Filling temporary underground structures and workings at high-head hydro developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, V.F.
1994-12-01
Examples of backfilling temporary underground structures and workings at hydroelectric stations in Russia are cited. Structures backfilled include temporary tunnels and auxiliary workings (shafts, chambers, etc.). Detail drawings illustrate many of the examples. Examples of backfilling at a number of hydropower plants are given; however, the main emphasis is on construction of Nurek Hydroelectric Station. 8 refs., 11 figs.
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
48 CFR 1845.7101-1 - Property classification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... aeronautical and space programs, which are capable of stand-alone operation. Examples include research aircraft... characteristics. (ii) Examples of NASA heritage assets include buildings and structures designated as National...., it no longer provides service to NASA operations). Examples of obsolete property are items in...
Designing for fiber composite structural durability in hygrothermomechanical environment
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.
Code Analysis and Refactoring with Clang Tools, Version 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Timothy M.
2016-12-23
Code Analysis and Refactoring with Clang Tools is a small set of example code that demonstrates techniques for applying tools distributed with the open source Clang compiler. Examples include analyzing where variables are used and replacing old data structures with standard structures.
Meso-Mechanics and Meso-Structures: A Matter of Scale
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Gotsis, P. K.; Mital, S. K.
1998-01-01
Meso-mechanics and meso-structures are described in terms of the scales at which they are observed and formulated. Select composite examples are presented to illustrate that meso-mechanics and/or meso-structures are meaningful only when they refer to a specific scale in a hierarchical scale observation/simulation. These examples include different types of composite unit cells, woven fabric unit cells, and progressive fracture as a composite enhanced infrastructure made from reinforced concrete. The results from the select examples indicate that meso-mechanics and meso-structures are elusive terms and depend mainly on the investigators' knowledge and available information.
Invaginating Structures in Mammalian Synapses
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2018-01-01
Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling. PMID:29674962
Ray tracing a three-dimensional scene using a hierarchical data structure
Wald, Ingo; Boulos, Solomon; Shirley, Peter
2012-09-04
Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.
Process Improvement Through Tool Integration in Aero-Mechanical Design
NASA Technical Reports Server (NTRS)
Briggs, Clark
2010-01-01
Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi
1994-01-01
An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.
Modern CACSD using the Robust-Control Toolbox
NASA Technical Reports Server (NTRS)
Chiang, Richard Y.; Safonov, Michael G.
1989-01-01
The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing
Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.
Analysis of defects of overhead facade systems and other light thin-walled structures
NASA Astrophysics Data System (ADS)
Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.
2017-04-01
This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.
Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele
2014-06-24
Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.
78 FR 28184 - Inviting Applications for Rural Business Opportunity Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... long-term planning that integrates targeted investments in workforce training, infrastructure, research.... Examples of acceptable documentation include: A signed letter from the source of funds stating the amount... CFR 4284.639(d)(2)). You must describe a structural change (for example, the loss of major employer or...
Story Structures: Comments on Recent Literature.
ERIC Educational Resources Information Center
Peterson, Gordon
Several theories of story structure are reviewed in this paper, including those of D. Rumelhart, R. Schank, and T. van Dijk. Examples are given of Rumelhart's story grammar consisting of elements such as setting, episodes, events, and reactions that must be present to form a coherent structure. Schank's contribution to story structure theory is…
The day of reckoning: Does human ultrasociality continue?
Ristau, Carolyn A
2016-01-01
To counter human ultrasociality, alternative communities can arise (ongoing), and, unlike insects, lower echelons can unite and rebel. Examples include movements such as: "Black Lives Matter," "Fight for $15," "Occupy," and the "Village Movement." To strengthen ultrasociality, a surplus bottom echelon can be reduced: for example, by means such as imprisoning Blacks, deporting immigrants, wars, and the Holocaust. Alternatively, a new structure could be created, for example, ISIL (even more ultrasocial?).
NASA Applications of Structural Health Monitoring Technology
NASA Technical Reports Server (NTRS)
Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George
2013-01-01
This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.
NASA Applications of Structural Health Monitoring Technology
NASA Technical Reports Server (NTRS)
Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George
2013-01-01
This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.
Fragmentary and incidental behaviour of columns, slabs and crystals
Whiteley, Walter
2014-01-01
Between the study of small finite frameworks and infinite incidentally periodic frameworks, we find the real materials which are large, but finite, fragments that fit into the infinite periodic frameworks. To understand these materials, we seek insights from both (i) their analysis as large frameworks with associated geometric and combinatorial properties (including the geometric repetitions) and (ii) embedding them into appropriate infinite periodic structures with motions that may break the periodic structure. A review of real materials identifies a number of examples with a local appearance of ‘unit cells’ which repeat under isometries but perhaps in unusual forms. These examples also refocus attention on several new classes of infinite ‘periodic’ frameworks: (i) columns—three-dimensional structures generated with one repeating isometry and (ii) slabs—three-dimensional structures with two independent repeating translations. With this larger vision of structures to be studied, we find some patterns and partial results that suggest new conjectures as well as many additional open questions. These invite a search for new examples and additional theorems. PMID:24379423
Delamination Modeling of Composites for Improved Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
ERIC Educational Resources Information Center
Welk, Dorette Sugg
2002-01-01
Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…
Conformal coating of highly structured surfaces
Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas
2012-12-11
Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.
Cellular Automata with Anticipation: Examples and Presumable Applications
NASA Astrophysics Data System (ADS)
Krushinsky, Dmitry; Makarenko, Alexander
2010-11-01
One of the most prospective new methodologies for modelling is the so-called cellular automata (CA) approach. According to this paradigm, the models are built from simple elements connected into regular structures with local interaction between neighbours. The patterns of connections usually have a simple geometry (lattices). As one of the classical examples of CA we mention the game `Life' by J. Conway. This paper presents two examples of CA with anticipation property. These examples include a modification of the game `Life' and a cellular model of crowd movement.
Fullerenic structures and such structures tethered to carbon materials
Goel, Anish; Howard, Jack B.; Vander Sande, John B.
2010-01-05
The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.
Fullerenic structures and such structures tethered to carbon materials
Goel, Anish; Howard, Jack B.; Vander Sande, John B.
2012-10-09
The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.
Talbot Trotter
2013-01-01
Forest structure is strongly influenced by disturbance, agents of which can include fire, weather, mammals, annelids, fungi, insects, and increasingly with the advent of the Anthropocene, climate. Currently, climate change represents one of the broadest threats to natural systems, including forests, with the potential to directly alter forest structure and function...
Preparation of graphitic articles
Phillips, Jonathan; Nemer, Martin; Weigle, John C.
2010-05-11
Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.
PC board mount corrosion sensitive sensor
Robinson, Alex L.; Casias, Adrian L.; Pfeifer, Kent B.; Laguna, George R.
2016-03-22
The present invention relates to surface mount structures including a capacitive element or a resistive element, where the element has a property that is responsive to an environmental condition. In particular examples, the structure can be optionally coupled to a printed circuit board. Other apparatuses, surface mountable structures, and methods of use are described herein.
State Education Governance Structures: 2017 Update. 50-State Review
ERIC Educational Resources Information Center
Railey, Hunter
2017-01-01
This 50-State Review provides an overview of governance structures in the states, as well as implications for practice, deep dives into four governance models and examples of other governance models. One appendix, State Education Governance Models by State, is included.
Generalized gauge U(1) family symmetry for quarks and leptons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas
2017-01-11
If the standard model of quarks and leptons is extended to include three singlet right-handed neutrinos, then the resulting fermion structure admits an infinite number of anomaly-free solutions with just one simple constraint. Well-known examples satisfying this constraint are B–L, L μ–Lτ, B–3Lτ, etc. Here, we derive this simple constraint, and discuss two new examples which offer some insights to the structure of mixing among quark and lepton families, together with their possible verification at the Large Hadron Collider.
Beyond lognormal inequality: The Lorenz Flow Structure
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-11-01
Observed from a socioeconomic perspective, the intrinsic inequality of the lognormal law happens to manifest a flow generated by an underlying ordinary differential equation. In this paper we extend this feature of the lognormal law to a general ;Lorenz Flow Structure; of Lorenz curves-objects that quantify socioeconomic inequality. The Lorenz Flow Structure establishes a general framework of size distributions that span continuous spectra of socioeconomic states ranging from the pure-communism extreme to the absolute-monarchy extreme. This study introduces and explores the Lorenz Flow Structure, analyzes its statistical properties and its inequality properties, unveils the unique role of the lognormal law within this general structure, and presents various examples of this general structure. Beyond the lognormal law, the examples include the inverse-Pareto and Pareto laws-which often govern the tails of composite size distributions.
The Azimuth Structure of Nuclear Collisions — I
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Kettler, David T.
We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.
Reading Multimodal Texts: Perceptual, Structural and Ideological Perspectives
ERIC Educational Resources Information Center
Serafini, Frank
2010-01-01
This article presents a tripartite framework for analyzing multimodal texts. The three analytical perspectives presented include: (1) perceptual, (2) structural, and (3) ideological analytical processes. Using Anthony Browne's picturebook "Piggybook" as an example, assertions are made regarding what each analytical perspective brings to the…
Design for inadvertent damage in composite laminates
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1992-01-01
Simplified predictive methods and models to computationally simulate durability and damage in polymer matrix composite materials/structures are described. The models include (1) progressive fracture, (2) progressively damaged structural behavior, (3) progressive fracture in aggressive environments, (4) stress concentrations, and (5) impact resistance. Several examples are included to illustrate applications of the models and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.
Coherent Structures in Magnetic Confinement Systems
NASA Astrophysics Data System (ADS)
Horton, W.
2006-04-01
Coherent structures are long-lived, nonlinear localized solutions of the selfconsistient plasma-electromagnetic field equations. They contain appreciable energy density and control various transport and magnetic reconnection processes in plasmas. These structures are self-binding from the nonlinearity balancing, or overcoming, the wave dispersion of energy in smaller amplitude structures. The structures evolve out of the nonlinear interactions in various instabilities or external driving fields. The theoretical basis for these structures are reviewed giving examples from various plasma instabilities and their reduced descriptions from the appropriate partial differential equations. A classic example from drift waves is the formation of monopole, dipole and tripolar vortex structures which have been created in both laboratory and simulation experiments. For vortices, the long life-time and nonlinear interactions of the structures can be understood with conservation laws of angular momentum given by the vorticity field associated with dynamics. Other morphologies include mushrooms, Kelvin-Helmholtz vorticity roll-up, streamers and blobs. We show simulation movies of various examples drawn from ETG modes in NSTX, H-mode like shear flow layers in LAPD and the vortices measured with soft x-ray tomography in the GAMMA 10 tandem mirror. Coherent current-sheet structures form in driven magnetic reconnection layers and control the rate of transformation of magnetic energy to flow and thermal energy.
Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
Structural Features of Algebraic Quantum Notations
ERIC Educational Resources Information Center
Gire, Elizabeth; Price, Edward
2015-01-01
The formalism of quantum mechanics includes a rich collection of representations for describing quantum systems, including functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these representations affect how computations are performed. For example, identifying probabilities of measurement outcomes…
Experimental validation of structural optimization methods
NASA Technical Reports Server (NTRS)
Adelman, Howard M.
1992-01-01
The topic of validating structural optimization methods by use of experimental results is addressed. The need for validating the methods as a way of effecting a greater and an accelerated acceptance of formal optimization methods by practicing engineering designers is described. The range of validation strategies is defined which includes comparison of optimization results with more traditional design approaches, establishing the accuracy of analyses used, and finally experimental validation of the optimization results. Examples of the use of experimental results to validate optimization techniques are described. The examples include experimental validation of the following: optimum design of a trussed beam; combined control-structure design of a cable-supported beam simulating an actively controlled space structure; minimum weight design of a beam with frequency constraints; minimization of the vibration response of helicopter rotor blade; minimum weight design of a turbine blade disk; aeroelastic optimization of an aircraft vertical fin; airfoil shape optimization for drag minimization; optimization of the shape of a hole in a plate for stress minimization; optimization to minimize beam dynamic response; and structural optimization of a low vibration helicopter rotor.
Sierra Toolkit Manual Version 4.48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Toolkit Team
This report provides documentation for the SIERRA Toolkit (STK) modules. STK modules are intended to provide infrastructure that assists the development of computational engineering soft- ware such as finite-element analysis applications. STK includes modules for unstructured-mesh data structures, reading/writing mesh files, geometric proximity search, and various utilities. This document contains a chapter for each module, and each chapter contains overview descriptions and usage examples. Usage examples are primarily code listings which are generated from working test programs that are included in the STK code-base. A goal of this approach is to ensure that the usage examples will not fall outmore » of date. This page intentionally left blank.« less
Process of making carbon-carbon composites
NASA Technical Reports Server (NTRS)
Kowbel, Witold (Inventor); Withers, James C. (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor); Loutfy, Raouf O. (Inventor)
2000-01-01
A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1976-01-01
The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.
Protein Crystallography in Vaccine Research and Development.
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J
2015-06-09
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.
Protein Crystallography in Vaccine Research and Development
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J.
2015-01-01
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines. PMID:26068237
CELSS scenario analysis: Breakeven calculations
NASA Technical Reports Server (NTRS)
Mason, R. M.
1980-01-01
A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.
High mass throughput particle generation using multiple nozzle spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pui, David Y. H.; Chen, Da-Ren
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
High mass throughput particle generation using multiple nozzle spraying
Pui, David Y.H.; Chen, Da-Ren
2004-07-20
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
High mass throughput particle generation using multiple nozzle spraying
Pui, David Y. H. [Plymouth, MN; Chen, Da-Ren [Creve Coeur, MO
2009-03-03
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
Construction of crystal structure prototype database: methods and applications.
Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming
2017-04-26
Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.
Construction of crystal structure prototype database: methods and applications
NASA Astrophysics Data System (ADS)
Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming
2017-04-01
Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.
ERIC Educational Resources Information Center
Rzepa, Henry S.
2016-01-01
Three new examples are presented illustrating three-dimensional chemical information searches of the Cambridge structure database (CSD) from which basic core concepts in organic and inorganic chemistry emerge. These include connecting the regiochemistry of aromatic electrophilic substitution with the geometrical properties of hydrogen bonding…
Structure-based drug design for G protein-coupled receptors.
Congreve, Miles; Dias, João M; Marshall, Fiona H
2014-01-01
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.
Influence of structural dynamics on vehicle design - Government view. [of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kordes, E. E.
1977-01-01
Dynamic design considerations for aerospace vehicles are discussed, taking into account fixed wing aircraft, rotary wing aircraft, and launch, space, and reentry vehicles. It is pointed out that space vehicles have probably had the most significant design problems from the standpoint of structural dynamics, because their large lightweight structures are highly nonlinear. Examples of problems in the case of conventional aircraft include the flutter encountered by high performance military aircraft with external stores. A description is presented of a number of examples which illustrate the direction of present efforts for improving aircraft efficiency. Attention is given to the results of studies on the structural design concepts for the arrow-wing supersonic cruise aircraft configuration and a system study on low-wing-loading, short haul transports.
Robert R. Alexander; Carleton B. Edminster
1977-01-01
Topics discussed include: (1) cutting methods, (2) stand structure goals, which involve choosing a residual stocking level, selecting a maximum tree size, and establishing a diameter distribution using the "q" technique, and (3) harvesting and removal of trees. Examples illustrate how to determine realistic stand structures for the initial entry for...
Structural bioinformatics of the human spliceosomal proteome
Korneta, Iga; Magnus, Marcin; Bujnicki, Janusz M.
2012-01-01
In this work, we describe the results of a comprehensive structural bioinformatics analysis of the spliceosomal proteome. We used fold recognition analysis to complement prior data on the ordered domains of 252 human splicing proteins. Examples of newly identified domains include a PWI domain in the U5 snRNP protein 200K (hBrr2, residues 258–338), while examples of previously known domains with a newly determined fold include the DUF1115 domain of the U4/U6 di-snRNP protein 90K (hPrp3, residues 540–683). We also established a non-redundant set of experimental models of spliceosomal proteins, as well as constructed in silico models for regions without an experimental structure. The combined set of structural models is available for download. Altogether, over 90% of the ordered regions of the spliceosomal proteome can be represented structurally with a high degree of confidence. We analyzed the reduced spliceosomal proteome of the intron-poor organism Giardia lamblia, and as a result, we proposed a candidate set of ordered structural regions necessary for a functional spliceosome. The results of this work will aid experimental and structural analyses of the spliceosomal proteins and complexes, and can serve as a starting point for multiscale modeling of the structure of the entire spliceosome. PMID:22573172
ERIC Educational Resources Information Center
Allan, Blaine W., Comp.
The procedures, forms, and philosophy of the computerized modular scheduling program developed at Virgin Valley High School are outlined. The modular concept is eveloped as a new approach to course structure with explanations, examples, and worksheets included. Examples of courses of study, input information for the data processing center, output…
Device for calorimetric measurement
King, William P; Lee, Jungchul
2015-01-13
In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.
Advancing mangrove macroecology
Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.
2017-01-01
Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and rehabilitation projects as macroecological studies that advance the critical selection and conservation of ecosystem services when managing mangrove resources. Future work to further incorporate macroecology into mangrove research will require a concerted effort by research groups and institutions to launch research initiatives and synthesize data collected across broad biogeographic regions.
Structural barriers to ART adherence in Southern Africa: challenges and potential ways forward
KAGEE, A.; REMIEN, R.H.; BERKMAN, A.; HOFFMAN, S.; CAMPOS, L.; SWARTZ, L.
2010-01-01
Structural barriers to antiretroviral treatment (ART) adherence are economic, institutional, political and cultural factors, that collectively influence the extent to which persons living with HIV follow their medication regimens. We identify three sets of structural barriers to ART adherence that are salient in Southern Africa: poverty-related, institutional, and political and cultural. Examples of poverty-related barriers are competing demands in the context of resource-constrained settings, the lack of transport infrastructure, food insecurity, the role of disability grants and poor social support. Examples of institutional factors are logistical barriers, overburdened health care facilities, limited access to mental health services and difficulties in ensuring adequate counseling. Examples of political and cultural barriers are controversies in the provision of treatment for AIDS, migration, traditional beliefs about HIV and AIDS, poor health literacy and gender inequalities. In forging a way forward, we identify ways in which individuals, communities and health care systems may overcome some of these structural barriers. Finally, we make recommendations for further research on structural barriers to ART adherence. In all likelihood, enhancing adherence to ART requires the efforts of a variety of disciplines, including public health, psychology, anthropology, sociology and medicine. PMID:20509066
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
Investigation of structural behavior of candidate Space Station structure
NASA Technical Reports Server (NTRS)
Hedgepeth, John M.; Miller, Richard K.
1989-01-01
Quantitative evaluations of the structural loads, stiffness and deflections of an example Space Station truss due to a variety of influences, including manufacturing tolerances, assembly operations, and operational loading are reported. The example truss is a dual-keel design composed of 5-meter-cube modules. The truss is 21 modules high and 9 modules wide, with a transverse beam 15 modules long. One problem of concern is the amount of mismatch which will be expected when the truss is being erected on orbit. Worst-case thermal loading results in less than 0.5 inch of mismatch. The stiffness of the interface is shown to be less than 100 pounds per inch. Thus, only moderate loads will be required to overcome the mismatch. The problem of manufacturing imperfections is analyzed by the Monte Carlo approach. Deformations and internal loads are obtained for ensembles of 100 example trusses. All analyses are performed on a personal computer. The necessary routines required to supplement commercially available programs are described.
STUDIES OF METABOLITE-PROTEIN INTERACTIONS: A REVIEW
Matsuda, Ryan; Bi, Cong; Anguizola, Jeanethe; Sobansky, Matthew; Rodriquez, Elliot; Badilla, John Vargas; Zheng, Xiwei; Hage, Benjamin; Hage, David S.
2014-01-01
The study of metabolomics can provide valuable information about biochemical pathways and processes at the molecular level. There have been many reports that have examined the structure, identity and concentrations of metabolites in biological systems. However, the binding of metabolites with proteins is also of growing interest. This review examines past reports that have looked at the binding of various types of metabolites with proteins. An overview of the techniques that have been used to characterize and study metabolite-protein binding is first provided. This is followed by examples of studies that have investigated the binding of hormones, fatty acids, drugs or other xenobiotics, and their metabolites with transport proteins and receptors. These examples include reports that have considered the structure of the resulting solute-protein complexes, the nature of the binding sites, the strength of these interactions, the variations in these interactions with solute structure, and the kinetics of these reactions. The possible effects of metabolic diseases on these processes, including the impact of alterations in the structure and function of proteins, are also considered. PMID:24321277
Environmental modeling and recognition for an autonomous land vehicle
NASA Technical Reports Server (NTRS)
Lawton, D. T.; Levitt, T. S.; Mcconnell, C. C.; Nelson, P. C.
1987-01-01
An architecture for object modeling and recognition for an autonomous land vehicle is presented. Examples of objects of interest include terrain features, fields, roads, horizon features, trees, etc. The architecture is organized around a set of data bases for generic object models and perceptual structures, temporary memory for the instantiation of object and relational hypotheses, and a long term memory for storing stable hypotheses that are affixed to the terrain representation. Multiple inference processes operate over these databases. Researchers describe these particular components: the perceptual structure database, the grouping processes that operate over this, schemas, and the long term terrain database. A processing example that matches predictions from the long term terrain model to imagery, extracts significant perceptual structures for consideration as potential landmarks, and extracts a relational structure to update the long term terrain database is given.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.
2017-12-01
The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.
American Academy of Pediatrics Guidelines for Infant Bioethics Committees.
ERIC Educational Resources Information Center
College and University, 1985
1985-01-01
Examples are given of points hospitals must consider when adopting and implementing infant bioethics committees, including committee functions (educational, policy development, and consultative), structure, membership, jurisdiction, recordkeeping, and legal issues. (MSE)
25 CFR 170.923 - What qualifies for ERFO funding?
Code of Federal Regulations, 2014 CFR
2014-04-01
... related structures) caused by natural disaster over a widespread area or by a catastrophic failure from..., subpart B. (1) Examples of natural disasters include, but are not limited to, floods, earthquakes...
25 CFR 170.923 - What qualifies for ERFO funding?
Code of Federal Regulations, 2012 CFR
2012-04-01
... related structures) caused by natural disaster over a widespread area or by a catastrophic failure from..., subpart B. (1) Examples of natural disasters include, but are not limited to, floods, earthquakes...
25 CFR 170.923 - What qualifies for ERFO funding?
Code of Federal Regulations, 2013 CFR
2013-04-01
... related structures) caused by natural disaster over a widespread area or by a catastrophic failure from..., subpart B. (1) Examples of natural disasters include, but are not limited to, floods, earthquakes...
Conductive layer for biaxially oriented semiconductor film growth
Findikoglu, Alp T.; Matias, Vladimir
2007-10-30
A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.
The Implications of State Fiscal Policies for Community Colleges
ERIC Educational Resources Information Center
Dowd, Alicia C.; Shieh, Linda Taing
2014-01-01
A variety of policies and practices, including those developed by local boards and administrations, as well as those mandated by state and federal governments, affect budgets and finances at community colleges. Examples include tuition policies, fee structures, performance-based funding, and personnel policies. This chapter explores some of the…
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
Structuring Formal Requirements Specifications for Reuse and Product Families
NASA Technical Reports Server (NTRS)
Heimdahl, Mats P. E.
