Sample records for structure determination joint

  1. Comparison of structural performance of one- and two-bay rotary joints for truss applications

    NASA Technical Reports Server (NTRS)

    Vail, J. Douglas; Lake, Mark S.

    1991-01-01

    The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.

  2. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  3. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  4. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.

  5. An analytical investigation of a conceptual design for the station transverse boom rotary joint structure

    NASA Technical Reports Server (NTRS)

    Lake, M. S.; Bush, H. G.

    1986-01-01

    A study was conducted to define an annular ring, discrete roller assembly concept for the space station transverse boom rotary joint. The concept was analyzed using closed-form and finite element techniques, to size structural members for a range of joint diameters and to determine necessary equivalent stiffnesses for the roller assemblies. Also, a mass study of the system was conducted to determine its practicality, and maximum loads in the joint were identified. To obtain the optimum balance between high stiffness and low structural mass in the design of the rotary joint, it is necessary to maximize the diameter of the annular ring within operational constraints (i.e., shuttle cargo bay size). Further, a rotary joint designed with the largest possible ring diameter will result in minimum operational loads in both the roller assemblies and the transition truss members while also allowing minimum design stiffnesses for the roller assemblies.

  6. Application of Bionic Design to FRP T-Joints

    NASA Astrophysics Data System (ADS)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  7. Augmented reality environment for temporomandibular joint motion analysis.

    PubMed

    Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R

    1996-01-01

    The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.

  8. Strength Variation of Parachute Joints

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2017-01-01

    A parachute joint is defined as a location where a component is sewn or connected to another component. During the design and developmental phase of a parachute system, the joints for each structural component are isolated and tested through a process called seam and joint testing. The objective of seam and joint testing is to determine the degradation on a single component due to interaction with other components; this data is then used when calculating the margin of safety for that component. During the engineering developmental phase of CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, testing was completed for every joint of the six subsystems: the four parachutes (main, drogue, pilot, and FBCP [forward bay cover parachute]), the retention release bridle, and the retention panels. The number of joint tests for these subsystems totaled 92, which provides a plethora of data and results for further analysis. In this paper, the data and results of these seam and joint tests are examined to determine the effects, if any, of different operators and sewing machines on the strength of parachute joints. Other variables are also studied to determine their effect on joint strength, such as joint complexity, joint strength magnitude, material type, and material construction. Findings reveal that an optimally-run seam and joint test program could result in an increased understanding of the structure of the parachute; this should lead to a parachute built with optimal components, potentially saving system weight and volume.

  9. Lightning Protection and Structural Bonding for the B2 Test Stand

    NASA Technical Reports Server (NTRS)

    Kinard, Brandon

    2015-01-01

    With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.

  10. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  11. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  12. The microstructure and microhardness of friction stir welded dissimilar copper/Al-5% Mg alloys

    NASA Astrophysics Data System (ADS)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    A friction stir welded joint between copper and aluminum alloy has been investigated and characterized for the microstructure and microhardness number distribution. The microstructural evolution of the joint is studied using optical microscopy and microhardness. The mechanical characteristics in structural zones of FSW joints are determined by Vickers microhardness measurements. Samples were cut across the cross section. It is shown that intermetallic Cu/Al particles are formed at interfaces. The intermetallics microhardness in the dissimilar aluminum/cooper FSW joint differs from that of the joint produced by fusion welding. The grain structures obtained in different dissimilar joint zones are examined.

  13. Structural factors of jointed plain concrete pavements : SPS-2--initial evaluation and analysis

    DOT National Transportation Integrated Search

    2005-04-01

    The SPS-2 experiment, "Strategic Study of Structural Factors for Jointed Plain Concrete Pavements (JPCP)," is one of the key components of the Long Term Pavement Performance (LTPP) program. The main objective of this experiment is to determine the re...

  14. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    NASA Astrophysics Data System (ADS)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  15. Program Calculates Forces in Bolted Structural Joints

    NASA Technical Reports Server (NTRS)

    Buder, Daniel A.

    2005-01-01

    FORTRAN 77 computer program calculates forces in bolts in the joints of structures. This program is used in conjunction with the NASTRAN finite-element structural-analysis program. A mathematical model of a structure is first created by approximating its load-bearing members with representative finite elements, then NASTRAN calculates the forces and moments that each finite element contributes to grid points located throughout the structure. The user selects the finite elements that correspond to structural members that contribute loads to the joints of interest, and identifies the grid point nearest to each such joint. This program reads the pertinent NASTRAN output, combines the forces and moments from the contributing elements to determine the resultant force and moment acting at each proximate grid point, then transforms the forces and moments from these grid points to the centroids of the affected joints. Then the program uses these joint loads to obtain the axial and shear forces in the individual bolts. The program identifies which bolts bear the greatest axial and/or shear loads. The program also performs a fail-safe analysis in which the foregoing calculations are repeated for a sequence of cases in which each fastener, in turn, is assumed not to transmit an axial force.

  16. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  17. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  18. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  19. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Bridgwater, Lyndon (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  20. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  1. Development of design and analysis methodology for composite bolted joints

    NASA Astrophysics Data System (ADS)

    Grant, Peter; Sawicki, Adam

    1991-05-01

    This paper summarizes work performed to develop composite joint design methodology for use on rotorcraft primary structure, determine joint characteristics which affect joint bearing and bypass strength, and develop analytical methods for predicting the effects of such characteristics in structural joints. Experimental results have shown that bearing-bypass interaction allowables cannot be defined using a single continuous function due to variance of failure modes for different bearing-bypass ratios. Hole wear effects can be significant at moderate stress levels and should be considered in the development of bearing allowables. A computer program has been developed and has successfully predicted bearing-bypass interaction effects for the (0/+/-45/90) family of laminates using filled hole and unnotched test data.

  2. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases, η-phase (Cu6Sn 5) and epsilon-phase (Cu3Sn), were found in almost all the cases regardless of the process parameters and size levels. The physics-based analytical model was successfully able to capture the governing mechanisms of IMC growth: chemical reaction controlled and diffusion-controlled. Examination of microstructures of solder joints of different sizes revealed the size of the solder joint has no effect on the type of IMCs formed during the process. Joint size, however, affected the thickness of IMC layers significantly. IMC layers formed in the solder joints of smaller sizes were found to be thicker than those in the solder joints of larger sizes. The growth rate constants and activation energies of Cu3Sn IMC layer were also reported and related to joint thickness. In an effort to optimize the EBSD imaging in the multi-layer configuration, an improved specimen preparation technique and optimum software parameters were determined. Nanoindentation results show that size effects play a major role on the mechanical properties of micro-scale solder joints. Smaller joints show higher Young's modulus, hardness, and yield strength and lower work hardening exponents comparing to thicker joints. To obtain the stress concentration factors in a multilayer specimen with IMC layer as bonding material, a four-point bending notched configuration was used. The analytical solutions developed for peeling and shear stresses in notched structure were used to evaluate the stresses at IMC interface layers. Results were in good agreement with the finite-element simulation. The values of interfacial stresses were utilized in obtaining fracture toughness of the IMC material. (Abstract shortened by UMI.)

  3. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    NASA Astrophysics Data System (ADS)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  4. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  5. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  6. Performance limitations of joint variable-feedback controllers due to manipulator structural flexibility

    NASA Technical Reports Server (NTRS)

    Cetinkunt, Sabri; Book, Wayne J.

    1990-01-01

    The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.

  7. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  8. Investigation of displacement, strain and stress in single step transversely isotropic elastic bonded joint

    NASA Astrophysics Data System (ADS)

    Apu, Md. Jakaria; Islam, Md. Shahidul

    2016-07-01

    Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.

  9. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  10. Identifying the control structure of multijoint coordination during pistol shooting.

    PubMed

    Scholz, J P; Schöner, G; Latash, M L

    2000-12-01

    The question of degrees of freedom in the control of multijoint movement is posed as the problem of discovering how the motor control system constrains the many possible combinations of joint postures to stabilize task-dependent essential variables. Success at a task can be achieved, in principle, by always adopting a particular joint combination. In contrast, we propose a more selective control strategy: variations of the joint configuration that leave the values of essential task variables unchanged are predicted to be less controlled (i.e., stabilized to a lesser degree) than joint configuration changes that shift the values of the task variables. Our experimental task involved shooting with a laser pistol at a target under four conditions. The seven joint angles of the arm were obtained from the recorded positions of markers on the limb segments. The joint configurations observed at each point in normalized time were analyzed with respect to trial-to-trial variability. Different hypotheses about relevant task variables were used to define sets of joint configurations ("uncontrolled manifolds" or UCMs) that, if realized, would leave essential task variables unchanged. The variability of joint configurations was decomposed into components lying parallel to those sets and components lying in their complement. The orientation of the gun's barrel relative to a vector pointing from the gun to the target was the task variable most successful at showing a difference between the two components of joint variability. This variable determines success at the task. Throughout the movement, not only while the gun was pointing at the target, fluctuations of joint configuration that affected this variable were much reduced compared with fluctuations that did not affect this variable. The UCM principle applied to relative gun orientation thus captures the structure of the motor control system across different parts of joint configuration space as the movement evolves in time. This suggests a specific control strategy in which changes of joint configuration that are irrelevant to success at the task are selectively released from control. By contrast, constraints representing an invariant spatial position of the gun or of the arm's center of mass structured joint configuration variability in the early and mid-portion of the movement trajectory, but not at the time of shooting. This specific control strategy is not trivial, because a target can be hit successfully also by controlling irrelevant directions in joint space equally to relevant ones. The results indicate that the method can be successfully used to determine the structure of coordination in joint space that underlies the control of the essential variables for a given task.

  11. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  12. Effect of walking speed on lower extremity joint loading in graded ramp walking.

    PubMed

    Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich

    2005-07-01

    Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.

  13. Glass Masonry - Experimental Verification of Bed Joint under Shear

    NASA Astrophysics Data System (ADS)

    Fíla, J.; Eliášová, M.; Sokol, Z.

    2017-10-01

    Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.

  14. Dorsal Arthroscopic Approach and Intra-Articular Anatomy of the Bovine Antebrachiocarpal and Middle Carpal Joints.

    PubMed

    Lardé, Hélène; Nichols, Sylvain; Babkine, Marie; Desrochers, André

    2016-07-01

    To determine arthroscopic approaches to the dorsal synovial compartments of the antebrachiocarpal and middle carpal joints in adult cattle, and to describe the arthroscopic intra-articular anatomy from each approach. Ex vivo study. Six fresh adult bovine cadavers. Two carpi were injected with latex and dissected to determine the ideal location for arthroscopic portals. Arthroscopy of the antebrachiocarpal and middle carpal joints of 10 carpi was then performed. The dorsolateral approach was made between the extensor carpi radialis and common digital extensor tendons. The dorsomedial approach was made medial to the extensor carpi radialis tendon, midway between the distal radius and proximal row of carpal bones (antebrachiocarpal joint) and midway between the two rows of carpal bones (middle carpal joint), with the joint in flexion. Arthroscopy of the antebrachiocarpal joint allowed visualization of the distal radius, proximal aspect of the radial, intermediate and ulnar carpal bones, and a palmar ligament located between the radius and the intermediate carpal bone. The approach to the middle carpal joint allowed visualization of the distal aspect of the radial, intermediate, and ulnar carpal bones, the proximal aspect of the fourth and fused second and third carpal bones and an interosseous ligament. The most lateral articular structures (lateral glenoid cavity of the distal radius, ulnar carpal and fourth carpal bones) were difficult to assess. Dorsal approaches to the antebrachiocarpal and middle carpal joints allowed visualization of most intra-articular dorsal structures in adult cattle. © Copyright 2016 by The American College of Veterinary Surgeons.

  15. Digital tomosynthesis rendering of joint margins for arthritis assessment

    NASA Astrophysics Data System (ADS)

    Duryea, Jeffrey W.; Neumann, Gesa; Yoshioka, Hiroshi; Dobbins, James T., III

    2004-05-01

    PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

  16. Shatter cones at the Keurusselkä impact structure and their relation to local jointing

    NASA Astrophysics Data System (ADS)

    Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan

    2016-08-01

    Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be identified yet. The original composition of the fill could not be determined. Further work is required on this material. Observed joints and fractures were discussed against findings from Barringer impact crater. They show that impact-induced joints in the basement rock do not follow impact-specific orientations (such as radial, conical, or concentric).

  17. Structural and Hydrologic Implications of Joint Orientations in the Warner Creek and Stony Clove Drainage Basins, Catskill Mountains, Eastern New York

    NASA Astrophysics Data System (ADS)

    Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.

    2010-12-01

    To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.

  18. Design of Revolute Joints for In-Mold Assembly Using Insert Molding.

    PubMed

    Ananthanarayanan, Arvind; Ehrlich, Leicester; Desai, Jaydev P; Gupta, Satyandra K

    2011-12-01

    Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.

  19. Measurement of damping of graphite epoxy composite materials and structural joints

    NASA Technical Reports Server (NTRS)

    Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche

    1989-01-01

    The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.

  20. There's no profiting from a joint venture misadventure.

    PubMed

    Herschman, Gary W

    2004-10-01

    In St. David's vs. IRS, a not-for-profit health system effectively challenged the IRS's determination that the system should be disqualified from tax exemption because it had entered a 50/50 joint venture with a for-profit system. The court decisions in St. David's, coupled with a recent IRS ruling, Revenue Ruling 2004-51, provide insight into how a not-for-profit hospital can structure such a joint venture to avoid jeopardizing its tax-exempt status.

  1. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  2. Effects of damping on mode shapes, volume 1

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1977-01-01

    Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Methods developed to incorporate structural joints and their damping characteristics into a finite element model of the space shuttle, to determine the point damping parameters required to produce realistic damping in the primary modes, and to calculate the effect of distributed damping on structural resonances through the calculation of admittances.

  3. Joint evolution of specialization and dispersal in structured metapopulations.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2011-04-21

    We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool

    NASA Astrophysics Data System (ADS)

    Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.

    2010-09-01

    An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.

  5. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.

  6. Geodynamical Nature of the Formation of Large Plates of Platforms, Jointed in North Caspian Oil and Gas Basin

    ERIC Educational Resources Information Center

    Seitov, Nassipkali; Tulegenova, Gulmira P.

    2016-01-01

    This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…

  7. An Investigation of Joint Service Acquisition Logistics Issues/Problems and Automated Joint Program Support.

    DTIC Science & Technology

    1984-09-01

    Management Information System (ALMIS) to address them. Literature was surveyed and problems were summarized and developed into a questionnaire. Structured interviews were then conducted with over 100 different Air Force and civilian upper and middle JSAP managers. Many general and specific problems and issues were identified and validated using statistical and qualitative methods. General use of ALMIS to address certain joint service problem areas was confirmed. Potential use and desirable capabilities for ALMIS were also determined. Recommendations for ALMIS

  8. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    NASA Astrophysics Data System (ADS)

    Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul

    2013-12-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.

  9. Obesity & osteoarthritis

    PubMed Central

    King, Lauren K.; March, Lyn; Anandacoomarasamy, Ananthila

    2013-01-01

    The most significant impact of obesity on the musculoskeletal system is associated with osteoarthritis (OA), a disabling degenerative joint disorder characterized by pain, decreased mobility and negative impact on quality of life. OA pathogenesis relates to both excessive joint loading and altered biomechanical patterns together with hormonal and cytokine dysregulation. Obesity is associated with the incidence and progression of OA of both weight-bearing and non weight-bearing joints, to rate of joint replacements as well as operative complications. Weight loss in OA can impart clinically significant improvements in pain and delay progression of joint structural damage. Further work is required to determine the relative contributions of mechanical and metabolic factors in the pathogenesis of OA. PMID:24056594

  10. Bonded composite to metal scarf joint performance in an aircraft landing gear drag strut. [for Boeing 747 aircraft

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.

  11. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  12. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  13. First-passage problems: A probabilistic dynamic analysis for degraded structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1990-01-01

    Structures subjected to random excitations with uncertain system parameters degraded by surrounding environments (a random time history) are studied. Methods are developed to determine the statistics of dynamic responses, such as the time-varying mean, the standard deviation, the autocorrelation functions, and the joint probability density function of any response and its derivative. Moreover, the first-passage problems with deterministic and stationary/evolutionary random barriers are evaluated. The time-varying (joint) mean crossing rate and the probability density function of the first-passage time for various random barriers are derived.

  14. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  15. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  16. Simplified and refined finite element approaches for determining stresses and internal forces in geometrically nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Robinson, J. C.

    1979-01-01

    Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.

  17. Tapping and listening: a new approach to bolt looseness monitoring

    NASA Astrophysics Data System (ADS)

    Kong, Qingzhao; Zhu, Junxiao; Ho, Siu Chun Michael; Song, Gangbing

    2018-07-01

    Bolted joints are among the most common building blocks used across different types of structures, and are often the key components that sew all other structural parts together. Monitoring and assessment of looseness in bolted structures is one of the most attractive topics in mechanical, aerospace, and civil engineering. This paper presents a new percussion-based non-destructive approach to determine the health condition of bolted joints with the help of machine learning. The proposed method is very similar to the percussive diagnostic techniques used in clinical examinations to diagnose the health of patients. Due to the different interfacial properties among the bolts, nuts and the host structure, bolted joints can generate unique sounds when it is excited by impacts, such as from tapping. Power spectrum density, as a signal feature, was used to recognize and classify recorded tapping data. A machine learning model using the decision tree method was employed to identify the bolt looseness level. Experiments demonstrated that the newly proposed method for bolt looseness detection is very easy to implement by ‘listening to tapping’ and the monitoring accuracy is very high. With the rapid in robotics, the proposed approach has great potential to be implemented with intimately weaving robotics and machine learning to produce a cyber-physical system that can automatically inspect and determine the health of a structure.

  18. Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III

    2006-01-01

    Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.

  19. Collaborative Partner or Social Tool? New Evidence for Young Children's Understanding of Joint Intentions in Collaborative Activities

    ERIC Educational Resources Information Center

    Warneken, Felix; Grafenhain, Maria; Tomasello, Michael

    2012-01-01

    Some children's social activities are structured by joint goals. In previous research, the criterion used to determine this was relatively weak: if the partner stopped interacting, did the child attempt to re-engage her? But re-engagement attempts could easily result from the child simply realizing that she needs the partner to reach her own goal…

  20. Schools, Skills and Risk

    ERIC Educational Resources Information Center

    Hartog, Joop; Vijverberg, Wim

    2007-01-01

    Skill development involves important choices for individuals and school designers: should individuals and schools specialize, or should they aim for an optimal combination of skills? We analyze this question by employing mean-standard deviation analysis and show how cost structure, benefit structure and risk attitudes jointly determine the optimal…

  1. Joint Chiefs of Staff > Leadership

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Structure Joint Staff Organizational Chart Joint Chiefs of Staff Links Home Today in DOD About DOD Top Issues News Photos/Videos

  2. Effects of joints in truss structures

    NASA Technical Reports Server (NTRS)

    Ikegami, R.

    1988-01-01

    The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.

  3. Improved stud configurations for attaching laminated wood wind turbine blades

    NASA Technical Reports Server (NTRS)

    Fadoul, J. R.

    1985-01-01

    A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.

  4. Strength and Performance Enhancement of Bonded Joints by Spatial Tailoring of Adhesive Compliance via 3D Printing.

    PubMed

    Kumar, S; Wardle, Brian L; Arif, Muhamad F

    2017-01-11

    Adhesive bonding continues to emerge as a preferred route for joining materials with broad applications including advanced structures, microelectronics, biomedical systems, and consumer goods. Here, we study the mechanics of deformation and failure of tensile-loaded single-lap joints with a compliance-tailored adhesive. Tailoring of the adhesive compliance redistributes stresses and strains to reduce both shear and peel concentrations at the ends of the adhesive that determine failure of the joint. Utilizing 3D printing, the modulus of the adhesive is spatially varied along the bondlength. Experimental strength testing, including optical strain mapping, reveals that the strain redistribution results in a greater than 100% increase in strength and toughness concomitant with a 50% increase in strain-to-break while maintaining joint stiffness. The tailoring demonstrated here is immediately realizable in a broad array of 3D printing applications, and the level of performance enhancement suggests that compliance tailoring of the adhesive is a generalizable route for achieving superior performance of joints in other applications, such as advanced structural composites.

  5. Research regarding the influence of driving-wires length change on positioning precision of a robotic arm

    NASA Astrophysics Data System (ADS)

    Ciofu, C.; Stan, G.

    2016-08-01

    The paper emphasise positioning precision of an elephant's trunk robotic arm which has joints driven by wires with variable length while operating The considered 5 degrees of freedom robotic arm has a particular structure of joint that makes possible inner actuation with wire-driven mechanism. We analyse solely the length change of wires as a consequence due inner winding and unwinding on joints for certain values of rotational angles. Variations in wires length entail joint angular displacements. We analyse positioning precision by taking into consideration equations from inverse kinematics of the elephant's trunk robotic arm. The angular displacements of joints are considered into computational method after partial derivation of positioning equations. We obtain variations of wires length at about tenths of micrometers. These variations employ angular displacements which are about minutes of sexagesimal degree and, thus, define positioning precision of elephant's trunk robotic arms. The analytical method is used for determining aftermath design structure of an elephant's trunk robotic arm with inner actuation through wires on positioning precision. Thus, designers could take suitable decisions on accuracy specifications limits of the robotic arm.

  6. Arthroscopic approach and intra-articular anatomy of the dorsal and plantar synovial compartments of the bovine tarsocrural joint.

    PubMed

    Lardé, Hélène; Nichols, Sylvain; Babkine, Marie; Desrochers, André

    2017-01-01

    To determine arthroscopic approaches to the dorsal and plantar synovial compartments of the tarsocrural joint in adult cattle, and to describe the arthroscopic intra-articular anatomy from each approach. Ex vivo study. Fresh adult bovine cadavers (n = 7). Two tarsocrural joint were injected with latex to determine arthroscopic portal locations and arthroscopy of the tarsocrural joint of 12 tarsi was performed. The dorsolateral approach was made through the large pouch located between the long digital extensor and peroneus longus tendons. The dorsomedial approach was made just medial to the common synovial sheath of the tibialis cranialis, peroneus tertius, and long digital extensor tendons. The plantarolateral and plantaromedial approaches were made lateral and medial to the tarsal tendon sheath, respectively. Each approach allowed visualization of the distal tibia articulating with the proximal trochlea of the talus. Consistently observed structures included the distal intermediate ridge of the tibia, and the medial and lateral trochlear ridges and trochlear groove of the talus. Lateral and medial malleoli were best assessed from dorsal approaches. From the lateral approaches evaluation of the abaxial surface of the lateral trochlear ridge allowed visualization of the fibulocalcaneal joint. From the plantar approaches additional observed structures included the coracoid process of the calcaneus, plantar trochlea of the talus, and plantar talotibial and talofibular ligaments. In cattle, the dorsolateral and plantarolateral approaches allowed for the best evaluation of the dorsal and plantar aspects of the tarsocrural joint, respectively. © 2017 The American College of Veterinary Surgeons.

  7. The Morphology of Intermediate Structures Formed During Bainite Transformation in HSLA Steels

    NASA Astrophysics Data System (ADS)

    Seidurov, Mikhail N.; Kovalev, Sergey V.; Zubkov, Alexander S.

    2017-10-01

    The paper deals with the structure of bainite formed under the influence of thermal deformation cycles of welding in low-carbon bainitic class steels. Morphology features associated with the formation of mesoferrite and granular bainite determines the high cold resistance of welded joints.

  8. Structural Degradation of the Welded Joint of the Gas Main after a Long-Term Operation in Sub-Acid Soil

    NASA Astrophysics Data System (ADS)

    Maruschak, P. O.; Bishchak, R. T.; Maruschak, O. V.; Panin, S. V.

    2018-01-01

    The authors investigated the main regularities in the structural and mechanical degradation of steel and a welded joint of the “Soyuz” gas main in operation. It is established that the defect accumulation kinetics in welds are determined both by technological disruptions in their manufacture and by hydrogenation of the weld during a long operating time. A weakening of the mechanical properties of the weld after a prolonged operation is shown, which in some cases led to the appearance of cracks and fracture of the gas main.

  9. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  10. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various joint configurations, including double cantilever beam and single lap joints.

  11. Thermographic Analysis of Stress Distribution in Welded Joints

    NASA Astrophysics Data System (ADS)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  12. Treatment of rheumatoid joint inflammation with intrasynovial triamcinolone hexacetonide.

    PubMed

    McCarty, D J; Harman, J G; Grassanovich, J L; Qian, C

    1995-09-01

    To determine the effectiveness of intrasynovial triamcinolone hexacetonide coupled with joint rest (3 weeks upper extremity; 6 weeks lower extremity) in the treatment of joint and tendon sheath inflammation in patients with seropositive rheumatoid arthritis (RA). The medical records of 169 patients with seropositive RA treated by a single rheumatologist for at least one year between 1974 and 1992 were abstracted. Nine hundred fifty-six injections were given to 140 patients; approximately 75% of injected synovial structures remained in remission during a mean followup 7 years; 218 injections were given into previously treated structures. The injection rate was about 2 per patient in the first year, half of which were given at the time of the first visit. The rate then approximated 0.6 injections per patient-year for the next 15 years. Joints in the right upper extremity were injected significantly (p = 0.01) more frequently than those on the left. Intrasynovial triamcinolone hexacetonide followed by rest is a very useful adjunctive modality in the treatment of seropositive rheumatoid arthritis.

  13. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage.

    PubMed

    Stefanik, J J; Niu, J; Gross, K D; Roemer, F W; Guermazi, A; Felson, D T

    2013-05-01

    To describe the prevalence of magnetic resonance imaging (MRI) detected structural damage in the patellofemoral joint (PFJ) and tibiofemoral joint (TFJ) in a population-based cohort. A secondary aim was to evaluate the patterns of compartmental involvement in knees with pain, between men and women, and in different age and body mass index (BMI) categories. We studied 970 knees, one knee per subject, from the Framingham Osteoarthritis Study, a population-based cohort study of persons 51-92 years old. Cartilage damage and bone marrow lesions (BMLs) were assessed using the Whole Organ Magnetic Resonance Imaging Score (WORMS). The prevalence of isolated PFJ, isolated TFJ, and mixed structural damage was determined using the following definitions: any cartilage damage, full thickness cartilage loss, any BML, and the combination of full thickness cartilage loss with any BML. The mean age and BMI was 63.4 years and 28.6 m/kg(2), respectively; 57% were female. Isolated PFJ damage occurred in 15-20% of knees and isolated TFJ damage occurred in 8-17% of knees depending on the definition used. The prevalence of isolated PFJ damage was greater than isolated TFJ damage using all definitions except the any BML definition. This pattern was similar between genders and among age and BMI categories. In those with knee pain, isolated PFJ was at least as common as TFJ damage depending on the definition used. Using MRI to assess knee joint structural damage, isolated PFJ damage was at least as common as, if not more common than, isolated TFJ damage. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  15. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  16. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    PubMed

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Finite element model updating of riveted joints of simplified model aircraft structure

    NASA Astrophysics Data System (ADS)

    Yunus, M. A.; Rani, M. N. Abdul; Sani, M. S. M.; Shah, M. A. S. Aziz

    2018-04-01

    Thin metal sheets are widely used to fabricate a various type of aerospace structures because of its flexibility and easily to form into any type shapes of structure. The riveted joint has turn out to be one of the popular joint types in jointing the aerospace structures because they can be easily be disassembled, maintained and inspected. In this paper, thin metal sheet components are assembled together via riveted joints to form a simplified model of aerospace structure. However, to model the jointed structure that are attached together via the mechanical joints such as riveted joint are very difficult due to local effects. Understandably that the dynamic characteristic of the joined structure can be significantly affected by these joints due to local effects at the mating areas of the riveted joints such as surface contact, clamping force and slips. A few types of element connectors that available in MSC NATRAN/PATRAN have investigated in order to presented as the rivet joints. Thus, the results obtained in term of natural frequencies and mode shapes are then contrasted with experimental counterpart in order to investigate the acceptance level of accuracy between element connectors that are used in modelling the rivet joints of the riveted joints structure. The reconciliation method via finiteelement model updating is used to minimise the discrepancy of the initial finite element model of the riveted joined structure as close as experimental data and their results are discussed.

  18. A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Bowman, Lynn M.; Hughes, Robert M., IV; Jackson, Brian J.

    1990-01-01

    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.

  19. Biographies

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Senior Leaders Gen. Joseph F Biography All Joint Staff Biographies Thomas F. Carney, Vice Director for Force Structure, Resources,and

  20. Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Stalnaker, Winifred A.

    1987-01-01

    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative.

  1. Evaluation of scattered light distributions of cw-transillumination for functional diagnostic of rheumatic disorders in interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Prapavat, Viravuth; Schuetz, Rijk; Runge, Wolfram; Beuthan, Juergen; Mueller, Gerhard J.

    1995-12-01

    This paper presents in-vitro-studies using the scattered intensity distribution obtained by cw- transillumination to examine the condition of rheumatic disorders of interphalangeal joints. Inflammation of joints, due to rheumatic diseases, leads to changes in the synovial membrane, synovia composition and content, and anatomic geometrical variations. Measurements have shown that these rheumatic induced inflammation processes result in a variation in optical properties of joint systems. With a scanning system the interphalangeal joint is transilluminated with diode lasers (670 nm, 905 nm) perpendicular to the joint cavity. The detection of the entire distribution of the transmitted radiation intensity was performed with a CCD camera. As a function of the structure and optical properties of the transilluminated volume we achieved distributions of scattered radiation which show characteristic variations in intensity and shape. Using signal and image processing procedures we evaluated the measured scattered distributions regarding their information weight, shape and scale features. Mathematical methods were used to find classification criteria to determine variations of the joint condition.

  2. Experimental studies of glued Aluminum-glass joints

    NASA Astrophysics Data System (ADS)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.

  3. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    NASA Astrophysics Data System (ADS)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  4. A Study of the Effect of Adhesive and Matrix Stiffnesses on the Axial, Normal, and Shear Stress Distributions of a Boron-epoxy Reinforced Composite Joint. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The mechanical properties of a symmetrical, eight-step, titanium-boron-epoxy joint are discussed. A study of the effect of adhesive and matrix stiffnesses on the axial, normal, and shear stress distributions was made using the finite element method. The NASA Structural Analysis Program (NASTRAN) was used for the analysis. The elastic modulus of the adhesive was varied from 345 MPa to 3100 MPa with the nominal value of 1030 MPa as a standard. The nominal values were used to analyze the stability of the joint. The elastic moduli were varied to determine their effect on the stresses in the joint.

  5. Evaluation of Margins of Safety in Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.

    2009-01-01

    One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.

  6. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  7. Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial.

