were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N-H···Cl and O-H···Cl interactions and form alternating cation-anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.

  17. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae

    PubMed Central

    2018-01-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia. The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light–adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling. PMID:29651457

  18. Structure of free radicals in irradiated acetyl-L-leucine single crystals at 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almanov, G.A.; Bogdanchikov, G.A.; Usov, O.M.

    1988-09-01

    By using the EPR method, two types of radicals are observed, which are formed in acetyl-L-leucine single crystals irradiated at 77K. These are alkyl type radicals (CH/sub 3/)/sub 2/CCH/sub 2/CH(NHCOCH/sub 3/)COOH and peptide group radicals. When the crystals are defrozen to room temperatures, the radicals of the second type disappear without formation of paramagnetic particles. Two possible structures of the peptide group radicals were studied by the INDO method. On defreezing to room temperature, the alkyl group radical is retained, while the peptide radical disappears without formation of paramagnetic particles. For the protonated form of the anion-radical, a better agreementmore » is observed between the theoretically calculated and the experimentally obtained HFI constants. The quantum chemical analysis of the possible structures of the peptide group radicals indicates that the formation of the protonated form of the anion-radical is energetically favorable.« less

  19. Structures of the Substrate-free and Product-bound Forms of HmuO, a Heme Oxygenase from Corynebacterium diphtheriae

    PubMed Central

    Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao

    2013-01-01

    Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit. PMID:24106279

  20. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender

    PubMed Central

    Wang, Youyong; Song, Yongming; Du, Jun; Xi, Zhenhao; Wang, Qingwen

    2017-01-01

    Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident. PMID:28846604

  1. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    PubMed

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  2. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  3. Study of crystallization mechanisms of Fe nanoparticle

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Trang, G. T. T.; Hung, P. K.

    2017-06-01

    In this paper, the nanoparticle (NP) Fe was investigated by means of molecular dynamics simulation. The crystallization mechanism was studied through the time evolution of crystal cluster and potential energies of different atom types. The simulation shows that the NP was crystallized into bcc crystal structure when it was annealed at 900 K for long times. At early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which create the stable clusters in the core of NP. After that the crystal clusters grow in the direction to cover the core and then to spread into the surface of NP. Analyzing the energies of different type atoms, we found that the crystal growth is originated from specific atomic arrangement in the boundary region of crystal clusters.

  4. Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung

    2007-11-01

    In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.

  5. Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State.

    PubMed

    Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei

    2017-06-05

    Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.

  6. Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties

    DOE PAGES

    Smith Pellizzeri, Tiffany M.; McGuire, Michael A.; McMillen, Colin D.; ...

    2018-01-24

    In this study, two new halide-containing cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method from aqueous brine solutions. One compound, Cs 3Mn(VO 3) 4Cl, (1) was prepared using a mixed cesium hydroxide/chloride mineralizer, and crystallizes in the polar noncentrosymmetric space group Cmm2, with a = 16.7820(8) Å, b = 8.4765(4) Å, c = 5.7867(3) Å. This structure is built from sinusoidal zig-zag (VO 3) n chains that run along the b-axis and are coordinated to Mn 2+ containing (MnO 4Cl) square-pyramidal units that are linked together to form layers. The cesium cations reside betweenmore » the layers, but also coordinate to the chloride ion, forming a cesium chloride chain that also propagates along the b-axis. The other compound, Cs 2Mn(VO 3) 3F, (2) crystallizes in space group Pbca with a = 7.4286(2) Å, b = 15.0175(5) Å, c = 19.6957(7) Å, and was prepared using a cesium fluoride mineralizer. The structure is comprised of corner sharing octahedral Mn 2+ chains, with trans fluoride ligands acting as bridging units, whose ends are capped by (VO 3) n vanadate chains to form slabs. The cesium atoms reside between the manganese vanadate layers, and also play an integral part in the structure, forming a cesium fluoride chain that runs along the b-axis. Both compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and single-crystal Raman spectroscopy. Additionally, the magnetic properties of 2 were investigated. Lastly, above 50 K, it displays behavior typical of a low dimensional system with antiferromagnetic interactions, as to be expected for linear chains of manganese(II) within the crystal structure.« less

  7. Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Chad R.; Zhang, Fei; MacCulloch, Tara

    The foundational goal of structural DNA nanotechnology—the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems—was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing amore » sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest–DNA conjugates with a specified crystalline hand.« less

  8. Crystal structure of hexagonal MnAl(4).

    PubMed

    Pauling, L

    1987-06-01

    A structure is proposed for the hexagonal form of MnAl(4), with a(H) = 28.4 A and c(H) = 12.43 A, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-A cubic structure of MnAl(4) and to the 14.19-A cubic structure of Mg(32)(Al,Zn)(49).

  9. Sponge-like nanoporous single crystals of gold

    PubMed Central

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  10. DNA octaplex formation with an I-motif of water-mediated A-quartets: reinterpretation of the crystal structure of d(GCGAAAGC).

    PubMed

    Sato, Yoshiteru; Mitomi, Kenta; Sunami, Tomoko; Kondo, Jiro; Takénaka, Akio

    2006-12-01

    The crystal structure of the tetragonal form of d(gcGAAAgc) has been revised and reasonably refined including the disordered residues. The two DNA strands form a base-intercalated duplex, and the four duplexes are assembled according to the crystallographic 222 symmetry to form an octaplex. In the central region, the eight strands are associated by I-motif of double A-quartets. Furthermore, eight hydrated-magnesium cations link the four duplexes to support the octaplex formation. Based on these structural features, a proposal that folding of d(GAAA)n, found in the non-coding region of genomes, into an octaplex can induce slippage during replication to facilitate length polymorphism is presented.

  11. Implications of Orientation in Sheared Cocoa Butter

    NASA Astrophysics Data System (ADS)

    Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.

    2004-03-01

    We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).

  12. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural, crystal structure, Hirshfeld surface analysis and physicochemical studies of a new chlorocadmate template by 1-(2-hydroxyethyl)piperazine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Jeanneau, E.; Jelsch, C.; Lefebvre, F.; Ben Nasr, C.

    2016-11-01

    The synthesis, crystal structure and spectroscopic characterization of a new chlorocadmate template by the 1-(2-hydroxyethyl)piperazine ligand are reported. In the atomic arrangement, the CdCl5O entities are deployed in corrugated rows along the a-axis at y = 1/4 and y = 3/4 to form layers parallel to the (a,b) plane. In these crystals, piperazinediium cations are in a chair conformation and are inserted between these layers through Nsbnd H⋯Cl, Csbnd H⋯Cl, Osbnd H⋯Cl and Nsbnd H⋯O hydrogen bonds to form infinite three-dimensional network. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that H⋯Cl and Csbnd H⋯Hsbnd C intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The crystal contacts enrichments reveals that, the Cd++ … Cl- salt bridges, the Cd⋯O complexation and Osbnd H⋯Cl- and Nsbnd H⋯Cl-strong H-bonds are the driving forces in the packing formation. The presence of twelve independent chloride anions and four organic cation in the asymmetric unit allowed comparing their contact propensities. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. Additional characterization of this compound has also been performed by IR spectroscopy.

  14. Microwave-assisted synthesis and crystal structure of oxo(diperoxo)(4,4'-di-tert-butyl-2,2'-bipyridine)-molybdenum(VI).

    PubMed

    Amarante, Tatiana R; Almeida Paz, Filipe A; Gago, Sandra; Gonçalves, Isabel S; Pillinger, Martyn; Rodrigues, Alírio E; Abrantes, Marta

    2009-09-16

    The oxodiperoxo complex MoO(O2)(2)(tbbpy) (tbbpy = 4,4'-di-tert-butyl-2,2'- bipyridine) was isolated from the reaction of MoO2Cl(2)(tbbpy) in water under microwaveassisted heating at 120 masculineC for 4 h. The structure of the oxodiperoxo complex was determined by single crystal X-ray diffraction. The Mo(VI) centre is seven-coordinated with a geometry which strongly resembles a highly distorted bipyramid. Individual MoO(O2)(2)(tbbpy) complexes are interdigitated along the [010] direction to form a column. The crystal structure is formed by the close packing of the columnar-stacked complexes. Interactions between neighbouring columns are essentially of van der Waals type mediated by the need to effectively fill the available space.

  15. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs.

    PubMed

    Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Saneyoshi, Hisao; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2015-11-02

    Metallo-base pairs have been extensively studied for applications in nucleic acid-based nanodevices and genetic code expansion. Metallo-base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo-base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T-Hg(II)-T base pairs. Herein, we have determined a high-resolution crystal structure of the second natural metallo-base pair between pyrimidine bases C-Ag(I)-C formed in an RNA duplex. One Ag(I) occupies the center between two cytosines and forms a C-Ag(I)-C base pair through N3-Ag(I)-N3 linear coordination. The C-Ag(I)-C base pair formation does not disturb the standard A-form conformation of RNA. Since the C-Ag(I)-C base pair is structurally similar to the canonical Watson-Crick base pairs, it can be a useful building block for structure-based design and fabrication of nucleic acid-based nanodevices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystal structure of MboIIA methyltransferase.

    PubMed

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  17. Synthesis of macroporous structures

    DOEpatents

    Stein, Andreas; Holland, Brian T.; Blanford, Christopher F.; Yan, Hongwei

    2004-01-20

    The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.

  18. Absolute configuration and crystal packing chirality for three conglomerate-forming ortho-halogen substituted phenyl glycerol ethers

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.

    2010-06-01

    Three conglomerate-forming ortho-Hal (Hal = Cl, Br, I) substituted phenyl glycerol ethers 1- 3 were investigated by single-crystal X-ray analysis, and the absolute configuration for all substances was established. The molecular structures and crystal packing details for halogen derivatives were compared with the same characteristics for ortho-OCH 3 and ortho-CH 3 analogues. Two different types of crystal packing were evaluated for these very much alike compounds. The interplay of the supramolecular crystal organization chirality sense and the single molecule absolute configuration was demonstrated. Some stabilizing and destabilizing interactions involving the ortho-substituents were revealed. The resolution of rac-2 by entrainment procedure was successfully realized.

  19. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenz, Dominic A.; Likos, Christos N.; Blaak, Ronald

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, amore » transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.« less

  20. A polymorph of terephthalaldehyde.

    PubMed

    Teng, Lei; Wang, Zhiguo

    2008-07-23

    A new ortho-rhom-bic polymorph of terephthalaldehyde, C(8)H(6)O(2), with a melting point of 372 K, has been obtained by recrystallization from ethanol. At room temperature, the crystals transform into the well known monoclinic form, with a melting point of 389 K. The crystal structure of the monoclinic form involves C-H⋯O hydrogen bonds, but no such bonds are observed in the orthorhombic form. The molecule is planar.

  1. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH

    PubMed Central

    Ioannou, George N.; Van Rooyen, Derrick M.; Savard, Christopher; Haigh, W. Geoffrey; Yeh, Matthew M.; Teoh, Narci C.; Farrell, Geoffrey C.

    2015-01-01

    Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation. PMID:25520429

  2. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH.

    PubMed

    Ioannou, George N; Van Rooyen, Derrick M; Savard, Christopher; Haigh, W Geoffrey; Yeh, Matthew M; Teoh, Narci C; Farrell, Geoffrey C

    2015-02-01

    Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.

  3. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  4. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA.

    PubMed

    Küssau, Tanja; Flipo, Marion; Van Wyk, Niel; Viljoen, Albertus; Olieric, Vincent; Kremer, Laurent; Blaise, Mickaël

    2018-05-01

    In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP + -bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP + -bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.

  5. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data† †Electronic supplementary information (ESI) available: Results of similarity analysis between the 11 structures of lowest energy obtained in the AIRSS calculations and the reported structures of form III and form IV of m-ABA; unit cell parameters and volumes for all structures considered; comparison of 2θ values derived from the unit cell parameters of different structural models representing form III of m-ABA; Le Bail fitting of the experimental powder XRD pattern of form IV of m-ABA recorded at 70 K using, as the initial structural model, the reported crystal structure following geometry optimization; table of calculated (GIPAW) absolute isotropic NMR shieldings; simulated powder XRD data for the considered structures after precise geometry optimization; experimental 1H MAS NMR spectra of forms III and IV. (pdf) The calculated and experimental data for this study are provided as a supporting dataset from WRAP, the Warwick Research Archive Portal at http://wrap.warwick.ac.uk/91884. See DOI: 10.1039/c7cp04186a

    PubMed Central

    Zilka, Miri; Dudenko, Dmytro V.; Hughes, Colan E.; Williams, P. Andrew; Sturniolo, Simone; Franks, W. Trent; Pickard, Chris J.

    2017-01-01

    This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated. PMID:28944393

  6. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-12-01

    Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Crystal structure and habit of dirithromycin acetone solvate: A combined experimental and simulative study

    NASA Astrophysics Data System (ADS)

    Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong

    2013-06-01

    Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.

  8. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Gallagher, D T; Karageorgos, I; Hudgens, J W; Galvin, C V

    2018-02-01

    The reported data describe the crystallization, crystal packing, structure determination and twinning of the unliganded Fab (antigen-binding fragment) from the NISTmAb (standard reference material 8671). The raw atomic coordinates are available as Protein Data Bank structure 5K8A and biological aspects are described in the article, (Karageorgos et al., 2017) [1]. Crystal data show that the packing is unique, and show the basis for the crystal's twinned growth. Twinning is a common and often serious problem in protein structure determination by x-ray crystallography [2]. In the present case the twinning is due to a small deviation (about 0.3 nm) from 4-fold symmetry in the primary intermolecular interface. The deviation produces pseudosymmetry, generating slightly different conformations of the protein, and alternating strong and weak forms of key packing interfaces throughout the lattice.

  9. Crystallographic and theoretical studies of an inclusion complex of β-cyclodextrin with fentanyl.

    PubMed

    Ogawa, Noriko; Nagase, Hiromasa; Loftsson, Thorsteinn; Endo, Tomohiro; Takahashi, Chisato; Kawashima, Yoshiaki; Ueda, Haruhisa; Yamamoto, Hiromitsu

    2017-10-15

    The crystal structure of an inclusion complex of β-cyclodextrin (β-CD) with fentanyl was determined by single crystal X-ray diffraction analysis. The crystal belongs to the triclinic space group P1 and the complex comprises one fentanyl, two β-CD, and several water molecules. β-CD and fentanyl form a host-guest inclusion complex at a ratio of 2:1 and the asymmetric unit of the complex contains two host molecules (β-CDs) in a head-to-head arrangement that form dimers through hydrogen bonds between the secondary hydroxyl groups of β-CD and one guest molecule. Fentanyl is totally contained within the β-CD cavity and the structure of the phenylethyl part of fentanyl inside the dimeric cavity of the complex is disordered. Furthermore, theoretical molecular conformational calculations were conducted to clarify the mobility of the guest molecule in the β-CD cavity using CONFLEX software. Crystal optimization and crystal energy calculations were also conducted. The results of the theoretical calculations confirmed that the conformation of disorder part 1, which was high in occupancy by crystal structure analysis, was more stable. The phenylethyl part of fentanyl existed in several stable conformations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Tkatch, V. I.; Svyrydova, K. A.; Vasiliev, S. V.; Kovalenko, O. V.

    2017-08-01

    Using the results of differential scanning calorimetry and X-ray diffractometry, an analysis has been carried out of the initial stages of the eutectic and primary mechanisms of crystallization of a series of metallic glasses based on Fe and Al with the established temperature dependences of the effective diffusion coefficients. Analytical relationships, which relate the volume density of crystallites formed in the glasses at the temperatures of the onset of crystallization with the values of the effective diffusion coefficients at these temperatures have been proposed. It has been established that, in the glasses, the crystallization of which begins at the lower boundary of the threshold values of the effective diffusion coefficients ( 10-20 m2/s), structures are formed with the volume density of crystallites on the order of 1023-1024 m-3 and, at the upper boundary (10-18 m2/s), of the order of 1018 and 1020 m-3 in the glasses that are crystallized via the eutectic and primary mechanisms, respectively. Good agreement between the calculated and experimental estimates indicates that the threshold values of the effective diffusion coefficients are the main factors that determine the structure of glasses at the initial stages of crystallization.

  11. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.

    PubMed

    Zheng, Xiaoli; Xu, Qun

    2010-07-29

    In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

  12. Charge Stabilized Crystalline Colloidal Arrays As Templates For Fabrication of Non-Close-Packed Inverted Photonic Crystals

    PubMed Central

    Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.

    2010-01-01

    We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800

  13. Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography

    DOE PAGES

    Shen, Xiao; Hernandez-Pagan, Emil; Zhou, Wu; ...