2001-01-01
In this project we have investigated how formal specifications should be structured to allow for requirements reuse, product family engineering, and ease of requirements change, The contributions of this work include (1) a requirements specification methodology specifically targeted for critical avionics applications, (2) guidelines for how to structure state-based specifications to facilitate ease of change and reuse, and (3) examples from the avionics domain demonstrating the proposed approach.
ERIC Educational Resources Information Center
Universities UK, 2014
2014-01-01
This factsheet, the first in a series on innovation and growth, provides an overview of the benefits of innovation vouchers, and gives some examples of how universities and Local Enterprise Partnerships (LEPs) are including them in their European Structural and Investment Funds (ESIF) strategies. [For the second factsheet in the series,…
Timothy B. Harrington
2006-01-01
Many of the stand structural characteristics of longleaf pine (Pinus palustris Mill.) forests that existed prior to European colonization have been altered or lost from past disturbance histories (Frost this volume). For example, often missing are the widely spaced, large-diameter trees, the all-aged stand structure that included a vigorous cohort...
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Environmental Awareness: Relating Current Issues to Biology.
ERIC Educational Resources Information Center
DeFina, Anthony
1995-01-01
Presents examples of incorporating environmental issues into lesson plans to raise the level of students' environmental awareness. Topics include: ecology, taxonomy, biochemistry, energy reactions, cell structure and function, genetics and development, and human biology. (JRH)
Gabanyi, Margaret J; Adams, Paul D; Arnold, Konstantin; Bordoli, Lorenza; Carter, Lester G; Flippen-Andersen, Judith; Gifford, Lida; Haas, Juergen; Kouranov, Andrei; McLaughlin, William A; Micallef, David I; Minor, Wladek; Shah, Raship; Schwede, Torsten; Tao, Yi-Ping; Westbrook, John D; Zimmerman, Matthew; Berman, Helen M
2011-07-01
The Protein Structure Initiative's Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org ) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI's high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.; Minor, J.E.; Mehta, K.C.
1975-06-01
In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loadsmore » for an example structure are included. (LCL)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr; Poienar, Maria; Guesdon, Anne
Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containingmore » phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.« less
[Visual representation of biological structures in teaching material].
Morato, M A; Struchiner, M; Bordoni, E; Ricciardi, R M
1998-01-01
Parameters must be defined for presenting and handling scientific information presented in the form of teaching materials. Through library research and consultations with specialists in the health sciences and in graphic arts and design, this study undertook a comparative description of the first examples of scientific illustrations of anatomy and the evolution of visual representations of knowledge on the cell. The study includes significant examples of illustrations which served as elements of analysis.
Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling.
Wang, Juexin; Luttrell, Joseph; Zhang, Ning; Khan, Saad; Shi, NianQing; Wang, Michael X; Kang, Jing-Qiong; Wang, Zheng; Xu, Dong
2016-01-01
Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
Porous silicon structures with high surface area/specific pore size
Northrup, M.A.; Yu, C.M.; Raley, N.F.
1999-03-16
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.
Porous silicon structures with high surface area/specific pore size
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S
2018-04-01
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.
Infrared thermography for examination of paper structure
NASA Astrophysics Data System (ADS)
Kiiskinen, Harri T.; Pakarinen, Pekka I.
1998-03-01
The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.
Peptides whose uptake by cells is controllable
Jiang, Tao; Olson, Emilia S.; Whitney, Michael; Tsien, Roger
2015-07-07
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.
Peptides whose uptake by cells is controllable
Jiang, Tao [San Diego, CA; Olson, Emilia S [La Jolla, CA; Whitney, Michael [San Diego, CA; Tsien, Roger [La Jolla, CA
2011-07-26
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.
ERIC Educational Resources Information Center
Fisher, William; Koue, Glen
1991-01-01
Discusses general issues involved in conflict management and provides more specific examples of conflict management in libraries. Causes of conflict are considered, including organizational structure, departmentalization, performance appraisal, poor communication, and technological change; and methods of dealing with conflict are described,…
NASTRAN user's guide: Level 15
NASA Technical Reports Server (NTRS)
1975-01-01
The NASTRAN structural analysis system is presented. This user's guide is an essential addition to the original four NASTRAN manuals. Clear, brief descriptions of capabilities with example input are included, with references to the location of more complete information.
The user's guide to STEMS (Stand and Tree Evaluation and Modeling System).
David M. Belcher
1981-01-01
Presents the structure of STEMS, a computer program for projecting growth of individual trees within the Lake States Region, and discusses its input, processing, major subsystems, and output. Includes an example projection.
Hydrogen bonding in phytohormone-auxin (IAA) and its derivatives
NASA Astrophysics Data System (ADS)
Kojić-Prodić, Biserka; Kroon, Jan; Puntarec, Vitomir
1994-06-01
The significant importance of hydrogen bonds in biological structures and enzymatic reactions has been demonstrated in many examples. As a part of the molecular recognition study of auxins (plant growth hormones) the influence of hydrogen bonding on molecular conformation, particularly of the carboxyl group, which is one of the biologically active ligand sites, has been studied by X-ray diffraction and computational chemistry methods. The survey includes about 40 crystal structures of free auxins such as indol-3-ylacetic acid and its n-alkylated and halogenated derivatives but also bound auxins such as N-(indol-3-ylacetyl)- L-amino acids, and carbohydrate conjugates. The study includes hydrogen bonds of the NH⋯O and OH⋯O types. The classification of hydrogen bond patterns based on the discrimination between the centrosymmetric and non-centrosymmetric space groups and several examples of hydrogen bond systematics on graph set analysis are also shown.
Dynamic (Vibration) Testing: Design-Certification of Aerospace System
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin K.
2010-01-01
Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.
A structural biology perspective on bioactive small molecules and their plant targets.
Kumari, Selva; van der Hoorn, Renier A L
2011-10-01
Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Mayer, Joachim
In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1998-01-01
The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.
Promoting and Protecting Against Stigma in Assisted Living and Nursing Homes
Zimmerman, Sheryl; Dobbs, Debra; Roth, Erin G.; Goldman, Susan; Peeples, Amanda D.; Wallace, Brandy
2016-01-01
Purpose of the Study: To determine the extent to which structures and processes of care in multilevel settings (independent living, assisted living, and nursing homes) result in stigma in assisted living and nursing homes. Design and Methods: Ethnographic in-depth interviews were conducted in 5 multilevel settings with 256 residents, families, and staff members. Qualitative analyses identified the themes that resulted when examining text describing either structures of care or processes of care in relation to 7 codes associated with stigma. Results: Four themes related to structures of care and stigma were identified, including the physical environment, case mix, staff training, and multilevel settings; five themes related to processes of care and stigma, including dining, independence, respect, privacy, and care provision. For each theme, examples were identified illustrating how structures and processes of care can potentially promote or protect against stigma. Implications: In no instance were examples or themes identified that suggested the staff intentionally promoted stigma; on the other hand, there was indication that some structures and processes were intentionally in place to protect against stigma. Perhaps the most important theme is the stigma related to multilevel settings, as it has the potential to reduce individuals’ likelihood to seek and accept necessary care. Results suggest specific recommendations to modify care and reduce stigma. PMID:24928555
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Bhat, R. B.
1979-01-01
A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.
NASA Technical Reports Server (NTRS)
Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J. P.; Salis, M.; Skidmore, R.; Thomas, R.
1975-01-01
A sound, practical approach for the assembly and maintenance of very large structures in space is presented. The methods and approaches for assembling two large structures are examined. The maintenance objectives include the investigation of methods to maintain five geosynchronous satellites. The two assembly examples are a 200-meter-diameter radio astronomy telescope and a 1,000-meter-diameter microwave power transmission system. The radio astronomy telescope operates at an 8,000-mile altitude and receives RF signals from space. The microwave power transmission system is part of a solar power satellite that will be used to transmit converted solar energy to microwave ground receivers. Illustrations are included.
Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J
2017-05-01
We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental dynamic metamorphism of mineral single crystals
Kirby, S.H.; Stern, L.A.
1993-01-01
This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.
ERIC Educational Resources Information Center
Manoharan, Asha; Dreisbach, Joseph H.
1988-01-01
Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…
Integrating Prevention into Obstetrics/Gynecology.
ERIC Educational Resources Information Center
Carey, J. Christopher
2000-01-01
Discusses formats to teach preventive medicine in obstetrics and gynecology (including learning objectives, lectures/seminars, and rounds/office practice) and evaluation methods (oral examinations, computerized question banks, objective structured clinical examinations). Offers examples from specific programs at American medical schools, including…
ERIC Educational Resources Information Center
Wood, Gordon W.
1975-01-01
Describes exercises using simple ball and stick models which students with no chemistry background can solve in the context of the original discovery. Examples include the tartaric acid and benzene problems. (GS)
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Materials discovery guided by data-driven insights
NASA Astrophysics Data System (ADS)
Klintenberg, Mattias
As the computational power continues to grow systematic computational exploration has become an important tool for materials discovery. In this presentation the Electronic Structure Project (ESP/ELSA) will be discussed and a number of examples presented that show some of the capabilities of a data-driven methodology for guiding materials discovery. These examples include topological insulators, detector materials and 2D materials. ESP/ELSA is an initiative that dates back to 2001 and today contain many tens of thousands of materials that have been investigated using a robust and high accuracy electronic structure method (all-electron FP-LMTO) thus providing basic materials first-principles data for most inorganic compounds that have been structurally characterized. The web-site containing the ESP/ELSA data has as of today been accessed from more than 4,000 unique computers from all around the world.
Evaluation of Student Outcomes in Materials Science and Technology
NASA Technical Reports Server (NTRS)
Piippo, Steven
1996-01-01
This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.
Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen
2006-12-30
A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure aremore » passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.« less
Kirigami design and fabrication for biomimetic robotics
NASA Astrophysics Data System (ADS)
Rossiter, Jonathan; Sareh, Sina
2014-03-01
Biomimetics faces a continual challenge of how to bridge the gap between what Nature has so effectively evolved and the current tools and materials that engineers and scientists can exploit. Kirigami, from the Japanese `cut' and `paper', is a method of design where laminar materials are cut and then forced out-of-plane to yield 3D structures. Kirimimetic design provides a convenient and relatively closed design space within which to replicate some of the most interesting niche biological mechanisms. These include complex flexing organelles such as cilia in algae, energy storage and buckled structures in plants, and organic appendages that actuate out-of-plane such as the myoneme of the Vorticella protozoa. Where traditional kirigami employs passive materials which must be forced to transition to higher dimensions, we can exploit planar smart actuators and artificial muscles to create self-actuating kirigami structures. Here we review biomimetics with respect to the kirigami design and fabrication methods and examine how smart materials, including electroactive polymers and shape memory polymers, can be used to realise effective biomimetic components for robotic, deployable structures and engineering systems. One-way actuation, for example using shape memory polymers, can yield complete self-deploying structures. Bi-directional actuation, in contrast, can be exploited to mimic fundamental biological mechanisms such as thrust generation and fluid control. We present recent examples of kirigami robotic mechanisms and actuators and discuss planar fabrication methods, including rapid prototyping and 3D printing, and how current technologies, and their limitations, affect Kirigami robotics.
Using Video-Taped Examples of Stand-Up Comedy Routines To Teach Principles of Public Speaking.
ERIC Educational Resources Information Center
Siddens, Paul J., III
This paper investigates the use of stand-up comedy routines to demonstrate principles of public speaking to college students in communication classes. The paper examines particular elements of the public speaking process, which include the structural elements of speeches: (1) introductions; (2) the body of the speech, including organization,…
Structural testing for static failure, flutter and other scary things
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Gyrodampers for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1979-01-01
The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
Guidelines for the design of subsurface drainage systems for highway structural sections
DOT National Transportation Integrated Search
1972-06-01
Design criteria and a design method for pavement subsurface drainage systems include inflow-outflow method of analysis, open graded drainage layers, collector drains, pipe outlets and markers. Design examples are given for embankment sections, cut se...
78 FR 49697 - HUD Acquisition Regulations (HUDAR): Correcting Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
... final rule that amended the HUDAR to implement miscellaneous changes, which included, for example, removing obsolete and redundant provisions, updating provisions that address the organizational structure of HUD, and adding provisions on contractor record retention. In making the organizational changes...
Model verification of large structural systems
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1977-01-01
A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.
Overview of an Advanced Hypersonic Structural Concept Test Program
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony
2007-01-01
This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.
High precision detector robot arm system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Chu, Yong
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
An overview of STRUCTURE: applications, parameter settings, and supporting software
Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.
2013-01-01
Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; DeAngelis, V. Michael
1997-01-01
Fifteen aircraft structures that were calibrated for flight loads using strain gages are examined. The primary purpose of this paper is to document important examples of load calibrations on airplanes during the past four decades. The emphasis is placed on studying the physical procedures of calibrating strain-gaged structures and all the supporting analyses and computational techniques that have been used. The results and experiences obtained from actual data from 14 structures (on 13 airplanes and 1 laboratory test structure) are presented. This group of structures includes fins, tails, and wings with a wide variety of aspect ratios. Straight- wing, swept-wing, and delta-wing configurations are studied. Some of the structures have skin-dominant construction; others are spar-dominant. Anisotropic materials, heat shields, corrugated components, nonorthogonal primary structures, and truss-type structures are particular characteristics that are included.
NASA Astrophysics Data System (ADS)
Kim, Ki-Soo; Cho, Seong-Kyu
2015-07-01
The FBG sensor has globally been commercialized in various fields that is actively applied in Korea as well. Especially it is widely used as a structural monitoring sensor in civil engineering and construction structures due to its advantages including electrical stability, chemical stability and multiplexing. This report aims to introduce safety inspection of the FBG sensor in respect of radioactivity which has been applied to a silo structure for radioactive waste disposal as an example.
Piezoceramic devices and PVDF films as sensors and actuators for intelligent structures
NASA Astrophysics Data System (ADS)
Hanagud, S.; Obal, M. W.; Calise, A. G.
The use of bonded piezoceramic sensors and piezoceramic actuators to control vibrations in structural dynamic systems is discussed. Equations for developing optimum control strategies are derived. An example of a cantilever beam is considered to illustrate the development procedure for optimal vibration control of structures by the use of piezoceramic sensors, actuators, and rate feedbacks with appropriate gains. Research areas and future directions are outlined, including dynamic coupling and constitutive equations; load and energy transfer; composite structures; optimal dynamic compensation; estimation and identification; and distributed control.
Potter, Christopher J.; Moore, Thomas E.; O'Sullivan, Paul B.; Miller, John J.
2002-01-01
The transects, along with other seismic-reflection examples, illustrate four play concepts being used in the deformed area for the 2002 U.S. Geological Survey oil and gas assessment of the National Petroleum Reserve-Alaska (NPRA). The Brookian topset structural play includes broad west-northwest-trending anticlines in the Cretaceous Nanushuk Group, developed above structurally thickened Torok mudstones in the incipiently-deformed, most northerly part of the thrust system. The Torok structural play includes prominent anticlines affecting deep-basin sandstones, many of which are detached from folds exposed at the surface. The Ellesmerian structural play includes closures developed in the clastic part of the Ellesmerian sequence, mainly above a detachment in the Shublik Formation. The thrust belt play includes antiformal stacks of allochthonous Endicott Group clastic rocks and Lisburne Group carbonates; these stacks were assembled at about 120 Ma, and were transported to their present positions in the foothills at about 60 Ma.
Wrench tectonics in Abu Dhabi, United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.; Mohamed, A.S.
1995-08-01
Recent studies of the geodynamics and tectonic history of the Arabian plate throughout geologic time have revealed that Wrench forces played an important role in the structural generation and deformation of Petroleum basins and reservoirs of the United Arab Emirates. The tectonic analysis of Abu Dhabi revealed that basin facies evolution were controlled by wrench tectonics, examples are the Pre-Cambrian salt basin, the Permo-Triassic and Jurassic basins. In addition, several sedimentary patterns were strongly influenced by wrench tectonics, the Lower Cretaceous Shuaiba platform margin and associated reservoirs is a good example. Wrench faults, difficult to identify by conventional methods, weremore » examined from a regional perspective and through careful observation and assessment of many factors. Subsurface structural mapping and geoseismic cross-sections supported by outcrop studies and geomorphological features revealed a network of strike slip faults in Abu Dhabi. Structural modelling of these wench forces including the use of strain ellipses was applied both on regional and local scales. This effort has helped in reinterpreting some structural settings, some oil fields were interpreted as En Echelon buckle folds associated with NE/SW dextral wrench faults. Several flower structures were interpreted along NW/SE sinistral wrench faults which have significant hydrocarbon potential. Synthetic and Antithetic strike slip faults and associated fracture systems have played a significant role in field development and reservoir management studies. Four field examples were discussed.« less
Utilizing biotechnology in producing fats and oils with various nutritional properties.
Flickinger, Brent D
2007-01-01
The role of dietary fat in health and wellness continues to evolve. In today's environment, trans fatty acids and obesity are issues that are impacted by dietary fat. In response to new information in these areas, changes in the amount and composition of edible fats and oils have occurred and are occurring. These compositional changes include variation in fatty acid composition and innovation in fat structure. Soybean, canola, and sunflower are examples of oilseeds with varied fatty acid composition, including mid-oleic, high-oleic, and low-linolenic traits. These trait-enhanced oils are aimed to displace partially hydrogenated vegetable oils primarily in frying applications. Examples of oils with innovation in fat structure include enzyme interesterified (EIE) fats and oils and diacylglycerol oil. EIE fats are a commercial edible fat innovation, where a lipase is used to modify the fat structure of a blend of hard fat and liquid oil. EIE fats are aimed to displace partially hydrogenated vegetable oils in baking and spread applications. Diacylglycerol and medium-chain triglyceride (MCT)-based oils are commercial edible oil innovations. Diacylglycerol and MCT-based oils are aimed for individuals looking to store less of these fats as body fat when they are used in place of traditional cooking and salad oils.
Causal Relation Analysis Tool of the Case Study in the Engineer Ethics Education
NASA Astrophysics Data System (ADS)
Suzuki, Yoshio; Morita, Keisuke; Yasui, Mitsukuni; Tanada, Ichirou; Fujiki, Hiroyuki; Aoyagi, Manabu
In engineering ethics education, the virtual experiencing of dilemmas is essential. Learning through the case study method is a particularly effective means. Many case studies are, however, difficult to deal with because they often include many complex causal relationships and social factors. It would thus be convenient if there were a tool that could analyze the factors of a case example and organize them into a hierarchical structure to get a better understanding of the whole picture. The tool that was developed applies a cause-and-effect matrix and simple graph theory. It analyzes the causal relationship between facts in a hierarchical structure and organizes complex phenomena. The effectiveness of this tool is shown by presenting an actual example.
Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
Survey of International Trade/Economics Textbooks.
ERIC Educational Resources Information Center
Lucier, Richard L.
1992-01-01
Reviews 14 international economics textbooks to help instructors with selection. Includes organization and structure, topics covered, and characteristics of the texts. Suggests considerations such as course length, level of abstraction desired, opinion of numerically based graphical analysis, extensiveness of examples and applications, and whether…
Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms
2012-06-01
understanding about the world. Examples of these emergent behaviors include construction of complex structures (e.g., hives, termite mounds), trends in economic...Sep. 2007. [16] M. Resnick, Turtles, Termites , and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press, 1997. [Online]. Available
Developing scientific information to support decisions for sustainable reef ecosystem services
The U.S. Environmental Protection Agency (EPA) has recently realigned its research enterprise around the concept of sustainability, including improving understanding of benefits derived from ecosystems. We provide an example of how EPA is applying structured decision-making (SDM)...
ERIC Educational Resources Information Center
Basalt Rock Co., Inc., Napa, CA.
Diagrammatic explanations of various concepts, processes, details, and potential material usages are presented. Specific material and element topics include--(1) the fabrication process, (2) basic structural components, (3) element usage, and (4) building construction procedures. Examples of the use of related elements are shown for typical school…
Reanalysis, compatibility and correlation in analysis of modified antenna structures
NASA Technical Reports Server (NTRS)
Levy, R.
1989-01-01
A simple computational procedure is synthesized to process changes in the microwave-antenna pathlength-error measure when there are changes in the antenna structure model. The procedure employs structural modification reanalysis methods combined with new extensions of correlation analysis to provide the revised rms pathlength error. Mainframe finite-element-method processing of the structure model is required only for the initial unmodified structure, and elementary postprocessor computations develop and deal with the effects of the changes. Several illustrative computational examples are included. The procedure adapts readily to processing spectra of changes for parameter studies or sensitivity analyses.
Flexible energetic materials and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaps, Ronald J.
Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques maymore » be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.« less
NASA Astrophysics Data System (ADS)
Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai
2016-11-01
Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.
Self-assembly of a double-helical complex of sodium.
Bell, T W; Jousselin, H
1994-02-03
Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Acoustic emission non-destructive testing of structures using source location techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, Alan G.
2013-09-01
The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one onmore » aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.« less
Structural factors in HIV prevention: concepts, examples, and implications for research.
Sumartojo, E
2000-06-01
HIV-prevention behavior is affected by the environment as well as by characteristics of individuals at risk. HIV-related structural factors are defined as barriers to, or facilitators of, an individual's HIV prevention behaviors; they may relate to economic, social, policy, organizational or other aspects of the environment. A relatively small number of intervention studies demonstrates the potential of structural interventions to increase HIV prevention in the United States and internationally. The promise of structural interventions has also been shown in studies of interventions to prevent disease or promote public health in areas other than HIV. Frameworks help define and exemplify structural barriers and facilitators for HIV prevention. One framework developed at Centers for Disease Control and Prevention gives examples of structural facilitators in terms of the economic resources, policy supports, societal attitudes, and organizational structures and functions associated with governments, service organizations, businesses, workforce organizations, faith communities, justice systems, media organizations, educational systems, and healthcare systems. Frameworks should assist researchers and health officials to identify important areas for structural research and programming. A structural approach is timely and innovative. Despite limitations, including the challenge of a new perspective on prevention and the difficulty of evaluating their effects, researchers and public health officials are urged to pursue structural interventions to prevent HIV.
William B. Leak; Mariko. Yamasaki
2012-01-01
Based on records taken during a harvest operation in 1899 on more than 400 trees in a northern hardwood stand in upper New York State, age and structural characteristics, including growth patterns, were developed and summarized. Age and size characteristics indicate that this was an exemplary old-growth stand similar in character to current old-growth examples in the...
Sierra Structural Dynamics User's Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
Glover, Karen; Mei, Yang; Sinha, Sangita C
2016-10-01
Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form β-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions. Copyright © 2016 Elsevier B.V. All rights reserved.
Promoting and Protecting Against Stigma in Assisted Living and Nursing Homes.
Zimmerman, Sheryl; Dobbs, Debra; Roth, Erin G; Goldman, Susan; Peeples, Amanda D; Wallace, Brandy
2016-06-01
To determine the extent to which structures and processes of care in multilevel settings (independent living, assisted living, and nursing homes) result in stigma in assisted living and nursing homes. Ethnographic in-depth interviews were conducted in 5 multilevel settings with 256 residents, families, and staff members. Qualitative analyses identified the themes that resulted when examining text describing either structures of care or processes of care in relation to 7 codes associated with stigma. Four themes related to structures of care and stigma were identified, including the physical environment, case mix, staff training, and multilevel settings; five themes related to processes of care and stigma, including dining, independence, respect, privacy, and care provision. For each theme, examples were identified illustrating how structures and processes of care can potentially promote or protect against stigma. In no instance were examples or themes identified that suggested the staff intentionally promoted stigma; on the other hand, there was indication that some structures and processes were intentionally in place to protect against stigma. Perhaps the most important theme is the stigma related to multilevel settings, as it has the potential to reduce individuals' likelihood to seek and accept necessary care. Results suggest specific recommendations to modify care and reduce stigma. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Information Environment of Preschool Educational Institutions
ERIC Educational Resources Information Center
Shmakova, Anna Pavlovna
2016-01-01
The paper considers the elements of the information environment of preschool educational institutions by the example of the Ulyanovsk region. The article describes the interconnected system of factors that includes qualified personnel, logistics support, methodological basis, and management structures that affect the development of the information…
Challenges in Managing Information Extraction
ERIC Educational Resources Information Center
Shen, Warren H.