    PubMed

    Henriksen, M; Hunter, D J; Dam, E B; Messier, S P; Andriacchi, T P; Lohmander, L S; Aaboe, J; Boesen, M; Gudbergsen, H; Bliddal, H; Christensen, R

    2013-12-01

    To investigate whether increased knee joint loading due to improved ambulatory function and walking speed following weight loss achieved over 16 weeks accelerates symptomatic and structural disease progression over a subsequent 1 year weight maintenance period in an obese population with knee osteoarthritis (OA). Data from a prospective study of weight loss in obese patients with knee OA (the CARtilage in obese knee OsteoarThritis (CAROT) study) were used to determine changes in knee joint compressive loadings (model estimated) during walking after a successful 16 week weight loss intervention. The participants were divided into 'Unloaders' (participants that reduced joint loads) and 'Loaders' (participants that increased joint loads). The primary symptomatic outcome was changes in knee symptoms, measured with the Knee injury and Osteoarthritis Outcome Score (KOOS) questionnaire, during a subsequent 52 weeks weight maintenance period. The primary structural outcome was changes in tibiofemoral cartilage loss assessed semi-quantitatively (Boston Leeds Knee Osteoarthritis Score (BLOKS) from MRI after the 52 weight maintenance period. 157 participants (82% of the CAROT cohort) with medial and/or lateral knee OA were classified as Unloaders (n = 100) or Loaders (n = 57). The groups showed similar significant changes in symptoms (group difference: -2.4 KOOS points [95% CI -6.8:1.9]) and cartilage loss (group difference: -0.06 BLOKS points [95% CI -0.22:0.11) after 1 year, with no statistically significant differences between Loaders and Unloaders. For obese patients undergoing a significant weight loss, increased knee joint loading for 1 year was not associated with accelerated symptomatic and structural disease progression compared to a similar weight loss group that had reduced ambulatory compressive knee joint loads. NCT00655941. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Joint Chiefs of Staff > Media

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Media News Videos Chairman's

  9. A Fundamental Investigation into the Joining of Advanced Light Materials

    DTIC Science & Technology

    1991-11-25

    discontinuities), the evolution and nature of the metallurgical structure and correspondingly the joint mechanical properties must be developed. In...metallurgical phenomena associated with formation of the weld structure and its corresponding influence on mechanical properties . During the course of...temperature mechanical properties . Work by the same authors on GTA and electron-beam weld fusion zone structures in 2 090-T8 determined strengthening

  10. Joint probabilistic determination of earthquake location and velocity structure: application to local and regional events

    NASA Astrophysics Data System (ADS)

    Beucler, E.; Haugmard, M.; Mocquet, A.

    2016-12-01

    The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.

  11. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.

  12. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  13. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  14. Model-based Approaches for the Determination of Lipid Bilayer Structure from Small-Angle Neutron and X-ray Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F

    2012-01-01

    Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enoughmore » information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.« less

  15. Joint Chiefs of Staff > Directorates > J3 | Operations

    Science.gov Websites

    Joint Staff Structure Joint Staff Inspector General Origin of Joint Concepts U.S. Code | Joint Chiefs of J8 | Force Structure, Resources & Assessment Contact J3 Operations Home : Directorates : J3

  16. Determination of the normal arthroscopic anatomy of the femoropatellar and cranial femorotibial joints of cattle.

    PubMed

    Nichols, Sylvain; Anderson, David E

    2014-03-01

    The arthroscopic approach and anatomy of the bovine femoropatellar and femorotibial joints are described. A 4-mm diameter, 15-cm long arthroscope with a 30° forward angle view was used. The structures viewed were recorded according to the position of the arthroscope within the joint. The femoropatellar joint was best accessed via a lateral approach, between the middle and lateral patellar ligaments. The axial portion of the medial femorotibial joint was viewed from a medial approach between the middle and medial patellar ligaments and the abaxial portion was viewed from a lateral approach between the middle and the lateral patellar ligaments. The axial portion of the lateral femorotibial joint was viewed from a lateral approach between the middle and the lateral patellar ligaments and the abaxial portion was viewed from a medial approach between the middle and medial patellar ligaments. The results of this study provide guidelines regarding the location of arthroscopic portals to evaluate precisely different areas of the stifle in cattle.

  17. Determination of the normal arthroscopic anatomy of the femoropatellar and cranial femorotibial joints of cattle

    PubMed Central

    Nichols, Sylvain; Anderson, David E.

    2014-01-01

    The arthroscopic approach and anatomy of the bovine femoropatellar and femorotibial joints are described. A 4-mm diameter, 15-cm long arthroscope with a 30° forward angle view was used. The structures viewed were recorded according to the position of the arthroscope within the joint. The femoropatellar joint was best accessed via a lateral approach, between the middle and lateral patellar ligaments. The axial portion of the medial femorotibial joint was viewed from a medial approach between the middle and medial patellar ligaments and the abaxial portion was viewed from a lateral approach between the middle and the lateral patellar ligaments. The axial portion of the lateral femorotibial joint was viewed from a lateral approach between the middle and the lateral patellar ligaments and the abaxial portion was viewed from a medial approach between the middle and medial patellar ligaments. The results of this study provide guidelines regarding the location of arthroscopic portals to evaluate precisely different areas of the stifle in cattle. PMID:24587506

  18. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation : volume 1 : evaluation of ultra high strength concrete (UHSC) in joints of bridge girders.

    DOT National Transportation Integrated Search

    2017-03-01

    Joints are often considered as the weak link in a structure and often deterioration of the structure initiates from the : joints. Joints transfer the stresses from super-structure to sub-structure and in this process are subjected to large : transfer...

  19. Stiff, Strong Splice For A Composite Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Schmaling, D.

    1991-01-01

    New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.

  20. Joint programmes in paediatric cardiothoracic surgery: a survey and descriptive analysis.

    PubMed

    DeCampli, William M

    2011-12-01

    Joint programmes, as opposed to regionalisation of paediatric cardiac care, may improve outcomes while preserving accessibility. We determined the prevalence and nature of joint programmes. We sent an online survey to 125 paediatric cardiac surgeons in the United States in November, 2009 querying the past or present existence of a joint programme, its mission, structure, function, and perceived success. A total of 65 surgeon responses from 65 institutions met the criteria for inclusion. Of the 65 institutions, 22 currently or previously conducted a joint programme. Compared with primary institutions, partner institutions were less often children's hospitals (p = 0.0004), had fewer paediatric beds (p = 0.005), and performed fewer cardiac cases (p = 0.03). Approximately 47% of partner hospitals performed fewer than 50 cases per year. The median distance range between hospitals was 41-60 miles, ranging from 5 to 1000 miles. Approximately 54% of partner hospitals had no surgeon working primarily on-site, and 31% of the programmes conducted joint conferences. Approximately 67% of the programmes limited the complexity of cases at the partner hospital, and 83% of the programmes had formal contracts between hospitals. Of the six programmes whose main mission was to increase referrals to the primary hospital, three were felt to have failed. Of the nine programmes whose mission was to increase regional quality, eight were felt to be successful. Joint programmes in paediatric cardiac surgery are common but are heterogeneous in structure and function. Programmes whose mission is to improve the quality of regional care seem more likely to succeed. Joint programmes may be a practical alternative to regionalisation to achieve better outcomes.

  1. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-12-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  2. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  3. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  4. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  5. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    PubMed Central

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  6. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    PubMed

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  7. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  8. Structural Mapping and Geomorphology of Ireland's Southwest Continental Shelf Using High Resolution Sonar

    NASA Astrophysics Data System (ADS)

    Bowden, S.; Wireman, R.

    2016-02-01

    Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.

  9. The Joint Chiefs of Staff Video Collections

    Science.gov Websites

    Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Home : Media : Videos Featured Videos Gen

  10. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  11. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  12. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: an example of cyanogenic toxicants and aldehydes.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang

    2012-02-01

    Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive toxicants based on the atomic charges. Copyright © 2011 SETAC.

  13. On the damping effect due to bolted junctions in space structures subjected to pyro-shock

    NASA Astrophysics Data System (ADS)

    de Benedetti, M.; Garofalo, G.; Zumpano, M.; Barboni, R.

    2007-06-01

    The damping due to bolted or riveted joints in the dynamics of assembled structures subjected to pyro-shock has been studied. A relevant effect in this phenomenon is the micro-slip between the jointed surfaces. In order to verify the feasibility and the reliability of the numerical analyses performed on structures with junctions, the numerical results obtained by the finite elements method have been compared with those obtained experimentally. Several numerical analyses, in which friction forces have been represented as nonlinear loads, have been carried out for the FE models of two application cases: an electronic unit mounted within the Radarsat-2 satellite, and the complete Cosmo-Skymed spacecraft. Considering the load type, involving a typical high frequency response spectrum between 100 and 10 000 Hz, both numerical and experimental data have been reduced to the shock response spectrum form. After the comparative evaluation, taking into account also the damping effect, the agreement between numerical results and experimental data has been evaluated. The proposed numerical approach yields an effective and less expensive instrument, able to provide indications in the design phase, to allow the prevision of the dynamic behaviour of the structure for the prevention of failures in units or systems mounted within the spacecraft or launch vehicle. With the proposed model, it is possible to determine in a simple and direct way the characteristics of the damping due to the single bolted and riveted joints, and use them in similar multiple joints in the complete structure assembling or substructuring.

  14. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  15. Geoelectric Characterization of Thermal Water Aquifers Using 2.5D Inversion of VES Measurements

    NASA Astrophysics Data System (ADS)

    Gyulai, Á.; Szűcs, P.; Turai, E.; Baracza, M. K.; Fejes, Z.

    2017-03-01

    This paper presents a short theoretical summary of the series expansion-based 2.5D combined geoelectric weighted inversion (CGWI) method and highlights the advantageous way with which the number of unknowns can be decreased due to the simultaneous characteristic of this inversion. 2.5D CGWI is an approximate inversion method for the determination of 3D structures, which uses the joint 2D forward modeling of dip and strike direction data. In the inversion procedure, the Steiner's most frequent value method is applied to the automatic separation of dip and strike direction data and outliers. The workflow of inversion and its practical application are presented in the study. For conventional vertical electrical sounding (VES) measurements, this method can determine the parameters of complex structures more accurately than the single inversion method. Field data show that the 2.5D CGWI which was developed can determine the optimal location for drilling an exploratory thermal water prospecting well. The novelty of this research is that the measured VES data in dip and strike direction are jointly inverted by the 2.5D CGWI method.

  16. Failure modes of single and multi-bolted joint in the pultruded fiber reinforced polymer composite members

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.

    2018-06-01

    In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.

  17. Design, fabrication and test of graphite/polymide composite joints and attachments: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.

  18. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  19. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  20. [Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body].

    PubMed

    Li, Yang; Zhang, Junxia; Su, Hailong; Wang, Xinting; Zhang, Yan

    2016-10-01

    The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait.The experiment was carried out on a slippery level ground walkway.Spatiotemporal gait parameter,kinematics and kinetics data as well as utilized coefficient of friction(UCOF)were compared between two conditions,i.e.with restriction of the ankle joint complex inversion-eversion and pronation-supination motions(FIXED)and without restriction(FREE).The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time.Furthermore,FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane.In FIXED condition,UCOF was significantly increased,which could lead to an increase of slip probability and a decrease of gait stability.Hence,in the design of a walker,bipedal robot or prosthetic,the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.

  1. Use of photostress to characterize the mechanical behavior of weldments

    NASA Technical Reports Server (NTRS)

    Gambrell, S. C., Jr.

    1992-01-01

    Welded aluminum is an important part of many space structures. Knowledge of the properties and behavior of weld material and the material surrounding the weld is important for modeling and design of the structures. Photoelastic coatings (Photostress) and strain gages were used to determine behavior of heat treated and as welded joints made from 2219T87 parent material and 2319 weld material subjected to tensile loads. TIG welds of 1/8, 1/2, and 1.4 inches thickness were investigated. Discontinuous yielding was observed in all tests and highly non-uniform behavior through the weld thickness was observed in joints having welds 1.4 inches thick. Joints having welds 1/8 and 1/2 inches thick had only small differences in behavior through the thickness of the weld. Joints in the 1/2 inch thick material contained distinct zones of constant strain within the normal strain gradient extending outward from the weld centerline. These zones had different thickness and locations. Points at the weld centerline, and for a distance of nearly one inch from the centerline, exhibited very nonlinear behavior during the first loading but exhibited near perfect strain hardening during the second loading.

  2. Technical support package: Large, easily deployable structures. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.

  3. About the Joint Chiefs of Staff

    Science.gov Websites

    JCS: Search Home Media News Photos Videos Publications About The Joint Staff Chairman Vice Chairman J8 | Force Structure, Resources & Assessment Contact Joint Staff Structure Home : About About the Joint Chiefs of Staff Download the CJCS Historic Guide The Joint Chiefs of Staff consist of the Chairman

  4. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Representing Heterogeneity in Structural Relationships Among Multiple Choice Variables Using a Latent Segmentation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garikapati, Venu; Astroza, Sebastian; Pendyala, Ram M.

    Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict activity-travel choices, with those downstream in the decision-making chain influenced by those upstream in the sequence. The adoption of a singular sequential causal structure to depict relationships among activity-travel choices in travel demand model systems ignores the possibility that some choices are made jointly as a bundle as well as the possible presence of structural heterogeneity in the population with respect to decision-making processes. As different segments in the population may adopt and follow different causalmore » decision-making mechanisms when making selected choices jointly, it would be of value to develop simultaneous equations model systems relating multiple endogenous choice variables that are able to identify population subgroups following alternative causal decision structures. Because the segments are not known a priori, they are considered latent and determined endogenously within a joint modeling framework proposed in this paper. The methodology is applied to a national mobility survey data set to identify population segments that follow different causal structures relating residential location choice, vehicle ownership, and car-share and mobility service usage. It is found that the model revealing three distinct latent segments best describes the data, confirming the efficacy of the modeling approach and the existence of structural heterogeneity in decision-making in the population. Future versions of activity-travel model systems should strive to incorporate such structural heterogeneity to better reflect varying decision processes across population subgroups.« less

  6. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop

    2017-08-01

    We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.

  7. Effect of Sn-Ag-Cu on the Improvement of Electromigration Behavior in Sn-58Bi Solder Joint

    NASA Astrophysics Data System (ADS)

    Wang, Fengjiang; Zhou, Lili; Zhang, Zhijie; Wang, Jiheng; Wang, Xiaojing; Wu, Mingfang

    2017-10-01

    Reliability issues caused by the formation of a Bi-rich layer at the anode interface usually occurs in the Sn-58Bi eutectic solder joint during electromigration (EM). To improve the EM performance of a Sn-58Bi solder joint, Sn-3.0Ag-0.5Cu solder was introduced into it to produce SnBi-SnAgCu structural or compositional composite joints, and their EM behaviors were investigated with the current density of 1.0 × 104 A/cm2 for different stressing times. The structure of the compositional composite solder joint was obtained by the occurrence of partial or full mixing between Sn-Bi and Sn-Ag-Cu solder with a suitable soldering temperature. In the structural composite joint, melted Sn-Bi was partially mixed with Sn-Ag-Cu solder to produce a Cu/Sn-Bi/Sn-Ag-Cu/Sn-Bi/Cu structure. In the compositional composite joint, full melting and mixing between these two solders occurred to produce a Cu/Sn-Ag-Cu-Bi/Cu structure, in which the solder matrix was a homogeneous structure including Sn, Bi phases, Cu6Sn5 and Ag3Sn IMCs. After current stressing, the EM performance of Sn-Bi solder was obviously improved with the structural or the compositional composite joint. In Sn-58Bi joints, a thick Bi-rich layer was easily produced at the anode interface, and obviously increased with stressing time. However, after current stressing on the structural composite joints, the existence of s Sn-3.0Ag-0.5Cu interlayer between the two Sn-58Bi solders effectively acted as a diffusion barrier and significantly slowed the formation of the Bi-rich layer at the anode side and the IMC thicknesses at the interfaces.

  8. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.

  9. Deployment of a multi-link flexible structure

    NASA Astrophysics Data System (ADS)

    Na, Kyung-Su; Kim, Ji-Hwan

    2006-06-01

    Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each joint. Hamilton's principle is used to determine the equations of motion and the finite element method is adopted to analyze the system. Newmark time integration and Newton-Raphson iteration methods are used to solve for the non-linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip displacements of a Timoshenko beam are compared with those of an Euler-Bernoulli beam.

  10. Self-Alining, Latching Joint For Folding Structural Elements

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Wallsom, R. E.

    1982-01-01

    Structural column elements assembled quickly and easily with aid of new center joint. Joint alines column elements automatically and fastens them together securely. Tapered half columns are stacked like paper cups, unfolded, and connected to other similar elements to form truss structures.

  11. Evaluation of the need for longitudinal median joints in bridge decks on dual structures.

    DOT National Transportation Integrated Search

    2015-09-01

    The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, : such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. ...

  12. Value of Examination Under Fluoroscopy for the Assessment of Sacroiliac Joint Dysfunction.

    PubMed

    Eskander, Jonathan P; Ripoll, Juan G; Calixto, Frank; Beakley, Burton D; Baker, Jeffrey T; Healy, Patrick J; Gunduz, O H; Shi, Lizheng; Clodfelter, Jamie A; Liu, Jinan; Kaye, Alan D; Sharma, Sanjay

    2015-01-01

    Pain emanating from the sacroiliac (SI) joint can have variable radiation patterns. Single physical examination tests for SI joint pain are inconsistent with multiple tests increasing both sensitivity and specificity. To evaluate the use of fluoroscopy in the diagnosis of SI joint pain. Prospective double blind comparison study. Pain clinic and radiology setting in urban Veterans Administration (VA) in New Orleans, Louisiana. Twenty-two adult men, patients at a southeastern United States VA interventional pain clinic, presented with unilateral low back pain of more than 2 months' duration. Patients with previous back surgery were excluded from the study. Each patient was given a Gapping test, Patrick (FABERE) test, and Gaenslen test. A second blinded physician placed each patient prone under fluoroscopic guidance, asking each patient to point to the most painful area. Pain was provoked by applying pressure with the heel of the palm in that area to determine the point of maximum tenderness. The area was marked with a radio-opaque object and was placed on the mark with a fluoroscopic imgage. A site within 1 cm of the SI joint was considered as a positive test. This was followed by a diagnostic injection under fluoroscopy with 1 mL 2% lidocaine. A positive result was considered as more than 2 hours of greater than 75% reduction in pain. Then, in 2-3 days this was followed by a therapeutic injection under fluoroscopy with 1 mL 0.5% bupivacaine and 40 mg methylprednisolone. Each patient was reassessed after 6 weeks. The sensitivity and specificity in addition to the positive and negative predictive values were determined for both the conventional examinations, as well as the examination under fluoroscopy. Finally, a receiver operating characteristic (ROC) curve was constructed to evaluate test performance. The sensitivity and specificity of the fluoroscopic examination were 0.82 and 0.80 respectively; Positive predictive value and negative predictive value were 0.93 and 0.57 respectively. The area under ROC curve was 0.812 which is considered a "good" test; however the area under ROC for the conventional examination were between 0.52-0.58 which is considered "poor to fail". Variation in anatomy of the SI joint, small sample size. Multiple structures of the SI joint complex can result in clinical symptoms of pain. These include intra-articular structures (degenerative arthritis, and inflammatory conditions) as well as extra-articular structures (ligaments, muscles, etc.).

  13. Linear-hall sensor based force detecting unit for lower limb exoskeleton

    NASA Astrophysics Data System (ADS)

    Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei

    2018-04-01

    This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.

  14. Load transfer in the stiffener-to-skin joints of a pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Rastogi, Naveen

    1995-01-01

    Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.

  15. Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis.

    PubMed

    Sudell, Maria; Kolamunnage-Dona, Ruwanthi; Tudur-Smith, Catrin

    2016-12-05

    Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural next step but its feasibility depends heavily on the standard of reporting of joint models in the medical literature. During this review we aim to assess the current standard of reporting of joint models applied in the literature, and to determine whether current reporting standards would allow or hinder future aggregate data meta-analyses of model results. We undertook a literature review of non-methodological studies that involved joint modelling of longitudinal and time-to-event medical data. Study characteristics were extracted and an assessment of whether separate meta-analyses for longitudinal, time-to-event and association parameters were possible was made. The 65 studies identified used a wide range of joint modelling methods in a selection of software. Identified studies concerned a variety of disease areas. The majority of studies reported adequate information to conduct a meta-analysis (67.7% for longitudinal parameter aggregate data meta-analysis, 69.2% for time-to-event parameter aggregate data meta-analysis, 76.9% for association parameter aggregate data meta-analysis). In some cases model structure was difficult to ascertain from the published reports. Whilst extraction of sufficient information to permit meta-analyses was possible in a majority of cases, the standard of reporting of joint models should be maintained and improved. Recommendations for future practice include clear statement of model structure, of values of estimated parameters, of software used and of statistical methods applied.

  16. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  17. Description of and preliminary tests results for the Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Bingham, Jeffrey G.; Folkman, Steven L.

    1995-01-01

    An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.

  18. Co-occurring species differ in tree-ring δ18O trends.

    Treesearch

    John D. Marshall; Robert A. Monserud

    2006-01-01

    The stable oxygen isotope ratio (δ18O) of tree-ring cellulose is jointly determined by the δ18O of xylem water, the δ18O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric...

  19. Safety assessment of Cracked K-joint Structure Based on Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pengyu, Yan; Jianwei, Du; Fuhai, Cai

    2017-05-01

    The K-joint is the main bearing structure of lattice jib crane. During frequent operation of the crane, surface cracks often occur at its weld toe, and then continue to expand until failure. The safety of the weak structure K-joint of the crane jib can be evaluated by BS7910 failure assessment standard in order to improve its utilization. The finite element model of K-joint structure with cracks is established, and its mechanical properties is analyzed by ABAQUS software, the results show that the crack depth has a great influence on the bearing capacity of the structure compared with the crack length. It is assumed that the K-joint with the semi-elliptical surface crack under the action of the tension propagate stably under the condition that the c/a (ratio of short axis to long axis of ellipse) is about 0.3. The safety assessment of K-joint with different lengths crack is presented according to the 2A failure assessment diagram of BS7910, and the critical crack of K-joint under different loads can be obtained.

  20. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  1. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  2. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  3. Joint source based morphometry identifies linked gray and white matter group differences.

    PubMed

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D

    2009-02-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray-white matter regions identified in each of the joint sources included: 1) temporal--corpus callosum, 2) occipital/frontal--inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal--superior longitudinal fasciculus and 4) parietal/frontal--thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences.

  4. Slant path rain attenuation and path diversity statistics obtained through radar modeling of rain structure

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1984-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.

  5. Simultaneous, Joint Inversion of Seismic Body Wave Travel Times and Satellite Gravity Data for Three-Dimensional Tomographic Imaging of Western Colombia

    NASA Astrophysics Data System (ADS)

    Dionicio, V.; Rowe, C. A.; Maceira, M.; Zhang, H.; Londoño, J.

    2009-12-01

    We report on the three-dimensional seismic structure of western Colombia determined through the use of a new, simultaneous, joint inversion tomography algorithm. Using data recorded by the national Seismological Network of Colombia (RSNC), we have selected 3,609 earthquakes recorded at 33 sensors distributed throughout the country, with additional data from stations in neighboring countries. 20,338 P-wave arrivals and 17,041 S-wave arrivals are used to invert for structure within a region extending approximately 72.5 to 77.5 degrees West and 2 to 7.5 degrees North. Our algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program, with a fast LSQR solver operating on the gridded values jointly. The inversion uses gravity anomalies obtained during the GRACE2 satellite mission, and solves using these values with the seismic travel-times through application of an empirical relationship first proposed by Harkrider, mapping densities to Vp and Vs within earth materials. In previous work, Maceira and Ammon demonstrated that incorporation of gravity data predicts shear wave velocities more accurately than the inversion of surface waves alone, particularly in regions where the crust exhibits abrupt and significant lateral variations in lithology, such as the Tarim Basin. The significant complexity of crustal structure in Colombia, due to its active tectonic environment, makes it a good candidate for the application with gravity and body waves. We present the results of this joint inversion and compare it to results obtained using travel times alone

  6. Joint CPT and N resonance in compact atomic time standards

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron

    2008-05-01

    Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.

  7. Structure and phase composition of welded joints modified by different welding techniques

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksander; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Eugeniy; Ababkov, Nikolay; Koneva, Nina

    2017-12-01

    The paper presents the results of transmission electron microscopy (TEM) during the study of structure and phase composition of heat-affected zone (HAZ) of welded joints modified via four welding techniques, namely: electrode welding and electropercussive welding both with and without artificial flaws. The artificial flows represent aluminum pieces. TEM studies are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. The 0.09C-2Mn-1Si-Fe steel type is used for welding. It is shown how the type of welding affects steel morphology, phase composition, defect structure and its parameters. The type of carbide phase is detected as well as the shape and location of particles. Volume fractions are estimated for the structural steel components, alongside with such parameters as the size of α-phase fragments, scalar and excess dislocation densities, and bending-torsion amplitude of the crystal lattice. Based on these results, we determine the welding technique and the structural component thus launching a mechanism of microcrack nucleation.

  8. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  9. Correlation between osteoarthritic changes in the stifle joint in dogs and the results of orthopedic, radiographic, ultrasonographic and arthroscopic examinations.

    PubMed

    Ramírez-Flores, Gabriel Ignacio; Del Angel-Caraza, Javier; Quijano-Hernández, Israel Alejandro; Hulse, Don A; Beale, Brian S; Victoria-Mora, José Mauro

    2017-06-01

    Osteoarthritis (OA) is a chronic, degenerative disease affecting the articular cartilage and subchondral bone that causes pain and inhibits movement. The stifle's joint fibrous capsule contains the synovial membrane, which produces cartilage nutrients. A ruptured cranial cruciate ligament injures the joint and produces OA. Osteoarthritis diagnosis starts with clinical radiographic and ultrasonographic tests, although the latter is not used very much in dog and cat clinics for this purpose. The objective of this study was to establish the correlation among the results of orthopedic, radiographic, ultrasonographic examinations and structural anatomical changes revealed by arthroscopic evaluation to diagnose stifle joint OA and determine risk factors in the dogs affected. Of 44 clinical cases of OA included in the study, 88.64% had ruptured of cranial cruciate ligaments. The correlation between synovial fluid effusion and osteophytosis was of 0.84. It was concluded that there is good diagnostic agreement between synovial fluid effusion and osteophytosis when dealing with stifle joint OA. Risk factors for dogs regarding the development of stifle joint OA included: ruptured cranial cruciate ligaments or patella luxation, female dogs and weight over 10 kg.

  10. Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis: first step towards an MRI joint count.

    PubMed

    Axelsen, Mette Bjørndal; Eshed, Iris; Duer-Jensen, Anne; Møller, Jakob M; Pedersen, Susanne Juhl; Østergaard, Mikkel

    2014-05-01

    The aim of this study was to investigate the ability of whole-body MRI (WBMRI) to visualize inflammation [synovitis, bone marrow oedema (BME) and enthesitis] and structural damage in patients with RA. The 3T WBMR images were acquired in a head-to-toe scan in 20 patients with RA and at least one swollen or tender joint. Short Tau Inversion Recovery and pre- and post-contrast T1-weighted images were evaluated for readability and the presence/absence of inflammation (synovitis, BME and enthesitis) and structural damage (erosions and fat infiltrations) in 76 peripheral joints, 30 entheseal sites and in the spine. The readability was >70% for all individual joints, except for the most peripheral joints of the hands and feet. Synovitis was most frequent in the wrist, first tarsometatarsal, first CMC joints and glenohumeral joints (67-61%); BME in the wrist, CMC, acromioclavicular and glenohumeral joints (45-35%) and erosions in the wrist, MTP and CMC joints (19-16%). Enthesitis at ≥ 1 site was registered in 16 patients. BME was frequently seen in the cervical (20%) but not the thoracic and lumbar spine, while fat infiltrations and erosions were rare. The intrareader agreement was high (85-100%) for all pathologies. The agreement between WBMRI and clinical findings was low. Peripheral and axial inflammation and structural damage at joints and entheses was frequently identified by WBMRI, and more frequently than by clinical examination. WBMRI is a promising tool for evaluation of the total inflammatory load of inflammation (an MRI joint count) and structural damage in RA patients.

  11. Intermetallic layers in temperature controlled Friction Stir Welding of dissimilar Al-Cu-joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Constanzi, G.; Mueller, J. F. J.; Haider, F.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) can be performed to join dissimilar metal combinations like aluminium and copper, which is of high interest in modern production of electrical applications. The amount of intermetallic phases in the weld seam is significantly reduced compared to traditional fusion welding technologies. Because the solidus temperature is typically not reached during FSW, the growth of intermetallic phases is impeded and the intermetallic layer thicknesses typically remains on the scale of a few hundred nanometres. These layers provide a substance-to-substance bond, which is the main joining mechanism. Latest research confirms that the layer formation is most likely driven by the heat input during processing. Hence, the welding temperature is the key to achieve high quality joints. In this study, aluminium and copper sheets were welded in lap joint configuration using temperature-controlled FSW. An advanced in-tool measurement set-up was used to determine precise temperature data. Scanning electron microscopy (SEM) was used to analyse metallurgical aspects (e.g. structure and composition of the intermetallic phases) of the joints. The results show a correlation between the welding temperature and the thickness of the intermetallic layer and its structure. The temperature control significantly improved the correlation compared to previous studies. This leads to an enhanced understanding of the dominating joining mechanisms.

  12. Study of the properties and the choice of alloys for bladed disks (blisks) and a method for their joining

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Valitov, V. A.; Obsepyan, S. V.; Drozdov, A. A.; Bazyleva, O. A.; Valitova, E. V.

    2014-09-01

    The choice of materials for the bladed disks (blisks) that are intended for next-generation aviation gas turbine engines is grounded. As blade materials, single crystals of light heterophase γ' + γ VKNA-type alloys based on the γ'(Ni3Al) intermetallic compound with an ordered structure are proposed. The choice of novel deformable EP975-type nickel superalloys, which are intended for operation at 800-850°C, as the disk material is grounded. It is shown that the most effective method for forming one-piece joints of an Ni3Al-based alloy and a high-alloy EP975-type nickel superalloy is the new process of solid-phase pressure welding under conditions of high-temperature superplasticity. Solid-phase joints are formed for heterophase Ni3Al-based alloy single crystals and deformable EK61 and EP975 nickel alloys. The gradient structures in the zone of the solid-phase joints that form under the conditions of low- and high-temperature superplasticity at homologous temperatures of ˜0.6 T m and 0.9 T m are studied. The character and direction of the diffusion processes at the joint of an intermetallic alloy single crystal and a deformable polycrystalline alloy are determined.

  13. Analysis of the stress-strain state in single overlap joints using piezo-ceramic actuators

    NASA Astrophysics Data System (ADS)

    Pǎltânea, Veronica; Pǎltânea, Gheorghe; Popovici, Dorina; Jiga, Gabriel; Papanicolaou, George

    2014-05-01

    In this paper is presented a 2D approach to finite element modeling and an analytical calculus of a single lap bonded joint. As adherent material were selected a sheet of wood, aluminum and titanium. For adhesive part were selected Bison Super Wood D3 in case of the wood single lap joint and an epoxy resin type DGEBA-TETA for gluing together aluminum and titanium parts. In the article is described a combined method, which consists in the placement of the piezoelectric actuator inside of the adhesive part, in order to determine the tensile stress in the overlap joint. A comparison between the analytical and numerical results has been achieved through a multiphysics modeling - electrical and mechanical coupled problem. The technique used to calculate the mechanical parameters (First Principal Stress, displacements) was the three-point bending test, where different forces were applied in the mid-span of the structure, in order to maintain a constant displacement rate. The length of the overlap joint was modified from 20 to 50 mm.