    2014-11-14

    The search for optimal thermoelectric materials aims for structures in which the crystalline order is disrupted to lower the thermal conductivity without degradation of the electron conductivity. Here we report the synthesis and characterization of ternary nanoparticles (two cations and one anion) that exhibit a new form of crystal-line order: an uninterrupted, perfect, global Bravais lattice, in which the two cations exhibit a wide array of distinct ordering patterns within the cation sublattice, form-ing interlaced domains and phases. Partitioning into domains and phases is not unique; the corresponding boundaries have no structural defects or strain and entail no energy cost.more » We call this form of crystalline order “interlaced crystals” and present the example of hexagonal-CuInS 2. Interlacing is possible in multi-cation tetrahedral-ly-bonded compound with an average of two electrons per bond. Interlacing has min-imal effect on electronic properties, but should strongly reduce phonon transport, making interlaced crystals attractive for thermoelectric applications.« less

  14. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist ofmore » (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.« less

  15. Optical and Calorimetric Studies of Cholesterol-Rich Filamentous, Helical Ribbon and Crystal Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.

    2009-04-19

    Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation ofmore » the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.« less

  16. Crystallization kinetics of Mg–Cu–Yb–Ca–Ag metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsarkov, Andrey A., E-mail: tsarkov@misis.ru; WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577; Zanaeva, Erzhena N.

    The paper presents research into a Mg–Cu–Yb system based metallic glassy alloys. Metallic glasses were prepared using induction melting and further injection on a spinning copper wheel. The effect of alloying by Ag and Ca on the glass forming ability and the kinetics of crystallization of Mg–Cu–Yb system based alloys were studied. The differential scanning calorimeter and X-ray diffractometer were used to investigate the kinetics of crystallization and the phase composition of the samples. An indicator of glass forming ability, effective activation energy of crystallization, and enthalpy of mixing were calculated. An increase of the Ca and Ag content hasmore » a positive effect on the glass forming ability, the effective activation energy of crystallization, and the enthalpy of mixing. The highest indicators of the glass forming ability and the thermal stability were found for alloys that contain both alloying elements. The Ag addition suppresses precipitation of the Mg{sub 2}Cu phase during crystallization. A dual-phase glassy-nanocrystalline Mg structure was obtained in Mg{sub 65}Cu{sub 25}Yb{sub 10} and Mg{sub 59.5}Cu{sub 22.9}Yb{sub 11}Ag{sub 6.6} alloys after annealing. Bulk samples with a composite glassy-crystalline structure were obtained in Mg{sub 59.5}Cu{sub 22.9}Yb{sub 11}Ag{sub 6.6} and Mg{sub 64}Cu{sub 21}Yb{sub 9.5}Ag{sub 5.5} alloys. A thermodynamic database for the Mg–Cu–Yb–Ca–Ag system was created to compare the process of crystallization of alloys with polythermal sections of the Mg–Cu–Yb–Ca–Ag phase diagram. - Highlights: • New alloy compositions based on Mg–Cu–Yb system were developed and investigated. • Increasing content of Ag and Ca leads to improving GFA. • Bulk samples with a composite glassy-crystalline structure were obtained. • Thermodynamic database for Mg–Cu–Yb–Ca–Ag system was created.« less

  17. Molecular and crystal structure of 2-{( E)-[(4-Methylphenyl)imino]methyl}-4-nitrophenol: A redetermination

    NASA Astrophysics Data System (ADS)

    Kaynar, Nihal Kan; Tanak, Hasan; Şahin, Songul; Dege, Necmi; Ağar, Erbil; Yavuz, Metin

    2016-03-01

    The crystal structure of the title compound, C14H12N2O3, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  18. Molecular and crystal structure of 2-((E)-[(4-Methylphenyl)imino]methyl)-4-nitrophenol: A redetermination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaynar, Nihal Kan, E-mail: nihal-kan84@windowslive.com; Tanak, Hasan; Şahin, Songul

    The crystal structure of the title compound, C{sub 14}H{sub 12}N{sub 2}O{sub 3}, was recently determined as a mixture of its neutral (OH containing) and zwitterionic (NH containing) forms, in a 0.60 (4): 0.40 (4) ratio using the X-ray determination. In this study, the title compound has been characterized by FT-IR and X-ray diffraction. The redetermination showed that the title compound has only enol (OH) form because of lack of the NH stretching vibration in FT-IR spectrum. In addition, the molecular structure and tautomerism of the title compound have been discussed.

  19. Crystal structure of tin(IV) chloride octa­hydrate

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compound, [SnCl4(H2O)2]·6H2O, was crystallized according to the solid–liquid phase diagram at lower temperatures. It is built-up of SnCl4(H2O)2 octa­hedral units (point group symmetry 2) and lattice water mol­ecules. An intricate three-dimensional network of O—H⋯O and O—H⋯Cl hydrogen bonds between the complex molecules and the lattice water molecules is formed in the crystal structure. PMID:25552971

  20. WAXS studies of the structural diversity of hemoglobin in solution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowski, L.; Bardhan, J.; Gore, D.

    2011-01-01

    Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobinmore » structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.« less

  1. Structural basis of redox-dependent substrate binding of protein disulfide isomerase

    PubMed Central

    Yagi-Utsumi, Maho; Satoh, Tadashi; Kato, Koichi

    2015-01-01

    Protein disulfide isomerase (PDI) is a multidomain enzyme, operating as an essential folding catalyst, in which the b′ and a′ domains provide substrate binding sites and undergo an open–closed domain rearrangement depending on the redox states of the a′ domain. Despite the long research history of this enzyme, three-dimensional structural data remain unavailable for its ligand-binding mode. Here we characterize PDI substrate recognition using α-synuclein (αSN) as the model ligand. Our nuclear magnetic resonance (NMR) data revealed that the substrate-binding domains of PDI captured the αSN segment Val37–Val40 only in the oxidized form. Furthermore, we determined the crystal structure of an oxidized form of the b′–a′ domains in complex with an undecapeptide corresponding to this segment. The peptide-binding mode observed in the crystal structure with NMR validation, was characterized by hydrophobic interactions on the b′ domain in an open conformation. Comparison with the previously reported crystal structure indicates that the a′ domain partially masks the binding surface of the b′ domain, causing steric hindrance against the peptide in the reduced form of the b′–a′ domains that exhibits a closed conformation. These findings provide a structural basis for the mechanism underlying the redox-dependent substrate binding of PDI. PMID:26350503

  2. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  3. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  4. Control of the conformations of ion Coulomb crystals in a Penning trap

    PubMed Central

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  5. Conformational flexibility in the flap domains of ligand-free HIV protease.

    PubMed

    Heaslet, Holly; Rosenfeld, Robin; Giffin, Mike; Lin, Ying Chuan; Tam, Karen; Torbett, Bruce E; Elder, John H; McRee, Duncan E; Stout, C David

    2007-08-01

    The crystal structures of wild-type HIV protease (HIV PR) in the absence of substrate or inhibitor in two related crystal forms at 1.4 and 2.15 A resolution are reported. In one crystal form HIV PR adopts an 'open' conformation with a 7.7 A separation between the tips of the flaps in the homodimer. In the other crystal form the tips of the flaps are 'curled' towards the 80s loop, forming contacts across the local twofold axis. The 2.3 A resolution crystal structure of a sixfold mutant of HIV PR in the absence of substrate or inhibitor is also reported. The mutant HIV PR, which evolved in response to treatment with the potent inhibitor TL-3, contains six point mutations relative to the wild-type enzyme (L24I, M46I, F53L, L63P, V77I, V82A). In this structure the flaps also adopt a 'curled' conformation, but are separated and not in contact. Comparison of the apo structures to those with TL-3 bound demonstrates the extent of conformational change induced by inhibitor binding, which includes reorganization of the packing between twofold-related flaps. Further comparison with six other apo HIV PR structures reveals that the 'open' and 'curled' conformations define two distinct families in HIV PR. These conformational states include hinge motion of residues at either end of the flaps, opening and closing the entire beta-loop, and translational motion of the flap normal to the dimer twofold axis and relative to the 80s loop. The alternate conformations also entail changes in the beta-turn at the tip of the flap. These observations provide insight into the plasticity of the flap domains, the nature of their motions and their critical role in binding substrates and inhibitors.

  6. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  7. Crystallisation and crystal forms of carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Lennon, Lorna

    This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.

  8. Effect of high pressure microfluidization on the crystallization behavior of palm stearin - palm olein blends.

    PubMed

    Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede

    2014-04-24

    Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.

  9. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, G.D.; Rupp, B.

    1996-06-11

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.

  10. Electrorheological crystallization of proteins and other molecules

    DOEpatents

    Craig, George D.; Rupp, Bernhard

    1996-01-01

    An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.

  11. Crystal structure and physicochemical characterization of ambazone monohydrate, anhydrous, and acetate salt solvate.

    PubMed

    Muresan-Pop, Marieta; Braga, Dario; Pop, Mihaela M; Borodi, Gheorghe; Kacso, Irina; Maini, Lucia

    2014-11-01

    The crystal structures of the monohydrate and anhydrous forms of ambazone were determined by single-crystal X-ray diffraction (SC-XRD). Ambazone monohydrate is characterized by an infinite three-dimensional network involving the water molecules, whereas anhydrous ambazone forms a two-dimensional network via hydrogen bonds. The reversible transformation between the monohydrate and anhydrous forms of ambazone was evidenced by thermal analysis, temperature-dependent X-ray powder diffraction and accelerated stability at elevated temperature, and relative humidity (RH). Additionally, a novel ambazone acetate salt solvate form was obtained and its nature was elucidated by SC-XRD. Powder dissolution measurements revealed a substantial solubility and dissolution rate improvement of acetate salt solvated form in water and physiological media compared with ambazone forms. Also, the acetate salt solvate displayed good thermal and solution stability but it transformed to the monohydrate on storage at elevated temperature and RH. Our study shows that despite the requirement for controlled storage conditions, the acetate salt solvated form could be an alternative to ambazone when solubility and bioavailability improvement is critical for the clinical efficacy of the drug product. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina

    2017-08-15

    Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.

  13. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less

  14. Electronic structure of lead pyrophosphate

    NASA Astrophysics Data System (ADS)

    Suewattana, Malliga; Singh, David

    2007-03-01

    Lead Pyrophosphate Pb2P2O7 is of interest for potential radiation detection applications and use in long term waste storage. It forms in triclinic P1 crystals and can also be grown as glasses. We performed electronic structure calculations using the crystal structure which determined by Mullica et. al (J. Solid State Chem (1986)) using x-ray diffraction and found large forces on atoms suggesting that the refined atomic positions were not fully correct. Here we report first principles structure relaxation and a revised crystal structure for this compound. We analyze the resulting structure using pair distribution functions and discuss the implications for the electronic properties. This work was supported by DOE NA22 and the Office of Naval Research.

  15. Mechanism of the Anticoagulant Activity of Thrombin Mutant W215A/E217A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Prafull S.; Page, Michael J.; Chen, Zhiwei

    2009-09-15

    The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215-217 {beta}-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve themore » design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* {yields} E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.« less

  16. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  17. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    PubMed

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  18. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechene, Michelle; Wink, Glenna; Smith, Mychal

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) andmore » with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.« less

  19. Crystal structure of Plasmodium falciparum phosphoglycerate kinase: Evidence for anion binding in the basic patch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Craig D.; Chattopadhyay, Debasish; Pal, Biswajit

    2012-11-09

    3-Phosphoglycerate kinase (EC 2.7.2.3) is a key enzyme in the glycolytic pathway and catalyzes an important phosphorylation step leading to the production of ATP. The crystal structure of Plasmodium falciparum phosphoglycerate kinase (PfPGK) in the open conformation is presented in two different groups, namely I222 and P6{sub 1}22. The structure in I222 space group is solved using MAD and refined at 3 {angstrom} whereas that in P6{sub 1}22A is solved using MR and refined at 2.7 {angstrom}. I222 form has three monomers in asymmetric unit whereas P6{sub 1}22 form has two monomers in the asymmetric unit. In both crystal formsmore » a sulphate ion is located at the active site where ATP binds, but no Mg{sup 2+} ion is observed. For the first time another sulphate ion is found at the basic patch where the 3-phosphate of 1,3-biphosphoglycerate normally binds. This was found in both chains of P6{sub 1}22 form but only in chain A of I222 form.« less

  20. Generation of Protein Crystals Using a Solution-Stirring Technique

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-06-01

    Crystals of bovine adenosine deaminase (ADA) were grown over a two week period in the presence of an inhibitor, whereas ADA crystals did not form using conventional crystallization methods when the inhibitor was excluded. To obtain ADA crystals in the absence of the inhibitor, a solution-stirring technique was used. The crystals obtained using this technique were found to be of high quality and were shown to have high structural resolution for X-ray diffraction analysis. The results of this study indicate that the stirring technique is a useful method for obtaining crystals of proteins that do not crystallize using conventional techniques.

  1. Crystal structure of hexagonal MnAl4

    PubMed Central

    Pauling, Linus

    1987-01-01

    A structure is proposed for the hexagonal form of MnAl4, with aH = 28.4 Å and cH = 12.43 Å, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-Å cubic structure of MnAl4 and to the 14.19-Å cubic structure of Mg32(Al,Zn)49. Images PMID:16593837

  2. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives

    PubMed Central

    2014-01-01

    Background Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. Results The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPY…BA (II), AMPY…2ABA (III), AMPY…3CLBA (IV) and AMPY…4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by 1HNMR, 13CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Conclusions Extensive N---H · · · N/N---H · · · O/O---H · · · N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H · · · O and O---H · · · N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation R 2 2 8 , to form heterosynthon. In compound (II), another intermolecular N---H · · · O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in compounds (IV) and (V), these heterosynthons are centrosymmetrically paired via N---H · · · O hydrogen bonds and each forms a complementary DADA [D = donor and A = acceptor] array of quadruple hydrogen bonds, with graph-set notation R238, R228 and R238. PMID:24887234

  3. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives.

    PubMed

    Hemamalini, Madhukar; Loh, Wan-Sin; Quah, Ching Kheng; Fun, Hoong-Kun

    2014-01-01

    Co-crystal is a structurally homogeneous crystalline material that contains two or more neutral building blocks that are present in definite stoichiometric amounts. The main advantage of co-crystals is their ability to generate a variety of solid forms of a drug that have distinct physicochemical properties from the solid co-crystal components. In the present investigation, five co-crystals containing 2-amino-6-chloropyridine (AMPY) moiety were synthesized and characterized. The crystal structure of 2-amino-6-chloropyridine (AMPY) (I), and the robustness of pyridine-acid supramolecular synthon were discussed in four stoichiometry co-crystals of AMPY…BA (II), AMPY…2ABA (III), AMPY…3CLBA (IV) and AMPY…4NBA (V). The abbreviated designations used are benzoic acid (BA), 2-aminobenzoic acid (2ABA), 3-chlorobenzoic acid (3CLBA) and 4-nitrobenzoic acid (4NBA). All the crystalline materials have been characterized by (1)HNMR, (13)CNMR, IR, photoluminescence, TEM analysis and X-ray diffraction. The supramolecular assembly of each co-crystal is analyzed and discussed. Extensive N---H · · · N/N---H · · · O/O---H · · · N hydrogen bonds are found in (I-V), featuring different supramolecular synthons. In the crystal structure, for compound (I), the 2-amino-6-chloropyridine molecules are linked together into centrosymmetric dimers by hydrogen bonds to form homosynthon, whereas for compounds (II-V), the carboxylic group of the respective acids (benzoic acid, 2-aminobenzoic acid, 3-chlorobenzoic acid and 4-nitrobenzoic acid) interacts with pyridine molecule in a linear fashion through a pair of N---H · · · O and O---H · · · N hydrogen bonds, generating cyclic hydrogen-bonded motifs with the graph-set notation [Formula: see text] , to form heterosynthon. In compound (II), another intermolecular N---H · · · O hydrogen bonds further link these heterosynthons into zig-zag chains. Whereas in compounds (IV) and (V), these heterosynthons are centrosymmetrically paired via N---H · · · O hydrogen bonds and each forms a complementary DADA [D = donor and A = acceptor] array of quadruple hydrogen bonds, with graph-set notation [Formula: see text], [Formula: see text] and [Formula: see text].

  4. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization.

    PubMed

    Kulak, Alex N; Iddon, Peter; Li, Yuting; Armes, Steven P; Cölfen, Helmut; Paris, Oskar; Wilson, Rory M; Meldrum, Fiona C

    2007-03-28

    Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.

  5. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorelik, V. S.; Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru

    2016-09-15

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center ofmore » the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.« less

  6. Large-area photonic crystals

    NASA Astrophysics Data System (ADS)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  7. ROY Revisited, Again: The Eighth Solved Structure

    DOE PAGES

    Tan, Melissa; Shtukenberg, Alexander G.; Zhu, Shengcai; ...