2009-01-01
This dissertation studies information extraction (IE), the problem of extracting structured information from unstructured data. Example IE tasks include extracting person names from news articles, product information from e-commerce Web pages, street addresses from emails, and names of emerging music bands from blogs. IE is all increasingly…
Optimal Sequential Rules for Computer-Based Instruction.
ERIC Educational Resources Information Center
Vos, Hans J.
1998-01-01
Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…
Obstructions for twist star products
NASA Astrophysics Data System (ADS)
Bieliavsky, Pierre; Esposito, Chiara; Waldmann, Stefan; Weber, Thomas
2018-05-01
In this short note, we point out that not every star product is induced by a Drinfel'd twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere S^2.
Controlled Release Applications of Organometals.
ERIC Educational Resources Information Center
Thayer, John S.
1981-01-01
Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)
Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D
2017-07-01
Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.
Overview of refinement procedures within REFMAC5: utilizing data from different sources.
Kovalevskiy, Oleg; Nicholls, Robert A; Long, Fei; Carlon, Azzurra; Murshudov, Garib N
2018-03-01
Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry. If the observation-to-parameter ratio is small, for example when diffraction data only extend to low resolution, the Bayesian framework implemented in REFMAC5 uses external restraints to inject additional information extracted from structures of homologous proteins, prior knowledge about secondary-structure formation and even data obtained using different experimental methods, for example NMR. The refinement procedure also generates the `best' weighted electron-density maps, which are useful for further model (re)building. Here, the refinement of macromolecular structures using REFMAC5 and related tools distributed as part of the CCP4 suite is discussed.
Sousa, Filipa L; Parente, Daniel J; Hessman, Jacob A; Chazelle, Allen; Teichmann, Sarah A; Swint-Kruse, Liskin
2016-09-01
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, "AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators" (Sousa et al., 2016) [1].
Viral and cellular subnuclear structures in human cytomegalovirus-infected cells.
Strang, Blair L
2015-02-01
In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus. © 2015 The Authors.
Ink-constrained halftoning with application to QR codes
NASA Astrophysics Data System (ADS)
Bayeh, Marzieh; Compaan, Erin; Lindsey, Theodore; Orlow, Nathan; Melczer, Stephen; Voller, Zachary
2014-01-01
This paper examines adding visually significant, human recognizable data into QR codes without affecting their machine readability by utilizing known methods in image processing. Each module of a given QR code is broken down into pixels, which are halftoned in such a way as to keep the QR code structure while revealing aspects of the secondary image to the human eye. The loss of information associated to this procedure is discussed, and entropy values are calculated for examples given in the paper. Numerous examples of QR codes with embedded images are included.
Homework in Physical Education: Benefits and Implementation
ERIC Educational Resources Information Center
Novak, Benjamin Edward; Lynott, Francis John, III.
2015-01-01
This article identifies homework as an underutilized strategy in physical education. It reviews the benefits associated with the use of homework in the physical education setting, and provides guidelines for the effective implementation of this strategy. The guidelines include practical application examples and define structured active homework…
Grammaire et communication (Grammar and Communication).
ERIC Educational Resources Information Center
Stirman-Langlois, Martine
1994-01-01
A technique for teaching French grammar that involves reading, rereading, and analyzing the language in authentic materials is discussed. The student is led to recognition and generalization of structures in the text. Text examples used here include a comic strip and a publicity blurb for a French city. (MSE)
Industrial Archaeology, Landscapes, and Historical Knowledge of Sustainability
Donald L. Hardesty
2006-01-01
The emergence of industrial life support systems in the last three centuries dramatically changed humanenvironmental relationships. Industrial landscapes are repositories of historical knowledge about this ecological revolution. The key components of industrial landscapes include landforms (for example, waste rock dumps from mines), industrial buildings and structures...
Information Book Read-Alouds as Models for Second-Grade Authors
ERIC Educational Resources Information Center
Bradley, Linda Golson; Donovan, Carol A.
2010-01-01
This article discusses the instructional practice of supporting second graders' information book writing with focused read-alouds that include discussions of information book genre elements, features, and organizational structure. The authors present specific examples of instruction and discuss the resulting information book compositions by…
Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials
NASA Astrophysics Data System (ADS)
Mock, Alyssa Lynn
In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.
Characterization of technical surfaces by structure function analysis
NASA Astrophysics Data System (ADS)
Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.
2018-03-01
The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.
Biomechanics of cellular solids.
Gibson, Lorna J
2005-03-01
Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.
Some Examples of the Relations Between Processing and Damage Tolerance
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
2012-01-01
Most structures made of laminated polymer matrix composites (PMCs) must be designed to some damage tolerance requirement that includes foreign object impact damage. Thus from the beginning of a part s life, impact damage is assumed to exist in the material and the part is designed to carry the required load with the prescribed impact damage present. By doing this, some processing defects may automatically be accounted for in the reduced design allowable due to these impacts. This paper will present examples of how a given level of impact damage and certain processing defects affect the compression strength of a laminate that contains both. Knowledge of the impact damage tolerance requirements, before processing begins, can broaden material options and processing techniques since the structure is not being designed to pristine properties.
Fun with maths: exploring implications of mathematical models for malaria eradication.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A
2014-12-11
Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.
Buckling analysis of SMA bonded sandwich structure – using FEM
NASA Astrophysics Data System (ADS)
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
Cyber Technology for Materials and Structures in Aeronautics and Aerospace
NASA Technical Reports Server (NTRS)
Pipes, R. Byron
1999-01-01
This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.
NASA Technical Reports Server (NTRS)
Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong
2010-01-01
Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.
Clathrate hydrates in the solar system
NASA Technical Reports Server (NTRS)
Miller, S. L.
1985-01-01
Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.
26 CFR 1.48-10 - Single purpose agricultural or horticultural structures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... test if either of the requirements of paragraph (e)(1)(i) of this section is not met. Thus, for example... the structure to fail the exclusive use test when the change occurs. Thus, for example, a hog-raising... example). Finally, the structure fails the incidental use test of paragraph (e) of this section because...
26 CFR 1.48-10 - Single purpose agricultural or horticultural structures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... test if either of the requirements of paragraph (e)(1)(i) of this section is not met. Thus, for example... the structure to fail the exclusive use test when the change occurs. Thus, for example, a hog-raising... example). Finally, the structure fails the incidental use test of paragraph (e) of this section because...
Tomographic reconstruction of layered tissue structures
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian
2001-11-01
In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.
Where to attach dye molecules to a protein: lessons from the computer program WHAT IF
NASA Astrophysics Data System (ADS)
Altenberg-Greulich, B.; Vriend, G.
2001-10-01
Genomic and proteomic projects are producing a flood of data that all require interpretation which often is best performed based on a three dimensional structure of the molecule(s) involved. These structures can be determined experimentally, or modelled by homology. Because of the complexity of the questions and the heterogeneity of the data, the software used for modelling proteins must become even more versatile. We describe several case studies in which the questions asked, the data, and the requirements on the software all are very different. It is shown how structural knowledge about a protein helps to determine the best place to bind a fluorescent dye. Such dyes are needed to determine protein-protein, protein-DNA interactions or intrinsic fluorescence microscopy. Further, using dyes you can trace molecules in the cell and thus get a handle on subcellular localisation. The first example (OCT-1) involves the search for free amino groups in a protein-DNA complex. The second example (BPTI) is a case, in which the amino acid distribution shows that amino groups are spread all over the structure, so that the natural structure has to be modified to get an answer. The third example (HFE) involves a model built by homology. In this case the amino group distribution can also be predicted. All these studies were performed using the WHAT IF software package. This package is available including source code, documentation, etc. See http://www.cmbi.kun.nl/whatif/
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
2005-01-01
Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).
Matrix Perturbation Techniques in Structural Dynamics
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1973-01-01
Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.
1990-08-30
velocities (a first approach). In a first step, we <<construct>> the launcher. A launcher is composed of structures (propellant reservoirs for example... structures and the unburnt propellant included in the cone C, are all part of the fragments’ <<environment>> (Fig. 3). Its D mass W,is concentrated on the...dynamic fluid- structure interactions*. Computer Methods in Applied Mechanics And Engineering 33 (1982) 689-723. 1151 M. ECK, M.MUKUNDA : <<Predicting
Peridynamics with LAMMPS : a user guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, Richard B.; Silling, Stewart Andrew; Seleson, Pablo
Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamics model. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized within LAMMPS. An example problem is also included.
Understanding Market Concentration: Internet-Based Applications from the Banking Industry
ERIC Educational Resources Information Center
Hays, Fred H.; Ward, Sidne Gail
2011-01-01
Market structure is an essential topic in economics and finance courses, including bank management as well as many other business school courses, for example marketing, human resources and strategic management. Instructors explain the virtues of perfect competition and the evils of monopoly along with alternative market models. Often conversations…
A Review of National Security-Emergency Preparedness Telecommunications Policy.
1981-02-01
capable of being preempted. The major elements of this conceptual system could, for example, include: all Class 4 and higher switches and a large number of...are competing with the established carriers. 185 The monopoly structure framwork would reverse current trends and place the burden of proof with those
Library Databases as Unexamined Classroom Technologies
ERIC Educational Resources Information Center
Faix, Allison
2014-01-01
In their 1994 article, "The Politics of the Interface: Power and its Exercise in Electronic Contact Zones," compositionists Cynthia Selfe and Richard Selfe give examples of how certain features of word processing software and other programs used in writing classrooms (including their icons, clip art, interfaces, and file structures) can…
Mathematics Teachers and Curriculum Renewal - A Process of Change and Growth.
ERIC Educational Resources Information Center
Lovitt, Charles; And Others
1985-01-01
Accompanying curriculum renewal efforts in Australia is the need of teachers to increase their repertoire of skills. Strategies supporting the process of change are discussed, including developing a bank of exemplary lessons and a structured environment for testing such lessons. Three examples of school projects are described. (MNS)
IT Project Success w\\7120 and 7123 NPRs to Achieve Project Success
NASA Technical Reports Server (NTRS)
Walley, Tina L.
2009-01-01
This slide presentation reviews management techniques to assure information technology development project success. Details include the work products, the work breakdown structure (WBS), system integration, verification and validation (IV&V), and deployment and operations. An example, the NASA Consolidated Active Directory (NCAD), is reviewed.
Solid rocket booster thermal radiation model. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Lee, A. L.
1976-01-01
A user's manual was prepared for the computer program of a solid rocket booster (SRB) thermal radiation model. The following information was included: (1) structure of the program, (2) input information required, (3) examples of input cards and output printout, (4) program characteristics, and (5) program listing.
Structural Equations and Path Analysis for Discrete Data.
ERIC Educational Resources Information Center
Winship, Christopher; Mare, Robert D.
1983-01-01
Presented is an approach to causal models in which some or all variables are discretely measured, showing that path analytic methods permit quantification of causal relationships among variables with the same flexibility and power of interpretation as is feasible in models including only continuous variables. Examples are provided. (Author/IS)
Sociodrama: Group Creative Problem Solving in Action.
ERIC Educational Resources Information Center
Riley, John F.
1990-01-01
Sociodrama is presented as a structured, yet flexible, method of encouraging the use of creative thinking to examine a difficult problem. An example illustrates the steps involved in putting sociodrama into action. Production techniques useful in sociodrama include the soliloquy, double, role reversal, magic shop, unity of opposites, and audience…
17 CFR 229.1103 - (Item 1103) Transaction summary and risk factors.
Code of Federal Regulations, 2012 CFR
2012-04-01
... if doing so will aid understanding. Consider using diagrams to illustrate the relationships among the parties, the structure of the securities offered (including, for example, the flow of funds or any... securities may be issued. (v) Identify the distribution frequency on the securities. (vi) Summarize the flow...
17 CFR 229.1103 - (Item 1103) Transaction summary and risk factors.
Code of Federal Regulations, 2013 CFR
2013-04-01
... if doing so will aid understanding. Consider using diagrams to illustrate the relationships among the parties, the structure of the securities offered (including, for example, the flow of funds or any... securities may be issued. (v) Identify the distribution frequency on the securities. (vi) Summarize the flow...
17 CFR 229.1103 - (Item 1103) Transaction summary and risk factors.
Code of Federal Regulations, 2014 CFR
2014-04-01
... if doing so will aid understanding. Consider using diagrams to illustrate the relationships among the parties, the structure of the securities offered (including, for example, the flow of funds or any... securities may be issued. (v) Identify the distribution frequency on the securities. (vi) Summarize the flow...
Synthetic Vaccines for the Control of Arenavirus Infections
1992-03-31
is envel- tions. For example. Lassa fever and CH have several sopcd apparently buds from the cytoplasmic membrane (no similarities, including an acutc...course, involvement of mul- intact virions were seen intra-ellularly). has a glycoprotein tiple organs (including liver and spleen), petechial hemor...c fringe ,ontains ribosomelike interna! structures, and has a rhale, (although not prominent in either CH or Lassa fever ). A diameter ranging from 67
Introduction to the special section on mixture modeling in personality assessment.
Wright, Aidan G C; Hallquist, Michael N
2014-01-01
Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine
2010-08-01
The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.
A study of concept-based similarity approaches for recommending program examples
NASA Astrophysics Data System (ADS)
Hosseini, Roya; Brusilovsky, Peter
2017-07-01
This paper investigates a range of concept-based example recommendation approaches that we developed to provide example-based problem-solving support in the domain of programming. The goal of these approaches is to offer students a set of most relevant remedial examples when they have trouble solving a code comprehension problem where students examine a program code to determine its output or the final value of a variable. In this paper, we use the ideas of semantic-level similarity-based linking developed in the area of intelligent hypertext to generate examples for the given problem. To determine the best-performing approach, we explored two groups of similarity approaches for selecting examples: non-structural approaches focusing on examples that are similar to the problem in terms of concept coverage and structural approaches focusing on examples that are similar to the problem by the structure of the content. We also explored the value of personalized example recommendation based on student's knowledge levels and learning goal of the exercise. The paper presents concept-based similarity approaches that we developed, explains the data collection studies and reports the result of comparative analysis. The results of our analysis showed better ranking performance of the personalized structural variant of cosine similarity approach.
Microscopic Observations of Adiabatic Shear Bands in Three Different Steels
1988-09-01
low thermal conductivity, and a high thermal softening rate. Examples include alloys of titanium. aluminum, copper , as well as steels [5-221... steels : 1 (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and deformation in shear was impo.ed to produce shear bands...stecls: (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and (3) an AISI 4340 VAR steel tempered
Free-form machining for micro-imaging systems
NASA Astrophysics Data System (ADS)
Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2008-02-01
While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2013-02-19
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Gas storage materials, including hydrogen storage materials
Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji
2014-11-25
A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.
Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays
NASA Technical Reports Server (NTRS)
Johnston, John D.; Thornton, Earl A.
1997-01-01
The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
Structured Uncertainty Bound Determination From Data for Control and Performance Validation
NASA Technical Reports Server (NTRS)
Lim, Kyong B.
2003-01-01
This report attempts to document the broad scope of issues that must be satisfactorily resolved before one can expect to methodically obtain, with a reasonable confidence, a near-optimal robust closed loop performance in physical applications. These include elements of signal processing, noise identification, system identification, model validation, and uncertainty modeling. Based on a recently developed methodology involving a parameterization of all model validating uncertainty sets for a given linear fractional transformation (LFT) structure and noise allowance, a new software, Uncertainty Bound Identification (UBID) toolbox, which conveniently executes model validation tests and determine uncertainty bounds from data, has been designed and is currently available. This toolbox also serves to benchmark the current state-of-the-art in uncertainty bound determination and in turn facilitate benchmarking of robust control technology. To help clarify the methodology and use of the new software, two tutorial examples are provided. The first involves the uncertainty characterization of a flexible structure dynamics, and the second example involves a closed loop performance validation of a ducted fan based on an uncertainty bound from data. These examples, along with other simulation and experimental results, also help describe the many factors and assumptions that determine the degree of success in applying robust control theory to practical problems.
Three-dimensional analysis of anisotropic spatially reinforced structures
NASA Technical Reports Server (NTRS)
Bogdanovich, Alexander E.
1993-01-01
The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.
Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1985-01-01
Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.
Status and needs for seismic instrumentation of structures along the Hayward fault
Kalkan, Erol; Çelebi, Mehmet
2008-01-01
The inventory of structures in heavily urbanized communities within the greater San Francisco (SF) Bay area that will experience strong ground motions from the rupture of the Hayward Fault includes a variety of types of recent and older structures built with a variety of materials and to different code standards. Those who remember the effects of the 1989 Loma Prieta earthquake on structures in the San Francisco Bay area also remember the collapse of one upper-deck segment of the Bay Bridge that halted transportation for approximately five weeks. In order to understand how these structures respond to earthquake motions and to improve building practices to resist these strong motions it is imperative that owners of these structures as well as governmental organizations acquire shaking response data from instrumented (or yet to be instrumented structures) during the forecast events. Within California, such data are acquired mainly by California Geological Survey and the United States Geological Survey. A small number of private owners contribute to this effort. The inventory of existing instrumented structures is much less than 0.1% of the total, and thus statistically it is not sufficient. For example, some of the existing important regular or lifeline structures are not instrumented(e.g. Bart Trans-Bay Tunnel, many segments of the Bart elevated structures in the proximity of the Hayward Fault, the yet to be completed eastern part of San Francisco Bay Bridge, Hetch-Hetchy pipeline system crossing the Hayward Fault)even though attempts and proposals have been developed to do so in the past. This paper presents a critical assessment of the status quo and the future needs for instrumentation of structures in the greater SF Bay area that includes the Hayward Fault. There are many new attempts and successes in instrumentation of structures in this region. Two successful examples are provided here, but more needs to be done. The paper does not present new research results; hence, it should be considered to be a “tutorial” paper.
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2016-04-25
Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.
NASA Astrophysics Data System (ADS)
Holm, D. D.; Ivanov, R. I.
2010-12-01
The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n, k), of equations with n components and 1 <= |k| <= n velocities. All of the members of the CH(n, k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2, k) family with one or two velocities, including the CH(2, -1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3, 1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n, k) when n >= 3. Fondly recalling our late friend Jerry Marsden.
Flutter optimization in fighter aircraft design
NASA Technical Reports Server (NTRS)
Triplett, W. E.
1984-01-01
The efficient design of aircraft structure involves a series of compromises among various engineering disciplines. These compromises are necessary to ensure the best overall design. To effectively reconcile the various technical constraints requires a number of design iterations, with the accompanying long elapsed time. Automated procedures can reduce the elapsed time, improve productivity and hold the promise of optimum designs which may be missed by batch processing. Several examples are given of optimization applications including aeroelastic constraints. Particular attention is given to the success or failure of each example and the lessons learned. The specific applications are shown. The final two applications were made recently.
Counting spanning trees on fractal graphs and their asymptotic complexity
NASA Astrophysics Data System (ADS)
Anema, Jason A.; Tsougkas, Konstantinos
2016-09-01
Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.
Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey
NASA Technical Reports Server (NTRS)
Sanger, George F.
1988-01-01
A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.
McDowell, R.C.; Houser, B.B.
1983-01-01
Fieldwork was done principally by vehicle along roads, but also included railroad cuts and excavation sites, such as quarries and landfills. Natural exposures are rare and provided no examples of deformation structures for this study. The geologic units exposed in the area are chiefly clastic sediments deposited in nearshore marine to continental environments. They include semi-consolidated sand, silt, clay, and rare thin impure limestone beds of Late Cretaceous to Eocene age (fig. 2). These sedimentary beds generally have a gentle regional dip to the southeast (Faye and Prowell, 1982, p. 6).
Embellishing Problem-Solving Examples with Deep Structure Information Facilitates Transfer
ERIC Educational Resources Information Center
Lee, Hee Seung; Betts, Shawn; Anderson, John R.
2017-01-01
Appreciation of problem structure is critical to successful learning. Two experiments investigated effective ways of communicating problem structure in a computer-based learning environment and tested whether verbal instruction is necessary to specify solution steps, when deep structure is already embellished by instructional examples.…
Methods of fabricating a conductor assembly having a curvilinear arcuate shape
Meinke, Rainer [Melbourne, FL
2011-08-23
A method for manufacture of a conductor assembly along a curvilinear axis. The assembly may be of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In one example, the assembly includes a structure having a curved shape extending along the axis. A surface of the structure is positioned for formation of a channel along the curved shape. The structure is rotated about a second axis. While rotating the structure, a channel is formed in the surface that results in a helical shape in the structure. The channel extends both around and along the first axis.
On a useful functional representation of control system structure
NASA Technical Reports Server (NTRS)
Malchow, Harvey L.
1988-01-01
An alternative structure for control systems is proposed. The structure is represented by a three-element block diagram and three functional definitions. It is argued that the three functional elements form a canonical set. The set includes the functions description, estimation and control. General overlay of the structure on parallel state and nested-state control systems is discussed. Breakdown of two real nested-state control systems into the proposed functional format is displayed. Application of the process to the mapping of complex control systems R and D efforts is explained with the Mars Rover Sample and Return mission as an example. A previous application of this basic functional structure to Space Station performance requirements organization is discussed.
ERIC Educational Resources Information Center
Bozeman, William C.; And Others
Individualized instruction including continuous progress education and team teaching requires a complexity of organizational structure dissimilar to that of traditional schools. In such systems, teachers must maintain extensive and complex student record systems. This teachers' manual provides an example of a computerized record system developed…
26 CFR 1.267(f)-1 - Controlled groups.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 1.1502-13. See also, sections 269 (acquisitions to evade or avoid income tax) and 482 (allocations... is engaged in or structured with a principal purpose to avoid the purposes of this section (including, for example, by avoiding treatment as an intercompany sale or by distorting the timing of losses or...
Teaching Scientific Core Ideas through Immersing Students in Argument: Using Density as an Example
ERIC Educational Resources Information Center
Chen, Ying-Chih; Lin, Jia-Ling; Chen, Yen-Ting
2014-01-01
Argumentation is one of the central practices in science learning and helps deepen students' conceptual understanding. Students should learn how to communicate ideas including procedure tests, data interpretations, and investigation outcomes in verbal and written forms through argument structure. This article presents a negotiation model to…
ERIC Educational Resources Information Center
Levine, Jodi H., Ed.
This monograph on learning communities and the first-year college experience presents 12 chapters which combine theory with examples of good practice and recommendations for building and sustaining effective learning communities. Following an introduction by the editor, the included chapters are: (1) "What Are Learning Communities?"…
New chalcones bearing a long-chain alkylphenol from the rhizomes of Alpinia galanga.
Yang, Wan-Qiu; Gao, Yuan; Li, Ming; Miao, De-Ren; Wang, Fei
2015-01-01
Three novel chalcones bearing a long-chain alkylphenol, galanganones A-C (1-3), were isolated from the rhizomes of Alpinia galanga. Their structures were elucidated by extensive spectroscopic analysis including 2D NMR experiments. Compounds 1-3 represent the first examples of long-chain alkylphenol-coupled chalcone.