  14. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  15. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  16. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  17. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    NASA Technical Reports Server (NTRS)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  18. Associations between joint attention and language in autism spectrum disorder and typical development: A systematic review and meta-regression analysis.

    PubMed

    Bottema-Beutel, Kristen

    2016-10-01

    Using a structured literature search and meta-regression procedures, this study sought to determine whether associations between joint attention and language are moderated by group (autism spectrum disorder [ASD] vs. typical development [TD]), joint attention type (responding to joint attention [RJA] vs. other), and other study design features and participant characteristics. Studies were located using database searches, hand searches, and electronic requests for data from experts in the field. This resulted in 71 reports or datasets and 605 effect sizes, representing 1,859 participants with ASD and 1,835 TD participants. Meta-regression was used to answer research questions regarding potential moderators of the effect sizes of interest, which were Pearson's r values quantifying the association between joint attention and language variables. In the final models, conducted separately for each language variable, effect sizes were significantly higher for the ASD group as compared to the TD group, and for RJA as compared to non-RJA joint attention types. Approximate mental age trended toward significance for the expressive language model. Joint attention may be more tightly tied to language in children with ASD as compared to TD children because TD children exhibit joint attention at sufficient thresholds so that language development becomes untethered to variations in joint attention. Conversely, children with ASD who exhibit deficits in joint attention develop language contingent upon their joint attention abilities. Because RJA was more strongly related to language than other types of joint attention, future research should involve careful consideration of the operationalization and measurement of joint attention constructs. Autism Res 2016, 9: 1021-1035. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  20. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  1. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  2. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  3. Geoelectrical characterization by joint inversion of VES/TEM in Paraná basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Couto, M. A.; Almeida, E. R.; Porsani, J. L.; Santos, F. M.

    2012-12-01

    For many years electrical (DC) and transient electromagnetic (TEM) soundings have been used in a great number of environmental, hydrological and mining exploration studies. The data of both methods are interpreted usually by individual 1D models resulting in many cases in ambiguous models. This can be explained by how the two different methodologies sample the subsurface. The vertical electrical sounding (VES) is good on marking very resistive structures, while the transient electromagnetic sounding (TEM) is very sensitive to map conductive structures. Another characteristic is that VES is more sensitive to shallow structures, while TEM soundings can reach deeper structures. A Matlab program for joint inversion of VES and TEM soundings, by using CRS algorithm was developed aiming explore the best of the both methods. Initially, the algorithm was tested with synthetic data and after it was used to invert experimental data from Paraná sedimentary basin. We present the results of a re-interpretation of 46 VES/TEM soundings data set acquired in Bebedouro region in São Paulo State - Brazil. The previous interpretation was based in geoelectrical models obtained by single inversion of the VES and TEM soundings. In this work we present the results with single inversion of VES and TEM sounding inverted by the Curupira Program and a new interpretation based in the joint inversion of both methodologies. The goal is increase the accuracy in determining the underground structures. As a result a new geoelectrical model of the region is obtained.

  4. Study of cartilage and bone layers of the bearing surface of the equine metacarpophalangeal joint relative to different timescales of maturation.

    PubMed

    van der Harst, M R; van de Lest, C H A; Degroot, J; Kiers, G H; Brama, P A J; van Weeren, P R

    2005-05-01

    A detailed and comprehensive insight into the normal maturation process of the different tissues that make up functional units of the locomotor system such as joints is necessary to understand the influence of early training on musculoskeletal tissues. To study simultaneously the maturation process in the entire composite structure that makes up the bearing surface of a joint (cartilage, subchondral and trabecular bone) in terms of biochemical changes in the tissues of juvenile horses at 2 differently loaded sites of the metacarpophalangeal joint, compared to a group of mature horses. In all the structures described above developmental changes may follow a different timescale. Age-related changes in biochemical characteristics of the collagen part of the extracellular matrix (hydroxylysine, hydroxyproline, hydroxypyridinum crosslinks) of articular cartilage and of the underlying subchondral and trabecular bone were determined in a group of juvenile horses (n = 13) (Group 1, age 6 months-4 years) and compared to a group of mature horses (n = 30) (Group 2, >4 years). In both bony layers, bone mineral density, ash content and levels of individual minerals were determined. In cartilage, subchondral bone and trabecular bone, virtually all collagen parameters in juvenile horses were already at a similar (stable) level as in mature horses. In both bony layers, bone mineral density, ash- and calcium content were also stable in the mature horses, but continued to increase in the juvenile group. For magnesium there was a decrease in the juvenile animals, followed by a steady state in the mature horses. In horses age 6 months-4 years, the collagen network of all 3 layers within the joint has already attained a mature biochemical composition, but the mineral composition of both subchondral and trabecular bone continues to develop until approximately age 4 years. The disparity in maturation of the various extracellular matrix components of a joint can be assumed to have consequences for the capacity to sustain load and should hence be taken into account when training or racing young animals.

  5. Analysis of composite laminates with multiple fasteners by boundary collocation technique

    NASA Astrophysics Data System (ADS)

    Sergeev, Boris Anatolievich

    Mechanical fasteners remain the primary means of load transfer between structural components made of composite laminates. As, in pursuit of increasing efficiency of the structure, the operational load continues to grow, the load carried by each fastener increases accordingly. This accelerates initiation of fatigue-related cracks near the fasteners holes and increases probability of failure. Therefore, the assessment of the stresses around the fastener holes and the stress intensity factors associated with edge cracks becomes critical for damage-tolerant design. Because of the presence of unknown contact stresses and the contact region between the fastener and the laminate, the analysis of a pin-loaded hole becomes considerably more complex than that of a traction-free hole. The accurate prediction of the contact stress distribution along the hole boundary is critical for determining the stress intensity factors and is essential for reliable strength evaluation and failure prediction. This study concerns the development of an analytical methodology, based on the boundary collocation technique, to determine the contact stresses and stress intensity factors required for strength and life prediction of bolted joints with many fasteners. It provides an analytical capability for determining the non-linear contact stresses in mechanically fastened composite laminates while capturing the effects of finite geometry, presence of edge cracks, interaction among fasteners, material anisotropy, fastener flexibility, fastener-hole clearance, friction between the pin and the laminate, and by-pass loading. Also, the proposed approach permits the determination of the fastener load distribution, which significantly influences the failure load of a multi-fastener joint. The well known phenomenon of the fastener tightening torque (clamping force) influence on the load distribution among the different fastener in a multi-fastener joints is taken into account by means of bi-linear representation of the elastic fastener deflection. Finally, two different failure criteria, maximum strains averaged over the characteristic distances and Tsai-Wu criterion, were used to predict the failure load and failure mode in two composite-aluminum joints. The comparison of the present predictions with the published experimental results reveals their agreement.

  6. Lithospheric architecture of NE China from joint Inversions of receiver functions and surface wave dispersion through Bayesian optimisation

    NASA Astrophysics Data System (ADS)

    Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian

    2017-04-01

    The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.

  7. Magnetic resonance imaging changes of sacroiliac joints in patients with recent-onset inflammatory back pain: inter-reader reliability and prevalence of abnormalities.

    PubMed

    Heuft-Dorenbosch, Liesbeth; Weijers, René; Landewé, Robert; van der Linden, Sjef; van der Heijde, Désirée

    2006-01-01

    To study the inter-reader reliability of detecting abnormalities of sacroiliac (SI) joints in patients with recent-onset inflammatory back pain by magnetic resonance imaging (MRI), and to study the prevalence of inflammation and structural changes at various sites of the SI joints. Sixty-eight patients with inflammatory back pain (at least four of the five following criteria: symptom onset before age 40, insidious onset, morning stiffness, duration >3 months, improvement with exercise--or three out of five of these plus night pain) were included (38% male; mean age, 34.9 years [standard deviation 10.3]; 46% HLA-B27-positive; mean symptom duration, 18 months), with symptom duration <2 years. A MRI scan of the SI joints was made in the coronal plane with the following sequences: T1-weighted spin echo, short-tau inversion recovery, T2-weighted fast-spin echo with fat saturation, and T1-spin echo with fat saturation after the administration of gadolinium. Both SI joints were scored for inflammation (separately for subchondral bone and bone marrow, joint space, joint capsule, ligaments) as well as for structural changes (erosions, sclerosis, ankylosis), by two observers independently. Agreement between the two readers was analysed by concordance and discordance rates and by kappa statistics. Inflammation was present in 32 SI joints of 22 patients, most frequently located in bone marrow and/or subchondral bone (29 joints in 21 patients). Readers agreed on the presence of inflammation in 85% of the cases in the right SI joint and in 78% of the cases in the left SI joint. Structural changes on MRI were present in 11 patients. Ten of these 11 patients also showed signs of inflammation. Agreement on the presence or absence of inflammation and structural changes of SI joints by MRI was acceptable, and was sufficiently high to be useful in ascertaining inflammatory and structural changes due to sacroiliitis. About one-third of patients with recent-onset inflammatory back pain show inflammation, and about one-sixth show structural changes in at least one SI joint.

  8. Review of beetle forewing structures and their biomimetic applications in China: (I) On the structural colors and the vertical and horizontal cross-sectional structures.

    PubMed

    Chen, Jinxiang; Xie, Juan; Wu, Zhishen; Elbashiry, Elsafi Mohamed Adam; Lu, Yun

    2015-10-01

    This paper discusses the progress made in China in terms of the structural colors, microstructure and mechanical properties of the beetle forewing. 1) The forewing microstructures can be classified into six phases, the first three of which are characterized by sandwich, multilayer and fiber layer structures, respectively. The fracture behaviors resulting from these three phases suggest that different scale microstructures or coupled adjacent scale microstructures can determine the macroscopic mechanical behavior of the forewing. 2) The forewing colors are derived from three features: regulation of the structural parameters of the internal optical structures, i.e., a sculpted multilayer composite two-dimensional nanopillar structure grating system; scattering on the three-dimensional surface of the bowl-shaped structure; and reversible color changes due to changes in the physical microstructure of fluffs. Their formation mechanisms were clarified, and fibers with ecological biomimetic structural colors have been developed. 3) Beetles exhibit a lightweight sectional frame structure with a trabecular core structure. Both of the joints on the left and right are concave-convex butt-joint structures with burrs, which provide an efficient docking mechanism with high intensity. The forewing of dichotoma exhibits a non-equiangular layered structure, which results in anisotropy in its tensile strength. Finally, the authors propose potential new research directions for the next 20 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  10. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    NASA Astrophysics Data System (ADS)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  11. Improving the fatigue resistance of adhesive joints in laminated wood structures

    NASA Technical Reports Server (NTRS)

    Laufenberg, Theodore L.; River, Bryan H.; Murmanis, Lidija L.; Christiansen, Alfred W.

    1988-01-01

    The premature fatigue failure of a laminated wood/epoxy test beam containing a cross section finger joint was the subject of a multi-disciplinary investigation. The primary objectives were to identify the failure mechanisms which occurred during the finger joint test and to provide avenues for general improvements in the design and fabrication of adhesive joints in laminated wood structures.

  12. The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints.

    PubMed

    Ma, Qiang; Li, Zhuo Ran; Yang, Lai Shan; Lin, Jing Huang; Ba, Jin; Wang, Ze Yu; Qi, Jun Lei; Feng, Ji Cai

    2017-06-23

    In order to achieve a high-quality joint between SiO 2f /SiO 2 and metals, it is necessary to address the poor wettability of SiO 2f /SiO 2 and the high residual stress in SiO 2f /SiO 2 -Nb joint. Here, we simultaneously realize good wettability and low residual stress in SiO 2f /SiO 2 -Nb joint by combined method of HF etching treatment and Finite Element Analysis (FEA). After etching treatment, the wettability of E-SiO 2f /SiO 2 was improved, and the residual stress in the joint was decreased. In order to better control the quality of joints, efforts were made to understand the relationship between surface structure of E-SiO 2f /SiO 2 and residual stress in joint using FEA. Based on the direction of FEA results, a relationship between residual stress, surface structure and joint property in the brazed joints were investigated by experiments. As well the FEA and the brazing test results both realized the high-quality joint of E-SiO 2f /SiO 2 -Nb and the shear strength of the joint reached 61.9 MPa.

  13. Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1989-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.

  14. Joint source based morphometry identifies linked gray and white matter group differences

    PubMed Central

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D.

    2009-01-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray–white matter regions identified in each of the joint sources included: 1) temporal — corpus callosum, 2) occipital/frontal — inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal —superior longitudinal fasciculus and 4) parietal/frontal — thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences. PMID:18992825

  15. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.

  16. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study.

    PubMed

    Crema, M D; Guermazi, A; Sayre, E C; Roemer, F W; Wong, H; Thorne, A; Singer, J; Esdaile, J M; Marra, M D; Kopec, J A; Nicolaou, S; Cibere, J

    2011-12-01

    Osteoarthritis (OA) is the most common arthropathy of the knee joint(1). Symptoms reported by patients and signs noted during physical examination guide clinicians in identifying subjects with knee OA(2-4). Pain is one of the most important symptoms reported by subjects with knee OA(2,3). Although very common, pain is a non-specific symptom, related to pathology in several structures within the knee joint, and includes synovitis(5), subchondral bone marrow lesions(6), and joint effusion(7). Further, pain is a subjective symptom that cannot be directly measured or assessed during physical examination. Crepitus or crepitation in association with arthritis is defined as a crackling or grinding sound on joint movement with a sensation in the joint. Crepitus may occur with or without pain and is a common finding during physical examination in subjects with knee OA(2-4,8,9). It is not known whether crepitus is related to pathology in various structures within the knee. The aim of our study was to determine the cross-sectional associations of structural pathologies within the knee with crepitus in a population-based cohort with knee pain, using magnetic resonance imaging (MRI). Subjects with knee pain were recruited as a random population sample, with crepitus assessed in each compartment of the knee using a validated and standardized approach during physical examination(10). MRI of the knee was performed to assess cartilage morphology, meniscal morphology, osteophytes, cruciate ligaments, and collateral ligaments. For both compartment-specific and whole-knee analyses, a multiple logistic regression analysis was performed to assess the associations of MRI-detected structural pathology with crepitus, adjusting for potential confounders. Variables were selected by backwards elimination within each compartment and in the overall knee models, and only statistically significant variables remained in the "selected" models; remaining variables in these models are adjusted for each other. An increased risk for compartment-specific crepitus was associated with osteophytes at the patellofemoral (PF) and lateral tibiofemoral (LTF) joints. Crepitus was associated with osteophytes and medial collateral ligament (MCL) pathology at the medial tibiofemoral (MTF) compartment, but cartilage damage was negatively associated with crepitus at this compartment. In the selected whole-knee model, only meniscal tears were associated with an increased risk for general crepitus. Thus, it seems that crepitus may be associated with pathology in several internal structures. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Durability predictions of adhesively bonded composite structures using accelerated characterization methods

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.

    1985-01-01

    The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.

  18. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  19. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  20. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  1. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  2. Design and Performance Analysis of a new Rotary Hydraulic Joint

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Yang, Junhong; Shang, Jianzhong; Wang, Zhuo; Fang, Delei

    2017-07-01

    To improve the driving torque of the robots joint, a wobble plate hydraulic joint is proposed, and the structure and working principle are described. Then mathematical models of kinematics and dynamics was established. On the basis of this, dynamic simulation and characteristic analysis are carried out. Results show that the motion curve of the joint is continuous and the impact is small. Moreover the output torque of the joint characterized by simple structure and easy processing is large and can be rotated continuously.

  3. Structure formation and properties of a copper-aluminum joint produced by ultrasound-assisted explosive welding

    NASA Astrophysics Data System (ADS)

    Kuz'min, E. V.; Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.

    2017-08-01

    The effect of ultrasound-assisted explosive welding on the structure formation and the properties of copper-aluminum joints is studied. Ultrasound-assisted explosive welding improves the quality of formed copper-aluminum joints, i.e., enhances their strength and significantly reduces the amount of fused metal over the entire weldability range. It is shown that ultrasound-assisted explosive welding can noticeably extend the weldability range of the copper-aluminum pair to obtain equal-in-strength joints with minimum structural heterogeneity in the wide welding range.

  4. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  5. Method and apparatus for in-process sensing of manufacturing quality

    DOEpatents

    Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  6. Method and Apparatus for In-Process Sensing of Manufacturing Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, D.A.; Dave, V.R.; Cola, M.J.

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less

  7. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  8. A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.

  9. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures.

    PubMed

    Andrinopoulou, Eleni-Rosalina; Rizopoulos, Dimitris

    2016-11-20

    The joint modeling of longitudinal and survival data has recently received much attention. Several extensions of the standard joint model that consists of one longitudinal and one survival outcome have been proposed including the use of different association structures between the longitudinal and the survival outcomes. However, in general, relatively little attention has been given to the selection of the most appropriate functional form to link the two outcomes. In common practice, it is assumed that the underlying value of the longitudinal outcome is associated with the survival outcome. However, it could be that different characteristics of the patients' longitudinal profiles influence the hazard. For example, not only the current value but also the slope or the area under the curve of the longitudinal outcome. The choice of which functional form to use is an important decision that needs to be investigated because it could influence the results. In this paper, we use a Bayesian shrinkage approach in order to determine the most appropriate functional forms. We propose a joint model that includes different association structures of different biomarkers and assume informative priors for the regression coefficients that correspond to the terms of the longitudinal process. Specifically, we assume Bayesian lasso, Bayesian ridge, Bayesian elastic net, and horseshoe. These methods are applied to a dataset consisting of patients with a chronic liver disease, where it is important to investigate which characteristics of the biomarkers have an influence on survival. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  11. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study.

    PubMed

    Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Kovalsky, Don A; Lockstadt, Harry

    2016-05-01

    Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption.

  12. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study

    PubMed Central

    Duhon, Bradley S.; Cher, Daniel J.; Wine, Kathryn D.; Kovalsky, Don A.; Lockstadt, Harry

    2015-01-01

    Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption. PMID:27099817

  13. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  14. Effects of Monoclonal Antibodies against Nerve Growth Factor on Healthy Bone and Joint Tissues in Mice, Rats, and Monkeys: Histopathologic, Biomarker, and Microcomputed Tomographic Assessments.

    PubMed

    Gropp, Kathryn E; Carlson, Cathy S; Evans, Mark G; Bagi, Cedo M; Reagan, William J; Hurst, Susan I; Shelton, David L; Zorbas, Mark A

    2018-01-01

    Tanezumab, an anti-nerve growth factor (NGF) antibody, is in development for management of chronic pain. During clinical trials of anti-NGF antibodies, some patients reported unexpected adverse events requiring total joint replacements, resulting in a partial clinical hold on all NGF inhibitors. Three nonclinical toxicology studies were conducted to evaluate the effects of tanezumab or the murine precursor muMab911 on selected bone and joint endpoints and biomarkers in cynomolgus monkeys, Sprague-Dawley rats, and C57BL/6 mice. Joint and bone endpoints included histology, immunohistochemistry, microcomputed tomography (mCT) imaging, and serum biomarkers of bone physiology. Responses of bone endpoints to tanezumab were evaluated in monkeys at 4 to 30 mg/kg/week for 26 weeks and in rats at 0.2 to 10 mg/kg twice weekly for 28 days. The effects of muMab911 at 10 mg/kg/week for 12 weeks on selected bone endpoints were determined in mice. Tanezumab and muMab911 had no adverse effects on any bone or joint parameter. There were no test article-related effects on bone or joint histology, immunohistochemistry, or structure. Reversible, higher osteocalcin concentrations occurred only in the rat study. No deleterious effects were observed in joints or bones in monkeys, rats, or mice administered high doses of tanezumab or muMab911.

  15. Joint Inversion of 1-Hz GPS Data and Strong Motion Records for the Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake: Objectively Determining Relative Weighting

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Kato, T.; Wang, Y.

    2015-12-01

    The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.

  16. Users' guide on socket heat fusion joining of polyethylene gas pipes. Volume 1. Topical report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setups for conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  17. Technical reference on socket heat fusion joining of polyethylene gas pipes. Volume 2. Topical Report, September 1989-September 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimputkar, S.M.; McCoy, J.K.; Stets, J.A.

    1991-03-01

    The integrity of a pipeline system is determined by its weakest links which may be the joints. Heat fusion is the most common method for joining gas distribution polyethylene (PE) piping. There are procedural, thermal, and mechanical aspects of making fusion joints. Acceptable procedural aspects, such as heater calibration and cleanliness, can be assured by rigorous training and certification of the operators. Thermal and mechanical aspects consist of specifying joining conditions such as the heater temperature, heating time, and joining pressure. In the absence of procedural errors, the strength of a fusion joint should depend on the pipe material, pipemore » dimensions, and the thermal and mechanical joining conditions. Socket heat fusion was studied both experimentally and analytically to determine how the strength of the joint varied with the conditions under which it was made. The standard tensile impact test was modified to test socket fusion joint samples in shear. The developed shear impact energy test data were found to be reliable measures of strength if the setup conditions were meticulously identical. A parameter, termed the socket joining parameter, was found to characterize the joining conditions. It is a strong function of melt volume at the end of the heating phase, and, physically, it is polyethylene transported parallel to the axis during insertion. The results for three resins are presented in the form of three nomographs. The nomographs may be used to select the required heater temperature or the heating time, for a given ambient temperature and a PE resin, to ensure a structurally sound socket heat fusion joint.« less

  18. Health Care Providers' Knowledge and Practice Gap towards Joint Zoonotic Disease Surveillance System: Challenges and Opportunities, Gomma District, Southwest Ethiopia.

    PubMed

    Gemeda, Desta Hiko; Sime, Abiot Girma; Hajito, Kifle Woldemichael; Gelalacha, Benti Deresa; Tafese, Wubit; Gebrehiwot, Tsegaye Tewelde

    2016-01-01

    Background. Health care providers play a crucial role for realization of joint zoonotic diseases surveillance by human and animal health sectors, yet there is limited evidence. Hence, this study aimed to determine knowledge and practice gap of health care providers towards the approach for Rabies and Anthrax in Southwest Ethiopia. Methods. A cross-sectional survey was conducted from December 16, 2014, to January 14, 2015. Eligible health care providers were considered for the study. Data were entered in to Epi-data version 3.1 and analyzed using SPSS version 20. Results. A total of 323 (92.02%) health care providers participated in the study. Three hundred sixteen (97.8%) of participants reported that both human and animal health sectors can work together for zoonotic diseases while 96.9% of them replied that both sectors can jointly conduct surveillance. One hundred seventeen (36.2%) of them reported that their respective sectors had conducted joint surveillance for zoonotic diseases. Their involvement was, however, limited to joint outbreak response. Conclusion. There is good opportunity in health care providers' knowledge even though the practice was unacceptably low and did not address all surveillance components. Therefore, formal joint surveillance structure should be in place for optimal implementation of surveillance.

  19. Human Resource Development Practices in Russia: A Structured Literature Review

    ERIC Educational Resources Information Center

    Plakhotnik, Maria S.

    2005-01-01

    This literature review aimed to investigate the literature on HRD in Russian enterprises, U.S. firms in Russia, or U.S.-Russian joint ventures to determine the role and function of HRD practitioners in creating a successful economic transition. Thirty-three articles were selected through a database search and examined using content analysis. Three…

  20. WSJointInv2D-MT-DCR: An efficient joint two-dimensional magnetotelluric and direct current resistivity inversion

    NASA Astrophysics Data System (ADS)

    Amatyakul, Puwis; Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai

    2017-05-01

    An efficient joint two-dimensional direct current resistivity (DCR) and magnetotelluric (MT) inversion, referred to as WSJointInv2D-MT-DCR, was developed with FORTRAN 95 based on the data space Occam's inversion algorithm. Our joint inversion software can be used to invert just the MT data or the DCR data, or invert both data sets simultaneously to get the electrical resistivity structures. Since both MT and DCR surveys yield the same resistivity structures, the two data types enhance each other leading to a better interpretation. Two synthetic and a real field survey are used here to demonstrate that the joint DCR and MT surveys can help constrain each other to reduce the ambiguities occurring when inverting the DCR or MT alone. The DCR data increases the lateral resolution of the near surface structures while the MT data reveals the deeper structures. When the MT apparent resistivity suffers from the static shift, the DCR apparent resistivity can serve as a replacement for the estimation of the static shift factor using the joint inversion. In addition, we also used these examples to show the efficiency of our joint inversion code. With the availability of our new joint inversion software, we expect the number of joint DCR and MT surveys to increase in the future.

  1. The volume of the human knee joint.

    PubMed

    Matziolis, Georg; Roehner, Eric; Windisch, Christoph; Wagner, Andreas

    2015-10-01

    Despite its clinical relevance, particularly in septic knee surgery, the volume of the human knee joint has not been established to date. Therefore, the objective of this study was to determine knee joint volume and whether or not it is dependent on sex or body height. Sixty-one consecutive patients (joints) who were due to undergo endoprosthetic joint replacement were enrolled in this prospective study. During the operation, the joint volume was determined by injecting saline solution until a pressure of 200 mmHg was achieved in the joint. The average volume of all knee joints was 131 ± 53 (40-290) ml. The volume was not found to be dependent on sex, but it was dependent on the patients' height (R = 0.312, p = 0.014). This enabled an estimation of the joint volume according to V = 1.6 height - 135. The considerable inter-individual variance of the knee joint volume would suggest that it should be determined or at least estimated according to body height if the joint volume has consequences for the diagnostics or therapy of knee disorders.

  2. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  3. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    PubMed

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This is the first study to report the properties of equine cervical facet joint cartilage and may serve as the foundation for the development of future tissue-engineered replacements as well as other treatment strategies. © 2018 EVJ Ltd.

  4. Determination and Dependencies of Melt Pool Dimensions in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Patschger, Andreas; Bliedtner, Jens

    Melt pool dimensions such as width and length influence the properties of the resulting weld joint and should be considered when designing the laser welding process. The melt pool width and as a consequence the weld seam width determine the strength of the joint. The melt pool length is directly linked to the solidification time which affects the resulting metallurgical micro structure. The melt pool dimensions can be estimated by given analytical solutions based on the capillary diameter. In order to test the given estimations, melt pool dimensions of bead-on-plate welds in stainless steel foils were measured by means of high speed imaging and microscopy. The welds were obtained by applying different focal diameters between 25 μm and 204 μm to foil thicknesses of 50 μm and 100 μm. As a result, simplified correlations based on the focal diameter are derived which is less complex to determine in practice. Regression analyses ensure a statistical comparability.

  5. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  6. An instrumental variable random-coefficients model for binary outcomes

    PubMed Central

    Chesher, Andrew; Rosen, Adam M

    2014-01-01

    In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048

  7. Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. L.; Brunair, R. M.

    1991-01-01

    Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.

  8. A comparison of 3-T magnetic resonance imaging and computed tomography arthrography to identify structural cartilage defects of the fetlock joint in the horse.

    PubMed

    Hontoir, Fanny; Nisolle, Jean-François; Meurisse, Hubert; Simon, Vincent; Tallier, Max; Vanderstricht, Renaud; Antoine, Nadine; Piret, Joëlle; Clegg, Peter; Vandeweerd, Jean-Michel

    2014-01-01

    Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques. CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of a leaf spring structured midsole on joint mechanics and lower limb muscle forces in running

    PubMed Central

    Wunsch, Tobias; Alexander, Nathalie; Kröll, Josef; Stöggl, Thomas; Schwameder, Hermann

    2017-01-01

    To enhance running performance in heel-toe running, a leaf spring structured midsole shoe (LEAF) has recently been introduced. The purpose of this study was to investigate the effect of a LEAF compared to a standard foam midsole shoe (FOAM) on joint mechanics and lower limb muscle forces in overground running. Nine male long-distance heel strike runners ran on an indoor track at 3.0 ± 0.2 m/s with LEAF and FOAM shoes. Running kinematics and kinetics were recorded during the stance phase. Absorbed and generated energy (negative and positive work) of the hip, knee and ankle joint as well as muscle forces of selected lower limb muscles were determined using a musculoskeletal model. A significant reduction in energy absorption at the hip joint as well as energy generation at the ankle joint was found for LEAF compared to FOAM. The mean lower limb muscle forces of the m. soleus, m. gastrocnemius lateralis and m. gastrocnemius medialis were significantly reduced for LEAF compared to FOAM. Furthermore, m. biceps femoris showed a trend of reduction in running with LEAF. The remaining lower limb muscles analyzed (m. gluteus maximus, m. rectus femoris, m. vastus medialis, m. vastus lateralis, m. tibialis anterior) did not reveal significant differences between the shoe conditions. The findings of this study indicate that LEAF positively influenced the energy balance in running by reducing lower limb muscle forces compared to FOAM. In this way, LEAF could contribute to an overall increased running performance in heel-toe running. PMID:28234946

  10. Effects of a leaf spring structured midsole on joint mechanics and lower limb muscle forces in running.

    PubMed

    Wunsch, Tobias; Alexander, Nathalie; Kröll, Josef; Stöggl, Thomas; Schwameder, Hermann

    2017-01-01

    To enhance running performance in heel-toe running, a leaf spring structured midsole shoe (LEAF) has recently been introduced. The purpose of this study was to investigate the effect of a LEAF compared to a standard foam midsole shoe (FOAM) on joint mechanics and lower limb muscle forces in overground running. Nine male long-distance heel strike runners ran on an indoor track at 3.0 ± 0.2 m/s with LEAF and FOAM shoes. Running kinematics and kinetics were recorded during the stance phase. Absorbed and generated energy (negative and positive work) of the hip, knee and ankle joint as well as muscle forces of selected lower limb muscles were determined using a musculoskeletal model. A significant reduction in energy absorption at the hip joint as well as energy generation at the ankle joint was found for LEAF compared to FOAM. The mean lower limb muscle forces of the m. soleus, m. gastrocnemius lateralis and m. gastrocnemius medialis were significantly reduced for LEAF compared to FOAM. Furthermore, m. biceps femoris showed a trend of reduction in running with LEAF. The remaining lower limb muscles analyzed (m. gluteus maximus, m. rectus femoris, m. vastus medialis, m. vastus lateralis, m. tibialis anterior) did not reveal significant differences between the shoe conditions. The findings of this study indicate that LEAF positively influenced the energy balance in running by reducing lower limb muscle forces compared to FOAM. In this way, LEAF could contribute to an overall increased running performance in heel-toe running.

  11. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  12. Seismic Strengthening of Carpentry Joints in Traditional Timber Structures

    NASA Astrophysics Data System (ADS)

    Parisi, Maria A.; Cordié, Cinzia; Piazza, Maurizio

    2008-07-01

    The static and dynamic behavior of timber structures largely depends on their connections. In traditional timber construction, elements are usually connected with carpentry joints based on contact pressure and friction, often with only minor reinforcement generically intended to avoid disassembling. In current practice, interventions for the upgrading of carpentry joints are mainly based on empirical knowledge according to tradition. Often they produce a general strengthening of the connection, but are not specific for the case of seismic action. Strengthening on heuristic bases may be only partially effective or possibly disproportioned. The behavior of the carpentry joints most used in roof structures is examined. The birdsmouth joint, connecting rafters to the tie beam, has been studied first, characterizing its behavior numerically and experimentally in monotonic and cyclic conditions. Other forms of the rafter-to-tie connection, the double notch joint and the case of parallel rafters, are discussed. Some general criteria for the seismic strengthening of these joints are presented.