    2018-01-01

    X-ray powder diffraction and crystal structure prediction (CSP) algorithms were used in synergy to establish the crystal structure of the eighth polymorph of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), form R05. R05 crystallizes in the monoclinic space group P2_1 with lattice parameters a = 11.479(4) Å, b = 11.030(1) Å, c = 10.840(6) Å, β = 118.23(1)°. This is both the first acentric ROY polymorph, and the first with Z' > 1. The torsion angles defined by the S-C-N-C atom sequence of each molecule in the asymmetric unit are -34.0° and 44.9°. These angles fall between those previously determined for the red and orangemore » forms of ROY. Hirshfeld surface analysis was employed to understand the crystal packing and intermolecular interactions in R05 and an updated energy stability ranking was determined using computational methods. Finally, although the application of CSP was critical to the structure solution of R05, energy stability rankings determined using a series of DFT vdW-inclusive models substantially deviate from experiment, indicating that ROY polymorphism continues to be a challenge for CSP.« less

  8. ROY Revisited, Again: The Eighth Solved Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Melissa; Shtukenberg, Alexander G.; Zhu, Shengcai

    X-ray powder diffraction and crystal structure prediction (CSP) algorithms were used in synergy to establish the crystal structure of the eighth polymorph of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), form R05. R05 crystallizes in the monoclinic space group P2_1 with lattice parameters a = 11.479(4) Å, b = 11.030(1) Å, c = 10.840(6) Å, β = 118.23(1)°. This is both the first acentric ROY polymorph, and the first with Z' > 1. The torsion angles defined by the S-C-N-C atom sequence of each molecule in the asymmetric unit are -34.0° and 44.9°. These angles fall between those previously determined for the red and orangemore » forms of ROY. Hirshfeld surface analysis was employed to understand the crystal packing and intermolecular interactions in R05 and an updated energy stability ranking was determined using computational methods. Finally, although the application of CSP was critical to the structure solution of R05, energy stability rankings determined using a series of DFT vdW-inclusive models substantially deviate from experiment, indicating that ROY polymorphism continues to be a challenge for CSP.« less

  9. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution.

    PubMed

    Madhurantakam, Chaithanya; Rajakumara, Eerappa; Mazumdar, Pooja Anjali; Saha, Baisakhee; Mitra, Devrani; Wiker, Harald G; Sankaranarayanan, Rajan; Das, Amit Kumar

    2005-03-01

    The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.

  10. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-08

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  11. Crystal Structure Prediction via Deep Learning.

    PubMed

    Ryan, Kevin; Lengyel, Jeff; Shatruk, Michael

    2018-06-06

    We demonstrate the application of deep neural networks as a machine-learning tool for the analysis of a large collection of crystallographic data contained in the crystal structure repositories. Using input data in the form of multi-perspective atomic fingerprints, which describe coordination topology around unique crystallographic sites, we show that the neural-network model can be trained to effectively distinguish chemical elements based on the topology of their crystallographic environment. The model also identifies structurally similar atomic sites in the entire dataset of ~50000 crystal structures, essentially uncovering trends that reflect the periodic table of elements. The trained model was used to analyze templates derived from the known binary and ternary crystal structures in order to predict the likelihood to form new compounds that could be generated by placing elements into these structural templates in combinatorial fashion. Statistical analysis of predictive performance of the neural-network model, which was applied to a test set of structures never seen by the model during training, indicates its ability to predict known elemental compositions with a high likelihood of success. In ~30% of cases, the known compositions were found among top-10 most likely candidates proposed by the model. These results suggest that the approach developed in this work can be used to effectively guide the synthetic efforts in the discovery of new materials, especially in the case of systems composed of 3 or more chemical elements.

  12. Computational Study of the Structure and Mechanical Properties of the Molecular Crystal RDX

    DTIC Science & Technology

    2011-01-01

    Doctor of Philosophy, 2011 Directed By: Assistant Professor Santiago D. Solares , Department of Mechanical Engineering Molecular crystals...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed

  13. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  14. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; ...

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  15. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  16. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  17. Crystal structure of a two-subunit TrkA octameric gating ring assembly

    DOE PAGES

    Deller, Marc C.; Johnson, Hope A.; Miller, Mitchell D.; ...

    2015-03-31

    The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K⁺ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K⁺ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K⁺ ions acrossmore » the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K⁺ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K⁺ gating ring assemblies.« less

  18. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  19. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  20. The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, Amanda Nga-Sze; Bradley, Philip; Cernadas, Raul A.

    2012-02-10

    DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand.more » Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector-DNA recognition.« less

  1. Spontaneously Flowing Crystal of Self-Propelled Particles

    NASA Astrophysics Data System (ADS)

    Briand, Guillaume; Schindler, Michael; Dauchot, Olivier

    2018-05-01

    We experimentally and numerically study the structure and dynamics of a monodisperse packing of spontaneously aligning self-propelled hard disks. The packings are such that their equilibrium counterparts form perfectly ordered hexagonal structures. Experimentally, we first form a perfect crystal in a hexagonal arena which respects the same crystalline symmetry. Frustration of the hexagonal order, obtained by removing a few particles, leads to the formation of a rapidly diffusing "droplet." Removing more particles, the whole system spontaneously forms a macroscopic sheared flow, while conserving an overall crystalline structure. This flowing crystalline structure, which we call a "rheocrystal," is made possible by the condensation of shear along localized stacking faults. Numerical simulations very well reproduce the experimental observations and allow us to explore the parameter space. They demonstrate that the rheocrystal is induced neither by frustration nor by noise. They further show that larger systems flow faster while still remaining ordered.

  2. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    PubMed Central

    Fini, Adamo; Cavallari, Cristina; Ospitali, Francesca

    2010-01-01

    Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation. PMID:27721347

  3. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisach, D.; Gee, P.; Kent, K.

    2010-03-08

    Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline bindingmore » site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.« less

  4. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin-C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.M.; Lountos, G. T.; Finnegan, S.

    2009-02-03

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  5. Crystallographic, Spectroscopic, and Computational Analysis of a Flavin C4a-Oxygen Adduct in Choline Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orville, A.; Lountos, G; Finnegan, S

    2009-01-01

    Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 {angstrom} resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. Wemore » propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.« less

  6. Crystal structure of spinach plastocyanin at 1.7 A resolution.

    PubMed Central

    Xue, Y.; Okvist, M.; Hansson, O.; Young, S.

    1998-01-01

    The crystal structure of plastocyanin from spinach has been determined using molecular replacement, with the structure of plastocyanin from poplar as a search model. Successful crystallization was facilitated by site-directed mutagenesis in which residue Gly8 was substituted with Asp. The region around residue 8 was believed to be too mobile for the wild-type protein to form crystals despite extensive screening. The current structure represents the oxidized plastocyanin, copper (II), at low pH (approximately 4.4). In contrast to the similarity in the core region as compared to its poplar counterpart, the structure shows some significant differences in loop regions. The most notable is the large shift of the 59-61 loop where the largest shift is 3.0 A for the C(alpha) atom of Glu59. This results in different patterns of electrostatic potential around the acidic patches for the two proteins. PMID:9792096

  7. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  8. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  9. Studies on the syntheses, structural Characterization, antimicrobial of the CO-CRYSTAL 1,10-phenanthrolin-1-IUM(1,10-phenH+)-caffeine(caf)-hexafluorophosphate

    NASA Astrophysics Data System (ADS)

    El Hamdani, H.; El Amane, M.; Duhayon, C.

    2018-03-01

    Co-crystal of 1,10-phenanthrolin-1-ium-caffeine-hexafluorophosphate was synthesized, studied by FTIR, 1H, 13C NMR, DSC and X-ray structure and crystallized in the monoclinic space group C2/c. The unit cell parameters are a = 19.3761 (3), b = 17.9548 (3), c = 13.8074 (3) with β = 117.8132 (10). The final R value is 0.069 for 29,522 measured reflections. The co-crystal structure analysis indicate the 1,10-phenanthroline is protonated by one nitrogen atom and formed the 1,10-phenanthrolin-1-ium cation, which is stabilized by hydrogen bonds N+-H…Odbnd C interaction with carbonyl and imidazol ring in caffeine molecule. The intermolecular hydrogen bonds: Csbnd H...O, Csbnd H...N, Nsbnd H...O, Csbnd H...F and intramolecular hydrogen bond: C1sbnd H12...O14, together play a vital role in stabilizing the structure of co-crystal. The X-ray structural analysis confirm the assignments of the structure from infrared, 1H, 13C NMR, spectroscopic data DSC and molar conductivity analysis. The antimicrobial activity of the co-crystal was studied.

  10. Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriukhina, G. V., E-mail: g-biralo@yandex.ru; Yakubovich, O. V.; Dimitrova, O. V.

    2016-09-15

    The crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl{sub 2}–Rb{sub 3}PO{sub 4}–H{sub 2}O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P2{sub 1}/c, Z = 2, D{sub x} = 3.27 g/cm{sup 3}. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A{sub 2}M{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2} diphosphates (A = K, NH{sub 4},more » Rb, or Na; {sub M} = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.« less

  11. Synthesis, Crystal Structure, and Topology-Symmetry Analysis of a New Modification of NaIn[IO3]4

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Karamysheva, A. S.; Dimitrova, O. V.; Volkov, A. S.

    2018-01-01

    Crystals of new iodate NaIn[IO3]4 were prepared by the hydrothermal synthesis. The unit cell parameters are a = 7.2672(2) Å, b = 15.2572(6) Å, c = 15.0208(6) Å, β = 101.517(3)°, sp. gr. P21/ c. The formula was determined during the structure determination and refinement of a twinned crystal based on a set of reflections from the atomic planes of the major individual. The refinement with anisotropic displacement parameters was performed for both twin components to the final R factor of 0.050. The In and Na atoms are in octahedral coordination formed by oxygen atoms. The oxygen octahedra are arranged into columns by sharing edges, and the columns are connected by isolated umbrella-like [IO3]- groups to form layers. The new structure is most similar to the isoformular iodate NaIn[IO3]4, which crystallizes in the same sp. gr. P21/ c and is structurally similar, but has a twice smaller unit cell and is characterized by another direction of the monoclinic axis. The structural similarity and difference between the two phases were studied by topologysymmetry analysis. The formation of these phases is related to different combinations of identical one-dimensional infinite chains of octahedra.

  12. Selenium Derivatization of Nucleic Acids for Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang,J.; Sheng, J.; Carrasco, N.

    2007-01-01

    The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less

  13. The different conformations and crystal structures of dihydroergocristine

    NASA Astrophysics Data System (ADS)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  14. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  15. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. Copyright © 2015, American Association for the Advancement of Science.

  16. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study.

    PubMed

    Wu, Sangwook

    2017-01-01

    Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.

  17. The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes

    PubMed Central

    Ferron, François; Li, Zongli; Danek, Eric I.; Luo, Dahai; Wong, Yeehwa; Coutard, Bruno; Lantez, Violaine; Charrel, Rémi; Canard, Bruno; Walz, Thomas; Lescar, Julien

    2011-01-01

    Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs. PMID:21589902

  18. Crystal structure of MboIIA methyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less

  19. Myelography Iodinated Contrast Media. 2. Conformational Versatility of Iopamidol in the Solid State.

    PubMed

    Bellich, Barbara; Di Fonzo, Silvia; Tavagnacco, Letizia; Paolantoni, Marco; Masciovecchio, Claudio; Bertolotti, Federica; Giannini, Giovanna; De Zorzi, Rita; Geremia, Silvano; Maiocchi, Alessandro; Uggeri, Fulvio; Masciocchi, Norberto; Cesàro, Attilio

    2017-02-06

    The phenomenon of polymorphism is of great relevance in pharmaceutics, since different polymorphs have different physicochemical properties, e.g., solubility, hence, bioavailability. Coupling diffractometric and spectroscopic experiments with thermodynamic analysis and computational work opens to a methodological approach which provides information on both structure and dynamics in the solid as well as in solution. The present work reports on the conformational changes in crystalline iopamidol, which is characterized by atropisomerism, a phenomenon that influences both the solution properties and the distinct crystal phases. The conformation of iopamidol is discussed for three different crystal phases. In the anhydrous and monohydrate crystal forms, iopamidol molecules display a syn conformation of the long branches stemming out from the triiodobenzene ring, while in the pentahydrate phase the anti conformation is found. IR and Raman spectroscopic studies carried out on the three crystal forms, jointly with quantum chemical computations, revealed that the markedly different spectral features can be specifically attributed to the different molecular conformations. Our results on the conformational versatility of iopamidol in different crystalline phases, linking structural and spectroscopic evidence for the solution state and the solid forms, provide a definite protocol for grasping the signals that can be taken as conformational markers. This is the first step for understanding the crystallization mechanism occurring in supersaturated solution of iopamidol molecules.

  20. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-01-18

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of an unknown phase of glycine which was firstly reported by Pyne and Suryanarayanan in 2001. To date, the new phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing a first report on a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution, and the mechanisms of glycine crystallization. GDH may alsomore » be the form of glycine that comes to Earth from extraterrestrial sources.« less

  1. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex

    PubMed Central

    Tsurumura, Toshiharu; Tsumori, Yayoi; Qiu, Hao; Oda, Masataka; Sakurai, Jun; Nagahama, Masahiro; Tsuge, Hideaki

    2013-01-01

    Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+-bound form (NAD+-Ia-actin) and the ADP ribosylated form [Ia-ADP ribosylated (ADPR)-actin] remain unclear. Accidentally, we found that ethylene glycol as cryo-protectant inhibits ADP ribosylation and crystallized the NAD+-Ia-actin complex. Here we report high-resolution structures of NAD+-Ia-actin and Ia-ADPR-actin obtained by soaking apo-Ia-actin crystal with NAD+ under different conditions. The structures of NAD+-Ia-actin and Ia-ADPR-actin represent the pre- and postreaction states, respectively. By assigning the βTAD-Ia-actin structure to the transition state, the strain-alleviation model of ADP ribosylation, which we proposed previously, is experimentally confirmed and improved. Moreover, this reaction mechanism appears to be applicable not only to Ia but also to other ADP ribosyltransferases. PMID:23382240

  2. Crystal structure of metallo DNA duplex containing consecutive Watson-Crick-like T-Hg(II)-T base pairs.

    PubMed

    Kondo, Jiro; Yamada, Tom; Hirose, Chika; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2014-02-24

    The metallo DNA duplex containing mercury-mediated T-T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B-form DNA duplex containing two consecutive T-Hg(II)-T base pairs. The Hg(II) ion occupies the center between two T residues. The N3-Hg(II) bond distance is 2.0 Å. The relatively short Hg(II)-Hg(II) distance (3.3 Å) observed in consecutive T-Hg(II)-T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B-form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of Hg(II). The structure of the metallo DNA duplex itself and the Hg(II)-induced structural switching from the nonhelical form to the B-form provide the basis for structure-based design of metal-conjugated nucleic acid nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the critical role of internal molecule re-organization to form crystalline structures. Aggregation of AMC spherulites triggers biomimetic morphologies forming curling laminar structures and rings. The size and number of nesquehonite (MgCO3.3H2O) crystals are controlled by pH and Mg2+ ions at pH < 9. As pH increases, nesquehonite transforms to spherical, rosette-like dypingite and/or hydromagnesite. Crystallization experiments within silica gel impedes the normal growth of prismatic nesquehonite crystals and generates peculiar dendritic crystalline structures. Finally, vapor diffusion techniques resulted in synthesis of NH4+-bearing hydrated compounds after ammonium incorporation when [NH4+]/[Mg2+] ≥ 1 and ≥ 0.5M [NH4+]. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n˚ 608001.

  4. Rotating lattice single crystal architecture on the surface of glass

    DOE PAGES

    Savytskii, D.; Jain, H.; Tamura, N.; ...

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb 2S 3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less

  5. Formation of a new crystalline form of anhydrous β-maltose by ethanol-mediated crystal transformation.

    PubMed

    Verhoeven, Nicolas; Neoh, Tze Loon; Ohashi, Tetsuya; Furuta, Takeshi; Kurozumi, Sayaka; Yoshii, Hidefumi

    2012-04-01

    β-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of β-maltose (Mβ(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mβ(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of β-maltose monohydrate and anhydrous β-maltose obtained by vacuum drying (Mβ(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Crystallization and preliminary X-ray crystallographic analysis of two vascular apoptosis-inducing proteins (VAPs) from Crotalus atrox venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Tomoko; Oishi, Yuko; Araki, Satohiko

    Vascular apoptosis-inducing protein 1 (VAP1) and VAP2 from C. atrox venom were crystallized in variety of different crystal forms. Diffraction data sets were obtained to 2.5 and 2.15 Å resolution for VAP1 and VAP2, respectively. VAPs are haemorrhagic snake-venom toxins belonging to the reprolysin family of zinc metalloproteinases. In vitro, VAPs induce apoptosis specifically in cultured vascular endothelial cells. VAPs have a modular structure that bears structural homology to mammalian ADAMs (a disintegrin and metalloproteinases). VAP1 is a homodimer with a MW of 110 kDa in which the monomers are connected by a single disulfide bridge. VAP2 is homologous tomore » VAP1 and exists as a monomer with a MW of 55 kDa. In the current study, several crystal forms of VAP1 and VAP2 were obtained using the vapour-diffusion method and diffraction data sets were collected using SPring-8 beamlines. The best crystals of VAP1 and VAP2 generated data sets to 2.5 and 2.15 Å resolution, respectively.« less

  7. The role of hydrogen bonds in the crystals of 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate and 4-hydroxybenzenesulfonate - X-ray and spectroscopic studies.