The Concepts "Benchmarks and Benchmarking" Used in Education Planning: Teacher Education as Example
ERIC Educational Resources Information Center
Steyn, H. J.
2015-01-01
Planning in education is a structured activity that includes several phases and steps that take into account several kinds of information (Steyn, Steyn, De Waal & Wolhuter, 2002: 146). One of the sets of information that are usually considered is the (so-called) "benchmarks" and "benchmarking" regarding the focus of a…
The Mechanical Metallurgy of Armour Steels
2016-10-01
21 7.A. Cracking associated with Welding ...associated with Welding A range of defects, including cracks can be caused by welding processes, examples of which are shown in Figure 19, many of...which can lead to structural cracking problems. The avoidance of weld defects, particularly cracking, is the reason why armour steel welding processes
A Tutorial in Creating Web-Enabled Databases with Inmagic DB/TextWorks through ODBC.
ERIC Educational Resources Information Center
Breeding, Marshall
2000-01-01
Explains how to create Web-enabled databases. Highlights include Inmagic's DB/Text WebPublisher product called DB/TextWorks; ODBC (Open Database Connectivity) drivers; Perl programming language; HTML coding; Structured Query Language (SQL); Common Gateway Interface (CGI) programming; and examples of HTML pages and Perl scripts. (LRW)
ERIC Educational Resources Information Center
McClain, Tim
This paper provides easy-to-understand guidelines for citing online information in student bibliographies. Citation structure and examples are provided for each type of Internet source. Guidelines are included for the following Internet sources: electronic mail; Gopher; File Transfer Protocol (FTP); Telnet; World Wide Web; Usenet Newsgroups;…
Sentence-Based Metadata: An Approach and Tool for Viewing Database Designs.
ERIC Educational Resources Information Center
Boyle, John M.; Gunge, Jakob; Bryden, John; Librowski, Kaz; Hanna, Hsin-Yi
2002-01-01
Describes MARS (Museum Archive Retrieval System), a research tool which enables organizations to exchange digital images and documents by means of a common thesaurus structure, and merge the descriptive data and metadata of their collections. Highlights include theoretical basis; searching the MARS database; and examples in European museums.…
Emergent Complex Behavior in Social Networks: Examples from the Ktunaxa Speech Community
ERIC Educational Resources Information Center
Horsethief, Christopher
2012-01-01
Language serves as a primary tool for structuring identity and loss of language represents the loss of that identity. This study utilizes a social network analysis of Ktunaxa speech community activities for evidence of internally generated revitalization efforts. These behaviors include instances of self-organized emergence. Such emergent behavior…
Learning from American Street Gangs: Fighting Insurgency in Iraq
2006-01-01
including structures, demographics, identities, motivations, and tactics. This section uses definitions of insurgency in its application to...http://fletcher.tufts.edu/al_nakhlah/archives/spring2004/ruvalcaba.pdf> (21 November 2005), Article 7. Ruvalcaba uses insurgency categories...these conditions exist in Iraq today. Former Ba’athists 10 Ibid. 11 Gentrification is an example I
Strategic Long Range Planning for Universities. AIR Forum 1980 Paper.
ERIC Educational Resources Information Center
Baker, Michael E.
The use of strategic long-range planning at Carnegie-Mellon University (CMU) is discussed. A structure for strategic planning analysis that integrates existing techniques is presented, and examples of planning activities at CMU are included. The key concept in strategic planning is competitive advantage: if a university has a competitive…
A passive solar residence using native and recycled materials, Bee Cave, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holder, L.M. III; King, L.H.
The Booth Residence at Bee Cave, Texas is a Passive Solar residence in a hot humid climate and a good example of both passive solar and renewable features. The design, operation, materials, and furnishings give the structure a regional and rustic character. Passive solar strategies employed include solar orientation, solar shading, natural ventilation, induced ventilation, night flushing, direct gain clearstory, high mass floors, daylighting, radiant barrier, and a double ventilated roof system. The project is in contrast to the existing compound which includes three identical buildings each rotated 120 degrees and intended to be energy efficient, but actual operation hasmore » pointed out some deficiencies in the design. Additional features include extensive use of natural, recycled, and materials reused from other buildings. The Boothe Residence is an example of building in harmony with the local climate, the use of locally available materials, craftsman, artists, manpower, and reuse of trim and furnishings.« less
Enhancing UCSF Chimera through web services
Huang, Conrad C.; Meng, Elaine C.; Morris, John H.; Pettersen, Eric F.; Ferrin, Thomas E.
2014-01-01
Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. PMID:24861624
Roemer, F W; Hunter, D J; Crema, M D; Kwoh, C K; Ochoa-Albiztegui, E; Guermazi, A
2016-02-01
To introduce the most popular magnetic resonance imaging (MRI) osteoarthritis (OA) semi-quantitative (SQ) scoring systems to a broader audience with a focus on the most commonly applied scores, i.e., the MOAKS and WORMS system and illustrate similarities and differences. While the main structure and methodology of each scoring system are publicly available, the core of this overview will be an illustrative imaging atlas section including image examples from multiple OA studies applying MRI in regard to different features assessed, show specific examples of different grades and point out pitfalls and specifics of SQ assessment including artifacts, blinding to time point of acquisition and within-grade evaluation. Similarities and differences between different scoring systems are presented. Technical considerations are followed by a brief description of the most commonly utilized SQ scoring systems including their responsiveness and reliability. The second part is comprised of the atlas section presenting illustrative image examples. Evidence suggests that SQ assessment of OA by expert MRI readers is valid, reliable and responsive, which helps investigators to understand the natural history of this complex disease and to evaluate potential new drugs in OA clinical trials. Researchers have to be aware of the differences and specifics of the different systems to be able to engage in imaging assessment and interpretation of imaging-based data. SQ scoring has enabled us to explain associations of structural tissue damage with clinical manifestations of the disease and with morphological alterations thought to represent disease progression. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Roemer, Frank W.; Hunter, David J.; Crema, Michel D.; Kwoh, C. Kent; Ochoa-Albiztegui, Elena; Guermazi, Ali
2015-01-01
Objective To introduce the most popular magnetic resonance imaging (MRI) osteoarthritis (OA) semi-quantitative (SQ) scoring systems to a broader audience with a focus on the most commonly applied scores, i.e. the MOAKS and WORMS system and illustrate similarities and differences. Design While the main structure and methodology of each scoring system are publicly available, the core of this overview will be an illustrative imaging atlas section including image examples from multiple osteoarthritis studies applying MRI in regard to different features assessed, show specific examples of different grades and point out pitfalls and specifics of SQ assessment including artifacts, blinding to time point of acquisition and within-grade evaluation. Results Similarities and differences between different scoring systems are presented. Technical considerations are followed by a brief description of the most commonly utilized SQ scoring systems including their responsiveness and reliability. The second part is comprised of the atlas section presenting illustrative image examples. Conclusions Evidence suggests that SQ assessment of OA by expert MRI readers is valid, reliable and responsive, which helps investigators to understand the natural history of this complex disease and to evaluate potential new drugs in OA clinical trials. Researchers have to be aware of the differences and specifics of the different systems to be able to engage in imaging assessment and interpretation of imaging-based data. SQ scoring has enabled us to explain associations of structural tissue damage with clinical manifestations of the disease and with morphological alterations thought to represent disease progression. PMID:26318656
Integrated controls-structures design methodology development for a class of flexible spacecraft
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.
1990-01-01
Future utilization of space will require large space structures in low-Earth and geostationary orbits. Example missions include: Earth observation systems, personal communication systems, space science missions, space processing facilities, etc., requiring large antennas, platforms, and solar arrays. The dimensions of such structures will range from a few meters to possibly hundreds of meters. For reducing the cost of construction, launching, and operating (e.g., energy required for reboosting and control), it will be necessary to make the structure as light as possible. However, reducing structural mass tends to increase the flexibility which would make it more difficult to control with the specified precision in attitude and shape. Therefore, there is a need to develop a methodology for designing space structures which are optimal with respect to both structural design and control design. In the current spacecraft design practice, it is customary to first perform the structural design and then the controller design. However, the structural design and the control design problems are substantially coupled and must be considered concurrently in order to obtain a truly optimal spacecraft design. For example, let C denote the set of the 'control' design variables (e.g., controller gains), and L the set of the 'structural' design variables (e.g., member sizes). If a structural member thickness is changed, the dynamics would change which would then change the control law and the actuator mass. That would, in turn, change the structural model. Thus, the sets C and L depend on each other. Future space structures can be roughly divided into four mission classes. Class 1 missions include flexible spacecraft with no articulated appendages which require fine attitude pointing and vibration suppression (e.g., large space antennas). Class 2 missions consist of flexible spacecraft with articulated multiple payloads, where the requirement is to fine-point the spacecraft and each individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.
Biomimetic photonic materials with tunable structural colors.
Xu, Jun; Guo, Zhiguang
2013-09-15
Nature is a huge gallery of art involving nearly perfect structures and forms over the millions of years developing. Inspiration from natural structures exhibiting structural colors is first discussed. We give some examples of natural one-, two-, and three-dimensional photonic structures. This review article presents a brief summary of recent progress on bio-inspired photonic materials with variable structural colors, including the different facile and efficient routes to construct the nano-architectures, and the development of the artificial variable structural color photonic materials. Besides the superior optical properties, the excellent functions such as robust mechanical strength, good wettability are also mentioned, as well as the technical importance in various applications. This review will provide significant insight into the fabrication, design and application of the structural color materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Astronomy-inspired Atomic and Molecular Physics
NASA Astrophysics Data System (ADS)
Rau, A. R. P.
2002-02-01
Aimed at senior undergraduate and first-year graduate students in departments of physics and astronomy, this textbook gives a systematic treatment of atomic and molecular structure and spectra, together with the effect of weak and strong external electromagnetic fields. Topics chosen are those of interest in astronomy and indeed many were inspired by specific astronomical contexts. Examples include the negative ion of hydrogen and the effects of strong magnetic fields such as those occurring on certain white dwarfs and neutron stars. Adiabatic and non-adiabatic handling of electron correlations and application to processes such as dielectronic recombination are included. Astronomical examples are provided throughout as well as end-of-the chapter problems and exercises. Over seventy illustrative diagrams complete this unique and comprehensive volume. Link: http://www.wkap.nl/prod/b/1-4020-0467-2
Protein Design Using Unnatural Amino Acids
NASA Astrophysics Data System (ADS)
Bilgiçer, Basar; Kumar, Krishna
2003-11-01
With the increasing availability of whole organism genome sequences, understanding protein structure and function is of capital importance. Recent developments in the methodology of incorporation of unnatural amino acids into proteins allow the exploration of proteins at a very detailed level. Furthermore, de novo design of novel protein structures and function is feasible with unprecedented sophistication. Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.
Enzymatically active high-flux selectively gas-permeable membranes
Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey
2016-01-26
An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.
Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors
2013-01-01
013110 (2013) Demonstration of high performance bias-selectable dual- band short-/mid-wavelength infrared photodetectors based on type-II InAs/ GaSb ...been used for the growth of QD structures . These include the formation of self-assembled QD, for example, Stranski-Krastanov (SK) growth mode,8,9 atomic...confinement in SML-QD and the reduction in the amount of InAs used per layer of QD can help stack more layers in a 3-dimensional QD structure . Several
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
Dolman, Nick J; Kilgore, Jason A; Davidson, Michael W
2013-07-01
Fluorescent labeling of vesicular structures in cultured cells, particularly for live cells, can be challenging for a number of reasons. The first challenge is to identify a reagent that will be specific enough where some structures have a number of potential reagents and others very few options. The emergence of BacMam constructs has allowed more easy-to-use choices. Presented here is a discussion of BacMam constructs as well as a review of commercially-available reagents for labeling vesicular structures in cells, including endosomes, peroxisomes, lysosomes, and autophagosomes, complete with a featured reagent for each structure, recommended protocol, troubleshooting guide, and example image. © 2013 by John Wiley & Sons, Inc.
Design of high reliability organizations in health care.
Carroll, J S; Rudolph, J W
2006-12-01
To improve safety performance, many healthcare organizations have sought to emulate high reliability organizations from industries such as nuclear power, chemical processing, and military operations. We outline high reliability design principles for healthcare organizations including both the formal structures and the informal practices that complement those structures. A stage model of organizational structures and practices, moving from local autonomy to formal controls to open inquiry to deep self-understanding, is used to illustrate typical challenges and design possibilities at each stage. We suggest how organizations can use the concepts and examples presented to increase their capacity to self-design for safety and reliability.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.
Recent advances in reduction methods for nonlinear problems. [in structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1981-01-01
Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.
Tracing iron-carbon redox from surface to core
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.
2017-12-01
Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.
Gas sensor with attenuated drift characteristic
Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT
2008-05-13
A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention
NASA Astrophysics Data System (ADS)
Anders, Alison M.; Bettis, E. Arthur; Grimley, David A.; Stumpf, Andrew J.; Kumar, Praveen
2018-03-01
The concept of a critical zone (CZ) supporting terrestrial life has fostered groundbreaking interdisciplinary science addressing complex interactions among water, soil, rock, air and life near Earth’s surface. Pioneering work has focused on the CZ in areas with residual soils and steady-state or erosional topography. CZ evolution in these areas is conceptualized as progressive weathering of local bedrock (e.g. in the flow-through reactor model). However, this model is not applicable to areas in which weathering profiles form in transported materials including the formerly glaciated portion of the Central Lowland of North America. We present a new conceptual model of CZ evolution in landscapes impacted by continental glaciation based on investigations at three study sites in the Intensively Managed Landscapes Critical Zone Observatory (IML-CZO) The IML-CZO is devoted to the study of CZ processes in a region characterized by thick surficial deposits resulting from multiple continental glaciations, with bedrock at depths of up to 150 m. Here the physical (glacial ice, loess, developing soil profiles) and biological (microbes, tundra, forest, prairie) components of the CZ vary significantly in time. Moreover, the spatial relationships between mineral components of the CZ record a history of glacial-interglacial cycles and landscape evolution. We present cross-sections from IML-CZO sites to provide specific examples of how environmental change is recorded by the structure of the mineral components of the CZ. We build on these examples to create an idealized model of CZ evolution through a glacial cycle that represents the IML-CZO sites and other areas of low relief that have experienced continental glaciation. In addition, we identify two main characteristics of CZ structure which should be included in a conceptual model of CZ development in the IML-CZO and similar settings: (1) mineral components have diverse origins and transport trajectories including alteration in past CZs, and, (2) variability in climate, ecosystems, and hydrology during glacial-interglacial cycles profoundly influence the CZ composition, creating a legacy retained in its structure. This legacy is important because the current physical CZ structure influences the occurrence and rates of CZ processes, as well as future CZ responses to land use and climate change.
Structural Probability Concepts Adapted to Electrical Engineering
NASA Technical Reports Server (NTRS)
Steinberg, Eric P.; Chamis, Christos C.
1994-01-01
Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.
Example-Based Learning: Exploring the Use of Matrices and Problem Variability
ERIC Educational Resources Information Center
Hancock-Niemic, Mary A.; Lin, Lijia; Atkinson, Robert K.; Renkl, Alexander; Wittwer, Joerg
2016-01-01
The purpose of the study was to investigate the efficacy of using faded worked examples presented in matrices with problem structure variability to enhance learners' ability to recognize the underlying structure of the problems. Specifically, this study compared the effects of matrix-format versus linear-format faded worked examples combined with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuo, Ye
2011-01-01
In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed inmore » advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this work.« less
A web-based tool for ranking landslide mitigation measures
NASA Astrophysics Data System (ADS)
Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.
2012-04-01
As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.
Precursor polymer compositions comprising polybenzimidazole
Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.
2015-07-14
Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
Polymer compositions, polymer films and methods and precursors for forming same
Klaehn, John R; Peterson, Eric S; Orme, Christopher J
2013-09-24
Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.
2003-01-01
This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a more indepth discussion of the contributions.
Subcontinental impacts of an invasive tree disease on forest structure and dynamics
Jeffrey R. Garnas; Matthew P. Ayres; Andrew M. Liebhold; Celia. Evans
2011-01-01
Introduced pests and pathogens are a major source of disturbance to ecosystems world-wide. The famous examples have produced dramatic reductions in host abundance, including virtual extirpation, but most introductions have more subtle impacts that are hard to quantify but are potentially at least as important due to the pathogens' effects on host reproduction,...
ERIC Educational Resources Information Center
McGrath, Dennis, Ed.
1998-01-01
This volume offers a variety of examples of long-term collaborative efforts within schools that began with external funding. Articles include: (1) "Lessons from a Long-Term Collaboration," (Lindsay M. Wright and Rona Middleberg); (2) "Creating Structural Change: Best Practices," (Janet E. Lieberman); (3) "An Urban Intervention That Works: The…
Atomic force microscopy for two-dimensional materials: A tutorial review
NASA Astrophysics Data System (ADS)
Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle
2018-01-01
Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.
Freeze Casting for Assembling Bioinspired Structural Materials.
Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P
2017-12-01
Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An ERP study of regular and irregular English past tense inflection.
Newman, Aaron J; Ullman, Michael T; Pancheva, Roumyana; Waligura, Diane L; Neville, Helen J
2007-01-01
Compositionality is a critical and universal characteristic of human language. It is found at numerous levels, including the combination of morphemes into words and of words into phrases and sentences. These compositional patterns can generally be characterized by rules. For example, the past tense of most English verbs ("regulars") is formed by adding an -ed suffix. However, many complex linguistic forms have rather idiosyncratic mappings. For example, "irregular" English verbs have past tense forms that cannot be derived from their stems in a consistent manner. Whether regular and irregular forms depend on fundamentally distinct neurocognitive processes (rule-governed combination vs. lexical memorization), or whether a single processing system is sufficient to explain the phenomena, has engendered considerable investigation and debate. We recorded event-related potentials while participants read English sentences that were either correct or had violations of regular past tense inflection, irregular past tense inflection, syntactic phrase structure, or lexical semantics. Violations of regular past tense and phrase structure, but not of irregular past tense or lexical semantics, elicited left-lateralized anterior negativities (LANs). These seem to reflect neurocognitive substrates that underlie compositional processes across linguistic domains, including morphology and syntax. Regular, irregular, and phrase structure violations all elicited later positivities that were maximal over midline parietal sites (P600s), and seem to index aspects of controlled syntactic processing of both phrase structure and morphosyntax. The results suggest distinct neurocognitive substrates for processing regular and irregular past tense forms: regulars depending on compositional processing, and irregulars stored in lexical memory.
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buurma, Christopher; Sen, Fatih G.; Paulauskas, Tadas
2015-01-01
Grain boundaries (GB) in poly-CdTe solar cells play an important role in species diffusion, segregation, defect formation, and carrier recombination. While the creation of specific high-symmetry interfaces can be straight forward, the creation of general GB structures in many material systems is difficult if periodic boundary conditions are to be enforced. Here we describe a novel algorithm and implementation to generate initial general GB structures for CdTe in an automated way, and we investigate some of these structures using density functional theory (DFT). Example structures include those with bi-crystals already fabricated for comparison, and those planning to be investigated inmore » the future.« less
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.
2003-01-01
Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.
Metal carboxylates with open architectures.
Rao, C N R; Natarajan, Srinivasan; Vaidhyanathan, R
2004-03-12
The field of inorganic open-framework materials is dominated by aluminosilicates and phosphates. The metal carboxylates have emerged as an important family in the last few years. This family includes not only mono- and dicarboxylates of transition, rare-earth, and main-group metals, but also a variety of hybrid structures. Some of the carboxylates possess novel adsorption and magnetic properties. Dicarboxylates and related species provide an effective means of designing novel hybrid structures with porous and other properties. In some of these structures, the dicarboxylate acts as a linker between two inorganic units. Hybrid nanocomposites are also of particular note, for example, cadmium oxalate host lattices that can accommodate extended alkali-metal halide structures. This Review discusses the synthesis, structure, and properties of various types of open-framework metal carboxylates.
Insights into the structure and function of membrane-integrated processive glycosyltransferases
Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti; ...
2015-09-02
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less
Insights into the structure and function of membrane-integrated processive glycosyltransferases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. In this paper, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin,more » alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).« less
Indigenous lunar construction materials
NASA Technical Reports Server (NTRS)
Rogers, Wayne; Sture, Stein
1991-01-01
The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
Lightweight Heat Pipes Made from Magnesium
NASA Technical Reports Server (NTRS)
Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale
2010-01-01
Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.
Micro electro mechanical system optical switching
Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J
2013-12-17
The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.
1978-01-01
Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.
NASA Technical Reports Server (NTRS)
Bouton, I.; Martin, G. L.
1972-01-01
Criteria to determine the probability of aircraft structural failure were established according to the Quantitative Structural Design Criteria by Statistical Methods, the QSDC Procedure. This criteria method was applied to the design of the space shuttle during this contract. An Applications Guide was developed to demonstrate the utilization of the QSDC Procedure, with examples of the application to a hypothetical space shuttle illustrating the application to specific design problems. Discussions of the basic parameters of the QSDC Procedure: the Limit and Omega Conditions, and the strength scatter, have been included. Available data pertinent to the estimation of the strength scatter have also been included.
Directory interchange format manual, version 4.0
NASA Technical Reports Server (NTRS)
1991-01-01
The Directory Interchange Format (DIF) is a data structure used to exchange directory-level information about data sets among information systems. In general the format consists of a number of fields that describe the attributes of a directory entry and text blocks that contain a descriptive summary of and references for the directory entry. All fields and the summary are preceded by labels identifying their contents. All values are ASCII character strings. The structure is intended to be flexible, allowing for future changes in the contents of directory entries. The manual is structured as follows: section 1 is a general description of what constitutes a directory entry; section 2 describes the content of the individual fields within the data structure, together with some examples. Also included in the six appendices is a description of the syntax used within the examples; samples of the directory interchange format applied to different data sets; the allowable discipline keywords; a current list of valid location keywords; a list of allowable parameter keywords; a list of acronyns and a glossary of terms used; and a description of the Standard Formatted Data Unit header, which may be added to the front of a DIF file to identify the file as a registered standard format.
Cellular structures with interconnected microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian
A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to meltmore » infiltration.« less
Resource Materials for Nanoscale Science and Technology Education
NASA Astrophysics Data System (ADS)
Lisensky, George
2006-12-01
Nanotechnology and advanced materials examples can be used to explore science and engineering concepts, exhibiting the "wow" and potential of nanotechnology, introducing prospective scientists to key ideas, and educating a citizenry capable of making well-informed technology-driven decisions. For example, material syntheses an atomic layer at a time have already revolutionized lighting and display technologies and dramatically expanded hard drive storage capacities. Resource materials include kits, models, and demonstrations that explain scanning probe microscopy, x-ray diffraction, information storage, energy and light, carbon nanotubes, and solid-state structures. An online Video Lab Manual, where movies show each step of the experiment, illustrates more than a dozen laboratory experiments involving nanoscale science and technology. Examples that are useful at a variety of levels when instructors provide the context include preparation of self-assembled monolayers, liquid crystals, colloidal gold, ferrofluid nanoparticles, nickel nanowires, solar cells, electrochromic thin films, organic light emitting diodes, and quantum dots. These resources have been developed, refined and class tested at institutions working with the Materials Research Science and Engineering Center on Nanostructured Interfaces at the University of Wisconsin-Madison (http://mrsec.wisc.edu/nano).