  13. Modeling of Human Joint Structures.

    DTIC Science & Technology

    1982-09-01

    Acromioclavicular Joint .... ............. ... 20 Glenohumeral Joint .... ................ . 20 HIP JOINT .................. ...... 21 Iliofemoral Ligament...clavicle articulates with the manubrium of the sternum, and the acromioclavicular joint, where the clavicle articulates with the acromion process of the...the interclavicular ligament. Acromioclavicular Joint This articulation between the distal end of the clavicle and the acromion of the scapula is

  14. Structural attachments for large space structures

    NASA Technical Reports Server (NTRS)

    Pruett, E. C.; Loughead, T. E.; Robertson, K. B., III

    1980-01-01

    The feasibility of fabricating beams in space and using them as components of a large, crew assembled structure, was investigated. Two projects were undertaken: (1) design and development of a ground version of an automated beam builder capable of producing triangular cross section aluminum beams; and (2) design and fabrication of lap joints to connect the beams orthogonally and centroidal end caps to connect beams end to end at any desired angle. The first project produced a beam building machine which fabricates aluminum beams suitable for neutral buoyancy evaluation. The second project produced concepts for the lap joint and end cap. However, neither of these joint concepts was suitable for use by a pressure suited crew member in a zero gravity environment. It is concluded that before the beams can be evaluated the joint designs need to be completed and sufficient joints produced to allow assembly of a complex structure.

  15. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1994-01-01

    This paper presents a novel method to design decentralized controllers for large complex flexible structures by using the idea of joint decoupling. Decoupling of joint degrees of freedom from the interior degrees of freedom is achieved by setting the joint actuator commands to cancel the internal forces exerting on the joint degrees of freedom. By doing so, the interactions between substructures are eliminated. The global structure control design problem is then decomposed into several substructure control design problems. Control commands for interior actuators are set to be localized state feedback using decentralized observers for state estimation. The proposed decentralized controllers can operate successfully at the individual substructure level as well as at the global structure level. Not only control design but also control implementation is decentralized. A two-component mass-spring-damper system is used as an example to demonstrate the proposed method.

  16. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  17. Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Shima, Hiroshi

    2009-12-01

    Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.

  18. Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Shima, Hiroshi

    2010-03-01

    Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.

  19. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    PubMed

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.

  20. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  1. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  2. Interstitial matrix proteins determine hyaluronan reflection and fluid retention in rabbit joints: effect of protease

    PubMed Central

    Sabaratnam, S; Coleman, P J; Mason, R M; Levick, J R

    2007-01-01

    Hyaluronan (HA) retention inside the synovial cavity of joints serves diverse protective roles. We tested the hypothesis that HA retention is mediated by the network of extracellular matrix proteins in the synovial lining. Cannulated rabbit knee joints were infused with HA solution with or without pretreatment by chymopapain, a collagen-sparing protease. Trans-synovial fluid escape rate was measured and, after a period of trans-synovial filtration, samples of intra-articular fluid and subsynovial fluid were analysed for HA to assess its trans-synovial ultrafiltration. In control joints, HA ultrafiltration was confirmed by postfiltration increases in intra-articular HA concentration (259 ± 17% of infused concentration) and reduced subsynovial concentration (30 ± 8%; n = 11). The proportion of HA molecules reflected by the synovium was 57–75%. Chymopapain treatment increased the hydraulic permeability of the synovial lining ∼13-fold, almost abolished the trans-synovial difference in HA concentration and reduced the HA reflected fraction to 3–7% (n = 6; P < 0.001, ANOVA). Structural studies confirmed that chymopapain treatment depleted the matrix of proteoglycans but preserved its collagen. The findings thus demonstrate that HA ultrafiltration and synovial hydraulic permeability are determined by the network of non-collagen, extracellular matrix proteins. This may be important clinically, since protease activity is raised in rheumatoid arthritis, as are HA and fluid escape. PMID:17008373

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimenov, V. A., E-mail: klimenov@tpu.ru; National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050; Kurgan, K. A., E-mail: kirill-k2.777@mail.ru

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  4. [Implementation of joint-crisis plans--a study of health care users and professionals].

    PubMed

    Grätz, Juliane; Brieger, Peter

    2012-11-01

    To study effects of the implementation of joint-crisis plans (JCP) on health-care users and professionals. The first 3 years of the implementation of JCP were followed with structured interviews with health-care users and professionals. Legal and administrative complications were documented. 36 of 44 subjects with JCP were assessed. Most of them had learned of JCP through other users or self-help. 55 % had prior experience with compulsory treatment. Better communication and self-determination were main goals of JCP. A relevant change in hospital treatment through JCP was not observed. Only few professionals had made direct experience with JCP. They valued JCP mildly positive. No legal and administrative complications were documented. Only a small minority of users signed JCP. JCP were easily employed and improved communication and self-determination. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.

    2009-02-01

    We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.

  6. Ultrasonographic findings of shoulder teno-muscular structures in symptomatic and asymptomatic dogs.

    PubMed

    Barella, Gabriele; Lodi, Matteo; Faverzani, Stefano

    2017-11-14

    B-mode sonographic evaluation of shoulder joint in dogs provides qualitative information concerning mainly tendon and muscles structures. Although the sonographic findings of tenomuscular lesions have been described previously, their frequency in symptomatic and asymptomatic patients has not been reported yet. Aim of the study was to describe and compare qualitative ultrasonographic findings of shoulder joint in clinically symptomatic and asymptomatic dogs and to speculate which lesions might be considered major responsible for lameness. Fifty-two dogs with shoulder lameness and 58 asymptomatic dogs (both with unremarkable radiographic findings) underwent ultrasonographic B-mode examination of the scapulohumeral joint. Lesions detected were recorded and statistically compared between groups. Significant differences between groups were observed for the number of ultrasonographic abnormalities detected and for fluid accumulation, biceps brachii tendon (BT) lesions and bone surface irregularities. Sonography was considered useful for the determination of lesions absence and for the detection of BT lesions, fluid accumulation, muscle lacerations and bone surface irregularities. The odds for symptomatic dogs were greater than for asymptomatic patients to ultrasonographically diagnose BT lesions, fluid accumulation and bone surface irregularities. Ultrasound has proven to be a useful tool in the evaluation of tenomusculoskeletal structures of shoulder in dogs with unremarkable radiographic findings. Our results suggest that ultrasonography is useful in the diagnosis of tendon abnormalities, fluid accumulation, muscle lacerations and bone surface irregularities as potential contributors to shoulder lameness in dogs.

  7. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  8. Development of iFab (Instant Foundry Adaptive Through Bits) Manufacturing Process and Machine Library

    DTIC Science & Technology

    2012-08-01

    loaded joints including bearing -type shear loaded joints and friction type shear loaded joints . Appendix Figure 2f.A-3 shows an illustration of each... Loaded Joint Bearing Type Shear Loaded Joint Friction Type Shear Loaded Joint Tension Loaded Joint 62 Approved for public release...Joining of materials and structures: from pragmatic process to enabling technology.

  9. Anterior cruciate ligament injury in female and male athletes: the relationship between foot structure and injury.

    PubMed

    Jenkins, Walter L; Killian, Clyde B; Williams, D S; Loudon, Janice; Raedeke, Suzanne G

    2007-01-01

    It has been shown that anterior cruciate ligament (ACL) injuries are more prevalent in female athletes than in male athletes. Soccer and basketball are considered high-risk sports for ACL injury in female athletes. Several studies have reported a relationship between ACL injury and measures of foot structure. This study was conducted to investigate the relationship between foot structure and ACL injury rates in female and male soccer and basketball players. One hundred five soccer and basketball players (53 women and 52 men) were recruited and divided into an ACL-normal group (n=89) and an ACL-injured group (n=16). Two measures of foot structure (subtalar joint neutral position and navicular drop test values) were recorded for each subject. An independent t test and a paired t test were used to analyze differences in ACL status, foot structure, and sex. A chi2 analysis determined whether the prevalence of ACL injury was independent of sport. No statistically significant differences were found in the foot structure measures between women and men. Female soccer and basketball players had an ACL injury rate seven times that of male players. Values derived from subtalar joint neutral position measurement and the navicular drop test were not associated with ACL injury in collegiate female and male soccer and basketball players.

  10. Factors determining the level and changes in intra-articular pressure in the knee joint of the dog.

    PubMed Central

    Nade, S; Newbold, P J

    1983-01-01

    Intra-articular pressure levels were determined for joint positions throughout the normal physiological range of movement of dogs' knee joints. Change in joint position resulted in change in intra-articular pressure. It was demonstrated that intra-articular pressure is highest with the joint in the fully flexed position. Minimum pressure was recorded at a position between 80 degrees and 120 degrees. Minimum pressures were usually subatmospheric. The rate of change of joint position affected intra-articular pressure. The relationship of intra-articular pressure and joint position before and after full flexion demonstrated a hysteresis effect; the pressures were lower than for the same joint position before flexion. Maintenance of the joint in the fully flexed position for increasing periods of time between repeated movement cycles resulted in a similar reduction, of constant magnitude, in pressure between joint positions before and after each period of flexion. However, there was also a progressive decrease in pressure for all joint angles over the total number of movement cycles. There is a contribution to intra-articular pressure of joint capsular compliance and fluid movement into and out of the joint (both of which are time-dependent). The recording of intra-articular pressure in conscious, upright dogs revealed similar pressure levels to those measured in anaesthetized supine dogs. The major determinants of intra-articular pressure in normal dog knee joints include joint size, synovial fluid volume, position of joint, peri-articular tissue and joint anatomy, membrane permeability, capsular compliance, and movement of fluid into and out of the joint. Images Fig. 1 PMID:6875957

  11. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  12. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  13. Development of brazing process for W-EUROFER joints using Cu-based fillers

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  14. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2017-12-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  15. Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Bieler, Thomas R.; Zhou, Quan; Ma, Limin; Guo, Fu

    2018-03-01

    The anisotropy of Sn crystal structures greatly affects the electromigration (EM) and thermomechanical fatigue (TMF) of solder joints. The size of solder joint shrinkage in electronic systems further makes EM and TMF an inseparably coupled issue. To obtain a better understanding of failure under combined moderately high (2000 A/cm2) current density and 10-150°C/1 h thermal cycling, analysis of separate, sequential, and concurrent EM and thermal cycling (TC) was imposed on single shear lap joints, and the microstructure and crystal orientations were incrementally characterized using electron backscatter diffraction (EBSD) mapping. First, it was determined that EM did not significantly change the crystal orientation, but the formation of Cu6Sn5 depended on the crystal orientation, and this degraded subsequent TMF behavior. Secondly, TC causes changes in crystal orientation. Concurrent EM and TC led to significant changes in crystal orientation by discontinuous recrystallization, which is facilitated by Cu6Sn5 particle formation. The newly formed Cu6Sn5 often showed its c-axis close to the direction of electron flow.

  16. Nanostructure of vortex during explosion welding.

    PubMed

    Rybin, V V; Greenberg, B A; Ivanov, M A; Patselov, A M; Antonova, O V; Elkina, O A; Inozemtsev, A V; Salishchev, G A

    2011-10-01

    The microstructure of a bimetallic joint made by explosion welding of orthorhombic titanium aluminide (Ti-30Al-16Nb-1Zr-1Mo) with commercially pure titanium is studied. It is found that the welded joint has a multilayered structure including a severely deformed zone observed in both materials, a recrystallized zone of titanium, and a transition zone near the interface. Typical elements of the transition zone-a wavy interface, macrorotations of the lattice, vortices and tracks of fragments of the initial materials-are determined. It is shown that the observed vortices are formed most probably due to local melting of the material near the contact surface. Evidence for this assumption is deduced from the presence of dipoles, which consist of two vortices of different helicity and an ultrafine duplex structure of the vortex. Also, high mixing of the material near the vortex is only possible by the turbulent transport whose coefficient is several orders of magnitude larger than the coefficient of atomic diffusion in liquids. The role played by fragmentation in both the formation of lattice macrorotations and the passage of coarse particles of one material through the bulk of the other is determined.

  17. Age-related changes in the articular cartilage of the stifle joint in non-working and working German Shepherd dogs.

    PubMed

    Francuski, J V; Radovanović, A; Andrić, N; Krstić, V; Bogdanović, D; Hadzić, V; Todorović, V; Lazarević Macanović, M; Sourice Petit, S; Beck-Cormier, S; Guicheux, J; Gauthier, O; Kovacević Filipović, M

    2014-11-01

    The aims of this study were to define age-related histological changes in the articular cartilage of the stifle joint in non-chondrodystrophic dogs and to determine whether physical activity has a positive impact on preservation of cartilage structure during ageing. Twenty-eight German shepherd dogs were included in the study. These dogs had no evidence of joint inflammation as defined by clinical assessment, radiology and synovial fluid analysis (specifically absence of synovial fluid serum amyloid A). The dogs were grouped as young working (n ¼ 4), young non-working (n ¼ 5), aged working (n ¼ 13) and aged non-working (n ¼ 6) animals. Gross changes in the stifle joints were recorded and biopsy samples of femoral and tibial articular cartilage were evaluated for thickness; chondrocyte number, density, surface area and morphology; isogenous group morphology; tidemark integrity; subchondral bone structure; presence of proteoglycans/ glycosaminoglycans; and expression of type I, II and X collagens. The major age-related changes, not related to type of physical activity, included elevated chondrocyte density and thinning of tibial cartilage and increased chondrocyte surface area in the superficial and intermediate zone of the femoral cartilage. There was also expression of type X collagen in the femoral and tibial calcified and non-calcified cartilage; however, type X collagen was not detected in the superficial zone of old working dogs. Therefore, ageing, with or without physical activity, leads to slight cartilage degeneration, while physical activity modulates the synthesis of type X collagen in the superficial cartilage zone, partially preserving the structure of hyaline cartilage. 2014 Elsevier Ltd. All rights reserved.

  18. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  19. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  20. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  1. 32 CFR 644.512 - DA-SBA joint set-aside determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true DA-SBA joint set-aside determination. 644.512 Section 644.512 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Stone § 644.512 DA-SBA joint set-aside determination. Section 15 of the Small Business Act (15 U.S.C...

  2. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  3. Effect of Different Connection Modes on Bolt Structural Properties of TC4 Alloy in Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Li, Xiaodan; Huang, Shuangjun; Xu, Liang; Hui, Li; Zhou, Song

    2017-12-01

    The bolt structural properties of selective laser melted (SLM) samples produced from TC4 powder metal has been investigated. Two different connection molds relative to single lap joint and bilateral lap joint as well as two different state of surface quality were considered. Samples and test procedures were designed in accordance with HB 5143 and HB 5287 standard. The results show that there is a strong influence of connection molds on the dynamic behavior of SLM produced TC4. The mechanical properties of bilateral lap joint are better than those of the single lap joint. Meanwhile the fatigue performance of the bilateral lap joint is much stronger than that of the single lap joint which it is a symmetrical structure of the two-shear test on both sides of the force evenly, while the single lap joint is a single shear sample of the uneven force. There are two kinds of fracture form most of which are broken in the first row of screw and a small part in the middle of the connecting plate.

  4. Change of synovial vascularity in a single finger joint assessed by power doppler sonography correlated with radiographic change in rheumatoid arthritis: comparative study of a novel quantitative score with a semiquantitative score.

    PubMed

    Fukae, Jun; Kon, Yujiro; Henmi, Mihoko; Sakamoto, Fumihiko; Narita, Akihiro; Shimizu, Masato; Tanimura, Kazuhide; Matsuhashi, Megumi; Kamishima, Tamotsu; Atsumi, Tatsuya; Koike, Takao

    2010-05-01

    To investigate the relationship between synovial vascularity assessed by quantitative power Doppler sonography (PDS) and progression of structural bone damage in a single finger joint in patients with rheumatoid arthritis (RA). We studied 190 metacarpophalangeal (MCP) joints and 190 proximal interphalangeal (PIP) joints of 19 patients with active RA who had initial treatment with disease-modifying antirheumatic drugs (DMARDs). Patients were examined by clinical and laboratory assessments throughout the study. Hand and foot radiography was performed at baseline and the twentieth week. Magnetic resonance imaging (MRI) was performed at baseline. PDS was performed at baseline and the eighth week. Synovial vascularity was evaluated according to both quantitative and semiquantitative methods. Quantitative PDS was significantly correlated with the enhancement rate of MRI in each single finger joint. Comparing quantitative synovial vascularity and radiographic change in single MCP or PIP joints, the level of vascularity at baseline showed a significant positive correlation with radiographic progression at the twentieth week. The change of vascularity in response to DMARDs, defined as the percentage change in vascularity by the eighth week from baseline, was inversely correlated with radiographic progression in each MCP joint. The quantitative PDS method was more useful than the semiquantitative method for the evaluation of synovial vascularity in a single finger joint. The change of synovial vascularity in a single finger joint determined by quantitative PDS could numerically predict its radiographic progression. Using vascularity as a guide to consider a therapeutic approach would have benefits for patients with active RA.

  5. Nonlinear Modeling of Joint Dominated Structures

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.

    1990-01-01

    The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.

  6. Electronic structures of C u 2 O , C u 4 O 3 , and CuO: A joint experimental and theoretical study

    DOE PAGES

    Wang, Y.; Lany, S.; Ghanbaja, J.; ...

    2016-12-14

    We present a joint experimental and theoretical study for the electronic structures of copper oxides including Cu 2O, CuO, and the metastable mixed-valence oxide Cu 4O 3. The optical band gap is determined by experimental optical absorption coefficient, and the electronic structure in valence and conduction bands is probed by photoemission and electron energy loss spectroscopies, respectively. Furthermore, we compare our experimental results with many-body GW calculations utilizing an additional on-site potential for d-orbital energies that facilitates tractable and predictive computations. The side-by-side comparison between the three oxides, including a band insulator (Cu2O) and two Mott/charge-transfer insulators (CuO, Cu 4Omore » 3) leads to a consistent picture for the optical and band-structure properties of the Cu oxides, strongly supporting indirect band gaps of about 1.2 and 0.8 eV in CuO and Cu 4O 3, respectively. This comparison also points towards surface oxidation and reduction effects that can complicate the interpretation of the photoemission spectra.« less

  7. Ultrasonic measurement and monitoring of loads in bolts used in structural joints

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.

  8. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  9. Interplay of intermolecular interactions and flexibility to mediate glass forming ability and fragility: A study of chemical analogs

    NASA Astrophysics Data System (ADS)

    Saini, Manoj K.; Jin, Xiao; Wu, Tao; Liu, Yingdan; Wang, Li-Min

    2018-03-01

    We have investigated the enthalpic and dielectric relaxations of four groups of quinoline analogs having similar structural properties (i.e., rigidity, stiffness, and bulkiness) but a different steric character and the nature of intermolecular interactions and flexibility. The dielectric fragility index (md) and the enthalpic one (mH), determined by the Tool-Narayanaswamy-Moynihan-Hodge formalism, are comparable. Generally, for the four sets of molecules of similar structures, both the interactions and flexibility are found to be critical in making the large span of fragility (i.e., from 59 to 131) and glass forming ability. By contrast, individual impacts of the interaction and flexibility can only explain fragility partly among each group of isomers. We found that the molecules with high fragility are of relatively low liquid density, reflecting the joint impact of the interactions and flexibility. An interesting result is observed among the isomers that the molecules which are fragile have enhanced glass forming ability. The results are unveiling the joint impacts of molecular structure (flexibility) and intermolecular interaction on the molecular dynamics.

  10. Selective buckling via states of self-stress in topological metamaterials

    PubMed Central

    Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo

    2015-01-01

    States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303

  11. Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints

    NASA Astrophysics Data System (ADS)

    Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.

    2018-01-01

    Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.

  12. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  13. Evaluation of joint sealant materials : interim report No. 1.

    DOT National Transportation Integrated Search

    1972-03-01

    This report illustrates some of the problems caused by ineffectively sealed joints and points to the great need for properly sealing joints in both concrete pavements and structures. : The principles of design including slab lengths, joint dimensions...

  14. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  15. Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.

    PubMed

    Kozera, Katarzyna; Ciszek, Bogdan

    2016-01-01

    The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.

  16. The spiral glenohumeral ligament: an open and arthroscopic anatomy study.

    PubMed

    Merila, Mati; Heliö, Harri; Busch, Lüder C; Tomusk, Hannes; Poldoja, Elle; Eller, Aalo; Kask, Kristo; Haviko, Tiit; Kolts, Ivo

    2008-11-01

    The purpose of this study was to visualize arthroscopically and to describe the micro- and macroscopic anatomy of the poorly known ligament of the anterior capsule of the glenohumeral joint: the so-called ligamentum glenohumerale spirale (spiral GHL). Twenty-two fresh shoulder joints were dissected, and the anatomy of the anterior capsular structures (the spiral GHL, the middle glenohumeral ligament [MGHL], and the anterior band as well as the axillary part of the inferior glenohumeral ligament [AIGHL and AxIGHL, respectively]) was investigated. For arthroscopic visualization, 30 prospective arthroscopic clinical cases and 19 retrospective video clips of the patients who had an arthroscopic shoulder procedure with a normal subscapularis tendon, labrum, and anterior joint capsule were evaluated. The spiral GHL and the AxIGHL were present in all 22 shoulder specimens. The AIGHL was not recognizable on the extra-articular side of the joint capsule. The MGHL was absent in 3 shoulder specimens (13.6%). Arthroscopically, the spiral GHL was found in 22 (44.9%), the MGHL in 43 (87.8%), and the AIGHL in 46 (93.9%) of the cases. The spiral GHL arose from the infraglenoid tubercle and the triceps tendon and inserted together with subscapularis tendon onto the lesser tubercle of the humerus. Our results suggest that extra-articular structure of the spiral GHL is consistently recognizable, the upper part of which can be arthroscopically identified. Advanced anatomic knowledge of the spiral GHL helps the clinician better understand the normal anatomy of the shoulder joint and also helps to differentiate it from pathologic findings of the patient. The biomechanical importance of the spiral GHL and its connection with shoulder pathology remains to be determined in further studies.

  17. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.

  18. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

    PubMed Central

    2016-01-01

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  19. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  20. Method and apparatus for preloading a joint by remotely operable means

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1993-01-01

    The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.

  1. Method and apparatus for preloading a joint by remotely operable means

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O. (Inventor)

    1992-01-01

    The invention is a method and apparatus for joining structures, an active structure and a passive structure, and imposing a tensile pre-load on the joint by a remotely operable mechanism comprising a heat contractible joining element. The method and apparatus include mounting on the structure, a probe shaft of material which is transformable from an expanded length to a contracted length when heated to a specific temperature range. The shaft is provided with a probe head which is receivable in a receptacle opening formed in the passive structure, when the active structure is moved into engagement therewith by an appropriate manipulator mechanism. A latching system mounted on the structure adjacent to the receptacle opening captures the probe head, when the probe head is inserted a predetermined amount. A heating coil on the shaft is energizable by remote control for heating the shaft to a temperature range which transforms the shaft to its contracted length, whereby a latching shoulder thereof engages latching elements of the latching system and imposes a tensile preload on the structural joint. Provision is also made for manually adjusting the probe head on the shaft to allow for manual detachment of the structures or manual preloading of the structural joint.

  2. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  3. Organisational Structure and Information Technology (IT): Exploring the Implications of IT for Future Military Structures

    DTIC Science & Technology

    2006-07-01

    4 Abbreviations AI Artificial Intelligence AM Artificial Memory CAD Computer Aided...memory (AM), artificial intelligence (AI), and embedded knowledge systems it is possible to expand the “effective span of competence” of...Technology J Joint J2 Joint Intelligence J3 Joint Operations NATO North Atlantic Treaty Organisation NCW Network Centric Warfare NHS National Health

  4. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  5. DINAMICS OF KNEE JOINT SPACE ASYMMETRY ON X-RAY AS A MARKER OF KNEE OSTEOARTHRITIS REHABILITATION EFFICACY.

    PubMed

    Sheveleva, N; Minbayeva, L; Belyayeva, Y

    2017-03-01

    Reducing of articular cartilage functional volume in knee joint osteoarthritis occurs unevenly and accompanied with pathological changes of lower limb axis as a result of connective tissue and muscle structures dysfunction. Evaluation of X-ray knee joint space asymmetry seems to be informative to analyze the dynamics of lower extremities biomechanical imbalances characteristic for knee joint osteoarthritis. However, standardized method of X-ray joint space determining does not include its symmetry calculation. The purpose of the study was optimization of knee joint radiological examination by developing of X-ray knee joint space asymmetry index calculation method. The proposed method was used for comparative analysis of extracorporeal shock-wave therapy efficacy in 30 patients with knee joint osteoarthritis of 2-3 degrees (Kellgren-Lawrence, 1957). As a result of the conducted treatment statistically significant decrease of the X-ray knee joint space asymmetry index was observed (Me(Q1;Q3): Z=5.20, p<0.001) and amounted as 0.22 (0.18;0.24) before treatment and 0.12 (0.10;0.14) after. Also, statistically significant (Z=5.10; p=0.00001) changes of load asymmetry on front and rear foot sections were observed by the results of podometric survey in comparative assessment before (Me(Q1;Q3)=24(12;30)) and after (Me(Q1;Q3)=6(4;30)) course therapy. 30% (n=9) of the patients evaluated the outcome of the treatment as "excellent" (1 point), 63% (n=19) - as "good" (2 points) and only 7% (n=2) - as "acceptable" (3 points) according to the Roles and Maudsley score. The listed above data was regarded as an X-ray positive dynamics comparable with clinical improvement. Thus, the X-ray knee joint space asymmetry index, calculated according to the proposed method, allows to evaluate dynamics of articular surfaces congruency changes and provide differentiated approach to the treatment of knee joint osteoarthritis.

  6. Functional Morphology of the Arm Spine Joint and Adjacent Structures of the Brittlestar Ophiocomina nigra (Echinodermata: Ophiuroidea)

    PubMed Central

    Wilkie, Iain C.

    2016-01-01

    The skeletal morphology of the arm spine joint of the brittlestar Ophiocomina nigra was examined by scanning electron microscopy and the associated epidermis, connective tissue structures, juxtaligamental system and muscle by optical and transmission electron microscopy. The behaviour of spines in living animals was observed and two experiments were conducted to establish if the spine ligament is mutable collagenous tissue: these determined (1) if animals could detach spines to which plastic tags had been attached and (2) if the extension under constant load of isolated joint preparations was affected by high potassium stimulation. The articulation normally operates as a flexible joint in which the articular surfaces are separated by compliant connective tissue. The articular surfaces comprise a reniform apposition and peg-in-socket mechanical stop, and function primarily to stabilise spines in the erect position. Erect spines can be completely immobilised, which depends on the ligament having mutable tensile properties, as was inferred from the ability of animals to detach tagged spines and the responsiveness of isolated joint preparations to high potassium. The epidermis surrounding the joint has circumferential constrictions that facilitate compression folding and unfolding when the spine is inclined. The interarticular connective tissue is an acellular meshwork of collagen fibril bundles and may serve to reduce frictional forces between the articular surfaces. The ligament consists of parallel bundles of collagen fibrils and 7–14 nm microfibrils. Its passive elastic recoil contributes to the re-erection of inclined spines. The ligament is permeated by cell processes containing large dense-core vesicles, which belong to two types of juxtaligamental cells, one of which is probably peptidergic. The spine muscle consists of obliquely striated myocytes that are linked to the skeleton by extensions of their basement membranes. Muscle contraction may serve mainly to complete the process of spine erection by ensuring close contact between the articular surfaces. PMID:27974856

  7. Burn Rehabilitation and Research: Proceedings of a Consensus Summit

    DTIC Science & Technology

    2009-08-01

    to determine appropriate utilization of therapy services. As patients with burn in- juries progress through various stages of recovery, their...tissue align- ment of an associated joint or anatomic structure. Contractures can affect a skin crease, skin juncture, or margin and may secondarily...comprehensive burn rehabilitation data base Increase utilization of current web sites for global communication Journal of Burn Care & Research 548

  8. Contact Us

    Science.gov Websites

    J8 | Force Structure, Resources & Assessment Contact Home : Contact Chairman's Social Media Chairman's Flicker Chairman's Blog SEAC's Social Media SEAC's Facebook SEAC's Flicker SEAC's Twitter Joint Staff's Social Media Joint Staff's Facebook Joint Staff's Flicker Joint Staff 's Twitter Social Media

  9. Forces in wingwalls from thermal expansion of skewed semi-integral bridges : executive summary report.

    DOT National Transportation Integrated Search

    2010-11-01

    Bridges that utilize expansion joints have an overall higher maintenance cost due to leakage at the expansion joint leading to deterioration of the joint, as well as structural components beneath the joint including the superstructure and substructur...

  10. Structural Mechanics Solutions for Butt Joint Seals in Cold Climates

    DOT National Transportation Integrated Search

    1996-08-01

    An effective, formed-in-place joint seal will respond with elastic or viscoelastic behavior over a reasonable design life to any large movement of the joint without adhesive or cohesive failure. For a given joint movement, seals with lower stiffness ...

  11. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator.

    PubMed

    Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John

    2015-09-18

    The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The Anatomy of the Glenoid Labrum: A Comparison between Human and Dog

    PubMed Central

    Sager, Martin; Herten, Monika; Ruchay, Stefanie; Assheuer, Josef; Kramer, Martin; Jäger, Marcus

    2009-01-01

    The anatomy of the glenohumeral joint in humans is characterized by static and dynamic stabilizing structures. In particular the glenoid labrum (GL), the proximal attachment of the joint capsule and the lateral glenohumeral ligament, is an important passive stabilizer in the human shoulder. Although canine animal models are used frequently to investigate the complex biomechanics of the shoulder, few data regarding the microstructure of the canine GL are available. In this study, the anatomy of the canine GL and related structures (n = 20) was investigated and compared with the human anatomic situation (n = 36). In both human and beagle joints, the GL consisted of 3 zones—the transition zone, shifting zone, and meniscoid fold, but not all 3 zones were present in all joint segments from canine joints. In particular the peripheral parts of the GL showed rich vascularization in both species. The height and width of the GL in the histologic specimens indicated that the GL is of less importance as a passive stabilizer in dogs. Additional differences between the human and canine CL include the joint ligaments, tendons of the shoulder joint, and lack of rotator cuff. The structural and biomechanical characteristics of the joints of quadrupedal animals raise the question of their appropriateness for shoulder research. PMID:19887031

  13. Hybrid FSWeld-bonded joint fatigue behaviour

    NASA Astrophysics Data System (ADS)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  14. Joining of porous silicon carbide bodies

    DOEpatents

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  15. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  16. Health care joint ventures between tax-exempt organizations and for-profit entities.