    PubMed

    Bryndal, I; Marchewka, M; Wandas, M; Sąsiadek, W; Lorenc, J; Lis, T; Dymińska, L; Kucharska, E; Hanuza, J

    2014-04-05

    Two new organic-organic salts, 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate (AMNP-TFA), and 2-amino-4-methyl-5-nitropyridinium 4-hydroxybenzenesulfonate (AMNP-HBS), were obtained and characterized by means of FT-IR, FT-Raman and single crystal X-ray crystallography. In the former crystal, the cations, anions and water molecules are linked into layers by three types of hydrogen bonds, NPH⋯O, NAH⋯O and OH⋯O. These layers are connected by weaker CH⋯O hydrogen bonds. In the latter crystal, the cations and anions form one-dimensional structure through a number of hydrogen-bonding interactions involving the OH, NH(+) and NH2 groups as donors. In this case the NPH⋯O and NAH⋯O hydrogen bonds are formed. The combination of interactions between cations and anions results in the formation of columns. Additionally, there are π-π stacking interactions between the columns. The obtained X-ray structural data are related to the vibrational spectra of the studied crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z.

    PubMed

    Hastie, Kathryn M; Zandonatti, Michelle; Liu, Tong; Li, Sheng; Woods, Virgil L; Saphire, Erica Ollmann

    2016-05-01

    The arenavirus matrix protein Z is highly multifunctional and occurs in both monomeric and oligomeric forms. The crystal structure of a dodecamer of Z from Lassa virus, presented here, illustrates a ring-like structure with a highly basic center. Mutagenesis demonstrates that the dimeric interface within the dodecamer and a Lys-Trp-Lys triad at the center of the ring are important for oligomerization. This structure provides an additional template to explore the many functions of Z. The arenavirus Lassa virus causes hundreds of thousands of infections each year, many of which develop into fatal hemorrhagic fever. The arenavirus matrix protein Z is multifunctional, with at least four distinct roles. Z exists in both monomeric and oligomeric forms, each of which likely serves a specific function in the viral life cycle. Here we present the dodecameric form of Lassa virus Z and demonstrate that Z forms a "wreath" with a highly basic center. This structure and that of monomeric Z now provide a pair of critical templates by which the multiple roles of Z in the viral life cycle may be interpreted. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Magnetic and crystal structures of the honeycomb lattice Na2IrO3 and single layer Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Ye, Feng

    2013-03-01

    5 d based iridates have recently attracted great attention due to the large spin-orbit coupling (SOC). It is now recognized that the SOC that competes with other relevant energies, particularly the on-site Coulomb interaction U, and have driven novel electronic and magnetic phases. Combining single crystal neutron and x-ray diffractions, we have investigated the magnetic and crystal structures of the honeycomb lattice Na2IrO3. The system orders magnetically below 18.1 K with Ir4+ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22 μB /Ir site. Such a configuration sharply contrasts the Neel or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO6 octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5 d-electron based honeycomb lattice. Neutron diffraction experiments are also performed to investigate the magnetic and crystal structure of the single layer iridate Sr2IrO4, where new structural information and spin order are obtained that is not available from previous neutron powder diffraction measurement. This work was sponsored in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

  10. Quadruplexes in 'Dicty': crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome.

    PubMed

    Guédin, Aurore; Lin, Linda Yingqi; Armane, Samir; Lacroix, Laurent; Mergny, Jean-Louis; Thore, Stéphane; Yatsunyk, Liliya A

    2018-06-01

    Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.

  11. Structure-property relationship of supramolecular ferroelectric [H-66dmbp][Hca] accompanied by high polarization, competing structural phases, and polymorphs.

    PubMed

    Kobayashi, Kensuke; Horiuchi, Sachio; Ishibashi, Shoji; Kagawa, Fumitaka; Murakami, Youichi; Kumai, Reiji

    2014-12-22

    Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric β- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length () was observed, and was attributed to the potential barrier height for proton off-centering or order/disorder phenomena. The optimized spontaneous polarization (Ps ) agreed well with the results of the first-principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing . These data consistently demonstrated that stretching is a promising way to enhance the polarization performance and thermal stability of hydrogen-bonded organic ferroelectrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Purification, crystallization and preliminary X-ray diffraction of human S100A15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boeshans, Karen M.; Wolf, Ronald; Voscopoulos, Christopher

    2006-05-01

    S100 proteins are differentially expressed during epithelial cell maturation, tumorigenesis and inflammation. The novel human S100A15 protein has been cloned, expressed, purified and crystallized in two crystal forms, a triclinic and a monoclinic form, which diffract to 1.7 and 2.0 Å, respectively. Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.2 kDa S100A15 with psoriasis suggests that itmore » contributes to the pathogenesis of the disease and could provide a molecular target for therapy. To provide insight into the function of S100A15, the protein was crystallized to visualize its structure and to further the understanding of how the many similar calcium-binding mediator proteins in the cell distinguish their cognate target molecules. The S100A15 protein has been cloned, expressed and purified to homogeneity and produced two crystal forms. Crystals of form I are triclinic, with unit-cell parameters a = 33.5, b = 44.3, c = 44.8 Å, α = 71.2, β = 68.1, γ = 67.8° and an estimated two molecules in the asymmetric unit, and diffract to 1.7 Å resolution. Crystals of form II are monoclinic, with unit-cell parameters a = 82.1, b = 33.6, c = 52.2 Å, β = 128.2° and an estimated one molecule in the asymmetric unit, and diffract to 2.0 Å resolution. This structural analysis of the human S100A15 will further aid in the phylogenic comparison between the other members of the S100 protein family, especially the highly homologous paralog S100A7.« less

  13. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    PubMed

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  14. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.

    PubMed

    Halder, Sukanya; Bhattacharyya, Dhananjay

    2012-10-04

    Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.

  15. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemblemore » behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.« less

  16. Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.

    2015-05-01

    We present a refined model for the vapor-liquid-solid growth and crystal structure of Au-catalyzed III-V nanowires, which revisits several assumptions used so far and is capable of describing the transition from mononuclear to polynuclear regime and ultimately to regular atomistic growth. We construct the crystal phase diagrams and calculate the wurtzite percentages, elongation rates, critical sizes, and polynucleation thresholds of Au-catalyzed GaAs nanowires depending on the As flow. We find a non-monotonic dependence of the crystal phase on the group V flow, with the zincblende structure being preferred at low and high group V flows and the wurtzite structure forming at intermediate group V flows. This correlates with most of the available experimental data. Finally, we discuss the atomistic growth picture which yields zincblende crystal structure and should be very advantageous for fabrication of ternary III-V nanowires with well-controlled composition and heterointerfaces.

  17. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  19. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    PubMed

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  20. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  1. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space.

    PubMed

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-02-13

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of a long unknown phase of glycine, which was first reported by Pyne and Suryanarayanan in 2001. To date, this phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal-structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing the first report on the structure of a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution and the mechanisms of glycine crystallization. GDH may also be the form of glycine that comes to Earth from extraterrestrial sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.

    PubMed

    Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A

    2017-07-05

    The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.

  3. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  4. Structure of the Apo Form of Bacillus stearothermophilus Phosphofructokinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosser, Rockann; Reddy, Manchi C.M.; Bruning, John B.

    2012-02-08

    The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 {angstrom} resolution (Protein Data Bank entry 3U39). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.

  5. Specificity Rendering ‘Hot-Spots’ for Aurora Kinase Inhibitor Design: The Role of Non-Covalent Interactions and Conformational Transitions

    PubMed Central

    Badrinarayan, Preethi; Sastry, G. Narahari

    2014-01-01

    The present study examines the conformational transitions occurring among the major structural motifs of Aurora kinase (AK) concomitant with the DFG-flip and deciphers the role of non-covalent interactions in rendering specificity. Multiple sequence alignment, docking and structural analysis of a repertoire of 56 crystal structures of AK from Protein Data Bank (PDB) has been carried out. The crystal structures were systematically categorized based on the conformational disposition of the DFG-loop [in (DI) 42, out (DO) 5 and out-up (DOU) 9], G-loop [extended (GE) 53 and folded (GF) 3] and αC-helix [in (CI) 42 and out (CO) 14]. The overlapping subsets on categorization show the inter-dependency among structural motifs. Therefore, the four distinct possibilities a) 2W1C (DI, CI, GE) b) 3E5A (DI, CI, GF) c) 3DJ6 (DI, CO, GF) d) 3UNZ (DOU, CO, GF) along with their co-crystals and apo-forms were subjected to molecular dynamics simulations of 40 ns each to evaluate the variations of individual residues and their impact on forming interactions. The non-covalent interactions formed by the 157 AK co-crystals with different regions of the binding site were initially studied with the docked complexes and structure interaction fingerprints. The frequency of the most prominent interactions was gauged in the AK inhibitors from PDB and the four representative conformations during 40 ns. Based on this study, seven major non-covalent interactions and their complementary sites in AK capable of rendering specificity have been prioritized for the design of different classes of inhibitors. PMID:25485544

  6. Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing

    PubMed Central

    Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.

    2014-01-01

    Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082

  7. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    NASA Astrophysics Data System (ADS)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  8. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  9. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  10. Nanoscale Cu{sub 2}O films: Radio-frequency magnetron sputtering and structural and optical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, D. A., E-mail: kudryashovda@apbau.ru; Gudovskikh, A. S.; Babichev, A. V.

    2017-01-15

    Nanoscale copper (I) oxide layers are formed by magnetron-assisted sputtering onto glassy and silicon substrates in an oxygen-free environment at room temperature, and the structural and optical properties of the layers are studied. It is shown that copper oxide formed on a silicon substrate exhibits a lower degree of disorder than that formed on a glassy substrate, which is supported by the observation of a higher intensity and a smaller half-width of reflections in the diffraction pattern. The highest intensity of reflections in the diffraction pattern is observed for Cu{sub 2}O films grown on silicon at a magnetron power ofmore » 150 W. The absorption and transmittance spectra of these Cu{sub 2}O films are in agreement with the well-known spectra of bulk crystals. In the Raman spectra of the films, phonons inherent in the crystal lattice of cubic Cu{sub 2}O crystals are identified.« less

  11. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad.

    PubMed

    Zhang, Diana; Huang, Terry; Lukeman, Philip S; Paukstelis, Paul J

    2014-12-01

    We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Investigation the influences of B2O3 and R2O on the structure and crystallization behaviors of CaO-Al2O3 based F-free mold flux

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Kong, Bowen; Gao, Xiangyu; Liu, Qingcai; Shu, Qifeng; Chou, Kuochih

    2018-04-01

    The influences of B2O3 and R2O on the structure and crystallization of CaO-Al2O3 based F-free mold flux were investigated by Raman Spectroscopy and Differential Scanning Calorimetry Technique, respectively, for developing a new type of F-free mold flux. The results of structural investigations showed that B3+ is mainly in the form of [BO3]. And [BO3] appears to form BIII-O-Al linkage which will produce a positive effect on forming [AlO4] network. The number of bridging oxygen and the degree of polymerization of [AlO4] network structure for CaO-Al2O3 system were also increased with the increasing of B2O3. On the contrary, with the addition of R2O into CaO-Al2O3-B2O3 system, the number of bridging oxygen and the degree of polymerization of [AlO4] network were decreased. DSC results showed that the crystallization process became more sluggish with the increase of B2O3, which indicated that the crystallization ability was weakened. While the quenched mold fluxes crystallized more rapidly when introducing R2O. In other word, the crystallization rates of CaO-Al2O3 based slags were accelerated by the introduction of R2O. The liquidus temperature and crystallization temperature were decreased with the increasing amount of B2O3 or by addition of R2O into CaO-Al2O3 system. Only one kind of crystal was precipitated in 8% B2O3 and %R2O-containing samples, which was CaAl2O4 identified by SEM-EDS. When the content of B2O3 increased from 8% to 16%, Ca3B2O6 is clearly observed, demonstrating that the crystallization ability of Ca3B2O6 is enhanced by the increasing concentration of B2O3 in mold flux. The Ca/Al ratio of the generated calcium aluminate has been altered from 1:2 to 1:4 with the increasing of B2O3. The size of CaAl2O4 crystal is gradually increased with the addition of R2O. The crystallization ability of CaAl2O4 is promoted by R2O.

  13. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less

  14. Monomorphism of cytidine (Cyd) vs. polymorphism of 2'deoxycytidine (dCyd). Structural and functional consequences

    NASA Astrophysics Data System (ADS)

    Wiewiórowski, M.; Alejska, M.; Malinowska, N.; Bratek-Wiewiórowska, M. D.

    1997-12-01

    It has been found that 2'deoxycytidine (dCyd) crystallizes in different forms, denoted dCyd A, dCyd B and dCyd C·H 2O. In the crystal lattice of the newly discovered form dCydC·H 2O there is a crystalline water molecule present. The monohydrate of dCydC, under suitable conditions (RT, over P 2O 5, 48h), undergoes transformation into the fully dehydrated form—dCydC anhydro. The whole process of de- and re-hydratation has been observed by FTIR-PAS spectroscopy. The nature of the differences and similarities between structural and functional properties of crystalline forms of 2'dCyd and Cyd molecules has been discussed.

  15. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.

    PubMed

    Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank

    2017-11-07

    In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.

  16. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    PubMed

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs

    PubMed Central

    Merritt, Ethan A; Arakaki, Tracy L; Gillespie, J Robert; Larson, Eric T; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Kim, Jessica; Zhang, Li; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J

    2010-01-01

    Crystal structures of histidyl-tRNA synthetase from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme, and reveal differences from bacterial homologs. Histidyl-tRNA synthetases in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active site rearrangement upon histidine binding, but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme’s first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human histidyl-tRNA synthetases. The essentiality of the single histidyl-tRNA synthetase gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference. PMID:20132829

  18. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface.

    PubMed

    Forest, K T; Langford, P R; Kroll, J S; Getzoff, E D

    2000-02-11

    Macrophages and neutrophils protect animals from microbial infection in part by issuing a burst of toxic superoxide radicals when challenged. To counteract this onslaught, many Gram-negative bacterial pathogens possess periplasmic Cu,Zn superoxide dismutases (SODs), which act on superoxide to yield molecular oxygen and hydrogen peroxide. We have solved the X-ray crystal structure of the Cu,Zn SOD from Actinobacillus pleuropneumoniae, a major porcine pathogen, by molecular replacement at 1.9 A resolution. The structure reveals that the dimeric bacterial enzymes form a structurally homologous class defined by a water-mediated dimer interface, and share with all Cu,Zn SODs the Greek-key beta-barrel subunit fold with copper and zinc ions located at the base of a deep loop-enclosed active-site channel. Our structure-based sequence alignment of the bacterial enzymes explains the monomeric nature of at least two of these, and suggests that there may be at least one additional structural class for the bacterial SODs. Two metal-mediated crystal contacts yielded our C222(1) crystals, and the geometry of these sites could be engineered into proteins recalcitrant to crystallization in their native form. This work highlights structural differences between eukaryotic and prokaryotic Cu,Zn SODs, as well as similarities and differences among prokaryotic SODs, and lays the groundwork for development of antimicrobial drugs that specifically target periplasmic Cu,Zn SODs of bacterial pathogens. Copyright 12000 Academic Press.

  19. Band structure of an electron in a kind of periodic potentials with singularities

    NASA Astrophysics Data System (ADS)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  20. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    PubMed

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  1. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.

    PubMed

    Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan

    2012-03-07

    Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.

  2. Tetragonal-antiprismatic coordination of transition metals in intermetallic compounds: ω1-Mn6Ga29 and its structuralrelationships

    NASA Astrophysics Data System (ADS)

    Antonyshyn, Iryna; Prots, Yurii; Margiolaki, Irene; Schmidt, Marcus Peter; Zhak, Olga; Oryshchyn, Stepan; Grin, Yuri

    2013-03-01

    The new phase ω1-Mn6Ga29 was synthesised in single-crystal form from the elements applying the high-temperature centrifugation-aided filtration technique. The crystal structure was determined using diffraction data collected from a twinned specimen: a new prototype, space group P1¯; a=6.3114(2) Å, b=9.9557(3) Å, c=18.920(1) Å, α=90.473(1)°, β=90.847(1)°, γ=90.396(1)°; R1=0.047, wR2=0.117 for 317 variable parameters and 7346 observed reflections; twinning matrix 0 0 -1/3, 0 -1 0, -3 0 0; twin domains ratio 0.830(3):0.170. All manganese atoms in the crystal structure of ω1-Mn6Ga29 are coordinated exclusively by Ga forming distorted tetragonal antiprisms. The monocapped [MnGa8+1] antiprisms condense into pairs by sharing their pseudo-quadratic faces and are interconnected via common apexes and edges to form a 3D framework. The relationship between the crystal structures of ω1-Mn6Ga29 and CuAl2, α-, β-CoSn3, PtSn4, Ti4MnBi2, PdGa5, Rh3Ga16, Rh4Ga21, Al7FeCu2, Co2Al9, and RhBi4 is discussed.