Targets and processes for fabricating same
Cowan, Thomas [Dresden, DE; Malekos, Steven [Reno, NV; Korgan, Grant [Reno, NV; Adams, Jesse [Reno, NV; Sentoku, Yasuhiko [Reno, NV; Le Galloudec, Nathalie [Reno, NV; Fuchs, Julien [Paris, FR
2012-07-24
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
Targets and processes for fabricating same
Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko
2016-05-17
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
Targets and processes for fabricating same
Cowna, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; LeGalloudec, Nathalie
2014-06-10
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
On Monoids in the Category of Sets and Relations
NASA Astrophysics Data System (ADS)
Jenčová, Anna; Jenča, Gejza
2017-12-01
The category R e l is the category of sets (objects) and relations (morphisms). Equipped with the direct product of sets, R e l is a monoidal category. Moreover, R e l is a locally posetal 2-category, since every homset R e l( A, B) is a poset with respect to inclusion. We examine the 2-category of monoids R e l M o n in this category. The morphism we use are lax. This category includes, as subcategories, various interesting classes: hypergroups, partial monoids (which include various types of quantum logics, for example effect algebras) and small categories. We show how the 2-categorical structure gives rise to several previously defined notions in these categories, for example certain types of congruence relations on generalized effect algebras. This explains where these definitions come from.
Stochasticity and determinism in models of hematopoiesis.
Kimmel, Marek
2014-01-01
This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.
Visualization of protein sequence features using JavaScript and SVG with pViz.js.
Mukhyala, Kiran; Masselot, Alexandre
2014-12-01
pViz.js is a visualization library for displaying protein sequence features in a Web browser. By simply providing a sequence and the locations of its features, this lightweight, yet versatile, JavaScript library renders an interactive view of the protein features. Interactive exploration of protein sequence features over the Web is a common need in Bioinformatics. Although many Web sites have developed viewers to display these features, their implementations are usually focused on data from a specific source or use case. Some of these viewers can be adapted to fit other use cases but are not designed to be reusable. pViz makes it easy to display features as boxes aligned to a protein sequence with zooming functionality but also includes predefined renderings for secondary structure and post-translational modifications. The library is designed to further customize this view. We demonstrate such applications of pViz using two examples: a proteomic data visualization tool with an embedded viewer for displaying features on protein structure, and a tool to visualize the results of the variant_effect_predictor tool from Ensembl. pViz.js is a JavaScript library, available on github at https://github.com/Genentech/pviz. This site includes examples and functional applications, installation instructions and usage documentation. A Readme file, which explains how to use pViz with examples, is available as Supplementary Material A. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bigler, Erin D
2015-09-01
Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.
Wang, Yi; Peng, Hsin-Chieh; Liu, Jingyue; Huang, Cheng Zhi; Xia, Younan
2015-02-11
Kinetic control is a powerful means for maneuvering the twin structure and shape of metal nanocrystals and thus optimizing their performance in a variety of applications. However, there is only a vague understanding of the explicit roles played by reaction kinetics due to the lack of quantitative information about the kinetic parameters. With Pd as an example, here we demonstrate that kinetic parameters, including rate constant and activation energy, can be derived from spectroscopic measurements and then used to calculate the initial reduction rate and further have this parameter quantitatively correlated with the twin structure of a seed and nanocrystal. On a quantitative basis, we were able to determine the ranges of initial reduction rates required for the formation of nanocrystals with a specific twin structure, including single-crystal, multiply twinned, and stacking fault-lined. This work represents a major step forward toward the deterministic syntheses of colloidal noble-metal nanocrystals with specific twin structures and shapes.
Methods for structural design at elevated temperatures
NASA Technical Reports Server (NTRS)
Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.
1973-01-01
A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.
Merits and limitations of optimality criteria method for structural optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Guptill, James D.; Berke, Laszlo
1993-01-01
The merits and limitations of the optimality criteria (OC) method for the minimum weight design of structures subjected to multiple load conditions under stress, displacement, and frequency constraints were investigated by examining several numerical examples. The examples were solved utilizing the Optimality Criteria Design Code that was developed for this purpose at NASA Lewis Research Center. This OC code incorporates OC methods available in the literature with generalizations for stress constraints, fully utilized design concepts, and hybrid methods that combine both techniques. Salient features of the code include multiple choices for Lagrange multiplier and design variable update methods, design strategies for several constraint types, variable linking, displacement and integrated force method analyzers, and analytical and numerical sensitivities. The performance of the OC method, on the basis of the examples solved, was found to be satisfactory for problems with few active constraints or with small numbers of design variables. For problems with large numbers of behavior constraints and design variables, the OC method appears to follow a subset of active constraints that can result in a heavier design. The computational efficiency of OC methods appears to be similar to some mathematical programming techniques.
ERIC Educational Resources Information Center
Olakanmi, E. O.; Doyoyo, M.
2014-01-01
This paper explores the effectiveness of using "structured examples in concert with prompting reflective questions" to address misconceptions held by mechanical engineering students about thermodynamic principles by employing pre-test and post-test design, a structured questionnaire, lecture room observation, and participants'…
Kinematics, structural mechanics, and design of origami structures with smooth folds
NASA Astrophysics Data System (ADS)
Peraza Hernandez, Edwin Alexander
Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.
Cooperation dynamics of generalized reciprocity in state-based social dilemmas
NASA Astrophysics Data System (ADS)
Stojkoski, Viktor; Utkovski, Zoran; Basnarkov, Lasko; Kocarev, Ljupco
2018-05-01
We introduce a framework for studying social dilemmas in networked societies where individuals follow a simple state-based behavioral mechanism based on generalized reciprocity, which is rooted in the principle "help anyone if helped by someone." Within this general framework, which applies to a wide range of social dilemmas including, among others, public goods, donation, and snowdrift games, we study the cooperation dynamics on a variety of complex network examples. By interpreting the studied model through the lenses of nonlinear dynamical systems, we show that cooperation through generalized reciprocity always emerges as the unique attractor in which the overall level of cooperation is maximized, while simultaneously exploitation of the participating individuals is prevented. The analysis elucidates the role of the network structure, here captured by a local centrality measure which uniquely quantifies the propensity of the network structure to cooperation by dictating the degree of cooperation displayed both at the microscopic and macroscopic level. We demonstrate the applicability of the analysis on a practical example by considering an interaction structure that couples a donation process with a public goods game.
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
Design of high reliability organizations in health care
Carroll, J S; Rudolph, J W
2006-01-01
To improve safety performance, many healthcare organizations have sought to emulate high reliability organizations from industries such as nuclear power, chemical processing, and military operations. We outline high reliability design principles for healthcare organizations including both the formal structures and the informal practices that complement those structures. A stage model of organizational structures and practices, moving from local autonomy to formal controls to open inquiry to deep self‐understanding, is used to illustrate typical challenges and design possibilities at each stage. We suggest how organizations can use the concepts and examples presented to increase their capacity to self‐design for safety and reliability. PMID:17142607
NASA Technical Reports Server (NTRS)
Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.
1983-01-01
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.
Mimicking the colourful wing scale structure of the Papilio blumei butterfly.
Kolle, Mathias; Salgard-Cunha, Pedro M; Scherer, Maik R J; Huang, Fumin; Vukusic, Pete; Mahajan, Sumeet; Baumberg, Jeremy J; Steiner, Ullrich
2010-07-01
The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures. Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches.
Fast large-scale clustering of protein structures using Gauss integrals.
Harder, Tim; Borg, Mikael; Boomsma, Wouter; Røgen, Peter; Hamelryck, Thomas
2012-02-15
Clustering protein structures is an important task in structural bioinformatics. De novo structure prediction, for example, often involves a clustering step for finding the best prediction. Other applications include assigning proteins to fold families and analyzing molecular dynamics trajectories. We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by first mapping structures to Gauss integral vectors--which were introduced by Røgen and co-workers--and subsequently performing K-means clustering. Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a significantly larger number of structures, while providing state-of-the-art results. The number of low energy structures generated in a typical folding study, which is in the order of 50,000 structures, can be clustered within seconds to minutes.
Configuration optimization of space structures
NASA Technical Reports Server (NTRS)
Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David
1991-01-01
The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
The X-29A aircraft is the first manned, experimental high-performance aircraft to be fabricated and flown in many years. The approach for expanding the X-29 flight envelope and collecting research data is described including the methods for monitoring wind divergence, flutter, and aeroservoelastic coupling of the aerodynamic forces with the structure and the flight-control system. Examples of the type of flight data to be acquired are presented along with types of aircraft maneuvers that will be flown. A brief description of the program management structure is also presented and the program schedule is discussed.
AHF: Array-Based Half-Facet Data Structure for Mixed-Dimensional and Non-manifold Meshes
2013-10-13
19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER James Glimm V. Dyedov, N. Ray, D. Einstein , X. Jiao, T.J. Tautges 611102 c. THIS PAGE The...Ray, D. Einstein , X. Jiao, and T. Tautges mesh data structures. Examples of such new demanding applications include coupled multiphysics simulations and...be composed of a union of topologically 1-D, 2-D, 4 V. Dyedov, N. Ray, D. Einstein , X. Jiao, and T. Tautges and 3-D objects, such as a mixture of
Structural Safety of a Hubble Space Telescope Science Instrument
NASA Technical Reports Server (NTRS)
Lou, M. C.; Brent, D. N.
1993-01-01
This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.
Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids
NASA Astrophysics Data System (ADS)
Andrushkevich, T. V.; Chesalov, Yu A.
2018-06-01
The results of studies on the mechanism of heterogeneous catalytic oxidation of organic compounds of different chemical structure to carboxylic acids are analyzed and generalized. The concept developed by Academician G.K.Boreskov, according to which the direction of the reaction is governed by the structure and bond energy of surface intermediates, was confirmed taking the title processes as examples. Quantitative criteria of the bond energies of surface compounds of oxidizable reactants, reaction products and oxygen that determine the selective course of the reaction are presented. The bibliography includes 195 references.
NASA Technical Reports Server (NTRS)
Fertis, D. G.; Simon, A. L.
1981-01-01
The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.
NASA Composite Materials Development: Lessons Learned and Future Challenges
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman
2009-01-01
Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.
Transport Of Passive Scalars In A Turbulent Channel Flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1990-01-01
Computer simulation of transport of passive scalars in turbulent channel flow described in report. Shows flow structures and statistical properties. As used here, "passive scalars" means scalar quantities like fluctuations in temperature or concentrations of contaminants that do not disturb flow appreciably. Examples include transport of heat in heat exchangers, gas turbines, and nuclear reactors and dispersal of pollution in atmosphere.
Advances in Additive Manufacturing
2016-07-14
of 3D - printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void...15. SUBJECT TERMS 3-D printing , validation and verification, nondestructive inspection, print -on-the-move, prototyping 16. SECURITY CLASSIFICATION...researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make
J.F. Franklin; T.A. Spies; R.V. Pelt; A.B. Carey; D.A. Thornburgh; D.R. Berg; D.B. Lindenmayer; M.E. Harmon; W.S. Keeton; D.C. Shaw; K. Bible; J. Chen
2002-01-01
Forest managers need a comprehensive scientific understanding of natural stand development processes when designing silvicultural systems that integrate ecological and economic objectives, including a better appreciation of the nature of disturbance regimes and the biological legacies, such as live trees, snags, and logs, that they leave behind. Most conceptual forest...
A New Way of Understanding (Military) Professionalism
2011-07-01
Afghan children during medical outreach program in Marjah U.S. Marine Corps (Shawn P. Coover) Report Documentation Page Form ApprovedOMB No. 0704...home and seek foreign medical attention, for example. Attributes and values held by individual practitioners include specialized education... medical examiners with all licensed medical personnel. Although these are generally headquartered within the structure of a state government, they
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... not be, for example, two 500- contract orders or two 500-contract legs. See Rule 1064(e). See also...), and Floor QCC Orders, as defined in 1064(e). The Exchange proposes to offer a tiered rebate structure... 1064 when such members are trading in their own proprietary account. QCC Transaction Fees are included...
Making Grammar Explicit in the Classroom: An Illustration Using the Spanish Subjunctive.
ERIC Educational Resources Information Center
Kilroe, Patricia
1988-01-01
It is proposed that explicit explanations of grammar concepts in the first language can be useful in teaching the related structures in a second language. The example used is that of the subjunctive mood, taught first in English and then in Spanish. Specific procedures for presenting the concept in English are outlined, including a set of…
Information-Decay Pursuit of Dynamic Parameters in Student Models
1994-04-01
simple worked-through example). Commercially available computer programs for structuring and using Bayesian inference include ERGO ( Noetic Systems...Tukey, J.W. (1977). Data analysis and Regression: A second course in statistics. Reading, MA: Addison-Wesley. Noetic Systems, Inc. (1991). ERGO...Naval Academy Division of Educational Studies Annapolis MD 21402-5002 Elmory Univerity Dr Janice Gifford 210 Fiabburne Bldg University of
Enhancing UCSF Chimera through web services.
Huang, Conrad C; Meng, Elaine C; Morris, John H; Pettersen, Eric F; Ferrin, Thomas E
2014-07-01
Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Disruption of River Networks in Nature and Models
NASA Astrophysics Data System (ADS)
Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.
2017-12-01
Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.
Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1999-01-01
An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.
Quantum geometry of resurgent perturbative/nonperturbative relations
NASA Astrophysics Data System (ADS)
Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat
2017-05-01
For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.
76 FR 28265 - Solicitation of Comment To Assist in Study on Assigned Credit Ratings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Commission requests, in Section II.B, that interested parties address these matters through a series of... in rating structured finance products. For example, in what ways, if any, does the issuer... structured finance products? For example, do certain types of structured finance products account for a...
Science in Emergency Response at CDC: Structure and Functions.
Iskander, John; Rose, Dale A; Ghiya, Neelam D
2017-09-01
Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.
Structural insights into ligand recognition and selectivity for class A, B, and C GPCRs
Lee, Sang-Min; Booe, Jason M.; Pioszak, Augen A.
2015-01-01
The G protein-coupled receptor (GPCR) superfamily constitutes the largest collection of cell surface signaling proteins with approximately 800 members in the human genome. GPCRs regulate virtually all aspects of physiology and they are an important class of drug targets with ~30% of drugs on the market targeting a GPCR. Breakthroughs in GPCR structural biology in recent years have significantly expanded our understanding of GPCR structure and function and ushered in a new era of structure-based drug design for GPCRs. Crystal structures for nearly thirty distinct GPCRs are now available including receptors from each of the major classes, A, B, C, and F. These structures provide a foundation for understanding the molecular basis of GPCR pharmacology. Here, we review structural mechanisms of ligand recognition and selectivity of GPCRs with a focus on selected examples from classes A, B, and C, and we highlight major unresolved questions for future structural studies. PMID:25981303
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
On the analytical modeling of the nonlinear vibrations of pretensioned space structures
NASA Technical Reports Server (NTRS)
Housner, J. M.; Belvin, W. K.
1983-01-01
Pretensioned structures are receiving considerable attention as candidate large space structures. A typical example is a hoop-column antenna. The large number of preloaded members requires efficient analytical methods for concept validation and design. Validation through analyses is especially important since ground testing may be limited due to gravity effects and structural size. The present investigation has the objective to present an examination of the analytical modeling of pretensioned members undergoing nonlinear vibrations. Two approximate nonlinear analysis are developed to model general structural arrangements which include beam-columns and pretensioned cables attached to a common nucleus, such as may occur at a joint of a pretensioned structure. Attention is given to structures undergoing nonlinear steady-state oscillations due to sinusoidal excitation forces. Three analyses, linear, quasi-linear, and nonlinear are conducted and applied to study the response of a relatively simple cable stiffened structure.
StrBioLib: a Java library for development of custom computational structural biology applications.
Chandonia, John-Marc
2007-08-01
StrBioLib is a library of Java classes useful for developing software for computational structural biology research. StrBioLib contains classes to represent and manipulate protein structures, biopolymer sequences, sets of biopolymer sequences, and alignments between biopolymers based on either sequence or structure. Interfaces are provided to interact with commonly used bioinformatics applications, including (psi)-blast, modeller, muscle and Primer3, and tools are provided to read and write many file formats used to represent bioinformatic data. The library includes a general-purpose neural network object with multiple training algorithms, the Hooke and Jeeves non-linear optimization algorithm, and tools for efficient C-style string parsing and formatting. StrBioLib is the basis for the Pred2ary secondary structure prediction program, is used to build the astral compendium for sequence and structure analysis, and has been extensively tested through use in many smaller projects. Examples and documentation are available at the site below. StrBioLib may be obtained under the terms of the GNU LGPL license from http://strbio.sourceforge.net/
Recent experience in simultaneous control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Ramaker, R.; Milman, M.
1989-01-01
To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.
NASA Astrophysics Data System (ADS)
Sevimli, Eyup
2016-08-01
This study aims to evaluate the consistency of teaching content with teaching approaches in calculus on the basis of lecturers' views. In this sense, the structures of the examples given in two commonly used calculus textbooks, both in traditional and reform classrooms, are compared. The content analysis findings show that the examples in both textbooks are presented in a rather formal language and generally highlight procedural knowledge. And, even though the examples in the reform book chosen are structured using multiple representations, only a small number of them incorporated the usage of instructional technology. The lecturers' views which were gathered indicated that, although, on the one hand, the example structures of the traditional textbook largely overlapped with the characteristics of the traditional approach, the example structures of the reform textbook, on the other hand, were found to be inconsistent with the characteristics of the reform approach, especially with regard to its environment and knowledge components. At the end of the paper, some suggestions for further studies are provided for book authors and researchers.
The use of experimental structures to model protein dynamics.
Katebi, Ataur R; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L
2015-01-01
The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high-for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods-Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them.
The Use of Experimental Structures to Model Protein Dynamics
Katebi, Ataur R.; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L.
2014-01-01
Summary The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high – for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods – Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them. PMID:25330965
Road Map For Diffusion Of Innovation In Health Care.
Balas, E Andrew; Chapman, Wendy W
2018-02-01
New scientific knowledge and innovation are often slow to disseminate. In other cases, providers rush into adopting what appears to be a clinically relevant innovation, based on a single clinical trial. In reality, adopting innovations without appropriate translation and repeated testing of practical application is problematic. In this article we provide examples of clinical innovations (for example, tight glucose control in critically ill patients) that were adopted inappropriately and that caused what we term a malfunction. To address the issue of malfunctions, we review various examples and suggest frameworks for the diffusion of knowledge leading to the adoption of useful innovations. The resulting model is termed an integrated road map for coordinating knowledge transformation and innovation adoption. We make recommendations for the targeted development of practice change procedures, practice change assessment, structured descriptions of tested interventions, intelligent knowledge management technologies, and policy support for knowledge transformation, including further standardization to facilitate sharing among institutions.
Hand classification of fMRI ICA noise components.
Griffanti, Ludovica; Douaud, Gwenaëlle; Bijsterbosch, Janine; Evangelisti, Stefania; Alfaro-Almagro, Fidel; Glasser, Matthew F; Duff, Eugene P; Fitzgibbon, Sean; Westphal, Robert; Carone, Davide; Beckmann, Christian F; Smith, Stephen M
2017-07-01
We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures
NASA Astrophysics Data System (ADS)
Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-05-01
Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.
Channel characteristics and coordination in three-echelon dual-channel supply chain
NASA Astrophysics Data System (ADS)
Saha, Subrata
2016-02-01
We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.
NoFold: RNA structure clustering without folding or alignment.
Middleton, Sarah A; Kim, Junhyong
2014-11-01
Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou
2011-11-01
Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.
NASA Technical Reports Server (NTRS)
Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.
2007-01-01
This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
On implementation of the extended interior penalty function. [optimum structural design
NASA Technical Reports Server (NTRS)
Cassis, J. H.; Schmit, L. A., Jr.
1976-01-01
The extended interior penalty function formulation is implemented. A rational method for determining the transition between the interior and extended parts is set forth. The formulation includes a straightforward method for avoiding design points with some negative components, which are physically meaningless in structural analysis. The technique, when extended to problems involving parametric constraints, can facilitate closed form integration of the penalty terms over the most important parts of the parameter interval. The method lends itself well to the use of approximation concepts, such as design variable linking, constraint deletion and Taylor series expansions of response quantities in terms of design variables. Examples demonstrating the algorithm, in the context of planar orthogonal frames subjected to ground motion, are included.
AN ERP STUDY OF REGULAR AND IRREGULAR ENGLISH PAST TENSE INFLECTION
Newman, Aaron J.; Ullman, Michael T.; Pancheva, Roumyana; Waligura, Diane L.; Neville, Helen J.
2006-01-01
Compositionality is a critical and universal characteristic of human language. It is found at numerous levels, including the combination of morphemes into words and of words into phrases and sentences. These compositional patterns can generally be characterized by rules. For example, the past tense of most English verbs (“regulars”) is formed by adding an -ed suffix. However, many complex linguistic forms have rather idiosyncratic mappings. For example, “irregular” English verbs have past tense forms that cannot be derived from their stems in a consistent manner. Whether regular and irregular forms depend on fundamentally distinct neurocognitive processes (rule-governed combination vs. lexical memorization), or whether a single processing system is sufficient to explain the phenomena, has engendered considerable investigation and debate. We recorded event-related potentials while participants read English sentences that were either correct or had violations of regular past tense inflection, irregular past tense inflection, syntactic phrase structure, or lexical semantics. Violations of regular past tense and phrase structure, but not of irregular past tense or lexical semantics, elicited left-lateralized anterior negativities (LANs). These seem to reflect neurocognitive substrates that underlie compositional processes across linguistic domains, including morphology and syntax. Regular, irregular, and phrase structure violations all elicited later positivities that were maximal over right parietal sites (P600s), and which seem to index aspects of controlled syntactic processing of both phrase structure and morphosyntax. The results suggest distinct neurocognitive substrates for processing regular and irregular past tense forms: regulars depending on compositional processing, and irregulars stored in lexical memory. PMID:17070703
Lammerding, Jan
2015-01-01
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203
Parameterization of Model Validating Sets for Uncertainty Bound Optimizations. Revised
NASA Technical Reports Server (NTRS)
Lim, K. B.; Giesy, D. P.
2000-01-01
Given measurement data, a nominal model and a linear fractional transformation uncertainty structure with an allowance on unknown but bounded exogenous disturbances, easily computable tests for the existence of a model validating uncertainty set are given. Under mild conditions, these tests are necessary and sufficient for the case of complex, nonrepeated, block-diagonal structure. For the more general case which includes repeated and/or real scalar uncertainties, the tests are only necessary but become sufficient if a collinearity condition is also satisfied. With the satisfaction of these tests, it is shown that a parameterization of all model validating sets of plant models is possible. The new parameterization is used as a basis for a systematic way to construct or perform uncertainty tradeoff with model validating uncertainty sets which have specific linear fractional transformation structure for use in robust control design and analysis. An illustrative example which includes a comparison of candidate model validating sets is given.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
1999-01-01
There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.