    PubMed

    Sanders, Michael I

    2005-01-01

    Health care exempt organizations have many options regarding their structure and affiliations with for-profit entities. As long as any joint ventures are carefully structured and the nonprofit retains control over the exempt health care activities, the Internal Revenue Service should not question the structure. However, as outlined above, if the for-profit entity effectively gains control over the activities of the venture, the structure is not likely to be upheld by the IRS or the courts, and either the exempt status of the nonprofit will be denied or revoked, or health care income will be subject to the unrelated business income tax. In summary, the health care industry has been severely impacted by many economic forces, including uncertainty in the area of joint ventures between nonprofits and for-profit health care systems. The uncertainty as to whether the joint venture would negatively impact the nonprofit's tax-exempt status undoubtedly caused many nonprofits to form for-profit subsidiaries and otherwise expanded operations in a for-profit marketplace. Fortunately, with the guidance that is currently available in the form of Revenue Ruling 98-15, Redlands, St. David's, and now Revenue Ruling 2004-51, health care institutions can move forward with properly structured joint ventures with greater confidence that the joint venture will not endanger the tax-exempt status of the nonprofit.

  17. Radiographic progression in weight-bearing joints of patients with rheumatoid arthritis after TNF-blocking therapies.

    PubMed

    Seki, Eiko; Matsushita, Isao; Sugiyama, Eiji; Taki, Hirohumi; Shinoda, Koichiro; Hounoki, Hiroyuki; Motomura, Hiraku; Kimura, Tomoatsu

    2009-04-01

    The aim of the present study was to assess the influence of tumor necrosis factor (TNF)-blocking therapies on weight-bearing joints in patients with rheumatoid arthritis. Changes in clinical variables and radiological findings in 213 weight-bearing joints (69 hip joints, 63 knee joints, and 81 ankle joints) of 42 consecutive patients were investigated at baseline and at 1 year of TNF-blocking therapies. Structural damage to the weight-bearing joints was assessed using the Larsen scoring method. Detailed comparisons of the sizes and locations of erosions were performed for each set of radiographs of the respective joints. Assessment of radiographs of the 213 weight-bearing joints indicated progression of the Larsen grade in eight joints. Another five joints without Larsen grade progression showed apparent radiographic progression of joint damage based on increases in bony erosions. Overall, 13 joints (6%) of eight patients (19%) showed progression of joint damage after 1 year of TNF-blocking therapies. Analysis of each baseline grade indicated that radiographic progression of joint damage was inhibited in most grade 0-II joints. On the other hand, all hip and knee joints with pre-existing damage of grade III/IV showed apparent progression even in patients with good response. The results further suggested that radiographic progression may occur in less damaged joints when the patients were non-responders to the therapy. Among the weight-bearing joints, ankle joints showed different radiographic behavior and four ankle joints displayed improvement of radiographic damage. Early initiation of anti-TNF therapy should be necessary especially when the patients are starting to show early structural damage in weight-bearing joints.

  18. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    PubMed

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues. © 2014 Wiley Periodicals, Inc.

  19. Progressive Damage Modeling of Durable Bonded Joint Technology

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  20. Development of the weldbond process for joining titanium

    NASA Technical Reports Server (NTRS)

    Fields, D.

    1972-01-01

    High quality resistance spot welds were produced by welding through epoxy adhesive on titanium alloys. Weldbond joints were consistently stronger than those of either mechanical fasteners, structural adhesive bonds, or mechanical fasteners with adhesive at the joint interface. Weldbond joints and/or spot weld joints showed superior strength at all temperature ranges as compared to other joints tested.

  1. Joint Implications for Contracted Logistics

    DTIC Science & Technology

    2007-03-30

    authority with the host nation country and policy on using UCMJ for contracted personnel. As tailored theater policies are developed and contracting...responsibility, this paper recommends better joint training, leader development and joint enablers for contracting operations. JOINT...U.S. Joint Forces Command (JFCOM) are analyzing Congressional and DOD policy to develop procedures and force structure to support contractor

  2. Black dimensional stones: Geology, technical properties and deposit characterization of the dolerites from Uruguay

    NASA Astrophysics Data System (ADS)

    Morales Demarco, M.; Oyhantçabal, P.; Stein, K.-J.; Siegesmund, S.

    2012-04-01

    Dimensional stones with a black color occupy a prominent place on the international market. Uruguayan dolerite dikes of andesitic and andesitic-basaltic composition are mined for commercial blocks of black dimensional stones. A total of 16 dikes of both compositions were studied and samples collected for geochemical and petrographical analysis. Color measurements were performed on different black dimensional stones in order to compare them with the Uruguayan dolerites. Samples of the two commercial varieties (Absolute Black and Moderate Black) were obtained for petrophysical analysis (e.g. density, porosity, uniaxial compressive strength, tensile strength, etc.). Detailed structural analyses were performed in several quarries. Geochemistry and petrography determines the intensity of the black color. When compared with commercial samples from China, Brazil, India and South Africa, among others, the Uruguayan dolerite Absolute Black is the darkest black dimensional stone analyzed. In addition, the petrophysical properties of the Uruguayan dolerites make them one of the highest quality black dimensional stones. Structural analyses show that five joint sets have been recognized: two sub-vertical joints, one horizontal and two diagonal. These joint sets are one of the most important factors that control the deposits, since they control the block size distribution and the amount of waste material.

  3. Influence of geologic setting on ground-water availability in the Lawrenceville area, Gwinnett County, Georgia

    USGS Publications Warehouse

    Williams, Lester J.; Kath, Randy L.; Crawford, Thomas J.; Chapman, Melinda J.

    2005-01-01

    Obtaining large quantities of ground water needed for municipal and industrial supply in the Piedmont and Blue Ridge physiographic provinces can be challenging because of the complex geology and the typically low primary permeability of igneous and metamorphic rocks. Areas of enhanced secondary permeability in the bedrock do occur, however, and 'high-yield' wells are not uncommon, particularly where careful site-selection techniques are used prior to test drilling. The U.S. Geological Survey - in cooperation with the City of Lawrenceville, Georgia - conducted this study from 2000 to 2002 to learn more about how different geologic settings influence the availability of ground water in igneous and metamorphic bedrock with the expectation that this knowledge could be used to help identify additional water resources in the area. In compositionally layered-rock settings, wells derive water almost exclusively from lithologically and structurally controlled water-bearing zones formed parallel to foliation and compositional layering. These high-permeability, water-bearing zones - termed foliation-parallel parting systems -combined with high-angle joint systems, are the primary control for the high-yield wells drilled in the Lawrenceville area; yields range from 100 to several hundred gallons per minute (gal/min). Near Lawrenceville, areas with high ground-water yield are present in sequences of amphibolite, biotite gneiss, and button schist where the structural attitude of the rocks is gently dipping, in areas characterized by abundant jointing, and in topographic settings with a continuous source of recharge along these structures. In massive-rock settings, wells derive water mostly from joint systems, although foliation-parallel parting systems also may be important. Wells deriving water primarily from steeply-dipping joint systems typically have low yields ranging from 1 to 5 gal/min. Joint systems in massive-rock settings can be identified and characterized by using many of the methods described in this report. Geologic mapping was the primary method used to determine the distribution, variability, and relative concentrations (intensity) of joint systems. In the subsurface, joints were characterized by taking orientation measurements in the open boreholes of wells using acoustic and/or optical televiewers. In this investigation, the only practical approach found for locating areas of high ground-water potential was first through detailed geologic mapping followed by test drilling, borehole geophysical logging, and aquifer testing. Geologic methods help characterize both large- and small-scale structures and other lithologic and stratigraphic features that influence development of increased secondary permeability in the bedrock. The rock types, discontinuities, depth of weathering, topographic position, and recharge potential - which were the principal factors assessed through detailed geologic mapping - must be evaluated carefully, in relation to one another, to assess the ground-water potential in a given area.

  4. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  5. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station.

  6. Stress analysis of the space telescope focal plane structure joint

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Shoemaker, W. L.

    1985-01-01

    Two major efforts were begun concerning the Space Telescope focal plane structure joint. The 3-D solid finite element modeling of the bipod flexure plate was carried out. Conceptual models were developed for the load transfer through the three major bolts to the flexure plate. The flexure plate drawings were reconstructed using DADAM for the purpose of developing a file from which the coordinates of any point on the flexure plate could be determined and also to locate the attachment points of the various components which connect with the flexure plate. For modeling convenience the CADAM drawing of the flexure plate has been divided into several regions which will be subdivided into finite elements using MSGMESH, which is a finite element mesh generator available with MSC/NASTRAN. In addition to the CADAM work on the flexure plate, an effort was also begun to develop computer aided drawings of the peripheral beam which will be used to assist in modeling the connection between it and the flexure plate.

  7. Clumped isotopes reveal the influence of deformation style on fluid flow and cementation along the Moab Fault, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Bergman, S.; Crider, J. G.

    2012-12-01

    Brittle fault systems can serve as either conduits or barriers to fluid flow, impacting mass and heat transfer in the crust and influencing the potential storage and migration of hydrocarbons and geothermal fluids. For fault systems in porous sandstones, different classes of structures control both hydrological and mechanical behavior during fault evolution: while cataclastic deformation bands form zones of localized deformation and crushed grains that reduce permeability within and across fault zones, joints can act as significant conduits for fluid. We investigate the relationship between structures and fluid flow in porous sandstones by studying calcite cements along the Moab Fault, a large normal fault system in the Paradox Basin, Utah. We use clumped isotope thermometry of fault cements to independently determine both the temperature and δ18O of the water from which the cements grew, placing new constraints on the source and path of diagenetic fluids in the basin. Based on fluid inclusion micro-thermometry and stable isotopic analysis of calcite cements from the Moab Fault, previous workers have hypothesized that joints served as conduits for the ascension of warm (84-125 °C) basinal fluids and deeply circulating meteoric waters. At the minor joint-dominated fault segment from which these data were collected, clumped isotope temperatures range from 57±10 to 101±2°C (2 SE), consistent with this hypothesis. However, at the nearby intersection of two major fault segments - in a zone characterized by both deformation bands and abundant joints - we find a broad range of temperatures (12±4 to 78±4°C) that vary spatially with distance from the fault and correlate with variations in secondary deformation structures (joints and deformation bands). These data provide the first evidence for cement growth from Earth surface-temperature fluids along the Moab Fault and suggests that the Fault served as a conduit for both ascending and descending fluids. The spatial distribution of low-temperature cements argues for rapid penetration of surface waters flowing down intensely-jointed fault intersections and suggests that deformation-band faults served as low-permeability baffles, preventing lateral migration of cold fluids. This interpretation is consistent with the cathodoluminescence patterns and δ18O and δ13C values of the samples, and confirms the important role of structures in transmission and compartmentalization of fluids in porous rocks. Our study illustrates how clumped isotope thermometry can aid in understanding interactions of mechanical, chemical, and transport processes associated with fractures and faults.

  8. Methode d'identification parametrique pour la surveillance in situ des joints a recouvrement par propagation d'ondes vibratoires

    NASA Astrophysics Data System (ADS)

    Francoeur, Dany

    Cette these de doctorat s'inscrit dans le cadre de projets CRIAQ (Consortium de recherche et d'innovation en aerospatiale du Quebec) orientes vers le developpement d'approches embarquees pour la detection de defauts dans des structures aeronautiques. L'originalite de cette these repose sur le developpement et la validation d'une nouvelle methode de detection, quantification et localisation d'une entaille dans une structure de joint a recouvrement par la propagation d'ondes vibratoires. La premiere partie expose l'etat des connaissances sur l'identification d'un defaut dans le contexte du Structural Health Monitoring (SHM), ainsi que la modelisation de joint a recouvrements. Le chapitre 3 developpe le modele de propagation d'onde d'un joint a recouvrement endommage par une entaille pour une onde de flexion dans la plage des moyennes frequences (10-50 kHz). A cette fin, un modele de transmission de ligne (TLM) est realise pour representer un joint unidimensionnel (1D). Ce modele 1D est ensuite adapte a un joint bi-dimensionnel (2D) en faisant l'hypothese d'un front d'onde plan incident et perpendiculaire au joint. Une methode d'identification parametrique est ensuite developpee pour permettre a la fois la calibration du modele du joint a recouvrement sain, la detection puis la caracterisation de l'entaille situee sur le joint. Cette methode est couplee a un algorithme qui permet une recherche exhaustive de tout l'espace parametrique. Cette technique permet d'extraire une zone d'incertitude reliee aux parametres du modele optimal. Une etude de sensibilite est egalement realisee sur l'identification. Plusieurs resultats de mesure sur des joints a recouvrements 1D et 2D sont realisees permettant ainsi l'etude de la repetabilite des resultats et la variabilite de differents cas d'endommagement. Les resultats de cette etude demontrent d'abord que la methode de detection proposee est tres efficace et permet de suivre la progression d'endommagement. De tres bons resultats de quantification et de localisation d'entailles ont ete obtenus dans les divers joints testes (1D et 2D). Il est prevu que l'utilisation d'ondes de Lamb permettraient d'etendre la plage de validite de la methode pour de plus petits dommages. Ces travaux visent d'abord la surveillance in-situ des structures de joint a recouvrements, mais d'autres types de defauts. (comme les disbond) et. de structures complexes sont egalement envisageables. Mots cles : joint a recouvrement, surveillance in situ, localisation et caracterisation de dommages

  9. Quantifying in vivo laxity in the anterior cruciate ligament and individual knee joint structures.

    PubMed

    Westover, L M; Sinaei, N; Küpper, J C; Ronsky, J L

    2016-11-01

    A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61-92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.

  10. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    NASA Astrophysics Data System (ADS)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  11. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  12. Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel

    2018-02-01

    The world-class W-Sn Panasqueira deposit consists of an extensive, subhorizontal vein swarm, peripheral to a late-orogenic greisen cupola. The vein swarm consists of hundreds of co-planar quartz veins that are overlapping and connected laterally over large distances. Various segmentation structures, a local zigzag geometry, and the occurrence of straight propagation paths indicate that they exploited a regional joint system. A detailed orientation analysis of the systematic joints reveals a geometrical relationship with the subvertical F2 fold generation, reflecting late-Variscan transpression. The joints are consistently orthogonal to the steeply plunging S0-S2 intersection lineation, both on the regional and the outcrop scale, and are thus defined as cross-fold or ac-joints. The joint system developed during the waning stages of the Variscan orogeny, when already uplifted to an upper-crustal level. Veining reactivated these cross-fold joints under the conditions of hydraulic overpressures and low differential stress. The consistent subperpendicular orientation of the veins relative to the non-cylindrical F2 hinge lines, also when having an inclined attitude, demonstrates that veining did not occur during far-field horizontal compression. Vein orientation is determined by local stress states variable on a meter-scale but with the minimum principal stress consistently subparallel to fold hinge lines. The conspicuous subhorizontal attitude of the Panasqueira vein swarm is thus dictated by the geometry of late-orogenic folds, which developed synchronous with oroclinal buckling of the Ibero-Armorican arc.

  13. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  14. Distributed computer system enhances productivity for SRB joint optimization

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Young, Katherine C.; Barthelemy, Jean-Francois M.

    1987-01-01

    Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system.

  15. The Content of Structural and Trace Elements in the Knee Joint Tissues.

    PubMed

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-11-23

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.

  16. The Content of Structural and Trace Elements in the Knee Joint Tissues

    PubMed Central

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-01-01

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758

  17. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  18. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.

    PubMed

    Shultz, Rebecca; Jenkyn, Thomas

    2012-01-01

    Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.

  19. QM-8 final performance evaluation report: SEALS, volume 4

    NASA Technical Reports Server (NTRS)

    Nelsen, L. V.

    1989-01-01

    The Space Shuttle Redesigned Solid Rocket Motor (RSRM) static test of Qualification Motor-8 (QM-8) was conducted. The QM-8 test article was the fifth full-scale, full-duration test, and the third qualification motor to incorporate the redesigned case field joint and nozzle-to-case joint. This was the second static test conducted in the T-97 test facility, which is equipped with actuators for inducing external side loads to a 360 degree external tank (ET) attach ring during test motor operation, and permits heating/cooling of an entire motor. The QM-8 motor was cooled to a temperature which ensured that the maximum propellant mean bulk temperature (PMBT) of 40 F was achieved at firing. All test results are not included, but rather, the performance of the metal case, field joints, and nozzle-to-case joint is addressed. The involvement is studied of the Structural Applications and Structural Design Groups with the QM-8 test which includes: assembly procedures of the field and nozzle-to-case joints, joint leak check results, structural test results, and post-test inspection evaluations.

  20. Use of the azimuthal resistivity technique for determination of regional azimuth of transmissivity

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Many bedrock units contain joint sets that commonly act as preferred paths for the movement of water, electrical charge, and possible contaminants associated with production or transit of crude oil or refined products. To facilitate the development of remediation programs, a need exists to reliably determine regional-scale properties of these joint sets: azimuth of transmissivity ellipse, dominant set, and trend(s). The surface azimuthal electrical resistivity survey method used for local in situ studies can be a noninvasive, reliable, efficient, and relatively cost-effective method for regional studies. The azimuthal resistivity survey method combines the use of standard resistivity equipment with a Wenner array rotated about a fixed center point, at selected degree intervals, which yields an apparent resistivity ellipse from which joint-set orientation can be determined. Regional application of the azimuthal survey method was tested at 17 sites in an approximately 500 km2 (193 mi2) area around Milwaukee, Wisconsin, with less than 15m (50 ft) overburden above the dolomite. Results of 26 azimuthal surveys were compared and determined to be consistent with the results of two other methods: direct observation of joint-set orientation and transmissivity ellipses from multiple-well-aquifer tests. The average of joint-set trend determined by azimuthal surveys is within 2.5?? of the average of joint-set trend determined by direct observation of major joint sets at 24 sites. The average of maximum of transmissivity trend determined by azimuthal surveys is within 5.7?? of the average of maximum of transmissivity trend determined for 14 multiple-well-aquifer tests. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  1. The Command and Control of Communications in Joint and Combined Operations

    DTIC Science & Technology

    1994-06-03

    war. The Joint Task Force structure is used as the model for command and control relationships . The first part of the thesis assesses the current...Joint Task Force structure is used as the model for conmand and control relationships . The first part of the thesis assesses the current doctrine and...Message Switch Connectivity . . . . . . . 59 10. C4 Architecture Requirements . . . . . . 81 11. Functional Relationships . . . . . . 84 vi LIST OF

  2. On the apparent insignificance of the randomness of flexible joints on large space truss dynamics

    NASA Technical Reports Server (NTRS)

    Koch, R. M.; Klosner, J. M.

    1993-01-01

    Deployable periodic large space structures have been shown to exhibit high dynamic sensitivity to period-breaking imperfections and uncertainties. These can be brought on by manufacturing or assembly errors, structural imperfections, as well as nonlinear and/or nonconservative joint behavior. In addition, the necessity of precise pointing and position capability can require the consideration of these usually negligible and unknown parametric uncertainties and their effect on the overall dynamic response of large space structures. This work describes the use of a new design approach for the global dynamic solution of beam-like periodic space structures possessing parametric uncertainties. Specifically, the effect of random flexible joints on the free vibrations of simply-supported periodic large space trusses is considered. The formulation is a hybrid approach in terms of an extended Timoshenko beam continuum model, Monte Carlo simulation scheme, and first-order perturbation methods. The mean and mean-square response statistics for a variety of free random vibration problems are derived for various input random joint stiffness probability distributions. The results of this effort show that, although joint flexibility has a substantial effect on the modal dynamic response of periodic large space trusses, the effect of any reasonable uncertainty or randomness associated with these joint flexibilities is insignificant.

  3. Manual of Structural Kinesiology. Eighth Edition.

    ERIC Educational Resources Information Center

    Thompson, Clem W.

    This manual is intended for use in college-level courses in structural kinesiology; mechanical kinesiology is introduced only briefly. The first chapter introduces the bases for structural kinesiology. Subsequent chapters are organized according to the areas of the body to be studied (e.g., the shoulder girdle, the shoulder joint, the elbow joint,…

  4. Type synthesis and preliminary design of devices supporting lower limb's rehabilitation.

    PubMed

    Olinski, Michał; Lewandowski, Bogusz; Gronowicz, Antoni

    2015-01-01

    Based on the analysis of existing solutions, biomechanics of human lower limbs and anticipated applications, results of con- siderations concerning the necessary number of degrees of freedom for the designed device supporting rehabilitation of lower extremities are presented. An analysis was carried out in order to determine the innovative kinematic structure of the device, ensuring sufficient mobility and functionality while minimizing the number of degrees of freedom. With the aid of appropriate formalised meth- ods, for instance, type synthesis, a complete variety of solutions for leg joints were obtained in the form of basic and kinematic schemes, having the potential to find application in devices supporting lower limb rehabilitation. A 3D model of ankle joint module was built in Autodesk Inventor System, then imported to Adams and assembled into a moving numerical model of a mechanism. Several conducted simulations resulted in finding the required maximum stroke of the cylinders. A comparison of the angular ranges of ankle joint and similar devices with the ones achieved by the designed device indicated a sufficient reserve allowing not only movements typical of gait, but approximately achieving the passive range of motion for the ankle joint.

  5. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  6. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  7. Development of mapped stress-field boundary conditions based on a Hill-type muscle model.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Flavin, R; Ivanković, A

    2014-09-01

    Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid. Copyright © 2014 John Wiley & Sons, Ltd.

  8. HMA Longitudinal Joint Evaluation and Construction

    DOT National Transportation Integrated Search

    2011-02-01

    Longitudinal joint quality is essential to the successful performance of asphalt pavements. A number of states have begun to implement longitudinal joint specifications, and most are based on determinations of density. However, distress at the joint ...

  9. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  10. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  11. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.

    PubMed

    Serrano, Pedro; Dutta, Samit K; Proudfoot, Andrew; Mohanty, Biswaranjan; Susac, Lukas; Martin, Bryan; Geralt, Michael; Jaroszewski, Lukasz; Godzik, Adam; Elsliger, Marc; Wilson, Ian A; Wüthrich, Kurt

    2016-11-01

    For more than a decade, the Joint Center for Structural Genomics (JCSG; www.jcsg.org) worked toward increased three-dimensional structure coverage of the protein universe. This coordinated quest was one of the main goals of the four high-throughput (HT) structure determination centers of the Protein Structure Initiative (PSI; www.nigms.nih.gov/Research/specificareas/PSI). To achieve the goals of the PSI, the JCSG made use of the complementarity of structure determination by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy to increase and diversify the range of targets entering the HT structure determination pipeline. The overall strategy, for both techniques, was to determine atomic resolution structures for representatives of large protein families, as defined by the Pfam database, which had no structural coverage and could make significant contributions to biological and biomedical research. Furthermore, the experimental structures could be leveraged by homology modeling to further expand the structural coverage of the protein universe and increase biological insights. Here, we describe what could be achieved by this structural genomics approach, using as an illustration the contributions from 20 NMR structure determinations out of a total of 98 JCSG NMR structures, which were selected because they are the first three-dimensional structure representations of the respective Pfam protein families. The information from this small sample is representative for the overall results from crystal and NMR structure determination in the JCSG. There are five new folds, which were classified as domains of unknown functions (DUF), three of the proteins could be functionally annotated based on three-dimensional structure similarity with previously characterized proteins, and 12 proteins showed only limited similarity with previous deposits in the Protein Data Bank (PDB) and were classified as DUFs. © 2016 Federation of European Biochemical Societies.

  12. Joint Services Electronics Program.

    DTIC Science & Technology

    1986-01-01

    89 IAooeston ? N1TIS GRA&If : i TC TAB 17 Distribuitioll/ Avatlabllity Codes_. iAv il and/or Dist Special . iii V’/-. *’V*. ’/ ’ 2 ...Similar structures were also studied by direct reflectance measurements at 2 K where the excitonic transitions are so strong that modu- lation is...separate investigation. single quantum wells of varying sizes were grown and studied [ 2 ]. The binding energies of acceptors were also determined. \\ore

  13. A Pipeline Software Architecture for NMR Spectrum Data Translation

    PubMed Central

    Ellis, Heidi J.C.; Weatherby, Gerard; Nowling, Ronald J.; Vyas, Jay; Fenwick, Matthew; Gryk, Michael R.

    2012-01-01

    The problem of formatting data so that it conforms to the required input for scientific data processing tools pervades scientific computing. The CONNecticut Joint University Research Group (CONNJUR) has developed a data translation tool based on a pipeline architecture that partially solves this problem. The CONNJUR Spectrum Translator supports data format translation for experiments that use Nuclear Magnetic Resonance to determine the structure of large protein molecules. PMID:24634607

  14. Design and control of a hand exoskeleton for use in extravehicular activities

    NASA Technical Reports Server (NTRS)

    Shields, B.; Peterson, S.; Strauss, A.; Main, J.

    1993-01-01

    To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.

  15. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel basemore » alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.« less

  16. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  17. Arthroscopic sternoclavicular joint resection arthroplasty: a technical note and illustrated case report.

    PubMed

    Warth, Ryan J; Lee, Jared T; Campbell, Kevin J; Millett, Peter J

    2014-02-01

    Open resection arthroplasty of the sternoclavicular (SC) joint has historically provided good long-term results in patients with symptomatic osteoarthritis of the SC joint. However, the procedure is rarely performed because of the risk of injury to vital mediastinal structures and concern regarding postoperative joint instability. Arthroscopic decompression of the SC joint has therefore emerged as a potential treatment option because of many recognized advantages including minimal tissue dissection, maintenance of joint stability, avoidance of posterior SC joint dissection, expeditious recovery, and improved cosmesis. There are, however, safety concerns given the proximity of neurovascular structures. In this article we demonstrate a technique for arthroscopic SC joint resection arthroplasty in a 26-year-old active man with bilateral, painful, idiopathic degenerative SC joint osteoarthritis. This case also highlights the pearls and pitfalls of arthroscopic resection arthroplasty for the SC joint. There were no perioperative complications. Four months postoperatively, the patient had returned to full activities, including weightlifting, without pain or evidence of SC joint instability. One year postoperatively, the patient showed substantial improvements in the American Shoulder and Elbow Surgeons score; Single Assessment Numeric Evaluation score; Quick Disabilities of the Arm, Shoulder and Hand score; and Short Form 12 Physical Component Summary score over preoperative baseline values.

  18. Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints.

    PubMed

    Sugisaki, Norihide; Okada, Junichi; Kanehisa, Hiroaki

    2013-01-01

    The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.

  19. A revolute joint with linear load-displacement response for a deployable lidar telescope

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.

  20. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  1. Joining of polypropylene/polypropylene and glass fiber reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguang

    Joining behavior of polypropylene (PP) to PP and long glass fiber reinforced polypropylene (LFT) to LFT were investigated. Adhesive bonding was used to join PP/PP. Both adhesive bonding and ultrasonic welding were used to join LFT/LFT. Single-lap shear testing and low velocity impact (LVI) testing were used to evaluate the performance of bonded structures. The two-part acrylic adhesive DP8005 was determined to be the best among the three adhesive candidates, which was attributed to its low surface energy. The impact resistance of LFT/LFT joints, normalized with respect to thickness, was higher than that of PP/PP joints because of higher stiffness of LFT/LFT joints. The stress states in the adhesive layer of adhesively bonded structures were analyzed using ANSYS and LS-DYNA to simulate the single-lap shear testing and LVI testing, respectively. The shear and peel stresses peaked at the edges of the adhesive layer. Compared to LFT/LFT joints, higher peel stress occurred in the adhesive layer in the PP/PP joints in tension. Impact response of adhesively bonded structures as evaluated by LS-DYNA showed good agreement with the experimental results. The effect of weld time and weld pressure on the shear strength of ultrasonically welded LFT/LFT was evaluated. With higher weld pressure, less time was required to obtain a complete weld. At longer weld times, lower weld pressure was required. From the 15 weld conditions studied, a weld map was obtained that provides conditions to achieve a complete weld. Nanoindentation was used to evaluate the effect of ultrasonic weld on the modulus and hardness of the PP matrix. Modulus and hardness of the PP matrix were slightly decreased by ultrasonic welding possibly due to the decrease in the molecular weight. The temperature profile in LFT/LFT in the transverse direction during ultrasonic welding was analyzed by two ANSYS-based thermal models: (a) one in which heat generated by interfacial friction was treated as a heat flux and (b) one in which heat was generated in a thin slab at the interface. The weld map obtained from the thin slab model was closer to the one obtained experimentally.

  2. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models

    PubMed Central

    Eitner, Annett; Hofmann, Gunther O.; Schaible, Hans-Georg

    2017-01-01

    Pain due to osteoarthritis (OA) is one of the most frequent causes of chronic pain. However, the mechanisms of OA pain are poorly understood. This review addresses the mechanisms which are thought to be involved in OA pain, derived from studies on pain mechanisms in humans and in experimental models of OA. Three areas will be considered, namely local processes in the joint associated with OA pain, neuronal mechanisms involved in OA pain, and general factors which influence OA pain. Except the cartilage all structures of the joints are innervated by nociceptors. Although the hallmark of OA is the degradation of the cartilage, OA joints show multiple structural alterations of cartilage, bone and synovial tissue. In particular synovitis and bone marrow lesions have been proposed to determine OA pain whereas the contribution of the other pathologies to pain generation has been studied less. Concerning the peripheral neuronal mechanisms of OA pain, peripheral nociceptive sensitization was shown, and neuropathic mechanisms may be involved at some stages. Structural changes of joint innervation such as local loss and/or sprouting of nerve fibers were shown. In addition, central sensitization, reduction of descending inhibition, descending excitation and cortical atrophies were observed in OA. The combination of different neuronal mechanisms may define the particular pain phenotype in an OA patient. Among mediators involved in OA pain, nerve growth factor (NGF) is in the focus because antibodies against NGF significantly reduce OA pain. Several studies show that neutralization of interleukin-1β and TNF may reduce OA pain. Many patients with OA exhibit comorbidities such as obesity, low grade systemic inflammation and diabetes mellitus. These comorbidities can significantly influence the course of OA, and pain research just began to study the significance of such factors in pain generation. In addition, psychologic and socioeconomic factors may aggravate OA pain, and in some cases genetic factors influencing OA pain were found. Considering the local factors in the joint, the neuronal processes and the comorbidities, a better definition of OA pain phenotypes may become possible. Studies are under way in order to improve OA and OA pain monitoring. PMID:29163027

  3. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  4. Protective Effect of High Molecular Weight Protein Sub-fraction of Calotropis procera Latex in Monoarthritic Rats.

    PubMed

    Chaudhary, Priyanka; Ramos, Marcio V; Vasconcelos, Mirele da Silveira; Kumar, Vijay L

    2016-05-01

    Proteins present in the latex of Calotropis procera have been shown to produce anti-inflammatory effect and to afford protection in various disease models. To determine the efficacy of high molecular weight protein sub-fraction (LPPI) of latex of C. procera in ameliorating joint inflammation and hyperalgesia in a preclinical model of arthritis. Monoarthritis was induced in rats by intra-articular injection of Freund's complete adjuvant (FCA) and the effect of two doses of LPPI (5 and 25 mg/kg) and diclofenac (5 mg/kg) was evaluated on joint swelling, stair climbing ability, motility, and dorsal flexion pain on day 3. The rats were sacrificed on day 3 to measure tissue levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). Evaluation of joint histology was also made. Intra-articular injection of FCA produced joint swelling and difficulty in stair climbing ability, motility, and pain on flexion of the joint as revealed by scores obtained for these functional parameters. LPPI produced a dose-dependent decrease in joint swelling and improved joint functions. Arthritic rats also revealed altered oxidative homeostasis where joint tissue GSH levels were decreased and TBARS levels were increased as compared to normal rats. The levels of these oxidative stress markers were near normal in arthritic rats treated with LPPI. Moreover, treatment with LPPI also maintained the structural integrity of the joint. The protective effect of LPPI was comparable to the standard anti-inflammatory drug, diclofenac. The findings of the present study show that LPPI fraction comprising high molecular weight proteins could be used for the alleviation of arthritic symptoms. High molecular weight protein sub-fraction of latex of Calotropis procera (LPPI) reduced joint swelling and hyperalgesia in arthritic ratsLPPI produced a significant improvement in stair climbing ability and motility in arthritic ratsLPPI normalized the levels of oxidative stress markers in the arthritic jointsTreatment with LPPI reduced neutrophil influx and edema in the arthritic joints Abbreviations used: FCA: Freund's complete adjuvant, GSH: Glutathione, TBARS: Thiobarbituric acid reactive substances, TBA: Thiobarbituric acid, MDA: Malondialdehyde, LPPI: Latex protein fraction PI.