  3. Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation.

    PubMed

    Wei, Dengguo; Parkinson, Gary N; Reszka, Anthony P; Neidle, Stephen

    2012-05-01

    We report here the 1.62 Å crystal structure of an intramolecular quadruplex DNA formed from a sequence in the promoter region of the c-kit gene. This is the first reported crystal structure of a promoter quadruplex and the first observation of localized magnesium ions in a quadruplex structure. The structure reveals that potassium and magnesium ions have an unexpected yet significant structural role in stabilizing particular quadruplex loops and grooves that is distinct from but in addition to the role of potassium ions in the ion channel at the centre of all quadruplex structures. The analysis also shows how ions cluster together with structured water molecules to stabilize the quadruplex arrangement. This particular quadruplex has been previously studied by NMR methods, and the present X-ray structure is in accord with the earlier topology assignment. However, as well as the observations of potassium and magnesium ions, the crystal structure has revealed a highly significant difference in the dimensions of the large cleft in the structure, which is a plausible target for small molecules. This difference can be understood by the stabilizing role of structured water networks.

  4. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  5. Brooker's merocyanine: Comparison of single crystal structures

    NASA Astrophysics Data System (ADS)

    Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.

    2018-06-01

    Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.

  6. Crystallographic studies of the Anthrax lethal toxin. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, C.A.

    1996-07-01

    The lethal form of Anthrax results from the inhalation of anthrax spores. Death is primarily due to the effects of the lethal toxin (Protective Antigen (PA) + Lethal Factor) from the causative agent, Bacillus anthracis. All the Anthrax vaccines currently in use or under development contain or produce PA, the major antigenic component of anthrax toxin, and there is a clear need for an improved vaccine for human use. In the previous report we described the first atomic resolution structure of PA, revealing that the molecule is composed largely of beta-sheets organized into four domains. This information can be usedmore » in the design. of recombinant PA vaccines. In this report we describe additional features of the full-length PA molecule derived from further crystallographic refinement and careful examination of the structure. We compare two crystal forms of PA grown at different pH values and discuss the functional implications. A complete definition of the function of each domain must await the crystal structure of the PA63 heptamer. We have grown crystals of the heptamer under both detergent and detergent-free conditions, and made substantial progress towards the crystal structure. The mechanism of anthrax intoxication in the light of our results is reviewed.« less

  7. Effect of the mechanical activation of a cathode on the structure of electrolytic copper single crystals

    NASA Astrophysics Data System (ADS)

    Gryzunova, N. N.; Vikarchuk, A. A.; Gryzunov, A. M.; Denisova, A. G.

    2017-10-01

    The morphology of the electrolytic copper single crystals formed under the mechanical activation of a cathode is described. Pentagonal pyramids and conical microcrystals with high growth steps are shown to form during electrocrystallization under these conditions. It is experimentally found that microcrystals grow on disclination defects, in particular, at the sites of termination of twin growth boundaries, and mechanical activation causes the formation of such defects.

  8. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    NASA Astrophysics Data System (ADS)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  9. Push-pull quinoidal porphyrins.

    PubMed

    Smith, Martin J; Blake, Iain M; Clegg, William; Anderson, Harry L

    2018-05-01

    A family of push-pull quinoidal porphyrin monomers has been prepared from a meso-formyl porphyrin by bromination, thioacetal formation, palladium-catalyzed coupling with malononitrile and oxidation with DDQ. Attempts at extending this synthesis to a push-pull quinoidal/cumulenic porphyrin dimer were not successful. The crystal structures of the quinoidal porphyrins indicate that there is no significant contribution from singlet biradical or zwitterionic resonance forms. The crystal structure of an ethyne-linked porphyrin dimer shows that the torsion angle between the porphyrin units is only about 3°, in keeping with crystallographic results on related compounds, but contrasting with the torsion angle of about 35° predicted by computational studies. The free-base quinoidal porphyrin monomers form tightly π-stacked layer structures, despite their curved geometries and bulky aryl substituents.

  10. Structural study of piracetam polymorphs and cocrystals: crystallography redetermination and quantum mechanics calculations.

    PubMed

    Tilborg, Anaëlle; Jacquemin, Denis; Norberg, Bernadette; Perpète, Eric; Michaux, Catherine; Wouters, Johan

    2011-12-01

    Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis. © 2011 International Union of Crystallography. Printed in Singapore – all rights reserved.

  11. Mutation of Surface Residues to Promote Crystallization of Activated Factor XI as a Complex with Benzamidine: an Essential Step for the Iterative Structure-Based Design of Factor XI Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin,L.; Pandey, P.; Babine, R.

    Activated factor XI (FXIa) is a key enzyme in the amplification phase of the blood-coagulation cascade. Thus, a selective FXIa inhibitor may have lesser bleeding liabilities and provide a safe alternative for antithrombosis therapy to available drugs on the market. In a previous report, the crystal structures of the catalytic domain of FXIa (rhFXI370-607) in complex with various ecotin mutants have been described [Jin et al. (2005), Journal of Biological Chemistry 280, 4704-4712]. However, ecotin forms a matrix-like interaction with rhFXI370-607 and is impossible to displace with small-molecule inhibitors; ecotin crystals are therefore not suitable for iterative structure-based ligand design.more » In addition, rhFXI370-607 did not crystallize in the presence of small-molecule ligands. In order to obtain the crystal structure of rhFXI370-607 with a weak small-molecule ligand, namely benzamidine, several rounds of surface-residue mutation were implemented to promote crystal formation of rhFXI370-607. A quadruple mutant of rhFXI370-607 (rhFXI370-607-S434A, T475A, C482S, K437A) readily crystallized in the presence of benzamidine. The benzamidine in the preformed crystals was easily exchanged with other FXIa small-molecule inhibitors. These crystals have facilitated the structure-based design of small-molecule FXIa inhibitors.« less

  12. Crystallization and preliminary X-ray crystallographic study of a 3.8-MDa respiratory supermolecule hemocyanin.

    PubMed

    Matsuno, Asuka; Gai, Zuoqi; Tanaka, Miyuki; Kato, Koji; Kato, Sanae; Katoh, Tsuyoshi; Shimizu, Takeshi; Yoshioka, Takeya; Kishimura, Hideki; Tanaka, Yoshikazu; Yao, Min

    2015-06-01

    Many molluscs transport oxygen using a very large cylindrical multimeric copper-containing protein named hemocyanin. The molluscan hemocyanin forms a decamer (cephalopods) or multidecamer (gastropods) of approximately 330-450kDa subunits, resulting in a molecular mass >3.3MDa. Therefore, molluscan hemocyanin is one of the largest proteins. The reason why these organisms use such a large supermolecule for oxygen transport remains unclear. Atomic-resolution X-ray crystallographic analysis is necessary to unveil the detailed molecular structure of this mysterious large molecule. However, its propensity to dissociate in solution has hampered the crystallization of its intact form. In the present study, we successfully obtained the first crystals of an intact decameric molluscan hemocyanin. The diffraction dataset at 3.0-Å resolution was collected by merging the datasets of two isomorphic crystals. Electron microscopy analysis of the dissolved crystals revealed cylindrical particles. Furthermore, self-rotation function analysis clearly showed the presence of a fivefold symmetry with several twofold symmetries perpendicular to the fivefold axis. The absorption spectrum of the crystals showed an absorption peak around 345nm. These results indicated that the crystals contain intact hemocyanin decamers in the oxygen-bound form. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  14. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  15. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography.

    PubMed

    Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G

    2007-02-01

    Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.

  16. Anisometric C 60 Fullerene Colloids Assisted by Structure-Directing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penterman, S.; Liddell Watson, Chekesha M.; Escobedo, Fernando A.

    2016-08-05

    Colloidal synthesis and assembly provide low cost, large area routes to mesoscale structures. In particular, shape-anisotropic particles may form crystalline, plastic crystalline, complex liquid crystalline and glassy phases. Arrangements in each order class have been used to generate photonic materials. For example, large photonic band gaps have been found for photonic crystals, hyperuniform photonic glasses, and also for plastic crystals at sufficient refractive index contrast. The latter structures support highly isotropic bandgaps that are desirable for free-form waveguides and LED out-coupling. Photonic glasses with optical gain lead to self-tuned lasing by the superposition of multiply scattered light. Typically, extrinsic mediamore » such as organic dyes, rare earths, lanthanides and quantum dots are used to impart optical gain in photonic solids. The present work advances fullerene microcrystals as a new materials platform for ‘active’ light emitting in colloid-based photonic crystals. Fullerenes support singlet excited states that recombine to produce a characteristic red photoluminescence. C 60 also has a high refractive index (n ~ 2.2) and transparency (> 560 nm) 9 so that inverse structures are not required.« less

  17. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K.

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometricmore » analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.« less

  18. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant

    NASA Astrophysics Data System (ADS)

    Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip

    2015-08-01

    Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.

  19. Crystal structure of Escherichia coli diaminopropionate ammonia-lyase reveals mechanism of enzyme activation and catalysis.

    PubMed

    Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N; Savithri, Handanahal S; Murthy, Mathur R N

    2012-06-08

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.

  20. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  1. Stoichiometric control of DNA-grafted colloid self-assembly

    DOE PAGES

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; ...

    2015-04-06

    In this study, there has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB₂, and Cr₃Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example,more » a stoichiometric ratio of 3:1 typically results in the Cr₃Si structure. However, AlB₂ can form when appropriate building blocks are used so that the AlB₂ standard-state free energy is low enough to overcome the entropic preference for Cr₃Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.« less

  2. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  3. In situ Raman and synchrotron X-ray diffraction study on crystallization of Choline chloride/Urea deep eutectic solvent under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong

    2016-09-01

    Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.

  4. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol.

    PubMed

    Ahmed, Hamzah; Shimpi, Manishkumar R; Velaga, Sitaram P

    2017-01-01

    Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.

  5. Transport properties of RCo_2B_2C with R = Dy, Ho, and Pr single

    NASA Astrophysics Data System (ADS)

    Duran, Alejandro; Escudero, Roberto

    2002-03-01

    Single crystals of (Dy, Ho, Pr)Co_2B_2C have been grown by a cold copper crucible method. Metallurgical and structural studies indicate that this borocarbide family melts incongruently and crystallizes as a derivative structure of the ThCr_2Si_2. The family accepts rare earth atoms depending on the type of transition metals used to form the compound. For instance with Ni atoms, all lanthanides ranging from the large lanthanum to lutetium ions are reported to form RNi_2B_2C single crystals, so far no single crystals have been obtained when changing Ni by Cobalt. A comparison of the structural parameters of the RCo_2B_2C with the RNiHo, Pr) compounds indicate that the atomic distance between transition metal atoms contracts with the insertion of the Co ion, resulting in an increasing of the c parameter and decreasing volume. Several recent reports published in the current literature related on the physical properties of RCo_2B_2C (R = rare earth metals and Y) have been only performed on polycrystalline samples, they commonly contain small amounts of second phases. High quality single crystals are necessaries in order to better understand the physical properties, such as anisotropy in the transport and in the magnetic properties. In this report we show magnetic susceptibility and resistivity measurements performed in single crystals in the ab-plane and c direction for 2 - 320 K temperature range for the three single crystals of (Dy, Ho, Pr)Co_2B_2C.

  6. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  7. Crystallization and preliminary X-ray diffraction studies of θ-toxin (perfringolysin O), a pore-forming cytolysin of Clostridium perfringens

    NASA Astrophysics Data System (ADS)

    Sugahara, Mitsuaki; Sekino-Suzuki, Naoko; Ohno-Iwashita, Yoshiko; Miki, Kunio

    1996-10-01

    θ-Toxin (perfringolysin O), a cholesterol-binding, pore-forming cytolysin of Clostridium perfringens type A was crystallized by the vapor diffusion procedure using polyethyleneglycol 4000 and sodium chloride as precipitants in 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer at pH 9.5. The diffraction patterns of precession photographs indicated that the crystals belong to the orthorhombic system and the space group C222 1 with unit-cell dimensions of a = 47.7 Å, b = 182.0 Å and c = 175.8 Å. Assuming that the asymmetric unit contains one or two molecules (Mw 52 700), the Vm value is calculated as 3.6 or 1.8 Å 3/dalton, respectively. The crystals diffract X-rays to at least 3 Å resolution and are suitable for high resolution X-ray crystal structure determination.

  8. The crystal structures of two chalcones: (2E)-1-(5-chloro-thio-phen-2-yl)-3-(2-methyl-phen-yl)prop-2-en-1-one and (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen-yl]prop-2-en-1-one.

    PubMed

    Girisha, Marisiddaiah; Yathirajan, Hemmige S; Jasinski, Jerry P; Glidewell, Christopher

    2016-08-01

    In the crystal of compound (I), C14H11ClOS, mol-ecules are linked by C-H⋯O hydrogen bonds to form simple C(5) chains. Compound (II), C26H22O, crystallizes with Z' = 2 in space group P-1; one of the mol-ecules is fully ordered but the other is disordered over two sets of atomic sites having occupancies 0.644 (3) and 0.356 (3). The two disordered components differ from one another in the orientation of the isopropyl substituents, and both differ from the ordered mol-ecules in the arrangement of the central propenone spacer unit, so that the crystal of (II) contains three distinct conformers. The ordered and disordered conformers each form a C(8) chain built from a single type of C-H⋯O hydrogen bond but those formed by the disordered conformers differ from that formed by the ordered form.

  9. Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Krivolapov, Dmitry B.; Pashagin, Alexander V.; Litvinov, Igor A.

    2009-02-01

    Popular chiral drugs, guaifenesin, methocarbamol, and mephenesin were investigated by single-crystal X-ray analysis both for enantiopure and racemic samples. The absolute configurations for all substances were established through Flack parameter method. The conglomerate-forming nature for the compounds was confirmed by equivalence of crystal characteristics of enantiopure and racemic samples. The molecular structures and crystal packing details were evaluated and compared with one another for all three investigated substances.

  10. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  11. A hetero-micro-seeding strategy for readily crystallizing closely related protein variants.

    PubMed

    Islam, Mohammad M; Kuroda, Yutaka

    2017-11-04

    Protein crystallization remains difficult to rationalize and screening for optimal crystallization conditions is a tedious and time consuming procedure. Here, we report a hetero-micro-seeding strategy for producing high resolution crystals of closely related protein variants, where micro crystals from a readily crystallized variant are used as seeds to develop crystals of other variants less amenable to crystallization. We applied this strategy to Bovine Pancreatic Trypsin Inhibitor (BPTI) variants, which would not crystallize using standard crystallization practice. Out of six variants in our analysis, only one called BPTI-[5,55]A14G formed well behaving crystals; and the remaining five (A14GA38G, A14GA38V, A14GA38L, A14GA38I, and A14GA38K) could be crystallized only using micro-seeds from the BPTI-[5,55]A14G crystal. All hetero-seeded crystals diffracted at high resolution with minimum mosaicity, retaining the same space group and cell dimension. Moreover, hetero-micro-seeding did not introduce any biases into the mutant's structure toward the seed structure, as demonstrated by A14GA38I structures solved using micro-seeds from A14GA38G, A14GA38L and A14GA38I. Though hetero-micro-seeding is a simple and almost naïve strategy, this is the first direct demonstration of its workability. We believe that hetero-micro-seeding, which is contrasting with the popular idea that crystallization requires highly purified proteins, could contribute a new tool for rapidly solving protein structures in mutational analysis studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Crystal structure of (2E)-3-[4-(di-methyl-amino)-phen-yl]-1-(thio-phen-2-yl)prop-2-en-1-one.

    PubMed

    de Oliveira, Gabriela Porto; Bresolin, Leandro; Flores, Darlene Correia; de Farias, Renan Lira; de Oliveira, Adriano Bof

    2017-04-01

    The equimolar reaction between 4-(di-methyl-amino)-benzaldehyde and 2-acetyl-thio-phene in basic ethano-lic solution yields the title compound, C 15 H 15 NOS, whose mol-ecular structure matches the asymmetric unit. The mol-ecule is not planar, the dihedral angle between the aromatic and the thio-phene rings being 11.4 (2)°. In the crystal, mol-ecules are linked by C-H⋯O and weak C-H⋯S inter-actions along [100], forming R 2 2 (8) rings, and by weak C-H⋯O inter-actions along [010], forming chains with a C (6) graph-set motif. In addition, mol-ecules are connected into centrosymmetric dimers by weak C-H⋯π inter-actions, as indicated by the Hirshfeld surface analysis. The most important contributions for the crystal structure are the H⋯H (46.50%) and H⋯C (23.40%) inter-actions. The crystal packing resembles a herringbone arrangement when viewed along [100]. A mol-ecular docking calculation of the title compound with the neuraminidase enzyme was carried out. The enzyme shows ( ASN263 )N-H⋯O, ( PRO245 )C-H⋯ Cg (thio-phene ring) and ( AGR287 )C-H⋯N inter-molecular inter-actions with the title compound. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0181 (8).