NASA Astrophysics Data System (ADS)
Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-01
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-16
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Geometrical ambiguity of pair statistics. II. Heterogeneous media
NASA Astrophysics Data System (ADS)
Jiao, Yang; Stillinger, Frank H.; Torquato, Salvatore
2010-07-01
In the first part of this series of two papers [Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 011105 (2010)10.1103/PhysRevE.81.011105], we considered the geometrical ambiguity of pair statistics associated with point configurations. Here we focus on the analogous problem for heterogeneous media (materials). Heterogeneous media are ubiquitous in a host of contexts, including composites and granular media, biological tissues, ecological patterns, and astrophysical structures. The complex structures of heterogeneous media are usually characterized via statistical descriptors, such as the n -point correlation function Sn . An intricate inverse problem of practical importance is to what extent a medium can be reconstructed from the two-point correlation function S2 of a target medium. Recently, general claims of the uniqueness of reconstructions using S2 have been made based on numerical studies, which implies that S2 suffices to uniquely determine the structure of a medium within certain numerical accuracy. In this paper, we provide a systematic approach to characterize the geometrical ambiguity of S2 for both continuous two-phase heterogeneous media and their digitized representations in a mathematically precise way. In particular, we derive the exact conditions for the case where two distinct media possess identical S2 , i.e., they form a degenerate pair. The degeneracy conditions are given in terms of integral and algebraic equations for continuous media and their digitized representations, respectively. By examining these equations and constructing their rigorous solutions for specific examples, we conclusively show that in general S2 is indeed not sufficient information to uniquely determine the structure of the medium, which is consistent with the results of our recent study on heterogeneous-media reconstruction [Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci. U.S.A. 106, 17634 (2009)10.1073/pnas.0905919106]. The analytical examples include complex patterns composed of building blocks bearing the letter “T” and the word “WATER” as well as degenerate stacking variants of the densest sphere packing in three dimensions (Barlow films). Several numerical examples of degeneracy (e.g., reconstructions of polycrystal microstructures, laser-speckle patterns and sphere packings) are also given, which are virtually exact solutions of the degeneracy equations. The uniqueness issue of multiphase media reconstructions and additional structural information required to characterize heterogeneous media are discussed, including two-point quantities that contain topological connectedness information about the phases.
Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P
1998-12-18
The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (=2.0 A), non-homologous protein crystal structures and corresponding variant and homologous entries, obtained from the Brookhaven Protein Data Bank, was examined to identify turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed using the peptide models Ac-Pro-Aib-NHMe and Ac-Pro-Gly-NHMe within the framework of the AM1 semi-empirical molecular orbital procedure. In order to have a uniform basis for comparison and to eliminate the distracting influence of the deviation of backbone dihedral angles from that expected for ideal beta-turns, the dihedral angles phii+1 and psii+2 were fixed at the ideal values (phii+1=-60 degrees and psii+2=0 degrees). The other two angles (psii+1 and phii+2) were varied systematically to go from type II to type I beta-turn structures. The computational results suggest that there exists one stereospecific, concerted flip of the central peptide unit involving correlated single bond rotation that can occur with an activation barrier of the order of 3 kcal/mol. The results presented here suggest that conformational variations in beta-turns are observed in protein crystal structures and such changes may be an important dynamic feature in solution. Copyright 1998 Academic Press
Typographic Settings for Structured Abstracts.
ERIC Educational Resources Information Center
Hartley, James
2000-01-01
Lists some of the major typographic variables involved in structured abstracts (containing sub-headings). Illustrates how typography can affect clarity by presenting seven examples that illustrate the effects of these typographic variables in practice. Concludes with a final example of an effective approach. (SR)
Coherent perfect absorbers: linear control of light with light
NASA Astrophysics Data System (ADS)
Baranov, Denis G.; Krasnok, Alex; Shegai, Timur; Alù, Andrea; Chong, Yidong
2017-12-01
The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.
Complex small-molecule architectures regulate phenotypic plasticity in a nematode.
Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C
2012-12-07
Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Hernandez-Cortes, Patricia
2012-01-01
Vitellogenin (Vtg) is a lipid transfer protein that carries yolk to the ovary. The vitellogenin receptor (VtgR) mediates the uptake of Vtg into the oocyte of oviparous animals; its structure includes eight ligand-binding repeats (LBR). The binding site of VtgR and Vtg and the location of the interaction within the molecules are at these LBR.…
Transfer Learning in Integrated Cognitive Systems
2010-09-01
Psychology Press. 2. Falkenhainer, B ., Forbus, K . D., and Gentner, D. (1989). The Structure-mapping Engine: Algorithm and Examples. Artificial...Kaps, A.; Lemcke, K .; Mannhaupt, G.; Pfeiffer, F.; Schuller, C.; Stocker, S. & Weil, B ., "MIPS: A Database for Genomes and Protein Sequences...NAME OF RESPONSIBLE PERSON Deborah A. Cerino a. REPORT U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A
Interdisciplinary glossary — particle accelerators and medicine
NASA Astrophysics Data System (ADS)
Dmitrieva, V. V.; Dyubkov, V. S.; Nikitaev, V. G.; Ulin, S. E.
2016-02-01
A general concept of a new interdisciplinary glossary, which includes particle accelerator terminology used in medicine, as well as relevant medical concepts, is presented. Its structure and usage rules are described. An example, illustrating the quickly searching technique of relevant information in this Glossary, is considered. A website address, where one can get an access to the Glossary, is specified. Glossary can be refined and supplemented.
Strong Electro‐Optic Effect and Spontaneous Domain Formation in Self‐Assembled Peptide Structures
Lafargue, Clément; Handelman, Amir; Shimon, Linda J. W.; Rosenman, Gil; Zyss, Joseph
2017-01-01
Short peptides made from repeating units of phenylalanine self‐assemble into a remarkable variety of micro‐ and nanostructures including tubes, tapes, spheres, and fibrils. These bio‐organic structures are found to possess striking mechanical, electrical, and optical properties, which are rarely seen in organic materials, and are therefore shown useful for diverse applications including regenerative medicine, targeted drug delivery, and biocompatible fluorescent probes. Consequently, finding new optical properties in these materials can significantly advance their practical use, for example, by allowing new ways to visualize, manipulate, and utilize them in new, in vivo, sensing applications. Here, by leveraging a unique electro‐optic phase microscopy technique, combined with traditional structural analysis, it is measured in di‐ and triphenylalanine peptide structures a surprisingly large electro‐optic response of the same order as the best performing inorganic crystals. In addition, spontaneous domain formation is observed in triphenylalanine tapes, and the origin of their electro‐optic activity is unveiled to be related to a porous triclinic structure, with extensive antiparallel beta‐sheet arrangement. The strong electro‐optic response of these porous peptide structures with the capability of hosting guest molecules opens the door to create new biocompatible, environmental friendly functional materials for electro‐optic applications, including biomedical imaging, sensing, and optical manipulation. PMID:28932664
Cragg, Gordon M.; Pezzuto, John M.
2016-01-01
Throughout history, natural products have played a dominant role in the treatment of human ailments. For example, the legendary discovery of penicillin transformed global existence. Presently, natural products comprise a large portion of current-day pharmaceutical agents, most notably in the area of cancer therapy. Examples include Taxol, vinblastine, and camptothecin. These structurally unique agents function by novel mechanisms of action; isolation from natural sources is the only plausible method that could have led to their discovery. In addition to terrestrial plants as sources for starting materials, the marine environment (e.g., ecteinascidin 743, halichondrin B, and dolastatins), microbes (e.g., bleomycin, doxorubicin, and staurosporin), and slime molds (e.g., epothilone B) have yielded remarkable cancer chemotherapeutic agents. Irrespective of these advances, cancer remains a leading cause of death worldwide. Undoubtedly, the prevention of human cancer is highly preferable to treatment. Cancer chemoprevention, the use of vaccines or pharmaceutical agents to inhibit, retard, or reverse the process of carcinogenesis, is another important approach for easing this formidable public health burden. Similar to cancer chemotherapeutic agents, natural products play an important role in this field. There are many examples, including dietary phytochemicals such as sulforaphane and phenethyl isothiocyanate (cruciferous vegetables) and resveratrol (grapes and grape products). Overall, natural product research is a powerful approach for discovering biologically active compounds with unique structures and mechanisms of action. Given the unfathomable diversity of nature, it is reasonable to suggest that chemical leads can be generated that are capable of interacting with most or possibly all therapeutic targets. PMID:26679767
NASA Technical Reports Server (NTRS)
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Nagpal, Vinod K.
2007-01-01
An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.
NASA Technical Reports Server (NTRS)
Camarda, C. J.; Adelman, H. M.
1984-01-01
The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.
Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell
NASA Technical Reports Server (NTRS)
Rastogi, Naveen; Johnson, Eric R.
1994-01-01
Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.
The European Radiobiology Archives (ERA)--content, structure and use illustrated by an example.
Gerber, G B; Wick, R R; Kellerer, A M; Hopewell, J W; Di Majo, V; Dudoignon, N; Gössner, W; Stather, J
2006-01-01
The European Radiobiology Archives (ERA), supported by the European Commission and the European Late Effect Project Group (EULEP), together with the US National Radiobiology Archives (NRA) and the Japanese Radiobiology Archives (JRA) have collected all information still available on long-term animal experiments, including some selected human studies. The archives consist of a database in Microsoft Access, a website, databases of references and information on the use of the database. At present, the archives contain a description of the exposure conditions, animal strains, etc. from approximately 350,000 individuals; data on survival and pathology are available from approximately 200,000 individuals. Care has been taken to render pathological diagnoses compatible among different studies and to allow the lumping of pathological diagnoses into more general classes. 'Forms' in Access with an underlying computer code facilitate the use of the database. This paper describes the structure and content of the archives and illustrates an example for a possible analysis of such data.
Soft network composite materials with deterministic and bio-inspired designs
Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.
2015-01-01
Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446
Different strokes for different bugs-Examples of stridulatory diversity in the Hemiptera
USDA-ARS?s Scientific Manuscript database
Many Hemipteran insects communicate through substrate-borne vibrations produced by a diversity of stridulatory structures. Examples are presented of stridulations produced by different structures of two little-studied Hemipterans, a Rhopalid, Jadera haematoloma, and a pentatomid, Euschistus servus. ...
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal
2014-03-01
For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.
CryoTEM as an Advanced Analytical Tool for Materials Chemists.
Patterson, Joseph P; Xu, Yifei; Moradi, Mohammad-Amin; Sommerdijk, Nico A J M; Friedrich, Heiner
2017-07-18
Morphology plays an essential role in chemistry through the segregation of atoms and/or molecules into different phases, delineated by interfaces. This is a general process in materials synthesis and exploited in many fields including colloid chemistry, heterogeneous catalysis, and functional molecular systems. To rationally design complex materials, we must understand and control morphology evolution. Toward this goal, we utilize cryogenic transmission electron microscopy (cryoTEM), which can track the structural evolution of materials in solution with nanometer spatial resolution and a temporal resolution of <1 s. In this Account, we review examples of our own research where direct observations by cryoTEM have been essential to understanding morphology evolution in macromolecular self-assembly, inorganic nucleation and growth, and the cooperative evolution of hybrid materials. These three different research areas are at the heart of our approach to materials chemistry where we take inspiration from the myriad examples of complex materials in Nature. Biological materials are formed using a limited number of chemical components and under ambient conditions, and their formation pathways were refined during biological evolution by enormous trial and error approaches to self-organization and biomineralization. By combining the information on what is possible in nature and by focusing on a limited number of chemical components, we aim to provide an essential insight into the role of structure evolution in materials synthesis. Bone, for example, is a hierarchical and hybrid material which is lightweight, yet strong and hard. It is formed by the hierarchical self-assembly of collagen into a macromolecular template with nano- and microscale structure. This template then directs the nucleation and growth of oriented, nanoscale calcium phosphate crystals to form the composite material. Fundamental insight into controlling these structuring processes will eventually allow us to design such complex materials with predetermined and potentially unique properties.
Scrambled eggs: mechanical forces as ecological factors in early development.
Moore, Steven W
2003-01-01
Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.
NASA Technical Reports Server (NTRS)
Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino
1992-01-01
The problem of treating convective energy transport without MLT approximations is approached here by formulating the results of numerical simulations of convection in terms of energy fluxes. This revised treatment of convective transport can be easily incorporated within existing stellar structure codes. As an example, the technique is applied to the sun. The treatment does not include any free parameters, making the models extremely sensitive to the accuracy of the treatments of opacities, chemical abundances, treatments of the solar atmosphere, and the equation of state.
Structural concepts for large solar concentrators
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.
1986-01-01
Solar collectors for space use are examined, including both early designs and current concepts. In particular, attention is given to stiff sandwich panels and aluminum dishes as well as inflated and umbrella-type membrane configurations. The Sunflower concentrator is described as an example of a high-efficiency collector. It is concluded that stiff reflector panels are most likely to provide the long-term consistent accuracy necessary for low-orbit operation. A new configuration consisting of a Pactruss backup structure, with identical panels installed after deployment in space, is presented. It is estimated that concentration ratios in excess of 2000 can be achieved with this concept.
Approach to an Affordable and Sustainable Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.
2012-01-01
This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !
Reforming insurance to support workers' rights to compensation.
McCluskey, Martha T
2012-06-01
The structure and regulation of the insurance system for financing workers' compensation affects the costs of workers' benefits. Using the example of Maine's insurance market restructuring in response to a crisis of the early 1990s, this commentary explores how changes in insurance regulation might better support the goals of workers' compensation. The commentary analyzes how insurance and its regulation should go beyond correct pricing of risks to questions of how to structure incentives for loss control to include workers' interests as well as the interests of employers and insurers. Copyright © 2012 Wiley Periodicals, Inc.
Terminal-oriented computer-communication networks.
NASA Technical Reports Server (NTRS)
Schwartz, M.; Boorstyn, R. R.; Pickholtz, R. L.
1972-01-01
Four examples of currently operating computer-communication networks are described in this tutorial paper. They include the TYMNET network, the GE Information Services network, the NASDAQ over-the-counter stock-quotation system, and the Computer Sciences Infonet. These networks all use programmable concentrators for combining a multiplicity of terminals. Included in the discussion for each network is a description of the overall network structure, the handling and transmission of messages, communication requirements, routing and reliability consideration where applicable, operating data and design specifications where available, and unique design features in the area of computer communications.
X-Ray Backscatter Imaging for Aerospace Applications
NASA Astrophysics Data System (ADS)
Shedlock, Daniel; Edwards, Talion; Toh, Chin
2011-06-01
Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.
The ABC (in any D) of logarithmic CFT
NASA Astrophysics Data System (ADS)
Hogervorst, Matthijs; Paulos, Miguel; Vichi, Alessandro
2017-10-01
Logarithmic conformal field theories have a vast range of applications, from critical percolation to systems with quenched disorder. In this paper we thoroughly examine the structure of these theories based on their symmetry properties. Our analysis is model-independent and holds for any spacetime dimension. Our results include a determination of the general form of correlation functions and conformal block decompositions, clearing the path for future bootstrap applications. Several examples are discussed in detail, including logarithmic generalized free fields, holographic models, self-avoiding random walks and critical percolation.
Rapid self-assembly of block copolymers to photonic crystals
Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.
2016-07-05
The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.
Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2015-01-01
HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.
A heuristic approach to optimization of structural topology including self-weight
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.
Ultra-high-resolution X-ray structure of proteins.
Lecomte, C; Guillot, B; Muzet, N; Pichon-Pesme, V; Jelsch, C
2004-04-01
The constant advances in synchrotron radiation sources and crystallogenesis methods and the impulse of structural genomics projects have brought biocrystallography to a context favorable to subatomic resolution protein and nucleic acid structures. Thus, as soon as such precision can be frequently obtained, the amount of information available in the precise electron density should also be easily and naturally exploited, similarly to the field of small molecule charge density studies. Indeed, the use of a nonspherical model for the atomic electron density in the refinement of subatomic resolution protein structures allows the experimental description of their electrostatic properties. Some methods we have developed and implemented in our multipolar refinement program MoPro for this purpose are presented. Examples of successful applications to several subatomic resolution protein structures, including the 0.66 angstrom resolution human aldose reductase, are described.
Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?
NASA Technical Reports Server (NTRS)
Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.
2005-01-01
A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Orilall, M Christopher; Wiesner, Ulrich
2011-02-01
The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.
Random graph models for dynamic networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.
2017-10-01
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.
Name that compound: The numbers game for CFCs, HFCs, HCFCs, and Halons
Blasing, T. J.; Jones, Sonja
2012-02-01
Chlorofluorocarbons (CFCs) contain Carbon and some combination of Fluorine and Chlorine atoms. Hydrofluorocarbons (HFCs) contain Hydrogen, Fluorine, and Carbon (no chlorine). Hydrochlorofluorocarbons (HCFCs) contain Hydrogen, Chlorine, Fluorine, and Carbon atoms. Hydrobromofluorocarbons (HBFCs) contain Hydrogen, Bromine, Fluorine, and Carbon atoms. Perfluorocarbons contain Fluorine, Carbon, and Bromine atoms, and some contain Chlorine and/or Hydrogen atoms. These compounds are often designated by a combination of letters and numbers (e.g., CFC-11, HCFC-142b). In the latter example, the lower-case b refers to an isomer, which has no relationship to the chemical formula (C2H3F2Cl), but designates a particular structural arrangement of the atoms included. For example, HCFC-142b identifies the isomer in which all three hydrogen atoms are attached to the same carbon atom, and the structural formula is written as CH3CF2Cl. By contrast, HCFC-142 (without the b) refers to an arrangement in which one carbon atom is attached to two hydrogen atoms and one chlorine atom, while the other carbon atom is attached to the third hydrogen atom and two fluorine atoms. Hence, it has a different structural formula (CH2ClCHF2).
From molecular biology to nanotechnology and nanomedicine.
Bogunia-Kubik, Katarzyna; Sugisaka, Masanori
2002-01-01
Great progress in the development of molecular biology techniques has been seen since the discovery of the structure of deoxyribonucleic acid (DNA) and the implementation of a polymerase chain reaction (PCR) method. This started a new era of research on the structure of nucleic acids molecules, the development of new analytical tools, and DNA-based analyses. The latter included not only diagnostic procedures but also, for example, DNA-based computational approaches. On the other hand, people have started to be more interested in mimicking real life, and modeling the structures and organisms that already exist in nature for the further evaluation and insight into their behavior and evolution. These factors, among others, have led to the description of artificial organelles or cells, and the construction of nanoscale devices. These nanomachines and nanoobjects might soon find a practical implementation, especially in the field of medical research and diagnostics. The paper presents some examples, illustrating the progress in multidisciplinary research in the nanoscale area. It is focused especially on immunogenetics-related aspects and the wide usage of DNA molecules in various fields of science. In addition, some proposals for nanoparticles and nanoscale tools and their applications in medicine are reviewed and discussed.
Understanding molecular structure from molecular mechanics.
Allinger, Norman L
2011-04-01
Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.
Bharti, Bhuvnesh; Velev, Orlin D
2015-07-28
Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.
Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.
2011-01-01
A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.
BAYESIAN PROTEIN STRUCTURE ALIGNMENT.
Rodriguez, Abel; Schmidler, Scott C
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Peptides whose uptake by cells is controllable
Jiang, Tao [San Diego, CA; Tsien, Roger Y [La Jolla, CA
2012-02-07
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
Peptides whose uptake by cells is controllable
Jiang, Tao [San Diego, CA; Tsien, Roger Y [La Jolla, CA
2008-10-07
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
Peptides whose uptake by cells is controllable
Jiang, Tao; Tsien, Roger Y
2014-02-04
A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.
NASA Astrophysics Data System (ADS)
Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.
2005-08-01
A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library
Wickham, Shelley; Large, Maryanne C.J; Poladian, Leon; Jermiin, Lars S
2005-01-01
Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused. PMID:16849221
NASTRAN as an analytical research tool for composite mechanics and composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.; Sullivan, T. L.
1976-01-01
Selected examples are described in which NASTRAN is used as an analysis research tool for composite mechanics and for composite structural components. The examples were selected to illustrate the importance of using NASTRAN as an analysis tool in this rapidly advancing field.
Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing
NASA Astrophysics Data System (ADS)
Matsumoto, Ryutaroh
We show a simple example of a secret sharing scheme encoding classical secret to quantum shares that can realize an access structure impossible by classical information processing with limitation on the size of each share. The example is based on quantum stabilizer codes.
Highest-weight representations of Brocherd`s algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Applications of GIFTS III to Structural Engineering Problems.
The paper describes the latest version of the GIFTS SYSTEM (Graphics Oriented Interactive Finite Element Package for Time-Sharing), due for release...at the end of March 1976. The paper gives a description of the program modules available in the GIFTS library and the options available within its...framework. Examples are given to demonstrate the use of GIFTS in design-oriented applications. Some performance measurements are included. Amongst the
Honduras: A Pariah State, or Innovative Solutions to Organized Crime Deserving U.S. Support
2016-06-01
organized crime and delinquency in the coun- try. More controversially, he has created a new police force within the military, the Military Police of...and ambitious structure, wrestling with the inter-institutional challenges of the fight against orga- nized crime and delinquency in Honduras is no...example, statistics involving the activi- ties of the organizations under its operational control, 36 including counter-narcotics operations, actions
On the general constraints in single qubit quantum process tomography
Bhandari, Ramesh; Peters, Nicholas A.
2016-05-18
In this study, we briefly review single-qubit quantum process tomography for trace-preserving and nontrace-preserving processes, and derive explicit forms of the general constraints for fitting experimental data. These forms provide additional insight into the structure of the process matrix. We illustrate this with several examples, including a discussion of qubit leakage error models and the intuition which can be gained from their process matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munday, Lynn Brendon; Day, David M.; Bunting, Gregory
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
Peridynamics with LAMMPS : a user guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, Richard B.; Silling, Stewart Andrew; Plimpton, Steven James
2008-01-01
Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.
Automatic Keyframe Summarization of User-Generated Video
2014-06-01
using the framework presented in this paper. 12 Scenery Technology has been developed that classifies the genre of a video. Here, video genres are...types of videos that shares similarities in content and structure. Many genres of video footage exist. Some examples include news, sports, movies...cartoons, and commercials. Rasheed et al. [42] classify video genres (comedy, action, drama, and horror) with low-level video statistics, such as average
Advanced analysis technique for the evaluation of linear alternators and linear motors
NASA Technical Reports Server (NTRS)
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Community structure in networks
NASA Astrophysics Data System (ADS)
Newman, Mark
2004-03-01
Many networked systems, including physical, biological, social, and technological networks, appear to contain ``communities'' -- groups of nodes within which connections are dense, but between which they are sparser. The ability to find such communities in an automated fashion could be of considerable use. Communities in a web graph for instance might correspond to sets of web sites dealing with related topics, while communities in a biochemical network or an electronic circuit might correspond to functional units of some kind. We present a number of new methods for community discovery, including methods based on ``betweenness'' measures and methods based on modularity optimization. We also give examples of applications of these methods to both computer-generated and real-world network data, and show how our techniques can be used to shed light on the sometimes dauntingly complex structure of networked systems.
NASTRAN nonlinear vibration analysis of beam and frame structures
NASA Technical Reports Server (NTRS)
Mei, C.; Rogers, J. L., Jr.
1975-01-01
A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.
Horobin, R W; Stockert, J C; Rashid-Doubell, F
2015-05-01
We discuss a variety of biological targets including generic biomembranes and the membranes of the endoplasmic reticulum, endosomes/lysosomes, Golgi body, mitochondria (outer and inner membranes) and the plasma membrane of usual fluidity. For each target, we discuss the access of probes to the target membrane, probe uptake into the membrane and the mechanism of selectivity of the probe uptake. A statement of the QSAR decision rule that describes the required physicochemical features of probes that enable selective staining also is provided, followed by comments on exceptions and limits. Examples of probes typically used to demonstrate each target structure are noted and decision rule tabulations are provided for probes that localize in particular targets; these tabulations show distribution of probes in the conceptual space defined by the relevant structure parameters ("parameter space"). Some general implications and limitations of the QSAR models for probe targeting are discussed including the roles of certain cell and protocol factors that play significant roles in lipid staining. A case example illustrates the predictive ability of QSAR models. Key limiting values of the head group hydrophilicity parameter associated with membrane-probe interactions are discussed in an appendix.