  5. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    PubMed

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  6. Associations of Foot Posture and Function to Lower Extremity Pain: The Framingham Foot Study

    PubMed Central

    Riskowski, JL; Dufour, AB; Hagedorn, TJ; Hillstrom, Howard; Casey, VA; Hannan, MT

    2014-01-01

    Objective Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Methods Participants were members of the Framingham Foot Study. lower extremity joint pain was determined by the response to the NHANES-type question, “On most days do you have pain, aching or stiffness in your [hips, knees, ankles, or feet]?” Modified Arch Index (MAI) classified participants as having planus, rectus (referent) or cavus foot posture. Center of Pressure Excursion Index (CPEI) classified participants as having over-pronated, normal (referent) or over-supinated foot function. Crude and adjusted (age, gender, BMI) logistic regression determined associations of foot posture and function to lower extremity pain. Results Participants with planus structure had higher odds of knee (1.57, 95% CI: 1.24– 1.99) or ankle (1.47, 95% CI: 1.05–2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (7.56, 95% CI: 1.99–28.8) and pain at one lower extremity site (1.37, 95% CI: 1.04–1.80). Associations between foot function and lower extremity joint pain were not statistically significant, except for a reduced risk of hip pain in those with an over-supinated foot function (0.69, 95% CI: 0.51–0.93). Conclusions These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. PMID:24591410

  7. Associations of foot posture and function to lower extremity pain: results from a population-based foot study.

    PubMed

    Riskowski, Jody L; Dufour, Alyssa B; Hagedorn, Thomas J; Hillstrom, Howard J; Casey, Virginia A; Hannan, Marian T

    2013-11-01

    Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Participants were members of the Framingham Foot Study. Lower extremity joint pain was determined by the response to the National Health and Nutrition Examination Survey-type question, "On most days do you have pain, aching or stiffness in your (hips, knees, ankles, or feet)?" The Modified Arch Index classified participants as having planus, rectus (referent), or cavus foot posture. The Center of Pressure Excursion Index classified participants as having overpronated, normal (referent), or oversupinated foot function. Crude and adjusted (age, sex, and body mass index) logistic regression determined associations of foot posture and function to lower extremity pain. Participants with planus structure had higher odds of knee (odds ratio [OR] 1.57, 95% confidence interval [95% CI] 1.24-1.99) or ankle (OR 1.47, 95% CI 1.05-2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (OR 7.56, 95% CI 1.99-28.8) and pain at 1 lower extremity site (OR 1.37, 95% CI 1.04-1.80). Associations between foot function and lower extremity joint pain were not statistically significant except for a reduced risk of hip pain in those with an oversupinated foot function (OR 0.69, 95% CI 0.51-0.93). These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. Copyright © 2013 by the American College of Rheumatology.

  8. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  9. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  10. Structural behavior of the space shuttle SRM Tang-Clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, W. H.; Knight, N. F., Jr.; Stockwell, A. E.

    1986-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  11. Structural behavior of the space shuttle SRM tang-clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, William H.; Knight, Norman F., Jr.; Stockwell, Alan E.

    1988-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  12. Structure and postembryonic development of the intersegmental nodules in the non-muscular joints of the antennae in Rhodnius prolixus.

    PubMed

    Ospina-Rozo, Bibiana; Forero-Shelton, Manu; Molina, Jorge

    2017-03-01

    The antennae of Insecta consist of two basal segments and the distal annulated flagellum lacking intrinsic muscles. Non-muscular joints are important to preserve the flexibility and structure of the long heteropteran antennae which bear an intersegmental nodule on each non-muscular joint. Little is known about their properties or function. Here we characterize the structure and postembryonic development of the non-muscular joints of Rhodnius prolixus antennae. Using Scanning Electron Microscopy, we tracked the changes in shape and size of both intersegmental nodules during the course of the hemimetabolous insect life cycle. Using Atomic Force Microscopy, we established a qualitative correlation between the topography of the surface and the rigidity of the joint between pedicel and flagellum. Our results confirmed the presence of two sub-articulations on each non-muscular joint. Also, the two intersegmental nodules have different origins: the one between the two flagellar segments (intraflagelloid) is a sclerite already present from the early nymph, while the nodule between pedicel and flagellum (prebasiflagellite) originates by gradual separation of the proximal end of the basiflagellum during postembryonic development. Various changes occur in the non-muscular joints and segments of the antenna during the life cycle of R. prolixus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, V.D.

    The working load on the fastening parts of a permanent tight joint, which determines the strength, and on the gasket, which determines the hermeticity of the joint, depends on the stress of preliminary tightening. This stress must be determined when calculating the force distribution of the joint, since it depends on the magnitude of the stress whether the joint is capable of withstanding the internal pressure of the medium in the vessel without disturbing the tightness of the joint and strength of its parts. The seal will be hermetic when the specific load on the sealing surfaces of the lenticularmore » gasket becomes equal to or higher than the specific load established for given conditions of pressure and properties of the sealing medium. The recommended specific load was calculated for nitrogen as the working medium. The required tightening stress was calculated for standard flange joints with a lenticular gasket of nominal diameter 25-200mm at a working pressure of 32 MPa. The equations given can also be used to calculate the stress of preliminary tightening of the fastening parts and of other types of permanent tight joints with partial radial self-sealing.« less

  14. Adjustable bias column end joint assembly

    NASA Technical Reports Server (NTRS)

    Wallsom, Richard E. (Inventor); Bush, Harold G. (Inventor)

    1994-01-01

    An adjustable mechanical end joint system for connecting structural column elements and eliminating the possibility of free movement between joint halves during loading or vibration has a node joint body having a cylindrical engaging end and a column end body having a cylindrical engaging end. The column end joint body has a compressible preload mechanism and plunger means housed therein. The compressible preload mechanism may be adjusted from the exterior of the column end joint body through a port.

  15. Mechanical end joint system for structural column elements

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Wallsom, R. E. (Inventor)

    1982-01-01

    A mechanical end joint system, useful for the transverse connection of strut elements to a common node, comprises a node joint half with a semicircular tongue and groove, and a strut joint half with a semicircular tongue and groove. The two joint halves are engaged transversely and the connection is made secure by the inherent physical property characteristics of locking latches and/or by a spring-actioned shaft. A quick release mechanism provides rapid disengagement of the joint halves.

  16. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    NASA Astrophysics Data System (ADS)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  17. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  18. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  19. Latent Hardeners for the Assembly of Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Wohl, Christopher J.; Connell, John W.; Mercado, Zoar; Galloway, Jordan

    2016-01-01

    Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint strengths. In contrast, assemblies made by co-curing, although limited in size by the mold, result in stable structures, and are certifiable for commercial aviation because of structural continuity through the joints. Multifunctional epoxy resins were prepared that should produce fully-cured subcomponents with uncured joining surfaces, enabling them to be assembled by co-curing in a subsequent out-of-autoclave process. Aromatic diamines were protected by condensation with a ketone or aldehyde to form imines. Properties of the amine-cured epoxy were compared with those of commercially available thermosetting epoxy resins and rheology and thermal analysis were used to demonstrate the efficacy of imine protection. Optimum conditions to reverse the protecting chemistry in the solid state using moisture and acid catalysis were determined. Alternative chemistries were also investigated. For example, chain reaction depolymerization and photoinitiated catalysts would be expected to minimize liberation of volatile organic content upon deprotection and avoid residual reactive species that could damage the resin. Results from the analysis of protected and deprotected resins will be presented.

  20. Lithospheric structure beneath Eastern Africa from joint inversion of receiver functions and Rayleigh wave velocities

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta Tuji

    Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.

  1. In-field implementation of impedance-based structural health monitoring for insulated rail joints

    NASA Astrophysics Data System (ADS)

    Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.

    2017-04-01

    Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David

    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whosemore » atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.« less

  3. Magnetic Resonance Imaging Assessment of Intra-Articular Structures in the Canine Stifle Joint after Implantation of a Titanium Tibial Plateau Levelling Osteotomy Plate.

    PubMed

    Feichtenschlager, Christian; Gerwing, Martin; Failing, Klaus; Peppler, Christine; Kása, Andreas; Kramer, Martin; von Pückler, Kerstin H

    2018-06-02

     To determine the effectiveness of magnetic resonance imaging (MRI) in the evaluation of anatomical stifle structures with respect to implant positioning after tibial plateau levelling osteotomy (TPLO) using a titanium plate.  Selected sagittal and dorsal sequences of pre- and postoperative MRI (1.0 T scanner) of 13 paired ( n  = 26) sound cadaveric stifle joints were evaluated. The effect of susceptibility artifact on adjacent anatomical stifle structures was graded from 0 to 5. The impact of implant positioning regarding assessment score was calculated using Spearman's rank correlation coefficient.  Sagittal turbo spin echo (TSE)-acquired images enabled interpretation of most soft tissue, osseous and cartilage structures without detrimental effect of susceptibility artifact distortions. In T2-weighted TSE images, the cranial cruciate ligament and caudal horn of the medial meniscus could be evaluated, independent of implant position, without any susceptibility artifact in all specimens. T2-weighted fast field echo, water selective, balanced fast field echo and short tau inversion recovery were most markedly affected by susceptibility artifact.  In selected TSE sequences, MRI allows evaluation of critical intra-articular structures after titanium TPLO plate implantation. Further investigations with confirmed stifle pathologies in dogs are required, to evaluate the accuracy of MRI after TPLO in clinical cases in this context. Schattauer GmbH Stuttgart.

  4. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  5. A Computational approach in optimizing process parameters of GTAW for SA 106 Grade B steel pipes using Response surface methodology

    NASA Astrophysics Data System (ADS)

    Sumesh, A.; Sai Ramnadh, L. V.; Manish, P.; Harnath, V.; Lakshman, V.

    2016-09-01

    Welding is one of the most common metal joining techniques used in industry for decades. As in the global manufacturing scenario the products should be more cost effective. Therefore the selection of right process with optimal parameters will help the industry in minimizing their cost of production. SA 106 Grade B steel has a wide application in Automobile chassis structure, Boiler tubes and pressure vessels industries. Employing central composite design the process parameters for Gas Tungsten Arc Welding was optimized. The input parameters chosen were weld current, peak current and frequency. The joint tensile strength was the response considered in this study. Analysis of variance was performed to determine the statistical significance of the parameters and a Regression analysis was performed to determine the effect of input parameters over the response. From the experiment the maximum tensile strength obtained was 95 KN reported for a weld current of 95 Amp, frequency of 50 Hz and peak current of 100 Amp. With an aim of maximizing the joint strength using Response optimizer a target value of 100 KN is selected and regression models were optimized. The output results are achievable with a Weld current of 62.6148 Amp, Frequency of 23.1821 Hz, and Peak current of 65.9104 Amp. Using Die penetration test the weld joints were also classified in to 2 categories as good weld and weld with defect. This will also help in getting a defect free joint when welding is performed using GTAW process.

  6. Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures

    DTIC Science & Technology

    1988-03-01

    Safety Factors for Use When Designing bolted Joints In GRP," Composites , April 1979, pp. M376. 93. Dastln, S., "Joining and Machining Techniques... MACHINE SPACER LOCKmm STEEL PLATE FASTENER 203 mm OR DOWEL FiN EXTENSOMETER EXTENSOMETER TGAUGE LENGTH ATTACHMENT COMPOSITE - PLATE 31 mm p NOTE: NOT TO...No.427 Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures DTIC CXVTflUTION STATEME~r £ELECTE Approved fm Vubhc sIlam l JUL

  7. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  8. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-07-01

    Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function.

  9. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children

    PubMed Central

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-01-01

    Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function. PMID:28723790

  10. Kinematics of Different Components of the Posterolateral Corner of the Knee in the Lateral Collateral Ligament-intact State: A Human Cadaveric Study.

    PubMed

    Domnick, Christoph; Frosch, Karl-Heinz; Raschke, Michael J; Vogel, Nils; Schulze, Martin; von Glahn, Mathias; Drenck, Tobias C; Herbort, Mirco

    2017-10-01

    To determine the static stabilizing effects of different anatomical structures of the posterolateral corner (PLC) of the knee in the lateral collateral ligament (LCL)-intact state. Thirteen fresh-frozen human cadaveric knees were dissected and tested using an industrial robot with an optical tracking system. Kinematics were determined for 134 N anterior/posterior loads, 10 N m valgus/varus loads, and 5 N m internal/external rotatory loads in 0°, 20°, 30°, 60°, and 90° of knee flexion. The PLC structures were dissected and consecutively released: (I) intact knee joint, (II) with released posterior cruciate ligament (PCL), (III) popliteomeniscal fibers, (IV) popliteofibular ligament, (V) arcuat and popliteotibial fibers, (VI) popliteus tendon (PLT), and (VII) LCL. Repeated-measures analysis of variance was performed with significance set at P < .05. After releasing the PCL, posterior tibial translation increased by 5.2 mm at 20° to 9.4 mm at 90° of joint flexion (P < .0001). A mild 1.8° varus instability was measured in 0° of flexion (P = .0017). After releasing the PLC structures, posterior tibial translation further increased by 2.9 mm at 20° to 5.9 mm at 90° of flexion (P < .05) and external rotation angle increased by 2.6° at 0° to 7.9° at 90° of flexion (P < .05, vs II). Varus stability did not decrease. Mild differences between states V and VI were found in 60° and 90° external rotation tests (2.1° and 3.1°; P < .05). The connecting ligaments/fibers to the PLT act as a primary static stabilizer against external rotatory loads and a secondary stabilizer against posterior tibial loads (when PCL is injured). After releasing these structures, most static stabilizing function of the intact PLT is lost. The PLC has no varus-stabilizing function in the LCL-intact knee. Anatomy and function of these structures for primary and secondary joint stability should be considered for clinical diagnostics and when performing surgery in the PLC. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. A joint urban planning and public health framework: contributions to health impact assessment.

    PubMed

    Northridge, Mary E; Sclar, Elliott

    2003-01-01

    A joint urban planning and public health perspective is articulated here for use, in health impact assessment. Absent a blueprint for a coherent and supportive structure on which to test our thinking, we are bound to fall flat. Such a perspective is made necessary by the sheer number of people living in cities throughout the world, the need for explicit attention to land use and transportation systems as determinants of population health, and the dearth of useful indicators of the built environment for monitoring progress. If explicit attention is not paid to the overarching goals of equality and democracy, they have little if any chance of being realized in projects, programs, and policies that shape the built environment and therefore the public's health.

  12. [Topographological-anatomic changes in the structure of temporo-mandibular joint in case of fracture of the mandible condylar process at cervical level].

    PubMed

    Volkov, S I; Bazhenov, D V; Semkin, V A

    2011-01-01

    Pathological changes in soft tissues surrounding the fracture site as well as in the structural elements of temporo-mandibular joint always occured in condylar process fracture with shift at cervical mandibular jaw level. Other changes were also seen in the joint on the opposite normal side. Modelling of condylar process fracture at mandibular cervical level by means of three-dimensional computer model of temporo-mandibular joint contributed to proper understanding of this pathology emergence as well as to prediction and elimination of disorders arising in adjacent to the fracture site tissues.

  13. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1992-01-01

    A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method.

  14. Joint source based analysis of multiple brain structures in studying major depressive disorder

    NASA Astrophysics Data System (ADS)

    Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang

    2014-03-01

    We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.

  15. Thermal Cycling Fatigue in DIPs Mounted with Eutectic Tin-Lead Solder Joints in Stub and Gullwing Geometries

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  16. Uniqueness of the joint measurement and the structure of the set of compatible quantum measurements

    NASA Astrophysics Data System (ADS)

    Guerini, Leonardo; Terra Cunha, Marcelo

    2018-04-01

    We address the problem of characterising the compatible tuples of measurements that admit a unique joint measurement. We derive a uniqueness criterion based on the method of perturbations and apply it to show that extremal points of the set of compatible tuples admit a unique joint measurement, while all tuples that admit a unique joint measurement lie in the boundary of such a set. We also provide counter-examples showing that none of these properties are both necessary and sufficient, thus completely describing the relation between the joint measurement uniqueness and the structure of the compatible set. As a by-product of our investigations, we completely characterise the extremal and boundary points of the set of general tuples of measurements and of the subset of compatible tuples.

  17. Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.

    PubMed

    Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J

    2018-05-24

    Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

  18. Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound

    NASA Astrophysics Data System (ADS)

    Li, Yong; Dai, Xue-Fang; Liu, Guo-Dong; Wei, Zhi-Yang; Liu, En-Ke; Han, Xiao-Lei; Du, Zhi-Wei; Xi, Xue-Kui; Wang, Wen-Hong; Wu, Guang-Heng

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51431009 and 51271038), the Joint NSFC-ISF Research Program, Jointly Funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145003).

  19. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  20. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology.

    PubMed

    Brodziak-Dopierała, Barbara; Roczniak, Wojciech; Jakóbik-Kolon, Agata; Kluczka, Joanna; Koczy, Bogdan; Kwapuliński, Jerzy; Babuśka-Roczniak, Magdalena

    2017-10-01

    Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. The lowest iron content was in the tibia (27.04 μg/g), then in the meniscus (38.68 μg/g) and the highest in the femur (41.93 μg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.

  1. THz Properties of Adhesives

    NASA Astrophysics Data System (ADS)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-04-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  2. THz Properties of Adhesives

    NASA Astrophysics Data System (ADS)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  3. Self-Alining Quick-Connect Joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1983-01-01

    Quick connect tapered joint used with minimum manipulation and force. Split ring retainer holds locking ring in place. Minimal force required to position male in female joint, at which time split-ring retainers are triggered to release split locking rings. Originally developed to assemble large space structures, joint is simple, compact, strong, lightweight, self alining, and has no loose parts.

  4. Can chronic stretching change the muscle-tendon mechanical properties? A review.

    PubMed

    Freitas, S R; Mendes, B; Le Sant, G; Andrade, R J; Nordez, A; Milanovic, Z

    2018-03-01

    It is recognized that stretching is an effective method to chronically increase the joint range of motion. However, the effects of stretching training on the muscle-tendon structural properties remain unclear. This systematic review with meta-analysis aimed to determine whether chronic stretching alter the muscle-tendon structural properties. Published papers regarding longitudinal stretching (static, dynamic and/or PNF) intervention (either randomized or not) in humans of any age and health status, with more than 2 weeks in duration and at least 2 sessions per week, were searched in PubMed, PEDro, ScienceDirect and ResearchGate databases. Structural or mechanical variables from joint (maximal tolerated passive torque or resistance to stretch) or muscle-tendon unit (muscle architecture, stiffness, extensibility, shear modulus, volume, thickness, cross-sectional area, and slack length) were extracted from those papers. A total of 26 studies were selected, with a duration ranging from 3 to 8 weeks, and an average total time under stretching of 1165 seconds per week. Small effects were seen for maximal tolerated passive torque, but trivial effects were seen for joint resistance to stretch, muscle architecture, muscle stiffness, and tendon stiffness. A large heterogeneity was seen for most of the variables. Stretching interventions with 3- to 8-week duration do not seem to change either the muscle or the tendon properties, although it increases the extensibility and tolerance to a greater tensile force. Adaptations to chronic stretching protocols shorter than 8 weeks seem to mostly occur at a sensory level. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A structurally adaptive space crane concept for assembling space systems on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Sutter, Thomas R.; Wu, K. C.

    1992-01-01

    A space crane concept is presented which is based on erectable truss hardware to achieve high stiffness and low mass booms and articulating-truss joints which can be assembled on orbit. The hardware is characterized by linear load-deflection response and is structurally predictable. The crane can be reconfigured into different geometries to meet future assembly requirements. Articulating-truss joint concepts with significantly different geometries are analyzed and found to have similar static and dynamic performance, which indicates that criteria other than structural and kinematic performance can be used to select a joint. Passive damping and an open-loop preshaped command input technique greatly enhance the structural damping in the space crane and may preclude the need for an active vibrations suppression system.

  6. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis.

    PubMed

    Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G

    2015-08-25

    Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.

  7. Riveting in metal airplane construction. Part IV : strength of riveted joints in duralumin (concluded)

    NASA Technical Reports Server (NTRS)

    Pleines, Wilhelm

    1930-01-01

    Tests were made to determine the crushing strength of a riveted joint, in order to define the difference in crushing stregth between a strictly bolted joint and a riveted joint. The object was to tabulate the crushing strength by failure on various plate thicknesses for a one-rivet double-shear riveted joint.

  8. Brief Report: Longitudinal Improvements in the Quality of Joint Attention in Preschool Children with Autism

    ERIC Educational Resources Information Center

    Lawton, Kathy; Kasari, Connie

    2012-01-01

    Children with autism exhibit deficits in their quantity and quality of joint attention. Early autism intervention studies rarely document improvement in joint attention quality. The purpose of this study was to determine whether there was a change in joint attention quality for preschoolers with autism who were randomized to a joint attention…

  9. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    NASA Astrophysics Data System (ADS)

    Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel

    2014-10-01

    The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.

  10. Association between Patient History and Physical Examination and Osteoarthritis after Ankle Sprain.

    PubMed

    van Ochten, John M; de Vries, Anja D; van Putte, Nienke; Oei, Edwin H G; Bindels, Patrick J E; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke

    2017-09-01

    Structural abnormalities on MRI are frequent after an ankle sprain. To determine the association between patient history, physical examination and early osteoarthritis (OA) in patients after a previous ankle sprain, 98 patients with persistent complaints were selected from a cross-sectional study. Patient history taking and physical examination were applied and MRI was taken. Univariate and multivariable analyses were used to test possible associations. Signs of OA (cartilage loss, osteophytes and bone marrow edema) were seen in the talocrural joint (TCJ) in 40% and the talonavicular joint (TNJ) in 49%. Multivariable analysis showed a significant positive association between swelling (OR 3.58, 95%CI 1.13;11.4), a difference in ROM of passive plantar flexion (OR 1.09, 95%CI 1.01;1.18) and bone edema in the TCJ. A difference in ROM of passive plantar flexion (OR 1.07, 95%CI 1.00;1.15) and pain at the end range of dorsiflexion/plantar flexion (OR 5.23, 95%CI 1.88;14.58) were associated with osteophytes in the TNJ. Pain at the end of dorsiflexion/plantar flexion, a difference in ROM of passive plantar flexion and swelling seem to be associated with features of OA (bone marrow edema, osteophytes) in the TCJ and TNJ. Our findings may guide physicians to predict structural joint abnormalities as signs of osteoarthritis. 1b. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket.

    PubMed

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-03-06

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.

  12. Ball-and-Socket Joint Can Be Disassembled

    NASA Technical Reports Server (NTRS)

    Totah, R. S.

    1982-01-01

    Ball-and-socket joint originally developed for construction of large platforms in zero g could be used in such Earth-based temporary structures as scaffolding, camping equipment, tent posts, trade shows and displays. New joint consists of a socket mounted on central hub or union and ball-ended bolt or fitting mounted at end of a column or any structural member. Unit is self-contained, requires no loose hardware and is engaged or disengaged without tools manually, or remotely by a manipulator.

  13. Decentralized digital adaptive control of robot motion

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.

  14. Mechanical end joint system for connecting structural column elements

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor)

    1990-01-01

    A mechanical end joint system is presented that eliminates the possibility of free movements between the joint halves during loading or vibration. Both node joint body (NJB) and column end joint body (CEJB) have cylindrical engaging ends. Each of these ends has an integral semicircular tongue and groove. The two joint halves are engaged transversely - the tongue of the NJB mating with the groove of the CEJB and vice versa. The joint system employs a spring loaded internal latch mechanism housed in the CEJB. During mating, this mechanism is pushed away from the NJB and enters the NJB when mating is completed. In order to lock the joint and add a preload across the tongue and groove faces, an operating ring collar is rotated through 45 deg causing an internal mechanism to compress a Belleville washer preload mechanism. This causes an equal and opposite force to be exerted on the latch bolt and the latch plunger. This force presses the two joint halves tightly together. In order to prevent inadvertent disassembly, a secondary lock is also engaged when the joint is closed. Plungers are carried in the operating ring collar. When the joint is closed, the plungers fall into tracks on the CEJB, which allows the joint to be opened only when the operating ring collar and plungers are pushed directly away from the joining end. One application of this invention is the rapid assembly and disassembly of diverse skeletal framework structures which is extremely important in many projects involving the exploration of space.

  15. The predictive value of the sacral base pressure test in detecting specific types of sacroiliac dysfunction

    PubMed Central

    Mitchell, Travis D.; Urli, Kristina E.; Breitenbach, Jacques; Yelverton, Chris

    2007-01-01

    Abstract Objective This study aimed to evaluate the validity of the sacral base pressure test in diagnosing sacroiliac joint dysfunction. It also determined the predictive powers of the test in determining which type of sacroiliac joint dysfunction was present. Methods This was a double-blind experimental study with 62 participants. The results from the sacral base pressure test were compared against a cluster of previously validated tests of sacroiliac joint dysfunction to determine its validity and predictive powers. The external rotation of the feet, occurring during the sacral base pressure test, was measured using a digital inclinometer. Results There was no statistically significant difference in the results of the sacral base pressure test between the types of sacroiliac joint dysfunction. In terms of the results of validity, the sacral base pressure test was useful in identifying positive values of sacroiliac joint dysfunction. It was fairly helpful in correctly diagnosing patients with negative test results; however, it had only a “slight” agreement with the diagnosis for κ interpretation. Conclusions In this study, the sacral base pressure test was not a valid test for determining the presence of sacroiliac joint dysfunction or the type of dysfunction present. Further research comparing the agreement of the sacral base pressure test or other sacroiliac joint dysfunction tests with a criterion standard of diagnosis is necessary. PMID:19674694

  16. Design, fabrication, installation and flight service evaluation of a composite cargo ramp skin on a model CH-53 helicopter

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Rich, M. J.

    1983-01-01

    The installation of a composite skin panel on the cargo ramp of a CH-530 marine helicopter is discussed. The composite material is of Kevlar/Epoxy (K/E) which replaces aluminum outer skins on the aft two bays of the ramp. The cargo ramp aft region was selected as being a helicopter airframe surface subjected to possible significant field damage and would permit an evaluation of the long term durability of the composite skin panel. A structural analysis was performed and the skin shears determined. Single lap joints of K/E riveted to aluminum were statically tested. The joint tests were used to determine bearing allowables and the required K/E skin gage. The K/E skin panels riveted to aluminum edge members were tested in a shear fixture to confirm the allowable shear and bearing strengths. Impact tests were conducted on aluminum skin panels to determine energy level and damage relationship. The K/E skin panels of various ply orientations and laminate thicknesses were then impacted at similar energy levels. The results of the analysis and tests were used to determine the required K/E skin gages in each of the end two bays of the ramp.

  17. Correlation of the Features of the Lumbar Multifidus Muscle With Facet Joint Osteoarthritis.

    PubMed

    Yu, Bo; Jiang, Kaibiao; Li, Xinfeng; Zhang, Jidong; Liu, Zude

    2017-09-01

    Facet joint osteoarthritis is considered a consequence of the aging process; however, there is evidence that it may be associated with degenerative changes of other structures. The goal of this study was to investigate the correlation between lumbar multifidus muscle features and facet joint osteoarthritis. This retrospective study included 160 patients who had acute or chronic low back pain and were diagnosed with facet joint osteoarthritis on computed tomography scan. Morphometric parameters, including cross-sectional area, muscle-fat index, and percentage of bilateral multifidus asymmetry at L3-L4, L4-L5, and L5-S1, were evaluated with T2-weighted magnetic resonance imaging. Patients with facet joint osteoarthritis had a smaller cross-sectional area and a higher muscle-fat index than those without facet joint osteoarthritis (P<.001). In multivariate regression analysis, older age and higher muscle-fat index were independently associated with facet joint osteoarthritis at all 3 spinal levels (P<.001). Smaller cross-sectional area was independently associated with facet joint osteoarthritis only at L4-L5 (P=.005). Asymmetry of the bilateral multifidus cross-sectional area was independently associated with facet joint osteoarthritis at L5-S1 (P=.009), but did not seem to be responsible for asymmetric degeneration of the bilateral facet joints. A higher multifidus muscle-fat index was independently associated with facet joint osteoarthritis, and bilateral multifidus size asymmetry was associated with the development of facet joint osteoarthritis at L5-S1. It seems more accurate to consider facet joint osteoarthritis a failure of the whole joint structure, including the paraspinal musculature, rather than simply a failure of the facet joint cartilage. [Orthopedics. 2017; 40(5):e793-e800.]. Copyright 2017, SLACK Incorporated.

  18. An investigation on mechanical properties of steel fibre reinforced for underwater welded joint

    NASA Astrophysics Data System (ADS)

    Navin, K.; Zakaria, M. S.; Zairi, S.

    2017-09-01

    Underwater pipelines are always exposed to water and have a high tendency to have corrosion especially on the welded joint. This research is about using fiber glass as steel fiber to coat the welded joint to determine the effectiveness in corrosion prevention of the welded joint. Number of coating is varied to determine the better number coating to coat the pipeline. Few samples were left without immersion in salt water and few samples are immersed into salt water with same salinity as sea water. The material sample is prepared in dog bone shape to enable to be used in Universal Tensile Machine (UTM). The material prepared is left immersed for recommended time and tested in Universal Tensile Machine. Upon analyzing the result, the result is used to determine the breakage point whether broken on the welded joint or different place and also the suitable number of coating to be used.

  19. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.

    PubMed

    Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R

    2018-04-27

    Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    PubMed

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  1. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading

    PubMed Central

    Arzola, Nelson; Hernández, Edgar

    2018-01-01

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117

  2. Structural Abnormalities on Magnetic Resonance Imaging in Patients With Patellofemoral Pain: A Cross-sectional Case-Control Study.