  13. Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han

    2017-04-01

    The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.

  14. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  15. Purification, crystallization and characterization of the Pseudomonas outer membrane protein FapF, a functional amyloid transporter.

    PubMed

    Rouse, Sarah L; Hawthorne, Wlliam J; Lambert, Sebastian; Morgan, Marc L; Hare, Stephen A; Matthews, Stephen

    2016-12-01

    Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF 106-430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.

  16. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH[S

    PubMed Central

    Ioannou, George N.; Subramanian, Savitha; Chait, Alan; Haigh, W. Geoffrey; Yeh, Matthew M.; Farrell, Geoffrey C.; Lee, Sum P.; Savard, Christopher

    2017-01-01

    We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha, NLRP3, and interleukin 1beta (IL1β) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes. PMID:28404639

  17. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  18. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a familymore » 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.« less

  19. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-stepmore » pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.« less

  1. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Chul; Kwak, Hyun-Jung; Yoo, Chung-Yul

    2016-11-15

    A new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}, was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} crystallizes to the P2{sub 1}/n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO{sub 4}){sub 2}] layers alternating regularly with [LiSrPO{sub 4}] layers. In the [LiSrAl(PO{sub 4}){sub 2}] sublattice, the AlO{sub 6} octahedra and PO{sub 4} tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO{sub 4}){sub 2}]{supmore » 3−} framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO{sub 4}] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO{sub 4} and PO{sub 4} tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li{sup +} ion conduction. The impedance measurement indicated that Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} had a moderate ion conductivity (σ≈1.30×10{sup −4} S cm{sup −1} at 667 K), with an activation energy E{sub a}≈1.02 eV. - Graphical abstract: Polyhedral view of Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}. Li{sup +} ions are represented by green spheres, Sr atoms by white spheres, AlO{sub 6} groups by octahedra, and PO{sub 4} groups by tetrahedra. - Highlights: • New compound Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.« less

  2. Anisotropy of atomic bonds formed by p-type dopants in bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Suski, T.; Gorczyca, I.; Christensen, N. E.; Libera, J.; Kachniarz, J.; Lagarde, P.; Cortes, R.; Grzegory, I.

    The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg-N and Zn-N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn-N bond. Finally, it is suggested that the anisotropy in the length of the Mg-N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found.

  3. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers

    PubMed Central

    Smeets, Aude; Loumaye, Eléonore; Clippe, André; Rees, Jean-François; Knoops, Bernard; Declercq, Jean-Paul

    2008-01-01

    The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 Å resolution. Although A. marina PRDX6 was cloned during the search of annelid homologs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily. The protein is composed of two distinct domains: a C-terminal domain and an N-terminal domain exhibiting a thioredoxin fold. The subunits are associated in dimers compatible with the formation of intersubunit disulfide bonds between the peroxidatic and the resolving cysteine residues in the wild-type enzyme. The packing of two crystal forms is very similar, with pairs of dimers associated as tetramers. The toroid-shaped decamers formed by dimer association and observed in most typical 2-Cys PRDXs is not present. Thus, A. marina PRDX6 presents structural features of typical 2-Cys PRDXs without any formation of toroid-shaped decamers, suggesting that it should function more like a cytoprotective antioxidant enzyme or a modulator of peroxide-dependent cell signaling rather than a molecular chaperone. PMID:18359859

  4. Conformational Changes and Substrate Recognition in Pseudomonas aeruginosa d-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Li, Congran

    2010-11-15

    DADH catalyzes the flavin-dependent oxidative deamination of D-amino acids to the corresponding {alpha}-keto acids and ammonia. Here we report the first X-ray crystal structures of DADH at 1.06 {angstrom} resolution and its complexes with iminoarginine (DADH{sub red}/iminoarginine) and iminohistidine (DADH{sub red}/iminohistidine) at 1.30 {angstrom} resolution. The DADH crystal structure comprises an unliganded conformation and a product-bound conformation, which is almost identical to the DADH{sub red}/iminoarginine crystal structure. The active site of DADH was partially occupied with iminoarginine product (30% occupancy) that interacts with Tyr53 in the minor conformation of a surface loop. This flexible loop forms an 'active site lid',more » similar to those seen in other enzymes, and may play an essential role in substrate recognition. The guanidinium side chain of iminoarginine forms a hydrogen bond interaction with the hydroxyl of Thr50 and an ionic interaction with Glu87. In the structure of DADH in complex with iminohistidine, two alternate conformations were observed for iminohistidine where the imidazole groups formed hydrogen bond interactions with the side chains of His48 and Thr50 and either Glu87 or Gln336. The different interactions and very distinct binding modes observed for iminoarginine and iminohistidine are consistent with the 1000-fold difference in k{sub cat}/K{sub m} values for D-arginine and D-histidine. Comparison of the kinetic data for the activity of DADH on different D-amino acids and the crystal structures in complex with iminoarginine and iminohistidine establishes that this enzyme is characterized by relatively broad substrate specificity, being able to oxidize positively charged and large hydrophobic D-amino acids bound within a flask-like cavity.« less

  5. Computational research on lithium ion battery materials

    NASA Astrophysics Data System (ADS)

    Tang, Ping

    Crystals of LiFePO4 and related materials have recently received a lot of attention due to their very promising use as cathodes in rechargeable lithium ion batteries. This thesis studied the electronic structures of FePO 4 and LiMPO4, where M=Mn, Fe, Co and Ni within the framework of density-functional theory. The first study compared the electronic structures of the LiMPO 4 and FePO4 materials in their electrochemically active olivine form, using the LAPW (linear augmented plane wave) method [1]. A comparison of results for various spin configurations suggested that the ferromagnetic configuration can serve as a useful approximation for studying general features of these systems. The partial densities of states for the LiMPO4 materials are remarkably similar to each other, showing the transition metal 3d states forming narrow bands above the O 2p band. By contrast, in absence of Li, the majority spin transition metal 3d states are well-hybridized with the O 2p band in FePO4. The second study compared the electronic structures of FePO4 in several crystal structures including an olivine, monoclinic, quartz-like, and CrVO4-like form [2,3]. For this work, in addition to the LAPW method, PAW (Projector Augmented Wave) [4], and PWscf (plane-wave pseudopotential) [5] methods were used. By carefully adjusting the computational parameters, very similar results were achieved for the three independent computational methods. Results for the relative stability of the four crystal structures are reported. In addition, partial densities of state analyses show qualitative information about the crystal field splittings and bond hybridizations and help rationalize the understanding of the electrochemical and stability properties of these materials.

  6. Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

    PubMed Central

    2016-01-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  7. Morphology and networks of sunflower wax crystals in organogel

    USDA-ARS?s Scientific Manuscript database

    Plant waxes are considered as promising alternatives to unhealthy solid fats such as trans fats and saturated fats in structured food products including margarines and spreads. Sunflower wax is of a great interest due to its strong gelling ability. Morphology of sunflower wax crystals formed in soyb...

  8. Solid State Recrystallization of Single Crystal Ce:LSO Scintillator Crystals for High Resolution Detectors

    DTIC Science & Technology

    2012-06-01

    this report. The property measurements that have been focused on were the assessment of density ( Archimedes ). grain structure {optical and SEM...Scintillator", Materials Letters 60 1960-1963 (2006) [15] J.S. Reed, Forming Processes, Chapter 20 in Introduction to the Principles of Ceramic

  9. The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)

  10. Weak interactions involving organic fluorine: analysis of structural motifs in Flunazirine and Haloperidol

    NASA Astrophysics Data System (ADS)

    Prasanna, M. D.; Row, T. N. Guru

    2001-05-01

    The crystal structure of Flunazirine, an anticonvulsant drug, is analyzed in terms of intermolecular interactions involving fluorine. The structure displays motifs formed by only weak interactions C-H⋯F and C-H⋯π. The motifs thus generated show cavities, which could serve as hosts for complexation. The structure of Flunazirine displays cavities formed by C-H⋯F and C-H⋯π interactions. Haloperidol, an antipsychotic drug, shows F⋯F interactions in the crystalline lattice in lieu of Cl⋯Cl interactions. However, strong O-H⋯N interactions dominate packing. The salient features of the two structures in terms of intermolecular interactions reveal, even though organic fluorine has lower tendency to engage in hydrogen bonding and F⋯F interactions, these interactions could play a significant role in the design of molecular assemblies via crystal engineering.

  11. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data.

    PubMed

    Zilka, Miri; Dudenko, Dmytro V; Hughes, Colan E; Williams, P Andrew; Sturniolo, Simone; Franks, W Trent; Pickard, Chris J; Yates, Jonathan R; Harris, Kenneth D M; Brown, Steven P

    2017-10-04

    This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated.

  12. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.

  13. Crystallization of multiple forms of bovine seminal ribonuclease in the liganded and unliganded state

    NASA Astrophysics Data System (ADS)

    Sica, F.; Adinolfi, S.; Berisio, R.; De Lorenzo, C.; Mazzarella, L.; Piccoli, R.; Vitagliano, L.; Zagari, A.

    1999-01-01

    Bovine seminal ribonuclease (BS-RNase) is an intriguing homodimeric enzyme which exists as two conformational isomers, characterized by distinct catalytic and biological properties, referred to as M×M and M=M. Reduction of inter-chain disulfide bridges produces a stable monomeric derivative (M) which is still active. This paper reports the screening and optimization of crystallization conditions for growing single diffraction-quality crystals for the various BS-RNase forms. The crystallization trials were performed using both the vapor diffusion and microbatch methods. The M×M dimer was crystallized in the free form from polyethylene glycol (PEG) 4000 at pH 8.5 and as a complex with the substrate analog uridylyl(2'- 5')guanosine (UpG) from an unbuffered ammonium sulfate (AS) solution. These two crystal types diffract X-rays to 2.5 and 1.9 Å resolution, respectively. Two different crystal types were obtained both for the M=M dimer and for the monomeric derivative. (M=M)a crystals, grown from PEG 4000 (8% w/v) at pH 5.6, diffract X-rays to 4.0 Å. At higher PEG concentration (15% w/v) a different crystal type was obtained, (M=M)b, which showed a better diffraction limit (2.5 Å). For the monomer, type (M)a and (M)b crystals, diffracting X-rays to 2.5 Å resolution, were obtained from AS at pH 6.5 and from PEG 4000 at pH 8.5, respectively. A comparison with previously crystallized forms of the dimer M×M and its complexes with uridylyl(2'-5')adenosine and 2'-deoxycytidylyl(3'-5')-2'-deoxyadenosine is also presented. The three-dimensional structure analysis of (M×M)·UpG and (M=M)b is in progress.

  14. Biomineral nanoparticles are space-filling.

    PubMed

    Yang, Li; Killian, Christopher E; Kunz, Martin; Tamura, Nobumichi; Gilbert, P U P A

    2011-02-01

    Sea urchin biominerals have been shown to form from aggregating nanoparticles of amorphous calcium carbonate (ACC), which then crystallize into macroscopic single crystals of calcite. Here we measure the surface areas of these biominerals and find them to be comparable to those of space-filling macroscopic geologic calcite crystals. These biominerals differ from synthetic mesocrystals, which are invariably porous. We propose that space-filling ACC is the structural precursor for echinoderm biominerals.

  15. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    NASA Technical Reports Server (NTRS)

    Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.

    1995-01-01

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

  16. Polymorphism in 'L' shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains.

    PubMed

    Tarafdar, Pradip K; Swamy, Musti J

    2009-11-01

    Although solid state polymorphism in lipids has been established by spectroscopic and calorimetric studies long ago, only in a few cases crystal structures of different polymorphs of the same compound have been reported, possibly due to difficulties in obtaining high quality single crystals of individual polymorphs. Recent studies show that N-, O-diacylethanolamines (DAEs) can be derived by the O-acylation of the stress-related lipids, the N-acylethanolamines under physiological conditions. In this study, two DAEs with mixed acyl chains, namely N-palmitoyl, O-octanoylethanolamine and N-palmitoyl, O-decanoylethanolamine have been synthesized and their three-dimensional structures were determined. Both the compounds were found to adopt 'L' shaped structures and exist in two polymorphic forms, alpha and beta. In the alpha form a mixed-type chain packing has been observed whereas in the beta form the chain packing is symmetric. Similar polymorphic forms are likely to exist in other 'L' shaped lipids such as 1,3-diacylglycerols and ceramides, where polymorphism has been detected earlier, but three-dimensional structures - which can give precise information about the packing at atomic resolution - have not been reported.

  17. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  18. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study

    PubMed Central

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-01-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689

  19. Purification, crystallization and preliminary X-ray characterization of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin.

    PubMed

    Albillos, Silvia M; Jin, Tengchuan; Howard, Andrew; Zhang, Yuzhu; Kothary, Mahendra H; Fu, Tong-Jen

    2008-07-09

    The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond ( Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0 A and belong to the tetragonal space group P4(1)22, with unit cell parameters of a = b = 150.912 A, c = 165.248 A. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.

  20. New polymorphs of Ru IIIP 3O 9: Cyclo-hexaphosphate Ru 2P 6O 18 and metaphosphate Ru(PO 3) 3 with a novel structure

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1995-10-01

    Two new polymorphs of ruthenium phosphate with RuP 3O 9 composition were prepared and their crystal structures were determined by single-crystal X-ray diffraction. They are cyclo-hexaphosphate Ru 2P 6O 18 and metaphosphate Ru(PO 3) 3. Ru 2P 6O 18 crystallizes in the monoclinic space group P2 1/ c with a = 6.292(2) Å, b = 15.276(2) Å, c = 8.365(2) Å, β = 106.54(2)°, V = 770.6(3) Å 3, Z = 2, R = 0.043, RW = 0.035. The structure contains cyclo-hexaphosphate rings stacking obliquely along the [100] direction and is isotypic with B-form cyclo-phosphates. Ru(PO 3) 3 has a novel structure and crystallizes in the triclinic space group P overline1 with a = 6.957(1) Å, b = 10.324(2) Å, c = 5.030(1) Å, α = 92.45(2)°, β = 92.31(2)°, γ = 98.61(1)°, V = 356.5(1) Å 3, Z = 2, R = 0.030, RW = 0.027. It is built up of a network of infinite [PO 3-] ∞ chains and RuO 6 octahedra. The configuration of the metaphosphate chains is different from that in the C-form Ru(PO 3) 3. While the chains in the C-form consisting of PO 3OPO 3 units are condensed in nearly staggered configurations, the units in the new phosphate are eclipsed.

  1. Tautomerism and isomerism in some antitrichinellosis active benzimidazoles: Morphological study in polarized light, quantum chemical computations

    NASA Astrophysics Data System (ADS)

    Anichina, Kameliya; Mavrova, Anelia; Yancheva, Denitsa; Tsenov, Jordan; Dimitrov, Rasho

    2017-12-01

    The morphology of the crystal structure of some antitrichinellosis active benzimidazole derivatives including (1H-benzimidazol-2-ylthio)acetic acids, [1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones, 1H-benzimidazol-2-ylthioacetylpiperazines and starting 2-mercapto benzimidazoles, was studied by the use of Polarized Light Microscopy (PLM). Characterization of the crystal phase was complimented by Differential scanning calorimetry analysis (DSC) and spectroscopic data. DFT computations were performed in order to investigate the prototropic tautomerism and the geometry of the molecule of the synthesized compounds. One distinct type of crystal structure for each one of 5 or 6-methyl-(1H-benzimidazol-2-ylthio)acetic acid 6 was observed by PLM - dendritic and needle-shaped formations. Compound 14, containing a methyl substituent in the benzimidazole ring crystallized also into two phases; while for the unsubstituted compound 13 a separation of phases does not take place. The influence of the both solvents - chloroform and ethanol on the phase separation and the formation of the crystalline structure of compound 14 was investigated. The morphological study showed that the cyclization of 6 in the presence of acetic anhydride in pyridine medium led to a mixture of 6-methyl-[1,3]tiazolo[3,2-a]benzimidazol-3(2H)-one (10a) and 7-methyl-[1,3]thiazolo[3,2-a]-benzimidazole-3(2H)-one (10b), which crystallized in the form of fibrils and spherulites respectively. It was found that a difference in the crystal structures of substituted and unsubstituted benzimidazol-2-thiones, respectively benzimidazol-2-thiol derivatives exists, which may be due not only to the thiol-thione tautomerism but to the prototropic properties of the hydrogen atom in first position of the ring. The calculation results indicated that the thione form is more stable than the thiol tautomer by 51-55 kJ mol-1. But at the same time ΔG for the two thiol tautomers is below 0.5 kJ mol-1. In solid phase the 5(6)-substituted-1H-benzimidazol-2-thiols crystallized in two different crystal structures while the unsubstituted 1H-benzimidazol-2-thiol possess one type of crystal structure.