Quantum geometry of resurgent perturbative/nonperturbative relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat
For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less
Quantum geometry of resurgent perturbative/nonperturbative relations
Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat
2017-05-16
For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less
Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.
2009-01-01
We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.
Robson, B; Boray, S
2018-04-01
Theoretical and methodological principles are presented for the construction of very large inference nets for odds calculations, composed of hundreds or many thousands or more of elements, in this paper generated by structured data mining. It is argued that the usual small inference nets can sometimes represent rather simple, arbitrary estimates. Examples of applications in clinical and public health data analysis, medical claims data and detection of irregular entries, and bioinformatics data, are presented. Construction of large nets benefits from application of a theory of expected information for sparse data and the Dirac notation and algebra. The extent to which these are important here is briefly discussed. Purposes of the study include (a) exploration of the properties of large inference nets and a perturbation and tacit conditionality models, (b) using these to propose simpler models including one that a physician could use routinely, analogous to a "risk score", (c) examination of the merit of describing optimal performance in a single measure that combines accuracy, specificity, and sensitivity in place of a ROC curve, and (d) relationship to methods for detecting anomalous and potentially fraudulent data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Formation and Control of Fluidic Species
NASA Technical Reports Server (NTRS)
Link, Darren Roy (Inventor); Marquez-Sanchez, Manuel (Inventor); Cheng, Zhengdong (Inventor); Weitz, David A. (Inventor)
2015-01-01
This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced. In another set of embodiments, a fluidic stream may be manipulated in some fashion, for example, to create tubes (which may be hollow or solid), droplets, nested tubes or droplets, arrays of tubes or droplets, meshes of tubes, etc. In some cases, droplets produced using certain embodiments of the invention may be charged or substantially charged, which may allow their further manipulation, for instance, using applied external fields. Non-limiting examples of such manipulations include producing charged droplets, coalescing droplets (especially at the microscale), synchronizing droplet formation, aligning molecules within the droplet, etc. In some cases, the droplets and/or the fluidic streams may include colloids, cells, therapeutic agents, and the like.
The Effects of Quality of Care on Costs: A Conceptual Framework
Nuckols, Teryl K; Escarce, José J; Asch, Steven M
2013-01-01
Context The quality of health care and the financial costs affected by receiving care represent two fundamental dimensions for judging health care performance. No existing conceptual framework appears to have described how quality influences costs. Methods We developed the Quality-Cost Framework, drawing from the work of Donabedian, the RAND/UCLA Appropriateness Method, reports by the Institute of Medicine, and other sources. Findings The Quality-Cost Framework describes how health-related quality of care (aspects of quality that influence health status) affects health care and other costs. Structure influences process, which, in turn, affects proximate and ultimate outcomes. Within structure, subdomains include general structural characteristics, circumstance-specific (e.g., disease-specific) structural characteristics, and quality-improvement systems. Process subdomains include appropriateness of care and medical errors. Proximate outcomes consist of disease progression, disease complications, and care complications. Each of the preceding subdomains influences health care costs. For example, quality improvement systems often create costs associated with monitoring and feedback. Providing appropriate care frequently requires additional physician visits and medications. Care complications may result in costly hospitalizations or procedures. Ultimate outcomes include functional status as well as length and quality of life; the economic value of these outcomes can be measured in terms of health utility or health-status-related costs. We illustrate our framework using examples related to glycemic control for type 2 diabetes mellitus or the appropriateness of care for low back pain. Conclusions The Quality-Cost Framework describes the mechanisms by which health-related quality of care affects health care and health status–related costs. Additional work will need to validate the framework by applying it to multiple clinical conditions. Applicability could be assessed by using the framework to classify the measures of quality and cost reported in published studies. Usefulness could be demonstrated by employing the framework to identify design flaws in published cost analyses, such as omitting the costs attributable to a relevant subdomain of quality. PMID:23758513
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.
Initiation of translation in bacteria by a structured eukaryotic IRES RNA.
Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S
2015-03-05
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.
The Paleo-Anthropocene in the East Mediterranean
NASA Astrophysics Data System (ADS)
Ackermann, Oren; Frumin, Suembikya; Kolska Horwitz, Liora; Maeir, Aren M.; Weiss, Ehud; Zhevelev, Helena M.
2015-04-01
The East Mediterranean region is located in a transition zone between the sub-humid Mediterranean climate and the semi-arid and arid climates. During the last few Millennia, this area has witnessed human activities at various levels of intensity that have affected the landscape system evolution. For this reason, the given region is an excellent example of an anthropogenic landscape that has been shaped since the Paleo-Anthropocene and until today. The lecture will present a few milestones that demonstrate the ancient anthropogenic impact on various landscape components including physical structure and vegetation and fauna composition and patterns. Physical structure Site density increased dramatically from prehistoric times through to the Byzantine period, when it reached more than 5 sites/km2. Agricultural terraces cover more than 50% of the slopes in the main ridge slope. Vegetation patterns and composition Ancient activities that altered the physical structure had an impact on vegetation patterns that remain visible today. Human land use over history changed the vegetation composition, as revealed in archaeobotanical finds and pollen analysis. For example, changes in conditions during the Neolithic period, at the beginning of agriculture, can be seen by the appearance of weeds. In later periods, the planting of olive trees changed the vegetation composition which has an effect until today. The area also underwent human transitions, as many cultures appeared and inhabited the area. These cultures at times brought with them plants associated specifically with these cultures (e.g. the Philistines). Fauna extinction and invasion There are a few example of species extinction that occurred in the past as a result of mass hunting and killing; for example, the extinction of the Gazella subgutturosa in North Syria. In addition, there is evidence that ancient cultures brought animal species with them. For example, the Philistines that came to the area during the early Iron Age brought with them the European Boar. This species eventually became the dominant type in the area, affecting other species as well. All of these incidents are evidence of the ancient anthropogenic impact on the landscape in ancient times and until today.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
Equivalent plate modeling for conceptual design of aircraft wing structures
NASA Technical Reports Server (NTRS)
Giles, Gary L.
1995-01-01
This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.
NASA Technical Reports Server (NTRS)
Dos Reis, H. L. M.; Vary, A.
1988-01-01
This paper introduces the nature and the underlying rational of the acousto-ultrasonic stress wave factor technique and some of its applications to composite materials and structures. Furthermore, two examples of successful application of the acousto-ultrasonic technique are presented in detail. In the first example, the acousto-ultrasonic technique is used to evaluate the adhesive bond strength between rubber layers and steel plates, and in the seocnd example the tehcnique is used to monitor progressive damage in wire rope.
Flaser and wavy bedding in ephemeral streams: a modern and an ancient example
NASA Astrophysics Data System (ADS)
Martin, A. J.
2000-10-01
Flaser and wavy bedding are sedimentary structures characterized by alternating rippled sand and mud layers. These structures often are considered to form mostly in tidally influenced environments; published examples from fluvial environments are rare. Flaser and wavy bedding were found in two ephemeral stream deposits: the Jurassic Kayenta Formation and the modern wash in Seven Mile Canyon, both located in southeastern Utah, USA. These examples demonstrate that flaser bedding can form and be preserved in ephemeral streams.
Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria
Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin
2011-01-01
Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem copies are found. PMID:22022374
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
Hot and Spicy versus Cool and Minty as an Example of Organic Structure-Activity Relationships
NASA Astrophysics Data System (ADS)
Kimbrough, Doris R.
1997-07-01
There are two classes of substances that activate neural receptors that are involved in temperature perception. Structures of substances found in spices and food that we normally associate with "hot" (or spicy) and "cool" (or minty) flavors are presented and discussed. Functional group similarities within the two groups provide an interesting example of the relationship between molecular structure and molecular function in organic chemistry.
Engineering microbial chemical factories to produce renewable "biomonomers".
Adkins, Jake; Pugh, Shawn; McKenna, Rebekah; Nielsen, David R
2012-01-01
By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called "biomonomers." Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way toward new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible.
Biomimetics--using nature to inspire human innovation.
Bar-Cohen, Yoseph
2006-03-01
Evolution has resolved many of nature's challenges leading to lasting solutions. Nature has always inspired human achievements and has led to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits (Bar-Cohen Y (ed) 2005 Biomimetics-Biologically Inspired Technologies (Boca Raton, FL: CRC Press) pp 1-552). This field, which is known as biomimetics, offers enormous potential for inspiring new capabilities for exciting future technologies. There are numerous examples of biomimetic successes that involve making simple copies, such as the use of fins for swimming. Others examples involved greater mimicking complexity including the mastery of flying that became possible only after the principles of aerodynamics were better understood. Some commercial implementations of biomimetics, including robotic toys and movie subjects, are increasingly appearing and behaving like living creatures. More substantial benefits of biomimetics include the development of prosthetics that closely mimic real limbs and sensory-enhancing microchips that are interfaced with the brain to assist in hearing, seeing and controlling instruments. A review is given of selected areas that were inspired by nature, and an outlook for potential development in biomimetics is presented.
NASA Astrophysics Data System (ADS)
Khayrullina, D. N.; Kurzhanova, A. A.
2018-01-01
This paper deals with the estimate the structure of the chloride ion runoff from the karst (on the example of the Sula river basin) and non-karst (on the example of the Vaga river basin) geosystems of Arkhangelsk oblast. The contribution of the surface component predominates in the structure of the chloride ion runoff.For example, the input of surface ion runoff is 49% (for the Sula river basin), 55% (for the Vaga river basin). In time aspect the highest values of variability of the components of the chloride ion runoff are noted for karst geosystems and vary from 38.5% to 55.4% and from 24.7% to 42.9% - for non-karst geosystems.Finally, there is prevalence of the local factors influence because the atmospheric component decreases while ion runoff increases.
NASA Astrophysics Data System (ADS)
Rabalais, J. W.; Bu, H.; Roux, C.
1992-02-01
The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.
FLUT - A program for aeroelastic stability analysis. [of aircraft structures in subsonic flow
NASA Technical Reports Server (NTRS)
Johnson, E. H.
1977-01-01
A computer program (FLUT) that can be used to evaluate the aeroelastic stability of aircraft structures in subsonic flow is described. The algorithm synthesizes data from a structural vibration analysis with an unsteady aerodynamics analysis and then performs a complex eigenvalue analysis to assess the system stability. The theoretical basis of the program is discussed with special emphasis placed on some innovative techniques which improve the efficiency of the analysis. User information needed to efficiently and successfully utilize the program is provided. In addition to identifying the required input, the flow of the program execution and some possible sources of difficulty are included. The use of the program is demonstrated with a listing of the input and output for a simple example.
Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B
2014-01-01
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.
Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G
2010-04-01
Ligand-protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects.
Doppelt-Azeroual, Olivia; Delfaud, François; Moriaud, Fabrice; de Brevern, Alexandre G
2010-01-01
Ligand–protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties. MED-SMA is an automated and fast method to classify binding sites. It is based on MED-SuMo technology, which builds a similarity graph, and it uses the Markov Clustering algorithm. Purine binding sites are well studied as drug targets. Here, purine binding sites of the Protein DataBank (PDB) are classified. Proteins potentially inhibited or activated through the same mechanism are gathered. Results are analyzed according to PROSITE annotations and to carefully refined functional annotations extracted from the PDB. As expected, binding sites associated with related mechanisms are gathered, for example, the Small GTPases. Nevertheless, protein kinases from different Kinome families are also found together, for example, Aurora-A and CDK2 proteins which are inhibited by the same drugs. Representative examples of different clusters are presented. The effectiveness of the MED-SMA approach is demonstrated as it gathers binding sites of proteins with similar structure-activity relationships. Moreover, an efficient new protocol associates structures absent of cocrystallized ligands to the purine clusters enabling those structures to be associated with a specific binding mechanism. Applications of this classification by binding mode similarity include target-based drug design and prediction of cross-reactivity and therefore potential toxic side effects. PMID:20162627
Modeling fibrous biological tissues with a general invariant that excludes compressed fibers
NASA Astrophysics Data System (ADS)
Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.
2018-01-01
Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.
NASA Astrophysics Data System (ADS)
Negrete, Aquiles
2015-04-01
It is quite reasonable to claim that narratives can include, explain and recreate science and that this means of science communication is generally popular. This idea seems to be supported by the fact that many contemporary authors who include science as a theme in their work receive a good reception among the public (at least in Britain). Novels like Fermat's Last Theorem by Simon Singh, Longitude by Dava Sobel and Neuromancer by William Gibson stayed on the best seller lists for weeks. Plays like Copenhagen by Michael Frayn, Arcadia by Tom Stoppard, Oxigen by Carl Djerassi and Ronald Hoffmann, Diary of a steak by Deborah Levy as well as Blue heart by Caryl Churchill enjoyed complete sell-outs in London and other cities in Britain. The explanation for this popularity seems to be that narratives are amusing, attractive, and interesting. Therefore, we can maintain that they are popular. But are they also a long-lasting way of transmitting knowledge? Do people remember scientific information conveyed by this means better than they remember the traditional formats like paradigmatic textbooks? These are questions that need to be addressed. To understand how narratives organize, represent and convey information, it is an important task to evaluate the advantages that this media offers for the communication of science. Narratives include several characteristics that make them memorable, understandable, enjoyable and a good way to present and communicate knowledge. Some of these attributes are achieved through narrative structures, including literary devices. In this research I discuss how the general public is familiar with the narrative structure of a story, how schemas for these narrative structures allow identification, induce emotions and promote understanding - important elements for the learning and memory process. I also look at how individually the narrative resources (or literary devices), in addition to their aesthetic value, can also work as mnemonic structures and as conceptual models that enable us to perceive, apprehend, construct and communicate meaning out of reality. Finally I present an example of the use of comics (narratives) in communicating scientific information about the sustainable use of the Mayan Nut in rural areas in Mexico.
Large volcanoes on Venus: Examples of geologic and structural characteristics from different classes
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Head, J. W.; Aubele, J. C.
1993-01-01
Large volcanoes characterized by radial lava flows and similar evidence for a topographic edifice are widely distributed over the surface of Venus and geologically diverse. Based on the global identification of more than 165 examples and preliminary geologic mapping, large volcanoes range from those characterized geologically as simple lava edifices to those bearing evidence of complexly developed volcanic and structural histories. Many large volcanoes exhibit characteristics transitional to other large magnetic center types such as coronae and novae. In this study, we examine the geology and structure of several type examples of large volcanoes not addressed in previous studies which are representative of several of the morphological classes.
MIANN models in medicinal, physical and organic chemistry.
González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M
2013-01-01
Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
Protocols for self-assembly and imaging of DNA nanostructures.
Sobey, Thomas L; Simmel, Friedrich C
2011-01-01
Programed molecular structures allow us to research and make use of physical, chemical, and biological effects at the nanoscale. They are an example of the "bottom-up" approach to nanotechnology, with structures forming through self-assembly. DNA is a particularly useful molecule for this purpose, and some of its advantages include parallel (as opposed to serial) assembly, naturally occurring "tools," such as enzymes and proteins for making modifications and attachments, and structural dependence on base sequence. This allows us to develop one, two, and three dimensional structures that are interesting for their fundamental physical and chemical behavior, and for potential applications such as biosensors, medical diagnostics, molecular electronics, and efficient light-harvesting systems. We describe five techniques that allow one to assemble and image such structures: concentration measurement by ultraviolet absorption, titration gel electrophoresis, thermal annealing, fluorescence microscopy, and atomic force microscopy in fluids.
Approach to an Affordable and Productive Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.
2012-01-01
This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.
Burr, Tom; Hamada, Michael S.; Howell, John; ...
2013-01-01
Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals.more » Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.« less
Development and Applications of Benchmark Examples for Static Delamination Propagation Predictions
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2013-01-01
The development and application of benchmark examples for the assessment of quasistatic delamination propagation capabilities was demonstrated for ANSYS (TradeMark) and Abaqus/Standard (TradeMark). The examples selected were based on finite element models of Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. First, quasi-static benchmark results were created based on an approach developed previously. Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in ANSYS (TradeMark) and Abaqus/Standard (TradeMark). Input control parameters were varied to study the effect on the computed delamination propagation. Overall, the benchmarking procedure proved valuable by highlighting the issues associated with choosing the appropriate input parameters for the VCCT implementations in ANSYS® and Abaqus/Standard®. However, further assessment for mixed-mode delamination fatigue onset and growth is required. Additionally studies should include the assessment of the propagation capabilities in more complex specimens and on a structural level.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal
2012-01-01
The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.
Design procedures for fiber composite structural components - Rods, beams, and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1984-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Design procedures for fiber composite structural components: Rods, columns and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Nayegandhi, Amar; Brock, John; Woodman, Robert
2012-01-01
Traditional vegetation maps capture the horizontal distribution of various vegetation properties, for example, type, species and age/senescence, across a landscape. Ecologists have long known, however, that many important forest properties, for example, interior microclimate, carbon capacity, biomass and habitat suitability, are also dependent on the vertical arrangement of branches and leaves within tree canopies. The objective of this study was to use a digital elevation model (DEM) along with tree canopy-structure metrics derived from a lidar survey conducted using the Experimental Advanced Airborne Research Lidar (EAARL) to capture a three-dimensional view of vegetation communities in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve, Louisiana. The EAARL instrument is a raster-scanning, full waveform-resolving, small-footprint, green-wavelength (532-nanometer) lidar system designed to map coastal bathymetry, topography and vegetation structure simultaneously. An unsupervised clustering procedure was then applied to the 3-dimensional-based metrics and DEM to produce a vegetation map based on the vertical structure of the park's vegetation, which includes a flotant marsh, scrub-shrub wetland, bottomland hardwood forest, and baldcypress-tupelo swamp forest. This study was completed in collaboration with the National Park Service Inventory and Monitoring Program's Gulf Coast Network. The methods presented herein are intended to be used as part of a cost-effective monitoring tool to capture change in park resources.
Optical holographic structural analysis of Kevlar rocket motor cases
NASA Astrophysics Data System (ADS)
Harris, W. J.
1981-05-01
The methodology of applying optical holography to evaluation of subscale Kevlar 49 composite pressure vessels is explored. The results and advantages of the holographic technique are discussed. The cases utilized were of similar design, but each had specific design features, the effects of which are reviewed. Burst testing results are presented in conjunction with the holographic fringe patterns obtained during progressive pressurization. Examples of quantitative data extracted by analysis of fringe fields are included.
Critical technology areas of an SPS development and the applicability of European technology
NASA Technical Reports Server (NTRS)
Kassing, D.; Ruth, J.
1980-01-01
Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.
The urban features of informal settlements in Jakarta, Indonesia.
Alzamil, Waleed
2017-12-01
This data article contains the urban features of three informal settlements in Jakarta: A. Kampung Bandan; B. Kampung Luar Batang; And C. Kampung Muara Baru. The data describes the urban features of physical structures, infrastructures, and public services. These data include maps showing locations of these settlements, photography of urban status, and examples of urban fabric. The data are obtained from the statistical records and field surveys of three settlements cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples.
Pilot-Induced Oscillations and Human Dynamic Behavior
NASA Technical Reports Server (NTRS)
McRuer, Duane T.
1995-01-01
This is an in-depth survey and study of pilot-induced oscillations (PIO's) as interactions between human pilot and vehicle dynamics; it includes a broad and comprehensive theory of PIO's. A historical perspective provides examples of the diversity of PIO's in terms of control axes and oscillation frequencies. The constituents involved in PIO phenomena, including effective aircraft dynamics, human pilot dynamic behavior patterns, and triggering precursor events, are examined in detail as the structural elements interacting to produce severe pilot-induced oscillations. The great diversity of human pilot response patterns, excessive lags and/or inappropriate gain in effective aircraft dynamics, and transitions in either the human or effective aircraft dynamics are among the key sources implicated as factors in severe PIO's. The great variety of interactions which may result in severe PIO's is illustrated by examples drawn from famous PIO's. These are generalized under a pilot-behavior-theory-based set of categories proposed as a classification scheme pertinent to a theory of PIO's. Finally, a series of interim prescriptions to avoid PIO is provided.
Trends in Streamflow Characteristics in Hawaii, 1913-2002
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.
Cellular Electron Cryotomography: Toward Structural Biology In Situ.
Oikonomou, Catherine M; Jensen, Grant J
2017-06-20
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Charge delocalization characteristics of regioregular high mobility polymers
Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...
2017-01-01
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less
Necessary Conditions for Intraplate Seismic Zones in North America
NASA Astrophysics Data System (ADS)
Thomas, William A.; Powell, Christine A.
2017-12-01
The cause of intraplate seismic zones persists as an important scientific and societal question. Most intraplate earthquakes are concentrated in specific seismic zones along or adjacent to large-scale basement structures (e.g., rifts or sutures at ancient plate boundaries) within continental crust. The major intraplate seismic zones are limited to specific segments and are not distributed along the lengths of the ancient structures. We present a new hypothesis that major intraplate seismic zones are restricted to places where concentrated crustal deformation (CCD) is overprinted on large-scale basement structures. Examples where CCD affects the stability of specific parts of large-scale structures in response to present-day stress conditions include the most active seismic zones in central and eastern North America: Charlevoix, Eastern Tennessee, and New Madrid. Our hypothesis has important implications for the assessment of seismic hazards.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.
Nanostructured bio-functional polymer brushes.
Padeste, Celestino; Farquet, Patrick; Potzner, Christian; Solak, Harun H
2006-01-01
Structured poly(glycidyl methracrylate) (poly-GMA) brushes have been grafted onto flexible fluoro-polymer films using a radiation grafting process. The reactive epoxide of poly-GMA provides the basis for a versatile biofunctionalization of the grafted brushes. Structure definition by extreme ultraviolet (EUV) exposure allowed nanometer-scale resolution of periodic patterns. By variation of the exposure dose the height of the grafted structures can be adapted in a wide range. Derivatization of the grafted brushes included reaction with various amines with different side chains, hydrolysis of the epoxide to diols to increase protein resistance and introduction of ionic groups to yield poly-electrolytes. As an example for biofunctionalization, biotin was linked to the grafted brush and biofunctionality was demonstrated in a competitive biotin-streptavidin assay. In this article we also present a brief review of other approaches to obtain structured biofunctional polymer brushes.
The rate of cis-trans conformation errors is increasing in low-resolution crystal structures.
Croll, Tristan Ian
2015-03-01
Cis-peptide bonds (with the exception of X-Pro) are exceedingly rare in native protein structures, yet a check for these is not currently included in the standard workflow for some common crystallography packages nor in the automated quality checks that are applied during submission to the Protein Data Bank. This appears to be leading to a growing rate of inclusion of spurious cis-peptide bonds in low-resolution structures both in absolute terms and as a fraction of solved residues. Most concerningly, it is possible for structures to contain very large numbers (>1%) of spurious cis-peptide bonds while still achieving excellent quality reports from MolProbity, leading to concerns that ignoring such errors is allowing software to overfit maps without producing telltale errors in, for example, the Ramachandran plot.
Understanding of Android-Based Robotic and Game Structure
NASA Astrophysics Data System (ADS)
Phongtraychack, A.; Syryamkin, V.
2018-05-01
The development of an android with impressive lifelike appearance and behavior has been a long-standing goal in robotics and a new and exciting approach of smartphone-based robotics for research and education. Recent years have been progressive for many technologies, which allowed creating such androids. There are different examples including the autonomous Erica android system capable of conversational interaction and speech synthesis technologies. The behavior of Android-based robot could be running on the phone as the robot performed a task outdoors. In this paper, we present an overview and understanding of the platform of Android-based robotic and game structure for research and education.