    PubMed

    van der Heijden, Rianne A; de Kanter, Janneke L M; Bierma-Zeinstra, Sita M A; Verhaar, Jan A N; van Veldhoven, Peter L J; Krestin, Gabriel P; Oei, Edwin H G; van Middelkoop, Marienke

    2016-09-01

    Structural abnormalities of the patellofemoral joint might play a role in the pathogenesis of patellofemoral pain (PFP), a common knee problem among young and physically active individuals. No previous study has investigated if PFP is associated with structural abnormalities of the patellofemoral joint using high-resolution magnetic resonance imaging (MRI). To investigate the presence of structural abnormalities of the patellofemoral joint on high-resolution MRI in patients with PFP compared with healthy control subjects. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects between 14 and 40 years of age underwent high-resolution 3-T MRI. All images were scored using the Magnetic Resonance Imaging Osteoarthritis Knee Score with the addition of specific patellofemoral features. Associations between PFP and the presence of structural abnormalities were analyzed using logistic regression analyses adjusted for age, body mass index (BMI), sex, and sports participation. A total of 64 patients and 70 control subjects were included in the study. Mean ± SD age was 23.2 ± 6.4 years, mean BMI ± SD was 22.9 ± 3.4 kg/m(2), and 56.7% were female. Full-thickness cartilage loss was not present. Minor patellar cartilage defects, patellar bone marrow lesions, and high signal intensity of the Hoffa fat pad were frequently seen in both patients (23%, 53%, and 58%, respectively) and control subjects (21%, 51%, and 51%, respectively). After adjustment for age, BMI, sex, and sports participation, none of the structural abnormalities were statistically significantly associated with PFP. Structural abnormalities of the patellofemoral joint have been hypothesized as a factor in the pathogenesis of PFP, but the study findings suggest that structural abnormalities of the patellofemoral joint on MRI are not associated with PFP. © 2016 The Author(s).

  3. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.

    PubMed

    Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo

    2013-08-01

    This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.

  4. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  5. Engineering studies on joint bar integrity, part II : finite element analysis

    DOT National Transportation Integrated Search

    2014-04-02

    This paper is the second in a two-part series describing : research sponsored by the Federal Railroad Administration : (FRA) to study the structural integrity of joint bars. In Part I, : observations from field surveys of joint bar inspections : cond...

  6. Longitudinal Joint Repair Best Practices for the Ohio Department of Transportation

    DOT National Transportation Integrated Search

    2017-07-01

    The Ohio Department of Transportation (ODOT) has identified longitudinal joint (LJ) failure of existing hot-mix asphalt (HMA) paving as a systemic weakness in the structure of some asphalt surfaces. In the past, these joint failures were treated as i...

  7. JWST ISIM Primary Structure and Kinematic Mount Configuration

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Carnahan, Tim; Hendricks, Steve; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz

    2004-01-01

    In this presentation we will review the evolution of the ISIM primary structure tube topology and kinematic mount configuration to the current baseline concept. We will also show optimization procedures used and challenges resulting from complex joints under launch loads. Two additional key ISIM structure challenges of meeting thermal distortion and stability requirements and metal-composite bonded joint survivability at cryogenic temperatures are covered in other presentations.

  8. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  9. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  10. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  11. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  12. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  13. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    PubMed

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  14. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  15. Understanding the reliability of solder joints used in advanced structural and electronics applications: Part 1 - Filler metal properties and the soldering process

    DOE PAGES

    Vianco, Paul T.

    2017-02-01

    Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting-and-spreading) to realize the proper joint geometry. Here, the soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance ofmore » the molten filler metal to successfully fill the gap and complete the fillet.« less

  16. Parameter identification and optimization of slide guide joint of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  17. Damage Progression in Bolted Composites

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.

    1998-01-01

    Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.

  18. Damage Progression in Bolted Composites

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.

    1998-01-01

    Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.

  19. Towards disparity joint upsampling for robust stereoscopic endoscopic scene reconstruction in robotic prostatectomy

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; McLeod, A. Jonathan; Jayarathne, Uditha L.; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    Three-dimensional (3-D) scene reconstruction from stereoscopic binocular laparoscopic videos is an effective way to expand the limited surgical field and augment the structure visualization of the organ being operated in minimally invasive surgery. However, currently available reconstruction approaches are limited by image noise, occlusions, textureless and blurred structures. In particular, an endoscope inside the body only has the limited light source resulting in illumination non-uniformities in the visualized field. These limitations unavoidably deteriorate the stereo image quality and hence lead to low-resolution and inaccurate disparity maps, resulting in blurred edge structures in 3-D scene reconstruction. This paper proposes an improved stereo correspondence framework that integrates cost-volume filtering with joint upsampling for robust disparity estimation. Joint bilateral upsampling, joint geodesic upsampling, and tree filtering upsampling were compared to enhance the disparity accuracy. The experimental results demonstrate that joint upsampling provides an effective way to boost the disparity estimation and hence to improve the surgical endoscopic scene 3-D reconstruction. Moreover, the bilateral upsampling generally outperforms the other two upsampling methods in disparity estimation.

  20. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study

    PubMed Central

    Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A; Cotofana, Sebastian; Eckstein, Felix; Castelein, Rene M; Bijlsma, Johannes W J; Mastbergen, Simon C; Lafeber, Floris P J G

    2011-01-01

    Background Modification of joint tissue damage is challenging in late-stage osteoarthritis (OA). Few options are available for treating end-stage knee OA other than joint replacement. Objectives To examine whether joint distraction can effectively modify knee joint tissue damage and has the potential to delay prosthesis surgery. Methods 20 patients (<60 years) with tibiofemoral OA were treated surgically using joint distraction. Distraction (∼5 mm) was applied for 2 months using an external fixation frame. Tissue structure modification at 1 year of follow-up was evaluated radiographically (joint space width (JSW)), by MRI (segmentation of cartilage morphology) and by biochemical markers of collagen type II turnover, with operators blinded to time points. Clinical improvement was evaluated by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Visual Analogue Scale (VAS) pain score. Results Radiography demonstrated an increase in mean and minimum JSW (2.7 to 3.6 mm and 1.0 to 1.9 mm; p<0.05 and <0.01). MRI revealed an increase in cartilage thickness (2.4 to 3.0 mm; p<0.001) and a decrease of denuded bone areas (22% to 5%; p<0.001). Collagen type II levels showed a trend towards increased synthesis (+103%; p<0.06) and decreased breakdown (−11%; p<0.08). The WOMAC index increased from 45 to 77 points, and VAS pain decreased from 73 to 31 mm (both p<0.001). Conclusions Joint distraction can induce tissue structure modification in knee OA and could result in clinical benefit. No current treatment is able to induce such changes. Larger, longer and randomised studies on joint distraction are warranted. PMID:21565898

  1. The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres

    PubMed Central

    van Arkel, R. J.; Amis, A. A.; Cobb, J. P.; Jeffers, J. R. T.

    2015-01-01

    In this in vitro study of the hip joint we examined which soft tissues act as primary and secondary passive rotational restraints when the hip joint is functionally loaded. A total of nine cadaveric left hips were mounted in a testing rig that allowed the application of forces, torques and rotations in all six degrees of freedom. The hip was rotated throughout a complete range of movement (ROM) and the contributions of the iliofemoral (medial and lateral arms), pubofemoral and ischiofemoral ligaments and the ligamentum teres to rotational restraint was determined by resecting a ligament and measuring the reduced torque required to achieve the same angular position as before resection. The contribution from the acetabular labrum was also measured. Each of the capsular ligaments acted as the primary hip rotation restraint somewhere within the complete ROM, and the ligamentum teres acted as a secondary restraint in high flexion, adduction and external rotation. The iliofemoral lateral arm and the ischiofemoral ligaments were primary restraints in two-thirds of the positions tested. Appreciation of the importance of these structures in preventing excessive hip rotation and subsequent impingement/instability may be relevant for surgeons undertaking both hip joint preserving surgery and hip arthroplasty. Cite this article: Bone Joint J 2015; 97-B:484–91. PMID:25820886

  2. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model.

    PubMed

    Peltz, Cathryn D; Sarver, Joseph J; Dourte, Leann M; Würgler-Hauri, Carola C; Williams, Gerald R; Soslowsky, Louis J

    2010-07-01

    Rotator cuff tears are a common clinical problem that can result in pain and disability. Previous studies in a rat model showed enhanced tendon to bone healing with postoperative immobilization. The objective of this study was to determine the effect of postimmobilization activity level on insertion site properties and joint mechanics in a rat model. Our hypothesis was that exercise following a short period of immobilization will cause detrimental changes in insertion site properties compared to cage activity following the same period of immobilization, but that passive shoulder mechanics will not be affected. We detached and repaired the supraspinatus tendon of 22 Sprague-Dawley rats, and the injured shoulder was immobilized postoperatively for 2 weeks. Following immobilization, rats were prescribed cage activity or exercise for 12 weeks. Passive shoulder mechanics were determined, and following euthanasia, tendon cross-sectional area and mechanical properties were measured. Exercise following immobilization resulted in significant decreases compared to cage activity in range of motion, tendon stiffness, modulus, percent relaxation, and several parameters from both a structurally based elastic model and a quasi-linear viscoelastic model. Therefore, we conclude that after a short period of immobilization, increased activity is detrimental to both tendon mechanical properties and shoulder joint mechanics, presumably due to increased scar production. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  3. A guide to organizing joint ventures with physicians.

    PubMed

    Peters, G R

    1986-12-01

    Catholic health care facilities must consider the business and legal risks, canon law, and other constraints when planning a joint venture with physicians. Participants should first establish goals and compatibility, then determine the venture's type (property, service), form ("true," lease, contract), and structure (corporation, partnership, joint property ownership, trust). The administrator must decide whether the facility will participate directly in the venture or form a separate organization. Participants must determine their relationships with the venture, choosing among many options. The administrator should consider whether a venture raises any canon law issues, especially regarding ecclesiastical and secular assets, approval by the local bishop or Holy See, and need for consultation. Other pertinent legal issues include: Fraud and abuse. The venture should not appear as compensation to induce referrals. Physician referrals. Many states prohibit or restrict referrals by physician participants. Antitrust law. Participants may be liable for actions constituting on antitrust violation. Securities low. Organizers must clarify Securities and Exchange Commission registration exemptions and observe state "blue sky" laws. Tax issues. Catholic health care facilities must consider such factors as tax-exempt status, unrelated business income, taxable subsidiaries, and public charity status. Other considerations include tax ramifications for physicians; tax shelter registration; certificate of need (CON), licensing, and building standards; effects on reimbursement and pension plans; organizational and bond documents; corporate medical practice and fee-splitting questions; and labor and contractual issues.

  4. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.

  5. Arch structure is associated with unique joint work, relative joint contributions and stiffness during landing.

    PubMed

    Powell, Douglas W; Queen, Robin M; Williams, D S Blaise

    2016-10-01

    To examine lower extremity joint contributions to a landing task in high-(HA) and low-arched (LA) female athletes by quantifying vertical stiffness, joint work and relative joint contributions to landing. Twenty healthy female recreational athletes (10 HA and 10 LA) performed five barefoot drop landings from a height of 30cm. Three-dimensional kinematics (240Hz) and ground reaction forces (960Hz) were recorded simultaneously. Vertical stiffness, joint work values and relative joint work values were calculated using Visual 3D and MatLab. HA athletes had significantly greater vertical stiffness compared to LA athletes (p=0.013). Though no differences in ankle joint work were observed (p=0.252), HA athletes had smaller magnitudes of knee (p=0.046), hip (p=0.019) and total lower extremity joint work values (p=0.016) compared to LA athletes. HA athletes had greater relative contributions of the ankle (p=0.032) and smaller relative contributions of the hip (p=0.049) compared to LA athletes. No differences in relative contributions of the knee were observed (p=0.255). These findings demonstrate that aberrant foot structure is associated with unique contributions of lower extremity joints to load attenuation during landing. These data may provide insight into the unique injury mechanisms associated with arch height in female athletes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Joint contact loading in forefoot and rearfoot strike patterns during running.

    PubMed

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla.

    PubMed

    Welsch, Goetz H; Mamisch, Tallal C; Hughes, Timothy; Domayer, Stephan; Marlovits, Stefan; Trattnig, Siegfried

    2008-09-01

    Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

  8. Influence of the welding temperature and the welding speed on the mechanical properties of friction stir welds in EN AW-2219-T87

    NASA Astrophysics Data System (ADS)

    Bachmann, A.; Krutzlinger, M.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) is an innovative joining technique, which has proven to produce high quality joints in high strength aluminum alloys. Consequently, it is commonly used to manufacture lightweight aerospace structures with stringent requirements. For these structures, it is necessary to ensure a high ultimate tensile strength (UTS). Various studies have reported that the UTS is significantly influenced by the welding parameters. Samples welded with different parameter sets showed a considerably different UTS, despite being free from detectable welding defects (e.g. tunnel defect, voids, or lack of penetration). Based on the observations in the literature, a hypothesis was posed. The welding temperature along with the welding speed determine the UTS of the weld. This study aims to prove this hypothesis experimentally by using temperature-controlled FSW to join plates of EN AW-2219-T87 in butt joint configuration. The welded samples were examined using visual inspection, metallography, X-ray imaging, and uniaxial tensile tests. Finally, a statistical analysis was conducted. Hereby, the hypothesis was confirmed.

  9. Effects of variables upon pyrotechnically induced shock response spectra, part 2

    NASA Technical Reports Server (NTRS)

    Smith, James Lee

    1988-01-01

    Throughout the aerospace industry, large variations of 50 percent (6 dB) or more in shock response spectra (SRS) derived from pyrotechnic separation events continue to be reported from actual spaceflight data and from laboratory tests. As a result of these variations, NASA funded a research program for 1984 through 1986. The purpose of the 1984 through 1986 project was to analyze variations in pyrotechnically induced SRS and to determine if and to what degree manufacturing and assembly variables and tolerances, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. Sixty-four free-free boundary plate tests were performed. NASA funded an additional study for 1987 through 1988. This paper is a summary of the additional study. The purpose was to evaluate shock dissipation through various spacecraft structural joint types, to evaluate shock variation for various manufacturing and assembly variables on clamped boundary test plates, and to verify data correction techniques. Five clamped boundary plate tests investigated manufacturing and assembly variables and mass loading effects. Six free-free boundary plate tests investigated shock dissipation across spacecraft joint structures.

  10. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.

    PubMed

    Du, Fei; Xu, Chao; Wu, Guannan; Zhang, Jie

    2018-06-13

    L-shaped bolt lap joints are commonly used in aerospace and civil structures. However, bolt joints are frequently subjected to loosening, and this has a significant effect on the safety and reliability of these structures. Therefore, bolt preload monitoring is very important, especially at the early stage of loosening. In this paper, a virtual time reversal guided wave method is presented to monitor preload of bolted L-shaped lap joints accurately and simply. In this method, a referenced reemitting signal (RRS) is extracted from the bolted structure in fully tightened condition. Then the RRS is utilized as the excitation signal for the bolted structure in loosening states, and the normalized peak amplitude of refocused wave packet is used as the tightness index (TI A ). The proposed method is experimentally validated by L-shaped bolt joints with single and multiple bolts. Moreover, the selections of guided wave frequency and tightness index are also discussed. The results demonstrate that the relationship between TI A and bolt preload is linear. The detection sensitivity is improved significantly compared with time reversal (TR) method, particularly when bolt loosening is at its embryo stage. The results also show that TR method is an effective method for detection of the number of loosening bolts.

  11. 33 CFR 183.554 - Fittings, joints, and connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.554 Fittings, joints, and connections. Each fuel system fitting, joint, and connection must be arranged so that it can be reached for inspection, removal, or maintenance without removal of permanent boat structure. ...

  12. On the stiffness matrix of the intervertebral joint: application to total disk replacement.

    PubMed

    O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C

    2009-08-01

    The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.

  13. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants.

    PubMed

    Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A

    2017-06-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.

  14. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants

    PubMed Central

    Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.

    2017-01-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674

  15. Assessment of Embedded Conjugated Polymer Sensor Arrays for Potential Load Transmission Measurement in Orthopaedic Implants

    PubMed Central

    Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.

    2017-01-01

    Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079

  16. Cytokine mRNA expression in synovial fluid of affected and contralateral stifle joints and the left shoulder joint in dogs with unilateral disease of the stifle joint.

    PubMed

    de Bruin, Tanya; de Rooster, Hilde; van Bree, Henri; Duchateau, Luc; Cox, Eric

    2007-09-01

    To examine mRNA expression of cytokines in synovial fluid (SF) cells from dogs with cranial cruciate ligament (CrCL) rupture and medial patellar luxation (MPL) and determine mRNA expression for 3 joints (affected stifle, unaffected contralateral stifle, and left shoulder joints) in dogs with unilateral CrCL rupture. 29 stifle joints with CrCL rupture (29 dogs), 8 stifle joints with MPL (7 dogs), and 24 normal stifle joints (16 clinically normal dogs). Immediately before reconstructive surgery, SF was aspirated from the cruciate-deficient stifle joint or stifle joint with MPL. Fourteen of 29 dogs had unilateral CrCL rupture; SF was also aspirated from the unaffected contralateral stifle joint and left shoulder joint. Those 14 dogs were examined 6 and 12 months after reconstructive surgery. Total RNA was extracted from SF cells and reverse transcription-PCR assay was performed to obtain cDNA. Canine-specific cytokine mRNA expression was determined by use of a real-time PCR assay. Interleukin (IL)-8 and -10 and interferon-gamma expression differed significantly between dogs with arthropathies and dogs with normal stifle joints. For the 14 dogs with unilateral CrCL rupture, a significant difference was found for IL-8 expression. Before reconstructive surgery, IL-8 expression differed significantly between the affected stifle joint and left shoulder joint or contralateral stifle joint. Six months after surgery, IL-8 expression was significantly increased in the unaffected contralateral stifle joint, compared with the shoulder joint. No conclusions can be made regarding the role of the examined cytokines in initiation of CrCL disease.

  17. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  18. Neuroanatomical distribution of mechanoreceptors in the human cadaveric shoulder capsule and labrum

    PubMed Central

    Witherspoon, Jessica W; Smirnova, Irina V; McIff, Terence E

    2014-01-01

    The distribution, location, and spatial arrangement of mechanoreceptors are important for neural signal conciseness and accuracy in proprioceptive information required to maintain functional joint stability. The glenohumeral joint capsule and labrum are mechanoreceptor-containing tissues for which the distribution of mechanoreceptors has not been determined despite the importance of these tissues in stabilizing the shoulder. More recently, it has been shown that damage to articular mechanoreceptors can result in proprioceptive deficits that may lead to recurrent instability. Awareness of mechanoreceptor distribution in the glenohumeral joint capsule and labrum may allow preservation of the mechanoreceptors during surgical treatment for shoulder instability, and in turn retain the joint's proprioceptive integrity. For this reason, we sought to develop a neuroanatomical map of the mechanoreceptors within the capsule and labrum. We postulated that the mechanoreceptors in these tissues are distributed in a unique pattern, with mechanoreceptor-scarce regions that may be more appropriate for surgical dissection. We determined the neuroanatomical distribution of mechanoreceptors and their associated fascicles in the capsule and labrum from eight human cadaver shoulder pairs using our improved gold chloride staining technique and light microscopy. A distribution pattern was consistently observed in the capsule and labrum from which we derived a neuroanatomical map. Both tissues demonstrated mechanoreceptor-dense and -scarce regions that may be considered during surgical treatment for instability. Capsular fascicles were located in the subsynovial layer, whereas labral fascicles were concentrated in the peri-core zone. The capsular fascicles presented as a lattice network and with a plexiform appearance. Fascicles within the labrum resembled a cable structure with the fascicles running in parallel. Our findings contribute to the neuroanatomical knowledge of the two glenohumeral joint stabilizers, namely, capsule and labrum, primarily involved in the onset of shoulder instability and recurrent instability. Neuroanatomical knowledge of articular mechanoreceptors is important for (i) developing a topographical map that reflects correspondence between the joint and surrounding musculature, (ii) understanding proprioceptive deficits that are only partially restored post surgical and post rehabilitative treatment, and (iii) gaining further knowledge about articular mechanoreceptors. PMID:25040358

  19. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.

    PubMed

    Pau, James W L; Xie, Shane S Q; Pullan, Andrew J

    2012-09-01

    Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.

  20. Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications

    NASA Astrophysics Data System (ADS)

    He, K.; Zhu, W. D.

    2011-07-01

    A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.

  1. Military Review: The Professional Journal of the U.S. Army. Volume 87, Number 5, September-October 2007

    DTIC Science & Technology

    2007-10-01

    language and language into poetry. Currently, the Cog determination process described in joint doctrine lacks the clear rules and structure that might...Can all Speak the Same language ,” Perspectives on Warfighting Number Four, 2d ed. (Quantico, va: Marine Corps association, 1996): ix. 4. lykke, 3...struggle, Cuba, one of the last colonies of Spain, finally gained its independence through U.s. military intervention in the spanish -American War

  2. Problems of Pore Formation in Welded Joints of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Murav'ev, V. I.

    2005-07-01

    Special features of formation of the connection zone in front of the front of molten pool and changes in the macro- and microstructure of the weld metal are considered for conditions of fusion welding of titanium alloys on an example of pseudo-α-titanium alloy VT20.Ways for forming macrotexture on the surface of joined preforms are determined with the aim of obtaining weld metal with structure and properties close to those of the base metal.

  3. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  4. Manual therapy in joint and nerve structures combined with exercises in the treatment of recurrent ankle sprains: A randomized, controlled trial.

    PubMed

    Plaza-Manzano, Gustavo; Vergara-Vila, Marta; Val-Otero, Sandra; Rivera-Prieto, Cristina; Pecos-Martin, Daniel; Gallego-Izquierdo, Tomás; Ferragut-Garcías, Alejandro; Romero-Franco, Natalia

    2016-12-01

    Recurrent ankle sprains often involve residual symptoms for which subjects often perform proprioceptive or/and strengthening exercises. However, the effectiveness of mobilization to influence important nerve structures due to its anatomical distribution like tibial and peroneal nerves is unclear. To analyze the effects of proprioceptive/strengthening exercises versus the same exercises and manual therapy including mobilizations to influence joint and nerve structures in the management of recurrent ankle sprains. A randomized single-blind controlled clinical trial. Fifty-six patients with recurrent ankle sprains and regular sports practice were randomly assigned to experimental or control group. The control group performed 4 weeks of proprioceptive/strengthening exercises; the experimental group performed 4 weeks of the same exercises combined with manual therapy (mobilizations to influence joint and nerve structures). Pain, self-reported functional ankle instability, pressure pain threshold (PPT), ankle muscle strength, and active range of motion (ROM) were evaluated in the ankle joint before, just after and one month after the interventions. The within-group differences revealed improvements in all of the variables in both groups throughout the time. Between-group differences revealed that the experimental group exhibited lower pain levels and self-reported functional ankle instability and higher PPT, ankle muscle strength and ROM values compared to the control group immediately after the interventions and one month later. A protocol involving proprioceptive and strengthening exercises and manual therapy (mobilizations to influence joint and nerve structures) resulted in greater improvements in pain, self-reported functional joint stability, strength and ROM compared to exercises alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.

  6. Perceptions and misconceptions regarding the Joint Commission's view of quality monitoring.

    PubMed

    Patterson, C H

    1989-10-01

    The Joint Commission recently has revised its hospital standards for infection control to reflect more accurately current state-of-the-art practices. In addition, the Joint Commission's Agenda for Change initiatives include the development of clinical indicators; one of the topics that will be included in those clinical indicator sets will be infection control. How the hospital chooses to organize itself to conduct the historically required monitoring and evaluation of clinical patient care currently required by the standards of the Joint Commission is at the option of the hospital. How the hospital will organize and collect data specific to infection control indicators yet to be developed by the Joint Commission has not been determined and will not be defined until specific research and development projects are completed. The hospital is expected to have in place infection prevention, surveillance, and control programs; it also is expected to have in place a quality assurance program that focuses not only on solving identified problems but also on the improvement of patient care quality. How the hospitals organize and/or integrate these activities is also at its option. It is expected that qualified professionals will direct and enforce infection prevention, surveillance, and control practices; indicators for infection control can provide data that will help assess the relative success of those practices and activities. The Joint Commission is not developing the capability to judge, on its own part, the actual quality of care provided by an organization seeking accreditation. Rather, the Joint Commission is committed to developing more accurate means to evaluate the structures, processes, and outcomes of diagnosis and treatment activities, as well as their interrelationships. Clinical excellence is supported by quality in the organizational environment and the managerial and leadership contexts within which patient care is delivered. Both clinical and organizational excellence are essential components of quality, and the Joint Commission is convinced that it is appropriate and timely to undertake more direct assessments of both.

  7. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.

    PubMed

    Chen, Yanyan; Li, Ge; Zhu, Yanhe; Zhao, Jie; Cai, Hegao

    2014-01-01

    In this paper, a 6-DOF wearable upper limb exoskeleton with parallel actuated joints which perfectly mimics human motions is proposed. The upper limb exoskeleton assists the movement of physically weak people. Compared with the existing upper limb exoskeletons which are mostly designed using a serial structure with large movement space but small stiffness and poor wearable ability, a prototype for motion assistance based on human anatomy structure has been developed in our design. Moreover, the design adopts balls instead of bearings to save space, which simplifies the structure and reduces the cost of the mechanism. The proposed design also employs deceleration processes to ensure that the transmission ratio of each joint is coincident.

  8. Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

    NASA Astrophysics Data System (ADS)

    Sejč, Pavol; Kubíček, Rastislav

    2011-12-01

    Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.

  9. Estimating ankle rotational constraints from anatomic structure

    NASA Astrophysics Data System (ADS)

    Baker, H. H.; Bruckner, Janice S.; Langdon, John H.

    1992-09-01

    Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.

  10. Inverts permittivity and conductivity with structural constraint in GPR FWI based on truncated Newton method

    NASA Astrophysics Data System (ADS)

    Ren, Qianci

    2018-04-01

    Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Warren, Charles David; ERDMAN III, DONALD L

    Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPCmore » specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and 100%, respectively over those measured for the baseline joints.« less

  12. Toughness characterization by small specimen test technique for HIPed joints of F82H steel aiming at first wall fabrication in fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Kohno, Y.; Kohyama, A.

    2013-09-01

    Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steels, have been developed as candidates of structural materials for fusion. In the design of a fusion reactor, cooling channels are built in the first wall of the blanket. One large issue is to determine how to join rectangular tubes to thin panels to fabricate the first wall. Hot Isostatic Pressing (HIPing) is a solution to solve the issue. Because of the thin HIPed walls of the channels, the specimen size for inspection of HIPed interface is limited. In the present research, Small Specimen Test Techniques (SSTT) are screened for the destructive toughness investigation technique of HIPed F82H joints. 1/3 size Charpy V-notch impact (1/3 CVN) and small punch (SP) tests are employed for the present research. The toughness of the HIPed joints is strongly affected by various surface finishing of specimens treated previous to the HIPing. In the present research, several kinds of HIPed joints were surface finished by different methods and investigated by 1/3 CVN impact test. The HIPed F82H joints had different toughness ranging from 20% to 70% of the toughness of the F82H base metal. The SP test is also available for the investigation of toughness change by the HIPing. The sensitivity of 1/3 CVN impact test against toughness change was better than the SP test, it revealed that the SP test has some limitations.

  13. Joint stability characteristics of the ankle complex after lateral ligamentous injury, part I: a laboratory comparison using arthrometric measurement.

    PubMed

    Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W

    2014-01-01

    The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.

  14. Extension joints: a tool to infer the active stress field orientation (case study from southern Italy)

    NASA Astrophysics Data System (ADS)

    De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo

    2013-04-01

    An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress tensors at all the investigated sites. Indeed, the maximum principal stress axis σ1 is vertical or subvertical, while the intermediate and the least axes (σ2 and σ3) lie on the horizontal plane or show low plunging values. The main direction of extension (σ3) at each site is in general agreement with the first-order regional stress field (WNW-ESE) even though some local perturbations have been recognized. These are interpreted as due to interferences between large active faults and their particular geometrical arrangement. In particular local stress deflections and stress swaps systematically occur in zones characterized by two overlapping fault segments or close to their tips.

  15. Affordable, Robust Ceramic Joining Technology (ARCJoinT) Given 1999 R and D 100 Award

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2000-01-01

    Advanced ceramics and fiber-reinforced ceramic matrix composites with high strength and toughness, good thermal conductivity, thermal shock resistance, and oxidation resistance are needed for high-temperature structural applications in advanced high-efficiency and high-performance engines, space propulsion components, and land-based systems. The engineering designs of these systems require the manufacturing of large parts with complex shapes, which are either quite expensive or impossible to fabricate. In many instances, it is more economical to build complex shapes by joining together simple geometrical shapes. Thus, joining has been recognized as an enabling technology for the successful utilization of advanced ceramics and fiber-reinforced composite components in high-temperature applications. However, such joints must retain their structural integrity at high temperatures and must have mechanical strength and environmental stability comparable to those of the bulk materials. In addition, the joining technique should be robust, practical, and reliable. ARCJoinT, which is based on the reaction-forming approach, is unique in terms of producing joints with tailorable microstructures. The formation of joints by this approach is attractive since the thermomechanical properties of the joint interlayer can be tailored to be very close to those of the base materials. In addition, high-temperature fixturing is not needed to hold the parts at the infiltration temperature. The joining process begins with the application of a carbonaceous mixture in the joint area, holding the items to be joined in a fixture, and curing at 110 to 120 C for 10 to 20 min. This step fastens the pieces together. Then, silicon or a silicon alloy in tape, paste, or slurry form is applied around the joint region and heated to 1250 to 1425 C (depending on the type of infiltrant) for 10 to 15 min. The molten silicon or silicon-refractory metal alloy reacts with carbon to form silicon carbide with controllable amounts of silicon and other phases as determined by the alloy composition. Joint thickness can be readily controlled through adjustments of the properties of the carbonaceous paste and the applied fixturing force. The photograph shows various shapes of silicon-carbide-based ceramics and fiberreinforced composites that have been joined using ARCJoinT. Thermomechanical and thermochemical characterization of joints is underway for a wide variety of silicon-carbidebased advanced ceramics and fiber-reinforced composites under the hostile environments that will be encountered in engine applications. ARCJoinT, which was developed by researchers at the NASA Glenn Research Center at Lewis Field, received R&D Magazine's prestigious R&D 100 Award in 1999.

  16. Load environment of rail joint bars : phase III : assessment of the effects of installation and maintenance practices

    DOT National Transportation Integrated Search

    2015-08-01

    A series of tests, aimed at assessing the structural integrity of joint bars under differing service conditions, were conducted to address concerns regarding joint bar failures in the revenue service environment. Data collected through the course of ...

  17. Quality control/quality assurance testing for joint density and segregation of asphalt mixtures : tech transfer summary.

    DOT National Transportation Integrated Search

    2013-04-01

    A longitudinal joint is the interface between two adjacent and parallel hot-mix asphalt (HMA) mats. Inadequate joint construction can lead to a location where water can penetrate the pavement layers and reduce the structural support of the underlying...

  18. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket

    PubMed Central

    Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon

    2017-01-01

    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622

  19. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  20. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    NASA Technical Reports Server (NTRS)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  1. Photonic Choke-Joints for Dual-Polarization Waveguides

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  2. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  3. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  4. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  5. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  6. 49 CFR 571.221 - Standard No. 221; School bus body joint strength.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and any structure forward of the passenger compartment. Maintenance access panel means a body panel... so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to... structure attached to joint members, shall remain attached to the test specimen, except that material may be...

  7. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.

    PubMed

    Bacek, Tomislav; Moltedo, Marta; Langlois, Kevin; Prieto, Guillermo Asin; Sanchez-Villamanan, Maria Carmen; Gonzalez-Vargas, Jose; Vanderborght, Bram; Lefeber, Dirk; Moreno, Juan C

    2017-07-01

    This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.