  2. Thermally-prepared polymorphic forms of cilostazol.

    PubMed

    Stowell, Grayson W; Behme, Robert J; Denton, Stacy M; Pfeiffer, Inigo; Sancilio, Frederick D; Whittall, Linda B; Whittle, Robert R

    2002-12-01

    Prior to this study, cilostazol, an antithrombotic drug, was thought to exist as a single crystalline phase with a melting point of approximately 159 degrees C (Form A). On cooling, melts often form a glass that, when heated, may crystallize as additional crystalline polymorphic forms. Cilostazol, when reheated, subsequently forms polymorphs that melt at approximately 136 degrees C (Form B) and 146 degrees C (Form C). Free-energy temperature diagrams estimated from calorimetry data reveal that each pair of the cilostazol polymorphs (A-B, B-C, and A-C) is monotropic. Essentially pure samples of suitable crystalline shape and size permitted single crystal structural analysis of Forms A and C. Theoretical solubility ratios calculated using calorimetry data indicate that at 37 degrees C, Form B should be more than four times more soluble and Form C should be more than two times more soluble than Form A. Forms B and C could not be crystallized from solvents. Metastable forms from super cooled melts analyzed by intrinsic dissolution and Fourier transform-Raman experiments demonstrated that Forms B and C undergo a rapid, solvent-mediated recrystallization to Form A, making dissolution rate measurements difficult. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2481-2488, 2002

  3. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software.

    PubMed

    Mylona, Anastasia; Carr, Stephen; Aller, Pierre; Moraes, Isabel; Treisman, Richard; Evans, Gwyndaf; Foadi, James

    2017-08-04

    The present article describes how to use the computer program BLEND to help assemble complete datasets for the solution of macromolecular structures, starting from partial or complete datasets, derived from data collection from multiple crystals. The program is demonstrated on more than two hundred X-ray diffraction datasets obtained from 50 crystals of a complex formed between the SRF transcription factor, its cognate DNA, and a peptide from the SRF cofactor MRTF-A. This structure is currently in the process of being fully solved. While full details of the structure are not yet available, the repeated application of BLEND on data from this structure, as they have become available, has made it possible to produce electron density maps clear enough to visualise the potential location of MRTF sequences.

  4. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software

    PubMed Central

    Mylona, Anastasia; Carr, Stephen; Aller, Pierre; Moraes, Isabel; Treisman, Richard; Evans, Gwyndaf; Foadi, James

    2018-01-01

    The present article describes how to use the computer program BLEND to help assemble complete datasets for the solution of macromolecular structures, starting from partial or complete datasets, derived from data collection from multiple crystals. The program is demonstrated on more than two hundred X-ray diffraction datasets obtained from 50 crystals of a complex formed between the SRF transcription factor, its cognate DNA, and a peptide from the SRF cofactor MRTF-A. This structure is currently in the process of being fully solved. While full details of the structure are not yet available, the repeated application of BLEND on data from this structure, as they have become available, has made it possible to produce electron density maps clear enough to visualise the potential location of MRTF sequences. PMID:29456874

  5. Predicting the structure of screw dislocations in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Walker, Andrew M.; Slater, Ben; Gale, Julian D.; Wright, Kate

    2004-10-01

    Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.

  6. Co-crystal formation between two organic solids on the surface of Titan

    NASA Astrophysics Data System (ADS)

    Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.

    2017-12-01

    Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.

  7. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  8. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu D.; Petukhov, A. V.; Byelov, D.; Chernyshov, D.; Okorokov, A. I.; Bouwman, W. G.; Grigoriev, S. V.

    2010-10-01

    Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a0 = 650 ± 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length Ltran is 2.4 ± 0.1 μm, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length Llong is 3.4 ± 0.2 μm, and the structure mosaic is of order of 10°.

  9. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    PubMed

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  10. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Israel S.; Ständker, Ludger; Hannover Medical School, Center of Pharmacology, 30625 Hannover

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer.more » In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.« less

  11. Crystal Structures and Phase Relationships of 2 Polymorphs of 1,4-Diazabicyclo[3.2.2]nonane-4-Carboxylic Acid 4-Bromophenyl Ester Fumarate, A Selective α-7 Nicotinic Receptor Partial Agonist.

    PubMed

    Robert, Benoît; Perrin, Marc-Antoine; Barrio, Maria; Tamarit, Josep-Lluis; Coquerel, Gérard; Ceolin, René; Rietveld, Ivo B

    2016-01-01

    Two polymorphs of the 1:1 fumarate salt of 1,4-diazabicyclo[3.2.2]nonane-4-carboxylic acid 4-bromophenyl ester, developed for the treatment of cognitive symptoms of schizophrenia and Alzheimer disease, have been characterized. The 2 crystal structures have been solved, and their phase relationships have been established. The space group of form I is P2₁/c with a unit-cell volume of 1811.6 (5) Å(3) with Z = 4. The crystals of form I were 2-component nonmerohedral twins. The space group of form II is P2₁/n with a unit-cell volume of 1818.6 (3) Å(3) with Z = 4. Relative stabilities have been inferred from experimental and topological P-T diagrams exhibiting an overall enantiotropic relationship between forms I and II although the solid-solid transition has never been observed. The slope of the I-II equilibrium in the P-T diagram is negative, form II is the stable phase below the solid-solid transition temperature of 371 K, and form I exhibits a stable melting equilibrium. The I-II transition temperature has been obtained from the intersection of the sublimation curves of the 2 solid forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Mechanisms for Improved Hygroscopicity of L-Arginine Valproate Revealed by X-Ray Single Crystal Structure Analysis.

    PubMed

    Ito, Masataka; Nambu, Kaori; Sakon, Aya; Uekusa, Hidehiro; Yonemochi, Etsuo; Noguchi, Shuji; Terada, Katsuhide

    2017-03-01

    Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    PubMed

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  14. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  15. A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Saheli, Sania; Rezvani, Alireza

    2017-01-01

    A new metal-organic framework (MOF) formulated as [Ni(H2btc)(OH)(H2O)2] (1) (H3btc = 1,3,5-benzenetricarboxylic acid) was synthesized using the hydrothermal technique. The complex 1 was characterized by elemental analysis, infrared spectroscopy, and powder X-ray diffraction in addition to single crystal X-ray diffraction. X-ray crystal structural analysis displayed that the compound belonged to the monoclinic space group P21/n with cell parameters a = 6.8658(14) Å, b = 18.849(4) Å, c = 8.5608(17) Å. In the title complex, ligand is linked to metal centers through two μ-oxo bridges and forming a 2D layer which is led to form an interesting geometry. The thermal stability and fluorescence property of 1 have also been investigated.

  16. Slow light enhanced gas sensing in photonic crystals

    NASA Astrophysics Data System (ADS)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  17. Reaction-diffusion-induced explosive crystallization in a metal-selenium nanometer film structure

    NASA Astrophysics Data System (ADS)

    Kogai, V. Ya.

    2016-03-01

    Experimental data for reaction-diffusion-induced explosive crystallization in a nanodimensional metal (Cu, Ag)/selenium structure are presented. It is found that after the metal layer has completely diffused into the amorphous Se film, the electrical potential rises from 0.14 to 1.21 V in the Cu(30 nm)/Se(140 nm) heterolayer and from 0.01 to 1.17 V in the Ag(30 nm)/Se(140 nm) heterolayer. The metals diffusing into the amorphous Se layer interact with Se, forming nuclei of a new phase (CuSe or Ag2Se). The intense growth of the CuSe and Ag2Se crystallization centers results in a considerable liberation of latent energy in the form of phase transformation heat and in explosive growth of CuSe and Ag2Se nanocrystalline particles. The mean size of CuSe and Ag2Se crystallites equals 25 and 50 nm, respectively.

  18. Crystal structure of the cis and trans polymorphs of bis-[μ-2-(1,3-benzo-thia-zol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis-[fac-tri-carbonyl-rhenium(I)].

    PubMed

    Priyatharsini, Maruthupandiyan; Shankar, Bhaskaran; Sathiyendiran, Malaichamy; Srinivasan, Navaneethakrishnan; Krishnakumar, Rajaputi Venkatraman

    2017-02-01

    The title dinuclear complex, [Re 2 (C 13 H 8 NOS) 2 (CO) 6 ], crystallizes in two polymorphs where the 2-(1,3-benzo-thia-zol-2-yl)phenolate ligands and two carbonyl groups are trans - ( I ) or cis -arranged ( II ) with respect to the [Re 2 O 2 (CO) 4 ] core. Polymorphs I and II exhibit a crystallographically imposed centre of symmetry and a twofold rotation axis, respectively. The structures may be described as being formed by two octa-hedrally distorted metal-coordinating units fused through μ-oxido bridges, leading to edge-sharing dimers. The crystal packing is governed by C-H⋯O hydrogen-bonding inter-actions, forming chains parallel to the c axis in I and a three-dimensional network in II .

  19. Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods

    PubMed Central

    Mandal, Kalyaneswar; Pentelute, Brad L; Tereshko, Valentina; Thammavongsa, Vilasak; Schneewind, Olaf; Kossiakoff, Anthony A; Kent, Stephen B H

    2009-01-01

    We describe the use of racemic crystallography to determine the X-ray structure of the natural product plectasin, a potent antimicrobial protein recently isolated from fungus. The protein enantiomers l-plectasin and d-plectasin were prepared by total chemical synthesis; interestingly, l-plectasin showed the expected antimicrobial activity, while d-plectasin was devoid of such activity. The mirror image proteins were then used for racemic crystallization. Synchrotron X-ray diffraction data were collected to atomic resolution from a racemic plectasin crystal; the racemate crystallized in the achiral centrosymmetric space group with one l-plectasin molecule and one d-plectasin molecule forming the unit cell. Dimer-like intermolecular interactions between the protein enantiomers were observed, which may account for the observed extremely low solvent content (13%–15%) and more highly ordered nature of the racemic crystals. The structure of the plectasin molecule was well defined for all 40 amino acids and was generally similar to the previously determined NMR structure, suggesting minimal impact of the crystal packing on the plectasin conformation. PMID:19472324

  20. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  1. Crystal morphology variation in inkjet-printed organic materials

    NASA Astrophysics Data System (ADS)

    Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.

    2011-11-01

    The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.

  2. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  3. Method and apparatus for forming ceramic oxide superconductors with ordered structure

    DOEpatents

    Nellis, W.J.; Maple, M.B.

    1987-12-23

    Disclosed are products and processes for making improved magnetic and superconducting articles from anisotropic starting materials by initially reducing the starting materials into a powdered form composed of particles of uniform directional crystal structures, forming a directionally uniform aggregate of particles by exposing the aggregate to a magnetic field of desired magnitude and direction, and then compacting the aggregate into an integral solid body. 2 Figs.

  4. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponemamore » pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.« less

  5. Microgravity

    NASA Image and Video Library

    2004-04-15

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  6. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    NASA Astrophysics Data System (ADS)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  7. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  8. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    PubMed

    Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  9. Crystal structure of the co-crystal fac-tri-aqua-tris(thio-cyanato-κN)iron(III)-2,3-di-methyl-pyrazine (1/3).

    PubMed

    Kucheriv, Olesia I; Shylin, Sergii I; Ilina, Tetiana A; Dechert, Sebastian; Gural'skiy, Il'ya A

    2015-04-01

    In the crystal of the title compound, [Fe(NCS)3(H2O)3]·3C6H8N2, the Fe(III) cation is located on a threefold rotation axis and is coordinated by three N atoms of the thiocyanate anions and three water mol-ecules in a fac arrangement, forming a slightly distorted N3O3 octa-hedron. Stabilization within the crystal structure is provided by O-H⋯N hydrogen bonds; the H atoms from coordinating water mol-ecules act as donors to the N atoms of guest 2,3-di-methyl-pyrazine mol-ecules, leading to a three-dimensional supra-molecular framework.

  10. Crystal structure of substrate free form of glycerol dehydratase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate withmore » the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.« less

  11. Crystallization and preliminary X-ray diffraction study of phosphopantetheine adenylyltransferase from M. tuberculosis crystallizing in space group P3{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: tostars@mail.ru; Chupova, L. A.; Esipov, R. S.

    Crystals of M. tuberculosis phosphopantetheine adenylyltransferase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 2.00-Å resolution. The crystals belong to sp. gr. P3{sub 2} and have the following unit-cell parameters: a = b = 106.47 Å, c = 71.32 Å, α = γ = 90°, β = 120°. The structure was solved by the molecular-replacement method. There are six subunits of the enzyme comprising a hexamer per asymmetricmore » unit. The hexamer is a biologically active form of phosphopantetheine adenylyltransferase from M. tuberculosis.« less

  12. Features of the structural states of KNbO{sub 3} single crystals before and after fast-neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A. I., E-mail: astas@yandex.ru; Ivanov, S. A.; Stefanovich, S. Yu.

    Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 10{sup 17} and 3 × 10{sup 17} cm{sup –2}) on the structure and properties of KNbO{sub 3} single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO{sub 3} samples at T = 295 K and their correlations with the behaviormore » of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO{sub 3} polar structure, shifting Т{sub Ð}¡ to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO{sub 3} crystal.« less

  13. Crystal Structures of Apo and Metal-Bound Forms of the UreE Protein from Helicobacter pylori: Role of Multiple Metal Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Munger, Christine; Asinas, Abdalin

    2010-10-22

    The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 {angstrom} resolution, bound to Cu{sup 2+} at 2.7 {angstrom} resolution, and bound to Ni{sup 2+} at 3.1 {angstrom} resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding.more » The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni{sup 2+} for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni{sup 2+}-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.« less

  14. Bacteria form tellurium nanocrystals

    USGS Publications Warehouse

    Oremland, R.S.

    2007-01-01

    A team of researchers have found two bacterial species that produce tellurium oxyanions as respiratory electron acceptors for growth, leaving elemental tellurium in the form of nanoparticles. The crystals from the two organisms exhibit distinctively different structures. Bacillus selenitireducens initially forms nanorods that cluster together to form rosettes. Sulfurospirillum barnesii forms irregularly-shaped nanospheres that coalesce into larger composite aggregates.

  15. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    NASA Astrophysics Data System (ADS)

    Zemčík, T.

    1994-12-01

    Fe-Tm-B base (TM=transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100°C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline “Finemet” alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Mössbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems.

  16. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jianbin; Xu, Chao; Bian, Chuanbing

    2012-07-18

    We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the importantmore » roles of lamin B1 in forming the nuclear lamina matrix.« less

  17. Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.

    PubMed

    Corbett, Michael S P; Mark, Alan E; Poger, David

    2017-02-28

    Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment.

    PubMed

    Rønholt, Stine; Kirkensgaard, Jacob Judas Kain; Pedersen, Thomas Bæk; Mortensen, Kell; Knudsen, Jes Christian

    2012-12-01

    The effect of cream heat treatment prior to butter manufacturing, fluctuating temperatures during storage and presence of fat globules vs. no fat globules was examined in laboratory scale produced butter. X-ray diffraction and differential scanning calorimetry was used to study crystallization behaviour and nuclear magnetic resonance to measure solid fat content and water droplet size distribution. Furthermore, the crystal structure was linked to the rheological properties and microstructure of the butter using confocal laser scanning microscopy. Butter produced from non-matured cream mainly formed α- and β'-crystals with minor traces of β-crystals. Maturing of the cream caused a transition from α- to β'- and β-form. The rheological behaviour of slow cooled butter deviated from the matured ones by having a lower elastic modulus, caused by a weaker crystal network. Presence of fat globules did not affect the rheological properties significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals.

    PubMed

    Hartman, Joshua D; Beran, Gregory J O

    2014-11-11

    First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.

  20. Crystal structure and chemical bonding in the mixed anion compound BaSF.

    PubMed

    Driss, D; Cadars, S; Deniard, P; Mevellec, J-Y; Corraze, B; Janod, E; Cario, L

    2017-11-28

    BaSF was synthesised by a solid state reaction at high temperature and its crystal structure was determined thanks to X-ray diffraction on a single crystal. This transparent yellow fluorochalcogenide has an intergrowth structure built from the stacking of fluorite type layers and sulfur layers. In BaSF sulfur atoms form dimers with interatomic distances as short as 2.1074(10) Å. DFT calculations confirm that this compound is a band insulator with the Fermi level lying in between the antibonding π* and σ* molecular orbitals of the sulfur dimers. Reflectance measurements show that the optical band gap of BaSF is about 2.7 eV in good agreement with the value found from DFT calculations.

  1. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  2. Two tautomeric forms of 2-amino-5,6-dimethylpyrimidin-4-one.

    PubMed

    Hall, Victoria M; Bertke, Jeffery A; Swift, Jennifer A

    2016-06-01

    Derivatives of 4-hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto-enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H-keto tautomer in the solid state. Recrystallization of 2-amino-5,6-dimethyl-4-hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H-keto tautomer, denoted form (I). Though not apparent in the X-ray data, the IR spectrum suggests that small amounts of the 4-hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H-keto and the 3H-keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one-dimensional and three-dimensional hydrogen-bonding motifs, respectively.