NASA Technical Reports Server (NTRS)
Usher, D. A.; Needels, M. C.
1986-01-01
Examples of chiral selection in nonenzymatic aminoacylation of internal 2-prime hydroxyl groups of oligo- and polynucleotides are discussed as an evidence for the early evolution of bionucleotides. Some factors that could influence the degree of this chiral selection and its direction are discussed. These include the structure of the aminoacyl component, the structure of the nucleoside component, and the reaction conditions. Investigation of the mechanism of this reaction was aided by the use of 3-prime inosine methyl phosphate (as a simplified model for a dinucleoside monophosphate) and proton NMR spectroscopy of t-butoxycarbonyl-alanyl esters of nucleosides as models for the transition state of the aminoacylation reaction itself.
Coventry, Joe; Andraka, Charles
2017-03-22
Parabolic dish technology, for concentrating solar power (CSP) applications, has been continuously modified and improved since the pioneering work in the 1970s. Best practice dishes now have features such as lightweight structure, balanced design, high-quality, low-cost mirror panels, and can be deployed rapidly with little in-field labour. This review focuses on the evolution of dish design, by examining features such as mode of tracking, structure and mirror design, for a wide selection of CSP dish examples. Finally, the review includes a brief summary of power generation options – both on-dish and central plant – as well as a discussion aboutmore » options for storage and hybridisation.« less
A Selective Review of Group Selection in High-Dimensional Models
Huang, Jian; Breheny, Patrick; Ma, Shuangge
2013-01-01
Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study. PMID:24174707
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
Haw, James F.; Song, Weiguo
2006-07-18
In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.
Structure-driven turbulence in ``No man's Land''
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Diamond, Patrick
2012-10-01
Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.
Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T
2017-04-18
Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe its chemical basis along with the requirements for its successful implementation. We then present a small number of examples, with an emphasis on those that (a) convey the underlying concepts and/or (b) lead to functional structures (e.g., catalysts) that would be difficult or impossible to access via direct routes. The examples, however, are only illustrative, and a significant body of work exists from both our lab and others, especially for the SALE/PSE strategy. We refer readers to the papers cited and to the references therein. More exciting, in our view, will be new examples and new applications of the functionalization strategies-especially applications made possible by creatively combining the strategies. Underexplored (again, in our view) are implementations that impart electrical conductivity, enable increasingly selective chemical sensing, or facilitate cascade catalysis. It will be interesting to see where these strategies and others take this compelling field over the next few years.
Imparting Desired Attributes by Optimization in Structural Design
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2003-01-01
Commonly available optimization methods typically produce a single optimal design as a Constrained minimum of a particular objective function. However, in engineering design practice it is quite often important to explore as much of the design space as possible with respect to many attributes to find out what behaviors are possible and not possible within the initially adopted design concept. The paper shows that the very simple method of the sum of objectives is useful for such exploration. By geometrical argument it is demonstrated that if every weighting coefficient is allowed to change its magnitude and its sign then the method returns a set of designs that are all feasible, diverse in their attributes, and include the Pareto and non-Pareto solutions, at least for convex cases. Numerical examples in the paper include a case of an aircraft wing structural box with thousands of degrees of freedom and constraints, and over 100 design variables, whose attributes are structural mass, volume, displacement, and frequency. The method is inherently suitable for parallel, coarse-grained implementation that enables exploration of the design space in the elapsed time of a single structural optimization.
Deep Structure of the Earth and Concentration of Metals in the Lithosphere: A Geodynamic Approach
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Kutina, J.; Pei, R.
2004-01-01
A discussion of and introduction to satellite-altitude geopotential fields studies and their interpretation with emphasis on results from metalliferous regions will be given. The magnetic and gravimetric measurements from satellite altitudes show heterogeneity in deeper parts of the lithosphere. These patterns of magnetic anomalies do not only reveal the largest iron ore deposits such as Kiruna, Sweden and Kursk, Russia, but also linear features indicating structural discontinuities. Changes of magnetic amplitude of these patterns are caused by intersecting transverse fractures localizing magmatism and concentration of metals. The role of trans-regional mantle-rooted structural discontinuities in the concentration of metals will be discussed and a new type of mineral prognosis map will be presented. Deep-rooted structural discontinuities, defined by combination of geological and geophysical criteria, with spacing of several hundred kilometers, reveal a quite uniform pattern in the deeper parts of the lithosphere. As these structures provide favorable pathways for the ascent of heat, magmas and ore-forming fluids, their recognition is of crucial importance and can be used in the compilation of a new type of mineral prognosis map. Examples are shown from the United States, Canada, China, Burma, South America, Europe and Australia. The European example includes a pattern of east west trending structural discontinuities or belts and their junction with the NW-trending Tornqvist-Teisseyre Line. The Upper Silesian-Cracovian Zn-Pb district occurs along one of the latitudinal belts. Leslaw Teper of the University of Silesia has been invited to show the fractures in crystalline basement beneath the sediments hosting the Zn-Pb ores.
Regulatory effects of cotranscriptional RNA structure formation and transitions.
Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi
2016-09-01
RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Accelerated probabilistic inference of RNA structure evolution
Holmes, Ian
2005-01-01
Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387
Including Emotional Intelligence in Pharmacy Curricula to Help Achieve CAPE Outcomes
Fierke, Kerry K.; Sucher, Brandon J.; Janke, Kristin K.
2015-01-01
The importance of emotional intelligence (EI) for effective teamwork and leadership within the workplace is increasingly apparent. As suggested by the 2013 CAPE Outcomes, we recommend that colleges and schools of pharmacy consider EI-related competencies to build self-awareness and professionalism among students. In this Statement, we provide two examples of the introduction of EI into pharmacy curricula. In addition, we provide a 4-phase process based on recommendations developed by EI experts for structuring and planning EI development. Finally, we make 9 recommendations’ to inform the process of including EI in pharmacy curricula. PMID:26089557
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Starnes, James H., Jr.
1998-01-01
A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.
NASA Technical Reports Server (NTRS)
Mclees, Robert E.; Cohen, Gerald C.
1991-01-01
The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.
Knowledge-based model building of proteins: concepts and examples.
Bajorath, J.; Stenkamp, R.; Aruffo, A.
1993-01-01
We describe how to build protein models from structural templates. Methods to identify structural similarities between proteins in cases of significant, moderate to low, or virtually absent sequence similarity are discussed. The detection and evaluation of structural relationships is emphasized as a central aspect of protein modeling, distinct from the more technical aspects of model building. Computational techniques to generate and complement comparative protein models are also reviewed. Two examples, P-selectin and gp39, are presented to illustrate the derivation of protein model structures and their use in experimental studies. PMID:7505680
Environmental site assessments and audits: Building inspection requirements
NASA Astrophysics Data System (ADS)
Lange, John H.; Kaiser, Genevieve; Thomulka, Kenneth W.
1994-01-01
Environmental site assessment criteria were originally developed by organizations that focused, almost exclusively, on surface, subsurface, and pollution source contamination. Many of the hazards associated with indoor environments and building structures were traditionally not considered when evaluating sources and entities of environmental pollution. Since a large number of building materials are potentially hazardous, careful evaluation is necessary. Until recently, little information on building inspection requirements of environmental problems has been published. Traditionally, asbestos has been the main component of concern. The ever-changing environmental standards have dramatically expanded the scope of building surveys. Indoor environmental concerns, for example, currently include formaldehyde, lead-based paint, polychlorinated biphenyls, radon, and indoor air pollution. Environmental regulations are being expanded and developed that specifically include building structures. These regulatory standards are being triggered by an increased awareness of health effects from indoor exposure, fires, spills, and other accidents that have resulted in injury, death, and financial loss. This article discusses various aspects of assessments for building structures.
Structure for Storing Properties of Particles (PoP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N. R.; Mattoon, C. M.; Beck, B. R.
2014-06-01
Some evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. Moreover, the “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas andmore » electrons (along with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...
2018-04-19
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
Structure for Storing Properties of Particles (PoP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.R., E-mail: infinidhi@llnl.gov; Mattoon, C.M.; Beck, B.R.
2014-06-15
Evaluated nuclear databases are critical for applications such as nuclear energy, nuclear medicine, homeland security, and stockpile stewardship. Particle masses, nuclear excitation levels, and other “Properties of Particles” are essential for making evaluated nuclear databases. Currently, these properties are obtained from various databases that are stored in outdated formats. A “Properties of Particles” (PoP) structure is being designed that will allow storing all information for one or more particles in a single place, so that each evaluation, simulation, model calculation, etc. can link to the same data. Information provided in PoP will include properties of nuclei, gammas and electrons (alongmore » with other particles such as pions, as evaluations extend to higher energies). Presently, PoP includes masses from the Atomic Mass Evaluation version 2003 (AME2003), and level schemes and gamma decays from the Reference Input Parameter Library (RIPL-3). The data are stored in a hierarchical structure. An example of how PoP stores nuclear masses and energy levels will be presented here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics
Steinhauser, Martin O.; Hiermaier, Stefan
2009-01-01
This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467
Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin
2017-04-01
Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.
Flow behavior in liquid molding
NASA Technical Reports Server (NTRS)
Hunston, D.; Phelan, F.; Parnas, R.
1992-01-01
The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.
Pragmatics in discourse performance: insights from aphasiology.
Ulatowska, Hanna K; Olness, Gloria Streit
2007-05-01
This article examines the preservation of pragmatic abilities of individuals with aphasia, as manifested in the discourse they produce. The construct of coherence is used as a framework for understanding this pragmatic preservation. Discourse coherence is largely derived from the structure, selection, and highlighting of information expressed in a discourse. Personal narratives, as one type of discourse, represent an extended turn-in-conversation on a topic of personal relevance to the speaker, common in everyday life. As such, they provide a valuable source of information about a speaker's pragmatic ability. Examples of personal narratives told by individuals with aphasia are used to illustrate and discuss the means by which discourse coherence is achieved. These include a tightly structured temporal-causal event line, development of theme, and evaluation of information. Possible approaches to clinical assessment are considered, including use of global rating systems.
3D Printing and Digital Rock Physics for the Geosciences
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2014-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Identifying and reducing error in cluster-expansion approximations of protein energies.
Hahn, Seungsoo; Ashenberg, Orr; Grigoryan, Gevorg; Keating, Amy E
2010-12-01
Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy. The method consists of several steps. First, for a given protein structure, a training set of sequences with known energies is generated. Next, this training set is used to expand energy as a function of clusters consisting of single residues, residue pairs, and higher order terms, if required. The accuracy of the sequence-based expansion is monitored and improved using cross-validation testing and iterative inclusion of additional clusters. As a trade-off for evaluation speed, the cluster-expansion approximation causes prediction errors, which can be reduced by including more training sequences, including higher order terms in the expansion, and/or reducing the sequence space described by the cluster expansion. This article analyzes the sources of error and introduces a method whereby accuracy can be improved by judiciously reducing the described sequence space. The method is applied to describe the sequence-stability relationship for several protein structures: coiled-coil dimers and trimers, a PDZ domain, and T4 lysozyme as examples with computationally derived energies, and SH3 domains in amphiphysin-1 and endophilin-1 as examples where the expanded pseudo-energies are obtained from experiments. Our open-source software package Cluster Expansion Version 1.0 allows users to expand their own energy function of interest and thereby apply cluster expansion to custom problems in protein design. © 2010 Wiley Periodicals, Inc.
Mesocrystals in Biominerals and Colloidal Arrays.
Bergström, Lennart; Sturm née Rosseeva, Elena V; Salazar-Alvarez, German; Cölfen, Helmut
2015-05-19
Mesocrystals, which originally was a term to designate superstructures of nanocrystals with a common crystallographic orientation, have now evolved to a materials concept. The discovery that many biominerals are mesocrystals generated a large research interest, and it was suggested that mesocrystals result in better mechanical performance and optical properties compared to single crystalline structures. Mesocrystalline biominerals are mainly found in spines or shells, which have to be mechanically optimized for protection or as a load-bearing skeleton. Important examples include red coral and sea urchin spine as well as bones. Mesocrystals can also be formed from purely synthetic components. Biomimetic mineralization and assembly have been used to produce mesocrystals, sometimes with complex hierarchical structures. Important examples include the fluorapatite mesocrystals with gelatin as the structural matrix, and mesocrystalline calcite spicules with impressive strength and flexibility that could be synthesized using silicatein protein fibers as template for calcium carbonate deposition. Self-assembly of nanocrystals can also result in mesocrystals if the nanocrystals have a well-defined size and shape and the assembly conditions are tuned to allow the nanoparticles to align crystallographically. Mesocrystals formed by assembly of monodisperse metallic, semiconducting, and magnetic nanocrystals are a type of colloidal crystal with a well-defined structure on both the atomic and mesoscopic length scale.Mesocrystals typically are hybrid materials between crystalline nanoparticles and interspacing amorphous organic or inorganic layers. This structure allows to combine disparate materials like hard but brittle nanocrystals with a soft and ductile amorphous material, enabling a mechanically optimized structural design as realized in the sea urchin spicule. Furthermore, mesocrystals can combine the properties of individual nanocrystals like the optical quantum size effect, surface plasmon resonance, and size dependent magnetic properties with a mesostructure and morphology tailored for specific applications. Indeed, mesocrystals composed of crystallographically aligned polyhedral or rodlike nanocrystals with anisotropic properties can be materials with strongly directional properties and novel collective emergent properties. An additional advantage of mesocrystals is that they can combine the properties of nanoparticles with a structure on the micro- or macroscale allowing for much easier handling.
Integrated control/structure optimization by multilevel decomposition
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Gilbert, Michael G.
1990-01-01
A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.
Twilight reloaded: the peptide experience
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2017-01-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided. PMID:28291756
Twilight reloaded: the peptide experience.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2017-03-01
The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallographic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein-peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.
A modified approach to controller partitioning
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Veillette, Robert J.
1993-01-01
The idea of computing a decentralized control law for the integrated flight/propulsion control of an aircraft by partitioning a given centralized controller is investigated. An existing controller partitioning methodology is described, and a modified approach is proposed with the objective of simplifying the associated controller approximation problem. Under the existing approach, the decentralized control structure is a variable in the partitioning process; by contrast, the modified approach assumes that the structure is fixed a priori. Hence, the centralized controller design may take the decentralized control structure into account. Specifically, the centralized controller may be designed to include all the same inputs and outputs as the decentralized controller; then, the two controllers may be compared directly, simplifying the partitioning process considerably. Following the modified approach, a centralized controller is designed for an example aircraft mode. The design includes all the inputs and outputs to be used in a specified decentralized control structure. However, it is shown that the resulting centralized controller is not well suited for approximation by a decentralized controller of the given structure. The results indicate that it is not practical in general to cast the controller partitioning problem as a direct controller approximation problem.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.
Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wales, D. J., E-mail: dw34@cam.ac.uk
This perspective focuses on conceptual and computational aspects of the potential energy landscape framework. It has two objectives: first to summarise some key developments of the approach and second to illustrate how such techniques can be applied using a specific example that exploits knowledge of pathways. Recent developments in theory and simulation within the landscape framework are first outlined, including methods for structure prediction, analysis of global thermodynamic properties, and treatment of rare event dynamics. We then develop a connection between the kinetic transition network treatment of dynamics and a potential of mean force defined by a reaction coordinate. Themore » effect of projection from the full configuration space to low dimensionality is illustrated for an atomic cluster. In this example, where a relatively successful structural order parameter is available, the principal change in cluster morphology is reproduced, but some details are not faithfully represented. In contrast, a profile based on configurations that correspond to the discrete path defined geometrically retains all the barriers and minima. This comparison provides insight into the physical origins of “friction” effects in low-dimensionality descriptions of dynamics based upon a reaction coordinate.« less
Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future.
Bestmann, Sven; Feredoes, Eva
2013-08-01
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure-function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure-function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition. © 2013 New York Academy of Sciences.
Relativistic opacities for astrophysical applications
Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...
2015-06-29
Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less
NASA Technical Reports Server (NTRS)
Macneal, R. H.; Harder, R. L.; Mason, J. B.
1973-01-01
A development for NASTRAN which facilitates the analysis of structures made up of identical segments symmetrically arranged with respect to an axis is described. The key operation in the method is the transformation of the degrees of freedom for the structure into uncoupled symmetrical components, thereby greatly reducing the number of equations which are solved simultaneously. A further reduction occurs if each segment has a plane of reflective symmetry. The only required assumption is that the problem be linear. The capability, as developed, will be available in level 16 of NASTRAN for static stress analysis, steady state heat transfer analysis, and vibration analysis. The paper includes a discussion of the theory, a brief description of the data supplied by the user, and the results obtained for two example problems. The first problem concerns the acoustic modes of a long prismatic cavity imbedded in the propellant grain of a solid rocket motor. The second problem involves the deformations of a large space antenna. The latter example is the first application of the NASTRAN Cyclic Symmetry capability to a really large problem.
Ordered Nanostructures Made Using Chaperonin Polypeptides
NASA Technical Reports Server (NTRS)
Trent, Jonathan; McMillan, Robert; Paavola, Chad; Mogul, Rakesh; Kagawa, Hiromi
2004-01-01
A recently invented method of fabricating periodic or otherwise ordered nanostructures involves the use of chaperonin polypeptides. The method is intended to serve as a potentially superior and less expensive alternative to conventional lithographic methods for use in the patterning steps of the fabrication of diverse objects characterized by features of the order of nanometers. Typical examples of such objects include arrays of quantum dots that would serve as the functional building blocks of future advanced electronic and photonic devices. A chaperonin is a double-ring protein structure having a molecular weight of about 60 plus or minus 5 kilodaltons. In nature, chaperonins are ubiquitous, essential, subcellular structures. Each natural chaperonin molecule comprises 14, 16, or 18 protein subunits, arranged as two stacked rings approximately 16 to 18 nm tall by approximately 15 to 17 nm wide, the exact dimensions depending on the biological species in which it originates. The natural role of chaperonins is unknown, but they are believed to aid in the correct folding of other proteins, by enclosing unfolded proteins and preventing nonspecific aggregation during assembly. What makes chaperonins useful for the purpose of the present method is that under the proper conditions, chaperonin rings assemble themselves into higher-order structures. This method exploits such higher-order structures to define nanoscale devices. The higher-order structures are tailored partly by choice of chemical and physical conditions for assembly and partly by using chaperonins that have been mutated. The mutations are made by established biochemical techniques. The assembly of chaperonin polypeptides into such structures as rings, tubes, filaments, and sheets (two-dimensional crystals) can be regulated chemically. Rings, tubes, and filaments of some chaperonin polypeptides can, for example, function as nano vessels if they are able to absorb, retain, protect, and release gases or chemical reagents, including reagents of medical or pharmaceutical interest. Chemical reagents can be bound in, or released from, such structures under suitable controlled conditions. In an example of a contemplated application, a two-dimensional crystal of chaperonin polypeptides would be formed on a surface of an inorganic substrate and used to form a planar array of nanoparticles or quantum dots. Through genetic engineering of the organisms used to manufacture the chaperonins, specific sites on the chaperonin molecules and, thus, on the two-dimensional crystals can be chemically modified to react in a specific manner so as to favor the deposition of the material of the desired nanoparticles or quantum dots. A mutation that introduces a cysteine residue at the desired sites on a chaperonin of Sulfolobus shibatae was used to form planar arrays of gold nanoparticles (see figure).
Hoffman, Aubri S; Abhyankar, Purva; Sheridan, Stacey; Bekker, Hilary; LeBlanc, Annie; Levin, Carrie; Ropka, Mary; Shaffer, Victoria; Stacey, Dawn; Stalmeier, Peep; Vo, Ha; Wills, Celia; Thomson, Richard
2018-01-01
This Explanation and Elaboration (E&E) article expands on the 26 items in the Standards for UNiversal reporting of Decision Aid Evaluations guidelines. The E&E provides a rationale for each item and includes examples for how each item has been reported in published papers evaluating patient decision aids. The E&E focuses on items key to reporting studies evaluating patient decision aids and is intended to be illustrative rather than restrictive. Authors and reviewers may wish to use the E&E broadly to inform structuring of patient decision aid evaluation reports, or use it as a reference to obtain details about how to report individual checklist items. PMID:29467235
Hairy black holes in cubic quasi-topological gravity
NASA Astrophysics Data System (ADS)
Dykaar, Hannah; Hennigar, Robie A.; Mann, Robert B.
2017-05-01
We construct a class of five dimensional black hole solutions to cubic quasi-topological gravity with conformal scalar hair and study their thermodynamics. We find these black holes provide the second example of black hole λ-lines: a line of second order (continuous) phase transitions, akin to the fluid/superfluid transition of 4He. Examples of isolated critical points are found for spherical black holes, marking the first in the literature to date. We also find various novel and interesting phase structures, including an isolated critical point occurring in conjunction with a double reentrant phase transition. The AdS vacua of the theory are studied, finding ghost-free configurations where the scalar field takes on a non-zero constant value, in notable contrast to the five dimensional Lovelock case.
Rull, Silvia G; Álvarez, Eleuterio; Fructos, Manuel R; Belderrain, Tomás R; Pérez, Pedro J
2017-06-07
The first example of a diazo palladium adduct is reported. The complexes [(ArNHC-PPh 2 )M(η 2 -N 2 C(Ph)CO 2 Et)] (M=Ni, 3; M=Pd, 4; ArNHC-PPh 2 =3-(2,6-diisopropylphenyl)-1-[(diphenylphosphino)ethyl]imidazol-2-ylidene) were prepared by ligand exchange with styrene-coordinated precursors [(ArNHC-PPh 2 )M(styrene)] (M=Ni, 1; M=Pd, 2). Complex 4 was fully characterized, including X-ray analyses; this constitutes the first example of a diazo adduct compound with palladium, thereby closing the gap between Groups 8 and 10 regarding this type of compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apprehending Mathematical Structure: A Case Study of Coming to Understand a Commutative Ring
ERIC Educational Resources Information Center
Simpson, Adrian; Stehlikova, Nada
2006-01-01
Abstract algebra courses tend to take one of two pedagogical routes: from examples of mathematics structures through definitions to general theorems, or directly from definitions to general theorems. The former route seems to be based on the implicit pedagogical intention that students will use their understanding of particular examples of an…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
Processing bulk natural wood into a high-performance structural material
Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu
2018-01-01
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1â8. Natural wood is a low-cost and abundant material and has been used...
Biomimicry in textiles: past, present and potential. An overview
Eadie, Leslie; Ghosh, Tushar K.
2011-01-01
The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. PMID:21325320
Biomimicry in textiles: past, present and potential. An overview.
Eadie, Leslie; Ghosh, Tushar K
2011-06-06
The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. © 2011 The Royal Society
Computing Maximally Supersymmetric Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at infinity for (L ≥ 4)-loops. Finally in Ch. 7, the current status of ultraviolet divergences in the five-loop four-point mSUGRA amplitude is addressed. This includes a discussion of ongoing work aimed at resolving the mSUGRA finiteness question. The following Mathematica scripts are submitted with this dissertation: • on shell diagrams and numerics.m with dependencies: -- all_trees *.m -- external_kinematics_*_point.m -- rational_external_*_point.m where "*" is a wild-card string of any set of characters of any length -- either an integer or a number spelled out.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
Resistive field structures for semiconductor devices and uses therof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert
The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less
Quantitative evolutionary design
Diamond, Jared
2002-01-01
The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135
Non-Gaussian Methods for Causal Structure Learning.
Shimizu, Shohei
2018-05-22
Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.