  8. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  9. Distribution and nature of fault architecture in a layered sandstone and shale sequence: An example from the Moab fault, Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Aydin, A.

    2005-01-01

    We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.

  10. A closer look at the lower-order structure of the Personality Inventory for DSM-5: comparison with the Five-Factor Model.

    PubMed

    Griffin, Sarah A; Samuel, Douglas B

    2014-10-01

    The Personality Inventory for DSM-5 (PID-5) was developed as a measure of the maladaptive personality trait model included within Section III of the DSM-5. Although preliminary findings have suggested the PID-5 has a five-factor structure that overlaps considerably with the Five-Factor Model (FFM) at the higher order level, there has been much less attention on the specific locations of the 25 lower-order traits. Joint exploratory factor analysis of the PID-5 traits and the 30 facets of the NEO-PI-R were used to determine the lower-order structure of the PID-5. Results indicated the PID-5's domain-level structure closely resembled the FFM. We also explored the placement of several lower-order facets that have not loaded consistently in previous studies. Overall, these results indicate that the PID-5 shares a common structure with the FFM and clarify the placement of some interstitial facets. More research investigating the lower-order facets is needed to determine how they fit into the hierarchical structure and explicate their relationships to existing measures of pathological traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  11. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint.

    PubMed

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur

    2006-12-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.

  12. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    PubMed

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.

  13. PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction

    PubMed Central

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.

    2008-01-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945

  14. Properties of the welded joints of manganese steel made by low-frequency pulsed arc welding

    NASA Astrophysics Data System (ADS)

    Saraev, Yu. N.; Bezborodov, V. P.; Gladovskii, S. V.; Golikov, N. I.

    2017-04-01

    The structure, the mechanical properties, the impact toughness, and the fracture mechanisms of the welded joints made of steel 09G2S plates by direct current welding and pulsed arc welding with a modulated arc current in the frequency range 0.25-5.0 Hz are studied. The application of low-frequency pulsed arc welding allowed us to form welded joints with a fine-grained structure in the weld metal and the heat-affected zone and to achieve a higher impact toughness and a longer cyclic fatigue life as compared to the welded joints fabricated by direct current welding. The achieved effect manifests itself over the entire testing range from 20 to-60°C.

  15. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  16. 75 FR 28667 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... members, (iii) discussion of Committee agenda and organization; (iv) discussion of the Joint CFTC-SEC... make recommendations related to market structure issues that may have contributed to the volatility, as... ``Joint CFTC-SEC Advisory Committee'' to facilitate the organization and distribution of comments between...

  17. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally, stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.

  18. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  19. The prevalence of sacroiliac joint degeneration in asymptomatic adults.

    PubMed

    Eno, Jonathan-James T; Boone, Christopher R; Bellino, Michael J; Bishop, Julius A

    2015-06-03

    Degenerative changes of the sacroiliac joint have been implicated as a cause of lower back pain in adults. The purpose of this study was to determine the prevalence of sacroiliac joint degeneration in asymptomatic patients. Five hundred consecutive pelvic computed tomography (CT) scans, made at a tertiary-care medical center, of patients with no history of pain in the lower back or pelvic girdle were retrospectively reviewed and analyzed for degenerative changes of the sacroiliac joint. After exclusion criteria were applied, 373 CT scans (746 sacroiliac joints) were evaluated for degenerative changes. Regression analysis was used to determine the association between age and the degree of sacroiliac joint degeneration. The prevalence of sacroiliac joint degeneration was 65.1%, with substantial degeneration occurring in 30.5% of asymptomatic subjects. The prevalence steadily increased with age, with 91% of subjects in the ninth decade of life displaying degenerative changes. Radiographic evidence of sacroiliac joint degeneration is highly prevalent in the asymptomatic population and is associated with age. Caution must be exercised when attributing lower back or pelvic girdle pain to sacroiliac joint degeneration seen on imaging. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  20. Mechanical correction of dynamometer moment for the effects of segment motion during isometric knee-extension tests

    PubMed Central

    Baltzopoulos, Vasilios; Richards, Paula J.; Maganaris, Constantinos N.

    2011-01-01

    The purpose of this study was to determine the effect of dynamometer and joint axis misalignment on measured isometric knee-extension moments using inverse dynamics based on the actual joint kinematic information derived from the real-time X-ray video and to compare the errors when the moments were calculated using measurements from external anatomical surface markers or obtained from the isokinetic dynamometer. Six healthy males participated in this study. They performed isometric contractions at 90° and 20° of knee flexion, gradually increasing to maximum effort. For the calculation of the actual knee-joint moment and the joint moment relative to the knee-joint center, determined using the external marker, two free body diagrams were used of the Cybex arm and the lower leg segment system. In the first free body diagram, the mean center of the circular profiles of the femoral epicondyles was used as the knee-joint center, whereas in the second diagram, the joint center was assumed to coincide with the external marker. Then, the calculated knee-joint moments were compared with those measured by the dynamometer. The results indicate that 1) the actual knee-joint moment was different from the dynamometer recorded moment (difference ranged between 1.9% and 4.3%) and the moment calculated using the skin marker (difference ranged between 2.5% and 3%), and 2) during isometric knee extension, the internal knee angle changed significantly from rest to the maximum contraction state by about 19°. Therefore, these differences cannot be neglected if the moment–knee-joint angle relationship or the muscle mechanical properties, such as length-tension relationship, need to be determined. PMID:21474701

  1. Derivation and test of elevated temperature thermal-stress-free fastener concept

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.

    1985-01-01

    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.

  2. Analytical and finite element performance evaluation of embedded piezoelectric sensors in polyethylene

    NASA Astrophysics Data System (ADS)

    Safaei, Mohsen; Anton, Steven R.

    2017-04-01

    A common application of piezoelectric transducers is to obtain operational data from working structures and dynamic components. Collected data can then be used to evaluate dynamic characterization of the system, perform structural health monitoring, or implement various other assessments. In some applications, piezoelectric transducers are bonded inside the host structure to satisfy system requirements; for example, piezoelectric transducers can be embedded inside the biopolymers of total joint replacements to evaluate the functionality of the artificial joint. The interactions between the piezoelectric device (inhomogeneity) and the surrounding polymer matrix determine the mechanical behavior of the matrix and the electromechanical behavior of the sensor. In this work, an analytical approach is employed to evaluate the electromechanical performance of 2-D plane strain piezoelectric elements of both circular and rectangular-shape inhomogeneities. These piezoelectric elements are embedded inside medical grade ultra-high molecular weight (UHMW) polyethylene, a material commonly used for bearing surfaces of joint replacements, such as total knee replacements (TKRs). Using the famous Eshelby inhomogeneity solution, the stress and electric field inside the circular (elliptical) inhomogeneity is obtained by decoupling the solution into purely elastic and dielectric systems of equations. For rectangular (non-elliptical) inhomogeneities, an approximation method based on the boundary integral function is utilized and the same decoupling method is employed. In order to validate the analytical result, a finite element analysis is performed for both the circular and rectangular inhomogeneities and the error for each case is calculated. For elliptical geometry, the error is less than 1% for stress and electric fields inside and outside the piezoelectric inhomogeneity, whereas, the error for non-elliptical geometry is obtained as 11% and 7% for stress and electric field inside the inhomogeneity, respectively.

  3. 76 FR 30974 - Amended Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Revised Determination on Reconsideration UAW-Chrysler Technical Training Center, Technology Training Joint... December 22, 2010, applicable to workers of UAW-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Detroit, Michigan and Warren, Michigan. Workers provide technical training such as...

  4. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  5. Fatigue failure of pb-free electronic packages under random vibration loads

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.

    2018-03-01

    The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.

  6. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial.

    PubMed

    Wang, Yuanyuan; Shimmin, Andrew; Ghosh, Peter; Marks, Paul; Linklater, James; Connell, David; Hall, Stephen; Skerrett, Donna; Itescu, Silviu; Cicuttini, Flavia M

    2017-08-02

    Few clinical trials have investigated the safety and efficacy of mesenchymal stem cells for the management of post-traumatic osteoarthritis. The objectives of this pilot study were to determine the safety and tolerability and to explore the efficacy of a single intra-articular injection of allogeneic human mesenchymal precursor cells (MPCs) to improve clinical symptoms and retard joint structural deterioration over 24 months in patients following anterior cruciate ligament (ACL) reconstruction. In this phase Ib/IIa, double-blind, active comparator clinical study, 17 patients aged 18-40 years with unilateral ACL reconstruction were randomized (2:1) to receive either a single intra-articular injection of 75 million allogeneic MPCs suspended in hyaluronan (HA) (MPC + HA group) (n = 11) or HA alone (n = 6). Patients were monitored for adverse events. Immunogenicity was evaluated by anti-HLA panel reactive antibodies (PRA) against class I and II HLAs determined by flow cytometry. Pain, function, and quality of life were assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and SF-36v2 scores. Joint space width was measured from radiographs, and tibial cartilage volume and bone area assessed from magnetic resonance imaging (MRI). Moderate arthralgia and swelling within 24 h following injection that subsided were observed in 4 out of 11 in the MPC + HA group and 0 out of 6 HA controls. No cell-related serious adverse effects were observed. Increases in class I PRA >10% were observed at week 4 in the MPC + HA group that decreased to baseline levels by week 104. Compared with the HA group, MPC + HA-treated patients showed greater improvements in KOOS pain, symptom, activities of daily living, and SF-36 bodily pain scores (p < 0.05). The MPC + HA group had reduced medial and lateral tibiofemoral joint space narrowing (p < 0.05), less tibial bone expansion (0.5% vs 4.0% over 26 weeks, p = 0.02), and a trend towards reduced tibial cartilage volume loss (0.7% vs -4.0% over 26 weeks, p = 0.10) than the HA controls. Intra-articular administration of a single allogeneic MPC injection following ACL reconstruction was safe, well tolerated, and may improve symptoms and structural outcomes. These findings suggest that MPCs warrant further investigations as they may modulate some of the pathological processes responsible for the development of post-traumatic osteoarthritis following ACL reconstruction. ClinicalTrials.gov ( NCT01088191 ) registration date: March 11, 2010.

  7. Imageological measurement of the sternoclavicular joint and its clinical application.

    PubMed

    Li, Ming; Wang, Bo; Zhang, Qi; Chen, Wei; Li, Zhi-Yong; Qin, Shi-Ji; Zhang, Ying-Ze

    2012-01-01

    Dislocation of the sternoclavicular joint is rare. However, posterior dislocation compressing important structures in the mediastinum may be fatal. Early diagnosis and prompt therapy of sternoclavicular joint dislocation are important. Computed tomography (CT) is an optimal means to investigate sternoclavicular joint anatomy; however, there are few reports on the imageological anatomical features of the sternoclavicular joint. The study investigated imageological anatomical features, and a new plate was devised according to these data to treat sternoclavicular joint dislocation. Fifty-three healthy Chinese volunteers examined with chest CT were included in the study. The coronal, sagittal, and axial images of the sternoclavicular region were reconstructed. The sternal head diameter in the inferolateral-to-superomedial direction, length of the clavicular notch, and angle between the clavicular notch and sternum were measured on coronal images. The angle between the presternum and trunk was measured on sagittal images. The following dimensions were measured on axial images: anteroposterior dimensions of the sternal head, clavicular notch, and presternum; width of the sternoclavicular joint; distance between bilateral clavicles; and minimal distance from the presternum to the underlying structures in the thoracic cavity. A new plate was designed according to the above data and was used to repair six sternoclavicular joint dislocations. All cases were followed up with a range of 9 to 12 months. The proximal clavicle is higher than the presternum in a horizontal position. On axial images, the anteroposterior dimension of the sternal head was longer than the presternum, and the center region of the presternum was thinner than the edges. The left sternoclavicular joint space was (0.82 ± 0.21) cm, and the right was (0.87 ± 0.22) cm. Among the structures behind the sternum, the left bilateral innominate vein ran nearest to the presternum. The distance from the anterior cortex of the sterna to the left bilateral innominate vein was (2.38 ± 0.61) cm. The dislocated joints were reduced anatomically and fixed with the new plate. All cases obtained satisfactory outcomes in follow-up visits. Normal sternoclavicular joint parameters were measured on CT images, which can facilitate treatment of sternoclavicular joint dislocation or subluxation. This newly designed plate can be used to treat sternoclavicular joint dislocation effectively and safely.

  8. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon

    2015-11-01

    Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.

  9. Refinement of the β-Sn Grains in Ni-Doped Sn-3.0Ag-0.5Cu Solder Joints with Cu-Based and Ni-Based Substrates

    NASA Astrophysics Data System (ADS)

    Chou, Tzu-Ting; Chen, Wei-Yu; Fleshman, Collin Jordon; Duh, Jenq-Gong

    2018-03-01

    A fine-grain structure with random orientations of lead-free solder joints was successfully obtained in this study. The Sn-Ag-Cu solder alloys doped with minor Ni were reflowed with Ni-based or Cu-based substrates to fabricate the joints containing different Ni content. Adding 0.1 wt.% Ni into the solder effectively promoted the formation of fine Sn grains, and reflowing with Ni-based substrates further enhanced the effects of β-Sn grain refinement. The crystallographic characteristics and the microstructures were analyzed to identify the solidification mechanism of different types of microstructure in the joints. The phase precipitating order in the joint altered as the solder composition were modified by elemental doping and changing substrate, which significantly affected the efficiency of grain refinement and the final grain structure. The formation mechanism of fine β-Sn grains in the Ni-doped joint with a Ni-based substrate is attributable to the heterogeneous nucleation by Ni, whereas the Ni in the joint using ChouCu-based substrate is consumed to form an intermetallic compound and thus retard the effect of grain refining.

  10. Microstructural evolution of SiC joints soldered using Zn-Al filler metals with the assistance of ultrasound.

    PubMed

    Wu, Bingzhi; Leng, Xuesong; Xiu, Ziyang; Yan, Jiuchun

    2018-06-01

    SiC ceramics were successfully soldered with the assistance of ultrasound. Two kinds of filler metals, namely non-eutectic Zn-5Al-3Cu and eutectic Zn-5Al alloys, were used. The effects of ultrasonic action on the microstructure and mechanical properties of the soldered joints were investigated. The results showed that ultrasound could promote the wetting and bonding between the SiC ceramic and filler metals within tens of seconds. For the Zn-5Al-3Cu solder, a fully grain-refined structure in the bond layer was obtained as the ultrasonic action time increased. This may lead to a substantial enhancement in the strength of the soldered joints. For the Zn-5Al solder, the shear strength of the soldered joints was only ∼102 MPa when the ultrasonic action time was shorter, and fractures occurred in the brittle lamellar eutectic phases in the center of the bond layer. With increasing ultrasonic action time, the lamellar eutectic phase in the bond layer of SiC joints could be completely transformed to a fine non-lamellar eutectic structure. Meanwhile, the grains in the bond layer were obviously refined. Those results led to the remarkable enhancement of the shear strength of the joints (∼138 MPa) using the Zn-5Al solder, which had approached that enhancement using the Zn-5Al-3Cu solder. The enhanced mechanical properties of the joints were attributed to the significant refinement of the grains and the change in the eutectic structure in the bond layer. Prolonged enhanced heterogeneous nucleation triggered by ultrasonic cavitation is the predominant refinement mechanism of the bond metals of the SiC joints. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Radiographic inspection of porosity in Ti-6Al-4V laser-welded joints.

    PubMed

    Nuñez-Pantoja, Juliana Maria Costa; Takahashi, Jessica Mie Ferreira Koyama; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz

    2011-01-01

    Widely used in dentistry, Ti-6Al-4V alloy is difficult to cast and solder, as it frequently exhibits pores inside the structure. This study was conducted to evaluate the effect of joint openings and diameters of laser-welded joints executed in Ti-6Al-4V structures on the presence of pores as checked by radiographic procedures. Sixty dumbbell rods with central diameters of 1.5, 2.0 and 3.5 mm were created from Ti-6Al-4V-wrought bars. Specimens were sectioned and welded using two joint openings (0.0 and 0.6 mm). The combination of variables created six groups (n = 10). Laser welding was executed using 360V/8ms (1.5 and 2.0 mm) and 380V/9ms (3.5 mm), with the focus and frequency set to zero. The joints were finished, polished and submitted to radiographic examination. The radiographs were visually examined for the presence of pores in the joints, qualitatively. The percentage of radiographic presence of pores was calculated without counting pores per joint. Data were analyzed using a chi-square test (α = 0.05). For the 1.5-mm specimens, the incidence of pore presence was significantly higher (p = 0.0001) when using 0.6-mm joint openings (40%) compared to 0.0-mm openings (0%). For the 2.0-mm specimens, there was no significant difference between groups (p = 0.2008). However, for the 3.5-mm specimens, the incidence of pore presence was lower (p = 0.0061) for 0.6-mm openings (50%) compared to 0.0-mm openings (70%). Therefore, laser welding of Ti-6Al-4V structures with thin diameters provides the best condition for the juxtaposition of the parts.

  12. How joint characteristics between a piezoelectric beam and the main structure affect the performance of an energy harvester

    NASA Astrophysics Data System (ADS)

    Jahani, K.; Rafiei, M. M.; Aghazadeh, P.

    2017-09-01

    In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.

  13. Structural Joint with Multi-Axis Load Carrying Capability

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey (Inventor); Martin, Robert A. (Inventor); Stewart, Brian K. (Inventor)

    2017-01-01

    A structural joint is formed of a mandrel having a plurality of bumps and dimples formed thereon which is fitted into a sleeve. The bumps and dimples form a non-circular geometry at all points along the length of the mandrel. The bumps are defined by surfaces which have 1st and 2nd derivatives which are continuous.

  14. Formation of Gradient Structures in the Zone of Joining a Deformable Nickel Alloy and a Single-Crystal Intermetallic Alloy during Thermodiffusion Pressure Welding and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Valitov, V. A.; Drozdov, A. A.; Bazyleva, O. A.; Galieva, E. V.; Arginbaeva, E. G.

    2018-01-01

    The possibility of formation of a high-quality solid-phase joint of an Ni3Al-based single-crystal intermetallic VKNA-25 blade alloy with a high-temperature deformable EP975 disk alloy by pressure welding is studied to create high-performance one-piece blisk unit for the next-generation aviation gas turbine engines and to decrease the unit mass. The influence of the conditions of thermodiffusion pressure welding under the hightemperature superplasticity of the disk alloy and the influence of heat treatment of welded joints on the gradient structures in the welded joint zone and the structure at the periphery of the welded samples are investigated.

  15. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    NASA Astrophysics Data System (ADS)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  16. Reverse engineering the cooperative machinery of human hemoglobin.

    PubMed

    Ren, Zhong

    2013-01-01

    Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.

  17. Multiple Periprosthetic Joint Infections: Evidence for Decreasing Prevalence.

    PubMed

    Haverstock, John P; Somerville, Lyndsa E; Naudie, Douglas D; Howard, James L

    2016-12-01

    Multiple periprosthetic joint infections (MPJIs) are uncommon. We determine the prevalence of developing a second-site periprosthetic joint infection. Our institutional arthroplasty database was reviewed. Those who developed a second-site infection had a retrospective chart review to determine the pathogen, timing of infection, comorbidities, and results of treatment. Thirteen of 206 (6.3%) patients at-risk for MPJI experienced a second periprosthetic joint infection. Mode of the second infection was hematogenous in 6, all of whom were being treated for the index periprosthetic joint infection. Seven secondary infections did not relate to the index infection. Two patients were lost to follow-up, 5 continued on suppressive antibiotics, and 6 successfully cleared infection. The prevalence of MPJI has decreased compared with previous reports. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  19. An approach to comparative anatomy of the acetabulum from amphibians to primates.

    PubMed

    Canillas, F; Delgado-Martos, M J; Touza, A; Escario, A; Martos-Rodriguez, A; Delgado-Baeza, E

    2011-12-01

    The objective of this study was to investigate the anatomy, both macroscopic and microscopic, of the soft tissue internal structures of the hip joint in animal species and in three human hips (an adult and two fetuses). We dissected the hip joints of 16 species and compared the anatomical features of the soft tissue from the respective acetabula. In addition, a histological study was made of the specimens studied. In amphibians, we found a meniscus in the acetabulum, which was not observed in any of the other species studied. The isolated round ligament is observed from birds onwards. In the group of mammals analysed, including the human specimens, we found a meniscoid structure in the acetabular hip joint. Furthermore, we found that the meniscoid structure forms an anatomo-functional unit with the round ligament and the transverse ligament of the coxofemoral joint. These discoveries suggest the participation of the soft tissue anatomy in adaptative changes of species. © 2011 Blackwell Verlag GmbH.

  20. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  1. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  2. Experimental characterization and numerical simulation of riveted lap-shear joints using Rivet Element

    NASA Astrophysics Data System (ADS)

    Vivio, Francesco; Fanelli, Pierluigi; Ferracci, Michele

    2018-03-01

    In aeronautical and automotive industries the use of rivets for applications requiring several joining points is now very common. In spite of a very simple shape, a riveted junction has many contact surfaces and stress concentrations that make the local stiffness very difficult to be calculated. To overcome this difficulty, commonly finite element models with very dense meshes are performed for single joint analysis because the accuracy is crucial for a correct structural analysis. Anyhow, when several riveted joints are present, the simulation becomes computationally too heavy and usually significant restrictions to joint modelling are introduced, sacrificing the accuracy of local stiffness evaluation. In this paper, we tested the accuracy of a rivet finite element presented in previous works by the authors. The structural behaviour of a lap joint specimen with a rivet joining is simulated numerically and compared to experimental measurements. The Rivet Element, based on a closed-form solution of a reference theoretical model of the rivet joint, simulates local and overall stiffness of the junction combining high accuracy with low degrees of freedom contribution. In this paper the Rivet Element performances are compared to that of a FE non-linear model of the rivet, built with solid elements and dense mesh, and to experimental data. The promising results reported allow to consider the Rivet Element able to simulate, with a great accuracy, actual structures with several rivet connections.

  3. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  4. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  5. Faying Surface Lubrication Effects on Nut Factors

    NASA Technical Reports Server (NTRS)

    Taylor, Deneen M.; Morrison, Raymond F.

    2006-01-01

    Bolted joint analysis typically is performed using nut factors derived from textbooks and procedures from program requirement documents. Joint specific testing was performed for a critical International Space Station (ISS) joint. Test results indicate that for some configurations the nut factor may be significantly different than accepted textbook values. This paper presents results of joint specific testing to aid in determining if joint specific testing should be performed to insure required preloads are obtained.

  6. 46 CFR 151.20-1 - Piping-general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., expansion joints, etc., to protect the piping and tank from excessive stress due to thermal movement and/or movements of the tank and hull structure. Expansion joints shall be held to a minimum and where used shall... expansion joints. (h) Piping shall enter independent cargo tanks above the weatherdeck, either through or as...

  7. Metacarpophalangeal joint arthroscopy: indications revisited.

    PubMed

    Choi, Alexander K Y; Chow, Esther C S; Ho, P C; Chow, Y Y

    2011-08-01

    Arthroscopic surgery has become the gold standard for the diagnosis and treatment of major joint disorders. With advancement in arthroscopic technique, arthroscopy has become feasible in most human joints, even those as small as the finger joints. The metacarpophalangeal joint (MCPJ) can become spacious with simple traction, the intra-articular anatomy is simple, and its major structures can be easily visualized and identified. However, MCPJ arthroscopy has never been popular. This article describes our experience with MCPJ arthroscopy and seeks to establish its role in clinical practice. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  9. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.

    PubMed

    Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L

    2017-08-01

    While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

  10. Studies on increased vascular permeability in the pathogenesis of lesions of connective tissue diseases: I. Experimental hyperlipidaemia and immune arthropathy.

    PubMed

    Valente, A J; Walton, K W

    1980-10-01

    In order to investigate the known associations between hyperlipidaemia and various rheumatic complaints, immune arthritis and hyperlipidaemia have been induced concurrently in rabbits. The results obtained show that: (1) Rabbit apolipoprotein B-containing lipoproteins (LpB), which are normally virtually excluded from joint fluid, gain access to the inflamed joint in the serous effusion and serve as intrinsic indicators of altered local permeability to macromolecules. (2) Much of the LpB entering the joint space is taken up by the phagocytic cells and, following intracellular hydrolysis, leaves a lipid residue. In some chronically affected joints these residues are modified so as to give rise to crystalline cholesterol and its esters. Such crystals may serve as a chronic irritant in the joint. (3) In addition intact LpB is found sequestered in the superficial layers of intra-articular collagenous structures of the challenged joint in a distribution identical with that of similarly sequestered immune complexes and complement, suggesting altered permeability of these intra-articular structures also.

  11. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  12. Cranial cruciate stability in the rottweiler and racing greyhound: an in vitro study.

    PubMed

    Wingfield, C; Amis, A A; Stead, A C; Law, H T

    2000-05-01

    An in vitro biomechanical study of cadaver stifles from rottweilers and racing greyhounds was undertaken to evaluate the contribution of the cranial cruciate ligament to stifle joint stability. This was performed at differing stifle joint angles, first with the joint capsules and ligaments intact and then with all structures removed except for the cranial cruciate ligament. Craniocaudal laxity increased in both breeds as stifle flexion increased. The rottweiler stifle showed greater craniocaudal joint laxity than the racing greyhound at all joint angles between 150 degrees and 110 degrees, but the actual increases in joint laxity between these joint angles were similar for both breeds. Tibial rotation during craniocaudal loading of the stifle increased craniocaudal laxity in both breeds during joint flexion. The relative contribution of the cranial cruciate ligament to cranial stability of the stifle joint increased as the joint flexed and was similar in both breeds.

  13. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  14. Tibial tuberosity to trochlear groove distance and its association with patellofemoral osteoarthritis-related structural damage worsening: data from the osteoarthritis initiative.

    PubMed

    Haj-Mirzaian, Arya; Guermazi, Ali; Hakky, Michael; Sereni, Christopher; Zikria, Bashir; Roemer, Frank W; Tanaka, Miho J; Cosgarea, Andrew J; Demehri, Shadpour

    2018-04-30

    To determine whether the tibial tuberosity-to-trochlear groove (TT-TG) distance is associated with concurrent patellofemoral joint osteoarthritis (OA)-related structural damage and its worsening on 24-month follow-up magnetic resonance imaging (MRI) in participants in the Osteoarthritis Initiative (OAI). Six hundred subjects (one index knee per participant) were assessed. To evaluate patellofemoral OA-related structural damage, baseline and 24-month semiquantitative MRI Osteoarthritis Knee Score (MOAKS) variables for cartilage defects, bone marrow lesions (BMLs), osteophytes, effusion, and synovitis were extracted from available readings. The TT-TG distance was measured in all subjects using baseline MRIs by two musculoskeletal radiologists. The associations between baseline TT-TG distance and concurrent baseline MOAKS variables and their worsening in follow-up MRI were investigated using regression analysis adjusted for variables associated with tibiofemoral and patellofemoral OA. At baseline, increased TT-TG distance was associated with concurrent lateral patellar and trochlear cartilage damages, BML, osteophytes, and knee joint effusion [cross-sectional evaluations; overall odds ratio 95% confidence interval (OR 95% CI): 1.098 (1.045-1.154), p < 0.001]. In the longitudinal analysis, increased TT-TG distance was significantly related to lateral patellar and trochlear cartilage, BML, and joint effusion worsening (overall OR 95% CI: 1.111 (1.056-1.170), p < 0.001). TT-TG distance was associated with simultaneous lateral patellofemoral OA-related structural damage and its worsening over 24 months. Abnormally lateralized tibial tuberosity may be considered as a risk factor for future patellofemoral OA worsening. • Excessive TT-TG distance on MRI is an indicator/predictor of lateral-patellofemoral-OA. • TT-TG is associated with simultaneous lateral-patellofemoral-OA (6-17% chance-increase for each millimeter increase). • TT-TG is associated with longitudinal (24-months) lateral-patellofemoral-OA (5-15% chance-increase for each millimeter).

  15. 19 CFR 213.3 - Determination of small business eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 213.3 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.3 Determination of small business eligibility. (a... technical assistance from joint applicants, trade associations and unions. If several businesses jointly or...

  16. 19 CFR 213.3 - Determination of small business eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 213.3 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.3 Determination of small business eligibility. (a... technical assistance from joint applicants, trade associations and unions. If several businesses jointly or...

  17. 19 CFR 213.3 - Determination of small business eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 213.3 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.3 Determination of small business eligibility. (a... technical assistance from joint applicants, trade associations and unions. If several businesses jointly or...

  18. 19 CFR 213.3 - Determination of small business eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 213.3 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE TRADE REMEDY ASSISTANCE § 213.3 Determination of small business eligibility. (a... technical assistance from joint applicants, trade associations and unions. If several businesses jointly or...

  19. Anatomy and Biomechanics of the Finger Proximal Interphalangeal Joint.

    PubMed

    Pang, Eric Quan; Yao, Jeffrey

    2018-05-01

    A complete understanding of the normal anatomy and biomechanics of the proximal interphalangeal joint is critical when treating pathology of the joint as well as in the design of new reconstructive treatments. The osseous anatomy dictates the principles of motion at the proximal interphalangeal joint. Subsequently, the joint is stabilized throughout its motion by the surrounding proximal collateral ligament, accessory collateral ligament, and volar plate. The goal of this article is to review the normal anatomy and biomechanics of the proximal interphalangeal joint and its associated structures, most importantly the proper collateral ligament, accessory collateral ligament, and volar plate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Family joint activities in a cross-national perspective.

    PubMed

    Zaborskis, Apolinaras; Zemaitiene, Nida; Borup, Ina; Kuntsche, Emmanuel; Moreno, Carmen

    2007-05-30

    Parents and children joint activities are considered to be an important factor on healthy lifestyle development throughout adolescence. This study is a part of the Cross-National Survey on Health Behaviour in School-aged Children--World Health Organization Collaborative Study (HBSC). It aims to describe family time in joint activities and to clarify the role of social and structural family profile in a cross-national perspective. The research was carried out according to the methodology of the HBSC study using the anonymous standardized questionnaire. In total, 17,761 students (8,649 boys and 9,112 girls) aged 13 and 15 years from 6 European countries (Czech Republic, Finland, Greenland, Lithuania, Spain, and Ukraine) were surveyed in the 2001-2002 school-year. The evaluation of joint family activity is based on 8 items: (1) watching TV or a video, (2) playing indoor games, (3) eating meals, (4) going for a walk, (5) going places, (6) visiting friends or relatives, (7) playing sports, (8) sitting and talking about things (chatting). Students from Spain and Ukraine reported spending the most time together with their families in almost all kinds of joint activities, whereas students from Greenland and Finland reported spending the least of this time. Boys were more likely than girls to be spending time together with family. Joint family activity goes into decline in age from 13 to 15 years. Variability of family time in a cross-national perspective was relatively small and related to children age category. Considering national, gender and age differences of studied population groups, we found that the distribution of joint family activities tends to be dispersed significantly by family structure (intact/restructured family) and family wealth. Our study compares children and parent joint activities in European countries and reveals differences and similarities in these patterns between countries. The findings underline the role of family structure (intact/restructured family) and family wealth in the distribution of time spent in joint family activities, which should be considered by health promoters.

Top