  3. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography.

    PubMed

    Bunker, Richard D; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J; Pentelute, Bradley L; Lott, J Shaun; Kent, Stephen B H; Baker, Edward N

    2015-04-07

    Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.

  4. Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.

    2012-06-11

    The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less

  5. X-ray diffraction studies of enkephalins. Crystal structure of [(4'-bromo) Phe4,Leu5]enkephalin.

    PubMed Central

    Ishida, T; Kenmotsu, M; Mino, Y; Inoue, M; Fujiwara, T; Tomita, K; Kimura, T; Sakakibara, S

    1984-01-01

    In order to investigate the structure-activity relationship of [Leu5]- and [Met5]enkephalins, [(4'-bromo)Phe4, Leu5]-, [(4'-bromo)Phe4, Met5]- and [Met5] enkephalins were synthesized and crystallized. The crystal structure of [(4'-bromo) Phe4, Leu5]- enkephalin was determined by X-ray diffraction method using the heavy atom method and refined to R = 0.092 by the least-squares method. The molecule in this crystal took essentially the same type I' beta-turn conformation found in [Leu5]enkephalin [Smith & Griffin (1978) Science 199, 1214-1216). On the other hand, the preliminary three-dimensional Patterson analyses showed that the most probable conformations of [(4'-bromo)Phe4,Met5]- and [Met5]enkephalins are both the dimeric extended forms. Based on these insights, the biologically active conformation of enkephalin was discussed in relation to the mu- and delta-receptors. PMID:6721829

  6. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Zhang, Gao; Luan, Jieyu; Chen, Zhiqun; Su, Pengfei; Shu, Yuanjie

    2016-04-01

    A new cocrystal explosive of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane(CL-20) and 2,5-dinitrotoluene(DNT) in a molar ratio of 1:2 has been prepared by slow solvent evaporation method. Crystal structure of the cocrystal characterized by single crystal X-ray diffraction (SXRD) reveals that the cocrystal is formed by intermolecular hydrogen bond interactions and belongs to the triclinic system with P-1 group. Moreover, the obivious differences of powder X-ray diffraction (PXRD) patterns, infrared spectroscopy and Raman spectroscopy confirm that the intermolecular interactions have great influence for the crystal structure and formation of cocrystal. The cocrystal exhibits a lower impact height of 44 cm, suggesting a substantial reduction of sensitivity in comparison with CL-20. And thermal test results showed cocrystal obtains a lower melting point than DNT, which means huge advantages in blasting engineering.

  7. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    NASA Astrophysics Data System (ADS)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  8. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less

  9. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    DOE PAGES

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; ...

    2015-04-07

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less

  10. Crystallization of the C-terminal globular domain of avian reovirus fibre

    PubMed Central

    van Raaij, Mark J.; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-01-01

    Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6322 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the ZnII- and CdII-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-­terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine. PMID:16511119

  11. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba {delta}-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ounjai, Puey; Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170; Unger, Vinzenz M.

    The insecticidal nature of Cry {delta}-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared tomore » be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore.« less

  12. Solid state characterization and crystal structure from X-ray powder diffraction of two polymorphic forms of ranitidine base.

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy

    2009-01-01

    Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Rosenberger, Franz

    1998-01-01

    Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.

  14. Insights into Hydrate Formation and Stability of Morphinanes from a Combination of Experimental and Computational Approaches

    PubMed Central

    2014-01-01

    Morphine, codeine, and ethylmorphine are important drug compounds whose free bases and hydrochloride salts form stable hydrates. These compounds were used to systematically investigate the influence of the type of functional groups, the role of water molecules, and the Cl– counterion on molecular aggregation and solid state properties. Five new crystal structures have been determined. Additionally, structure models for anhydrous ethylmorphine and morphine hydrochloride dihydrate, two phases existing only in a very limited humidity range, are proposed on the basis of computational dehydration modeling. These match the experimental powder X-ray diffraction patterns and the structural information derived from infrared spectroscopy. All 12 structurally characterized morphinane forms (including structures from the Cambridge Structural Database) crystallize in the orthorhombic space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks. The salt structures of the different compounds exhibit only little structural variation. Anhydrous polymorphs were detected for all compounds except ethylmorphine (one anhydrate) and its hydrochloride salt (no anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential scanning and isothermal calorimetry were employed to estimate the heat of the hydrate ↔ anhydrate phase transformations, indicating an enthalpic stabilization of the respective hydrate of 5.7 to 25.6 kJ mol–1 relative to the most stable anhydrate. These results are in qualitative agreement with static 0 K lattice energy calculations for all systems except morphine hydrochloride, showing the need for further improvements in quantitative thermodynamic prediction of hydrates having water···water interactions. Thus, the combination of a variety of experimental techniques, covering temperature- and moisture-dependent stability, and computational modeling allowed us to generate sufficient kinetic, thermodynamic and structural information to understand the principles of hydrate formation of the model compounds. This approach also led to the detection of several new crystal forms of the investigated morphinanes. PMID:25036525

  15. Crystal structure of (E)-undec-2-enoic acid.

    PubMed

    Sonneck, Marcel; Peppel, Tim; Spannenberg, Anke; Wohlrab, Sebastian

    2015-06-01

    In the mol-ecule of the title low-melting α,β-unsaturated carb-oxy-lic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related mol-ecules are linked by pairs of O-H⋯O hydrogen bonds into dimers, forming layers parallel to the (041) plane.

  16. 3-Fluoro­salicylaldoxime at 6.5 GPa

    PubMed Central

    Wood, Peter A.; Forgan, Ross S.; Parsons, Simon; Pidcock, Elna; Tasker, Peter A.

    2009-01-01

    3-Fluoro­salicylaldoxime, C7H6FNO2, unlike many salicylaldoxime derivatives, forms a crystal structure containing hydrogen-bonded chains rather than centrosymmetric hydrogen-bonded ring motifs. Each chain inter­acts with two chains above and two chains below via π–π stacking contacts [shortest centroid–centroid distance = 3.295 (1) Å]. This structure at 6.5 GPa represents the final point in a single-crystal compression study. PMID:21583672

  17. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.

    PubMed

    Bao, Jianna; Han, Lili; Shan, Guorong; Bao, Yongzhong; Pan, Pengju

    2015-10-01

    Although stereocomplex (sc) crystallization is highly effective for improving the thermal resistance of poly(lactic acid) (PLA), it is much less predominant than homocrystallization in high-molecular-weight (HMW) poly(l-lactic acid)/ poly(d-lactic acid) (PLLA/PDLA) racemic blends. In this contribution, the sc crystallization of HMW PLLA/PDLA racemic blends was facilitated by using comblike PLAs with cellulose acetate as the backbone. Competing crystallization kinetics, polymorphic crystalline structure, and structural transition of comblike PLLA/PDLA blends with a wide range of MWs were investigated and compared with the corresponding linear/comblike and linear blends. The HMW comblike blend is preferentially crystallized in sc polymorphs and exhibits a faster crystallization rate than does the corresponding linear blend. The sc crystallites are predominantly formed in nonisothermal cold crystallization and isothermal crystallization at temperatures above 120 °C for the comblike blends. Except for the facilitated sc formation in primary crystallization, synchrotron radiation WAXD analysis indicates that the presence of a comblike component also facilitates the transition or recrystallization from homocrystallite (hc) to sc crystallite upon heating. Preferential sc formation of comblike blends is probably attributable to the favorable interdigitation between enantiomeric branches and the increased mobility of polymer segments. After crystallization under the same temperature, the comblike blends, which mainly contain sc crystallites, show smaller long periods and thinner crystalline lamellae than do the corresponding PLLA with homocrystalline structures.

  18. Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica

    PubMed Central

    Yasutake, Yoshiaki; Fujii, Yoshikazu; Cheon, Woo-Kwang; Arisawa, Akira; Tamura, Tomohiro

    2009-01-01

    Vitamin D3 hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D3 via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D3 (cholecalciferol or VD3) to 25-hydroxyvitamin D3 [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1α,25-dihydroxyvitamin D3 [calciferol or 1α,25(OH)2VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P31, with unit-cell parameters a = b = 61.7, c = 98.8 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P212121, with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 Å for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal. PMID:19342783

  19. Crystal structure of 2-azido-1 H -imidazole-4,5-dicarbonitrile

    DOE PAGES

    Windler, G. Kenneth; Scott, Brian L.; Tomson, Neil C.; ...

    2015-08-06

    We report that in the title compound, C 5HN 7, the nitrile and azido substituents are close to being coplanar with the central ring. Molecules in the crystal are linked via an N—H...N hydrogen bond to a nitrile acceptor, forming a chain extending along the c-axis direction.

  20. Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties.

    PubMed

    Zhang, Lei; Maity, Sourav; Liu, Kai; Liu, Qing; Göstl, Robert; Portale, Giuseppe; Roos, Wouter H; Herrmann, Andreas

    2017-09-01

    Over the last decades, water-based lyotropic liquid crystals of nucleic acids have been extensively investigated because of their important role in biology. Alongside, solvent-free thermotropic liquid crystals (TLCs) from DNA are gaining great interest, owing to their relevance to DNA-inspired optoelectronic applications. Up to now, however, only the smectic phase of DNA TLCs has been reported. The development of new mesophases including nematic, hexagonal, and cubic structures for DNA TLCs remains a significant challenge, which thus limits their technological applications considerably. In this work, a new type of DNA TLC that is formed by electrostatic complexation of anionic oligonucleotides and cationic surfactants containing an azobenzene (AZO) moiety is demonstrated. DNA-AZO complexes form a stable nematic mesophase over a temperature range from -7 to 110 °C and retain double-stranded DNA structure at ambient temperature. Photoisomerization of the AZO moieties from the E- to the Z-form alters the stiffness of the DNA-AZO hybrid materials opening a pathway toward the development of DNA TLCs as stimuli-responsive biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystallization of FcpA from Leptospira, a novel flagellar protein that is essential for pathogenesis.

    PubMed

    San Martin, Fabiana; Mechaly, Ariel E; Larrieux, Nicole; Wunder, Elsio A; Ko, Albert I; Picardeau, Mathieu; Trajtenberg, Felipe; Buschiazzo, Alejandro

    2017-03-01

    The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genus Leptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenic Leptospira particularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA from L. interrogans was purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic species L. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.

  2. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    PubMed

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structural studies of the nudix hydrolase DR1025 from deinococcus radiodurans and its ligand complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranatunga, Wasantha; Hill, Emma E.; Mooster, Jana L.

    We have determined the crystal structure, at 1.4, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked b-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap4A (both at 1.6 resolution). Inmore » the Ap4Aco-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved.« less

  4. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.

    2018-01-01

    We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.

  5. Crystal structures and theoretical studies of polyphosphate LiZnP3O9 for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Xie, Zhiqing; Su, Xin; Ding, Hanqin; Li, Hongyi

    2018-06-01

    Nonlinear optical materials have attracted worldwide attention owing to their wide range of applications, specially in the laser field. Phosphates with noncentrosymmetric structures are potential candidates for novel ultraviolet (UV)-NLO materials, because they usually display short UV cut-off edges. In this work, a polyphosphate, the LiZnP3O9 polyphosphate crystals were grown through spontaneous crystallization from high-temperature melts. It crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.330(3) Å, b = 8.520(3) Å, c = 8.635(3) Å, and Z = 4. In the structure, all the P atoms are coordinated by four oxygen atoms forming the [PO4] tetrahedra and further connected to generate a zig-zag [PO3]∞ anionic framework. Thermal analysis, IR spectroscopy, UV-vis-NIR diffuse reflectance spectrum and powder second harmonic generation measurements are performed. In addition, the first-principles calculation was employed for better understanding the structure-property relationships of LiZnP3O9.

  6. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    PubMed

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam

    PubMed Central

    Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.

    2014-01-01

    It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092

  8. 2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)phen­yl]-4,5-dihydro-1H-imidazole

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2008-01-01

    The mol­ecule of the title compound, C12H14N4, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. In the crystal structure, neighbouring mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into one-dimensional infinite chains forming 18-membered rings with R 2 2(18) motifs. The crystal structure is further stabilized by weak inter­molecular π–π stacking [centroid–centroid distance = 3.8254 (6) Å] and C—H⋯π inter­actions. PMID:21581375

  9. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  10. Crystal Structure of the Arginine Repressor Protein in Complex With the DNA Operator From Mycobacterium Tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, L.T.; Cherney, M.M.; Garen, C.R.

    2009-05-12

    The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the L-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 {angstrom} resolution with bound arginine and at 2.15 {angstrom} resolution in the unliganded form. These structures show that six molecules ofmore » MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11{sup o} upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.« less

  11. Crystal structure of hydrocortisone acetate, C23H32O6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Gindhart, Amy M.; Blanton, Thomas N.

    The crystal structure of hydrocortisone acetate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydrocortisone acetate crystallizes in space groupP2 1(#4) witha= 8.85173(3) Å,b= 13.53859(3) Å,c= 8.86980(4) Å,β= 101.5438(3)°,V= 1041.455(6) Å 3, andZ= 2. Both hydroxyl groups form hydrogen bonds to the ketone oxygen atom on the steroid ring system, resulting in a three-dimensional hydrogen bond network. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

  12. Colorimetric detection of hydrogen peroxide by dioxido-vanadium(V) complex containing hydrazone ligand: synthesis and crystal structure

    NASA Astrophysics Data System (ADS)

    Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.

    2018-03-01

    Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.

  13. Crystal structure and superconductivity in atomic hydrogen: Deformation between I41/amd and Fddd

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Oda, T.; Suzuki, N.; Shimizu, K.

    2017-10-01

    We investigated crystal structures of solid metallic hydrogen using the potential energy surface trekking for structure search. We applied this technique to a tetragonal I41/amd structure at pressures of 500 and 600 GPa and obtained the transformation into multiple orthorhombic Fddd structures, which are formed by distortions in the ab plane of I41/amd. The potential barriers are easily surmounted by few trekking steps, which indicates that in solid metallic hydrogen crystal structure is softened with respect to the distortion and is easily fluctuated among the I41/amd and Fddd structures. Calculated superconducting critical temperatures show 269 K for I41/amd and 263 K for Fddd at 500 GPa. The structures are softened and the electron-phonon coupling are enhanced with pressurization to 600 GPa. As the results, the superconducting critical temperature is increased to 281 K for I41/amd, whereas it is decreased to 252 K for Fddd owing to its larger phonon softening than that of I41/amd.

  14. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  15. Crystal structure of Rv2258c from Mycobacterium tuberculosis H37Rv, an S-adenosyl-l-methionine-dependent methyltransferase.

    PubMed

    Im, Ha Na; Kim, Hyoun Sook; An, Doo Ri; Jang, Jun Young; Kim, Jieun; Yoon, Hye-Jin; Yang, Jin Kuk; Suh, Se Won

    2016-03-01

    The Mycobacterium tuberculosis Rv2258c protein is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase). Here, we have determined its crystal structure in three forms: a ligand-unbound form, a binary complex with sinefungin (SFG), and a binary complex with S-adenosyl-L-homocysteine (SAH). The monomer structure of Rv2258c consists of two domains which are linked by a long α-helix. The N-terminal domain is essential for dimerization and the C-terminal domain has the Class I MTase fold. Rv2258c forms a homodimer in the crystal, with the N-terminal domains facing each other. It also exists as a homodimer in solution. A DALI structural similarity search with Rv2258c reveals that the overall structure of Rv2258c is very similar to small-molecule SAM-dependent MTases. Rv2258c interacts with the bound SFG (or SAH) in an extended conformation maintained by a network of hydrogen bonds and stacking interactions. Rv2258c has a relatively large hydrophobic cavity for binding of the methyl-accepting substrate, suggesting that bulky nonpolar molecules with aromatic rings might be targeted for methylation by Rv2258c in M. tuberculosis. However, the ligand-binding specificity and the biological role of Rv2258c remain to be elucidated due to high variability of the amino acid residues defining the substrate-binding site. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  17. Effects of impurities on crystal growth in fructose crystallization

    NASA Astrophysics Data System (ADS)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  18. KMo4O6 form II

    NASA Astrophysics Data System (ADS)

    Villars, P.; Cenzual, K.; Gladyshevskii, R.; Shcherban, O.; Dubenskyy, V.; Kuprysyuk, V.; Savysyuk, I.; Zaremba, R.

    This document is part of Subvolume A11 'Structure Types. Part 11: Space Groups (135) P42/mbc - (123) P4/mmm' of Volume 43 'Crystal Structures of Inorganic Compounds' of Landolt-Börnstein - Group III 'Condensed Matter'.

  19. 3-D Structure of Molecules of Biological Significance

    ERIC Educational Resources Information Center

    Bennett, Alice S.; Schwenk, Karl

    1974-01-01

    Describes how to use the distinctive properties of osazone formation in conjunction with molecular model construction to demonstrate the relationship between the three-dimensional structures of simple sugars and the shapes of crystals they form. (BR)

  20. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

Top